12 United States Patent

US011809267B2

(10) Patent No.: US 11,809,267 B2

Gusat et al. 45) Date of Patent: Nov. 7, 2023
b/
(54) ROOT CAUSE ANALYSIS OF (56) References Cited
COMPUTERIZED SYSTEM ANOMALIES N
BASED ON CAUSAL GRAPHS u.5. PALENT DOCUMENIS
2020/0287923 Al 9/2020 Raghavendra
(71) Applicant: INTERNATIONAL BUSINESS 2020/0409781 Al* 12/2020 Zhen GOG6F 11/3006
MACHINES CORPORATION, 2022/0318082 Al* 10/2022 Slinger GO6F 11/0772
Armonk, NY (US)
FOREIGN PATENT DOCUMENTS
(72) Inventors: Mircea R. Gusat, Langnau am Albis WO 2021045719 A1 3/2021
(CH); Lili Lyubchova Georgieva, Sofia
(BG); Serge Monney, Pully (CH); OTHER PUBLICATIONS
Charalampos Pozidis, Thalwil (CH)
Bach et al., “On Pixel-Wise Explanations for Non-Linear Classifier
P
: _ : : : Decisions by Layer-Wise Relevance Propagation,” PLOS One, Jul.
(73) Assignee: E“;il‘;‘;i;‘t‘l’;‘sl B“S:j“nelz’sﬁl&fz’g‘é‘fs 10, 2015, DOI:10.1371/journal.pone.0130140, 46 pages.
’ ’ (Continued)
(*) Notice: Subject to any disclaimer, the term of this Primary Examiner — Jigar 'P Patel
patent is extended or adjusted under 35 (74) Attorney, Agent, or Firm — Anthony M. Pallone
U.S.C. 154(b) by 85 days. (57) ABSTRACT
An embodiment for root cause analysis of computerized
(21) Appl. No.: 17/658,483 system anomalies 1s provided. The embodiment may mnclude
monitoring key performance indicators (KPIs) for a com-
_ puterized system, wherein KPI values of the monitored KPIs
(22) Filed: Apr. 8, 2022 form respective timeseries. The embodiment may include
detecting an anomaly 1n the computerized system based on
(65) Prior Publication Data th@ monitored KPIs. T:he embodiment may inc!ude deter-
mining a troubleshooting time window extending over a
US 2023/0325269 Al Oct. 12, 2023 given time period. The embodiment may include 1identifying
a strict subset of the monitored KPIs based on portions of the
(51) Int. Cl respective timeseries spanning the given time period. The
G 0;5 ¥ 1 107 (2006.01) strict subset comprises abnormal KPIs (aKPIs) and potential
' explanatory KPIs (xKPIs). The embodiment may include
(52) US. CL obtaiming a causal graph of vertices mapping KPIs of the
CPC GO6F 11/079 (2013.01); GO6F 11/0709 strict subset by running a causality algorithm to evaluate
(2013.01) weights of directed edges connecting the vertices and
(58) Field of Classification Search accordingly obtain one or more directed paths. The embodi-

CPC e, GO6F 11/079; GO6F 11/0709
See application file for complete search history.

ment may i1nclude returning the obtained causal graph.
20 Claims, 6 Drawing Sheets

<
/ Mornitored KPis ,s/
/ /
]
|
;
i
Y 9
7 __{)} o
1 ront-end. KPP clusters +
Dimensionality reduction [~ representative KPls
and feature kngingening -

' -
-
.
>~
o
-
y g 25

r 3 1

.IIII’

10
Mid-end: L __ anomaly time-windows +
Embedded anomaly detector | top abnormal KPis
o Back-end:

Root cause analysis

causality)

______ Explanatory KPis (xKPis) and
(explainability and causal graphs

US 11,809,267 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Grace Period Disclosure, “CCA: An ML Pipeline for Cloud Anomaly
Troubleshooting,” Lili Georgieva et al. AAAI 2022, 36th AAAI
Conference on Artificial Intelligence, Feb. 22, 2022, IBM Zurich

Research Laboratory, 3 pages.

Grace Period Disclosure, “Cloud Causality Analyzer for Anomaly
Detection,” Master Thesis, L. Georgieva, Apr. 14, 2021, Department
of Information Technology and Electrical Engineering, ETH Zurich,
80 pages.

Heskes et al., “Causal Shapley Values: Exploiting Causal Knowl-
edge to Explain Individual Predictions of Complex Models,” 34th
Conference on Neural Information Processing Systems (NeurlPS

2020), https://proceedings.neurips.cc//paper/2020/file/
32e54441e6382a7tbacbbbat3¢c450059-Paper.pdf, 12 pages.
Lundberg et al., “A Unified Approach to Interpreting Model Pre-

dictions,” 3 1st Conference on Neural Information Processing Sys-
tems (NIPS 2017), arXiv:1705.07874v2 [cs.Al] Nov. 25, 2017,
https://arxiv.org/pdt/ 1705.07874v2 .pdf, 10 pages.

Nauta et al., “Causal Discovery with Attention-Based Convolu-
tional Neural Networks,” MDPI, Mach. Learn. Knowl. Extr. 2019,
1, 19; do1:10.3390/makel1010019, Jan. 7, 2019, 28 pages.

Nauta, Temporal Causal Discovery and Structure Learning with
Attention-Based Convolutional Neural Networks, University of
Twente, Master’s Thesis, Aug. 2018, https://essay.utwente.nl/76360/
1/Nauta MA_EEMCS.pdf, 72 pages.

Qiao et al., “Multiple Time Series Anomaly Detection Based on
Compression and Correlation Analysis: A Medical Surveillance
Case Study,” Springer, APWeb 2012, LNCS 7235, pp. 294-305,
2012, https://link.springer.com/chapter/10.1007/978-3-642-29253-
8_25.

Qiu et al., “Granger Causality for Time-Series Anomaly Detection,”
IEEE, 2012 IEEE 12th International Conference on Data Mining,
https://1eeexplore.ieee.org/document/64 13806, pp. 1074-1079.
Riberro et al., “Why Should I Trust You? Explaining the Predictions
of Any Classifier,” arXiv:1602.04938v3 [cs.LG] Aug. 9, 2016,
https://arxiv.org/pdi/1602.04938v3 .pdf, 10 pages.

Schockaert et al., “A Causal-based Framework for Multimodal
Multivariate Time Series Validation Enhanced by Unsupervised
Deep Learning as an Enabler for Industry 4.0,” arXiv:2008.02171
[cs.LG], Aug. 5, 2020, https://arxiv.org/ftp/arxiv/papers/2008/2008.
02171.pdf, 9 pages.

Shrikumar et al, Learning Important Features Through Propagating
Activation Differences, arXiv:1704.02685v2 [¢s.CV] Oct. 12, 2019,
https://arxiv.org/pdt/1704.02685v2 pdt, 9 pages.

Takeishi et al., “On Anomaly Interpretation via Shapley Values,”
arX1v:2004.04464v1 [cs.LG] Apr. 9, 2020, https://arxiv.org/pdt/
2004.04464 pdt, 23 pages.

Thalheim et al., “Sieve: Actionable Insights from Monitored Met-
rics 1n Microservices,” arXiv:1709.06686v1 [cs.DC] Sep. 20, 2017,
https://arxiv.org/pdt/1709.06686v 1.pdf, 17 pages.

Zhao et al., “Multivariate Time-series Anomaly Detection via Graph
Attention Network,” arXiv:2009.02040v1 [cs.LG] Sep. 4, 2020,
https://arxiv.org/pd1/2009.02040.pdf, 10 pages.

Gusat et al.,, “Characterizing a Computerized System Based on
Clusters of Key Performance Indicators,” Application and Draw-
ings, Filed on Feb. 16, 2022, 35 Pages, U.S. Appl. No. 17/651,386.
Gusat et al., “Characterizing a Computerized System With an
Autoencoder Having Multiple Ingestion Channels,” Application and
Drawings, Filed on Feb. 16, 2022, 35 Pages, U.S. Appl. No.
17/651,391.

* cited by examiner

U.S. Patent Nov. 7, 2023 Sheet 1 of 6 US 11,809,267 B2

FIG. 1

U.S. Patent Nov. 7, 2023 Sheet 2 of 6 US 11,809,267 B2

Monitored KPis

g, gyl gl Pyl

15
ol
| Emnt;—-end: | . Pt clusters +
Dimensionality reduction . representative KPls
and feature bEnginegenng -
29

anomaly ime-windows +
top abnormat KPis

Mid-end:
tmbedded anomaly detector

e e uielyt eSSyl CpSglEgl

~ Back-end;
Rool cause analysis | Explanatory KPls (xKPlg) and
{explainability and causal graphs

causality}

FIG. 2

U.S. Patent

Nov. 7, 2023 Sheet 3 of 6

(ﬁ

M S5 Moenitor muitiple KPIs

US 11,809,267 B2

(timesernes)
S7: Perform dimensionality
reduction
W \ 4
210 Detect anomaly based on
KPls
S30: Unsdpewmed causal graphr construction |
4 Y "
$31: Determine troubleshooting time window
{of given ime period}

'''''

--

) b J
S32: ldentify subset of monitored KPls,
including abnormal KPls {aKPls) and
npotential explanatory KPis (xKPIs)
S33. Score importance of xKPIs 1o akPls
(undirected edges, Shapley values)
................................. Causalgraph Grang er
; Y. h
535; Obtain first causal graph {Grangar)
with weighted directed edges
S35 Refine edges
(permutation-validation)
538 Obtain second causal graph {TCDF)
with weighted directed sdges
4 v A -
540 Combine graphs
So0: Investigations

FIG. 3

U.S. Patent

Nov. 7, 2023

Sheet 4 of 6

US 11,809,267 B2

2nd
Anomaly

1st
Anomaly

Time
(arbitrary

KPln

KPIa.
K P}

" " K E&W

: : ._ -t o
- : segtdee’ ﬂ#b E :-:ST‘
. b . L2l I S ol et
| ag W : T Ve "
> 4 : : bt
" H 14 -
- ‘ '1: 1.3.:1-"1
I :

E f
: ‘.,-!'
¥ad ? N
L] 1 hl_l\l-
“}. .
I :
C - i :
L : ~ -
. > X . N,
: ‘hm \

b -

- # : lﬁr:,.l‘ll
(S : : _¥
: "r# A F >N
: . N .
) t__)
N . " . o
L 't .)
L i .
. ‘.ﬂ"h : .
Z*J‘ : .
N Al , K

™ . - .Y
"Fﬂ . - :‘\"-"1
. » . :
N : \
Y : :
; W . N
* # N T‘-‘
. ol ™™ \
1*“ ' .
: y :
. A~ .
. = :
. » : A

- O

units)

FIG. 4

U.S. Patent Nov. 7, 2023 Sheet 5 of 6 US 11,809,267 B2

glighly Epligly- glglph piilgh Sglgh, Eplphyt lgigh pEglph pNplgly Telgfly* plpl JEglgh,. JSgfiply, Spliglpr ‘plgfen

{(xKPls)

| Port to local
| queue time |

—~ {ache 1o host
transfer time

P O I I I T T R I R R I

Transfer Size
KiB/op

ﬂ.“““ﬂ.“#

0.29

0.66

Response time - VC

ms/op

- Bac:kend write
/O rate

36

FIG. 5

U.S. Patent Nov. 7, 2023 Sheet 6 of 6 US 11,809,267 B2

N I I R T R S T T T L T SR A S T A R R T N I R R B T T ol e L N S T O T L TR A S S A TR N T T T R O T T - A I P B R - Bt i e L O A R SO L R B A R L L e T A R T AL

Computerized unit 101:
N i 3 3 i
Y1 i : £
IO § 3 ¥y
T i T 18
. } 3 S
T i ¥ e s e aan e At aar A Aa A AT ek ey e e e I e wan e e a awe e aon e s mae eae o o o 3 3 .
: ; B
: $ § % -
; ? i3
¢] iE
; | Memory controfier{s) &
; | 115 §i§
: £
€ MR RS A RS e AT AR RS R SR TR AR TR WA AR KA SRS WA AR N NS A KRR AP { ¥
i d ' 3 ; by
8 3 3 £
i . § ! i-:':
: HO cortrofiern(s) ! : t
P 136 t ; :
x .,i .ﬂ. . R
: E -E se ol e www ewe Sww w s Fww aww wws wwh e e v e '} :
;o : :
g __________________________________ f __ :
v . 3 .
;o |
v e §
: e _ . 3 .
. 3 '. : .
< 8 :i ;
P oo >
- | f‘?
;! g
.8 } :
o Display controfier ;; ;
Do 125 { :
I :
) : 1 "
[i .
.k _ _ i o | :
. Display 130 t | Network interface :
. ; % <

..........................

FIG. 6

US 11,809,267 B2

1

ROOT CAUSE ANALYSIS OF
COMPUTERIZED SYSTEM ANOMALIES
BASED ON CAUSAL GRAPHS

STATEMENT REGARDING PRIOR
DISCLOSURES BY THE INVENTOR OR A
JOINT INVENTOR

The following disclosures are submitted under 35 U.S.C.
102(b)(1)(A):

The document “Cloud Causality Analyzer for Anomaly
Detection”, Swiss Federal Institute of Technology Zurich,
Master Thesis, was authored by Lili L. Georgieva, co-
inventor of the present invention, and published on Apr. 14,

2021.
The document “CCA: An ML Pipeline for Cloud
Anomaly Troubleshooting™, AAAI 2022, 36th AAAI Con-

ference on Artificial Intelligence, was authored by Lil1 L.
Georgieva, Ioana Grurgiu, Serge Monney, Haris Pozidis,
Viviane Potocnik, and Mircea R. Gusat, and published on
Feb. 22, 2022, as a preliminary preprint version (https://
aaa1-2022 .virtualchair.net/poster_dm285).

BACKGROUND

The mvention relates 1n general to the field of computer-
implemented methods of root cause analysis of computer-
1zed system anomalies. In particular, it 1s directed to meth-
ods that apply a reduced subset of judiciously selected key
performance indicators (KPIs) to detect cloud performance
anomalies and their respective root causal culprits.

In recent years, explainability and causality have been the
subject of increasing interest 1n the machine learning com-
munity. Given the proliferation of complex, black-box neu-
ral network models, many called for the need to explain
model predictions and deepen the causal discovery of true
causes ol predicted outcomes. In particular, one important
area 1n the cybersecurity and cloud computing domain 1s
anomaly detection (AD), which relates to the identification
of rare or unexpected events or data patterns in computer-
1zed systems.

Various application- and data-specific statistical and deep
learning models have been proposed for detecting and
analyzing anomalies 1n computerized systems. Explainabil-
ity methods generally fail to drill 1n deeper from causal
inference of symptoms to root cause analysis (RCA)—
inferring the faults that generated the observed symptoms—
while baseline causality methods suffer from inethiciency
and scalability 1ssues when run on large datasets.

The following references form part of the background art:
[1] Sebastian Bach, Alexander Binder, Gregoire Montavon,

Frederick Klauschen, Klaus-Robert Miiller, and Wojciech

Samek. On pixel-wise explanations for non-linear classi-

fier decisions by layer-wise relevance propagation. PLOS

ONE, 10(7):1-46, 07 2013;

[2] Scott Lundberg and Su-In Lee. A unified approach to
interpreting model predictions. CoRR, abs/1705.07874,
2017,

[3] Marco Tulio Ribeiro, Sameer Singh, and Carlos Gues-
trin. “why should I trust you?”: Explaining the predictions
of any classifier. CoRR, abs/1602.04938, 2016;

[4] Avanti Shrikumar, Peyton Greenside, and Anshul Kun-
daje. Learning important features through propagating
activation differences. CoRR, abs/1704.02685, 2017:

[5] Jorg Thalheim, Antonio Rodrigues, Istemi1 Ekin Akkus,

Pramod Bhatotia, Ruichuan Chen, Bimal Viswanath, Lei

10

15

20

25

30

35

40

45

50

55

60

65

2

Jliao, and Christof Fetzer. Sieve: Actionable insights from
monitored metrics 1n microservices. CoRR, abs/
17709.06686, 2017; and

[6] Meike Nauta, Doina Bucur, and Christin Seifert. Causal
discovery with attention-based convolutional neural net-

works. Machine Learning and Knowledge Extraction,
1(1):312-340, 2019.

BRIEF SUMMARY

According to a first aspect, the present invention 1is
embodied as a computer-implemented method of root cause
analysis of computerized system anomalies. The method
comprises monitoring key performance indicators, or KPlIs,
for a computerized system of interest, wherein KPI values of
the monitored KPIs form respective timeseries. An anomaly
occurring in the system of interest 1s detected, based on the
monitored KPIs. The method then determines a trouble-
shooting time window, which extends over a given time
period, 1n accordance with the detected anomaly. Next, two
steps are performed based on portions of the timeseries
corresponding to the KPIs, where the timeseries portions
considered span the above given time period. In practice, the
timeseries formed by the monitored KPIs may be cropped to
obtain timeseries portions corresponding to this time period.
First, a strict subset of the monitored KPIs are identified.
This subset 1includes, on the one hand, abnormal KPIs and
potential explanatory KPIs, respectively noted aKPIs and
xKPIs. Second, a causal graph 1s obtained. This graph
includes vertices mapping the KPIs of the strict subset of
KPIs identified, 1.e., the aKPIs and xKPIs. The causal graph
1s obtained by running a causality algorithm, to evaluate
weights of directed edges connecting the vertices and
accordingly obtain one or more directed paths, where each
path connects one of the xKPIs to one of the aKPIs. Such
paths retlect causality chains that can be further investigated
by experts, whether machines or humans. To that aim, the
method eventually returns the obtained causal graph to help
troubleshoot the detected anomaly.

The strict subset of KPIs may advantageously be i1denti-
fied by leveraging a feature importance attribution algo-
rithm. That 1s, the aKPIs will preferably be identified based
on outputs from an anomaly detection algorithm run to
detect said anomaly. Next, the feature importance attribution
algorithm can be run to determine relative importance values
of the monitored KPIs to each of the identified aKPIs.
Because of the troubleshooting time window and the corre-
sponding timeseries portions considered, the relative impor-
tance values determined pertain to the time period of the
troubleshooting time window. The relative importance val-
ues make it possible to restrict the number of potential causal
KPIs. That 1s, the xKPIs are identified based on the relative
importance values determined. The feature importance attri-
bution algorithm 1s preferably an additive feature attribution
algorithm, to ease computations. The importance values may
for instance be Shapley values, which are associated with
edges connecting the vertices corresponding to the xKPIs
and the aKPIs.

In embodiments, the causality algorithm run to obtain the
causal graph includes independent causality algorithms,
such that distinct causal graphs are obtained, which can
nevertheless be combined into a composite causal graph. So,
the graph eventually returned may be the composite graph.
This graph may further combine a preliminary graph reflect-
ing the Shapley values. Various causality chains can accord-
ingly be 1dentified and provided to experts, for investigation

purposes.

US 11,809,267 B2

3

In preferred embodiments, one of the independent cau-
sality algorithms 1s a pairwise temporal causality algorithm,
¢.g., based on a statistical, pairwise co-determination
method. This algorithm performs a temporal causality test
(e.g., a Granger causality test), which determines a causal
direction and a corresponding weight for each pair of the
vertices. This allows the directed edges and the correspond-
ing weights to be determined. This algorithm 1s preferably
tollowed by a validation algorithm, to discard some of the
directed edges determined by the temporal causality algo-
rithm, starting with edges corresponding to bidirectional
causations.

In embodiments, a second independent causality algo-
rithm 1s a cognitive algorithm that learns a causal graph
structure of the causal graph by discovering causal relation-
ships between the xKPIs and the aKPls.

The proposed root cause analysis method i1s preferably
executed last 1 a pipeline ivolving feature engineering,
dimension reduction, and clustering.

According to another aspect, the invention 1s embodied as
a computer program product for root cause analysis of
computerized system anomalies. The computer program
product comprises a tangible computer readable storage
medium having program instructions embodied therewith.
The program instructions are executable by processing

means to cause the latter to perform steps according to the
present methods.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other objects, features and advantages of the
present mvention will become apparent from the following
detailed description of illustrative embodiments thereof,
which 1s to be read in connection with the accompanying,
drawings. The illustrations are for clarity in facilitating one
skilled 1n the art in understanding the ivention 1n conjunc-
tion with the detailed description. In the drawings:

FIG. 1 schematically illustrates a characterization system
interacting with a computerized system of interest, with a
view to performing a root cause analysis of detected anoma-
lies, according to embodiments;

FIG. 2 1s a high-level diagram 1illustrating a preferred
pipeline of operations performed by front-end, mid-end, and
back-end components, according to embodiments;

FIG. 3 1s a flowchart illustrating high-level steps of a
method of root cause analysis of computerized system
anomalies, according to embodiments;

FIG. 4 1s a graph representing various key performance
indicators (KPIs) evolving over time. The KPI values form
respective (umivariate) timeseries. Two anomalies are
assumed to have been detected based on such KPIs. The
anomalies are depicted as corresponding time windows;

FIG. § 1s a diagram 1illustrating a simple composite causal
graph, as obtained 1n embodiments. The vertices correspond,
on the one hand, to identified abnormal KPIs and, on the
other hand, to potential explanatory KPIs. Directed edges
connect the vertices, which form paths that correspond to
causality chains; and

FIG. 6 schematically represents a general-purpose com-
puterized system, suited for implementing one or more
method steps as involved in embodiments of the invention.

The accompanying drawings show simplified representa-
tions of devices or parts thereof, as mvolved in embodi-
ments. Similar or functionally similar elements 1n the figures
have been allocated the same numeral references, unless
otherwise indicated.

10

15

20

25

30

35

40

45

50

55

60

65

4

Computerized methods and computer program products
embodying the present mnvention will now be described, by
way of non-limiting examples.

DETAILED DESCRIPTION

The following description 1s structured as follows. Gen-
cral embodiments and high-level variants are described,
followed by preferred embodiments and then technical
implementation details. Note, the present method and 1ts
variants are collectively referred to as the “present meth-
ods”. All references Sn refer to methods steps of the tlow-
charts of FIG. 3, while numeral references pertain to
devices, components, and concepts mvolved 1 embodi-
ments of the present invention.

A first aspect of the invention 1s now described 1n refer-
ence to FIGS. 1-5. This aspect concerns a computer-imple-
mented method of root cause analysis of computerized
system anomalies. Formally, anomalies are defined as rare
events that are so different from other observations that they
raise suspicion concerming the mechanism that generated
them. Anomalies may arise due to malicious or improper
actions, frauds, or system failures, for example. An anomaly
may notably be due to a data tratlic anomaly, as with a
network attack (e.g., on the business environment), unau-
thorized access, network intrusion, improper data disclosure,
data leakage, system malfunction, or data and/or resources
deletion. Anomaly detection 1s important 1n various
domains, such as cybersecurity, fraud detection, and health-
care. An early detection 1s often of utmost importance as
failing to act upon the causes of the anomaly can cause
significant harm.

The method may for example be performed at a given
computer 1, which interact with a target computerized
system 2, 1.e., the system of interest, for which anomalies
may be detected and analyzed. The computerized system 2
may for instance be a group ol networked computerized
devices enabling cloud computing, as assumed in FIG. 1. In
variants, the system 2 may be a datacenter, supercomputer,
general-purpose computer, memory and storage hardware,
load/store engine, or any other type of computerized device
Or system.

The method relies on key performance indicators (KPIs)
of the computerized system 2. The KPIs are typically
obtained from compute devices and/or storage devices com-
posing the system 2.

As per the present method, such KPIs are continuously
monitored (see step S5 in FIG. 3). The monitored signals or
data may consist of or include monotonic sequences or
tabular data. The aim 1s to be able to detect potential
anomalies 1n the system 2. The KPI values of the KPIs form
respective timeseries. Each KPI normally corresponds to
one respective quantity, such that the respective timeseries
will normally be unmivariate. However, a KPI may, in prin-
ciple, also correspond to a multivariate timeseries. The
following assumes that each KPI corresponds to a univariate
timeseries, for simplicity. A timeseries 1s a series of values
(the KPI values) of a given quantity (the KPI) obtained at
successive times, as illustrated 1n FIG. 4 for N univariate
KPIs (noted KPI, to KPI,). Such KPI values may for
instance be continuously collected and aggregated from data
streams of raw KPI values. The aggregated values are
typically subject to some preprocessing, as discussed later in
reference to particular embodiments.

The method may accordingly come to detect an anomaly
(step S10 1n FIG. 3) 1n the computerized system 2, based on
the monitored KPIs. Any suitable anomaly detection algo-

US 11,809,267 B2

S

rithm may be used. This algorithm may for instance retlect
a model, possibly an analytical model. Examples of anomaly
detection algorithms and pipelines are discussed later. For
example, FIG. 4 assumes that two anomalies are being
detected, at different time points. The detected anomalies are
depicted as corresponding time windows, which span dis-
tinct time periods.

If an anomaly 1s detected, the method automatically
determines at S31 (or causes to determine) a troubleshooting
time window, which extends over a given time period. The
latter 1s determined 1n accordance with the detected
anomaly. Ad hoc heuristics may be used to determine the
time window, as exemplified later. The determined window
may be subject to validation by an expert. That 1s, the
method may propose a troubleshooting time window it has
determined and prompt an expert to validate 1t. In variants,
the method provides data (e.g., automatically determined
endpoints of a time interval) enabling the determination of
such a time window.

Next, two critical steps are performed based on portions
of the timeseries of KPI wvalues, where the time series
portions span the time period corresponding to the trouble-
shooting time window determined. In practice, the stored
timeseries will typically have to be cropped to 1dentity the
portions corresponding to the desired time period. l.e.,
subsets of KPI values corresponding to the desired time
period are extracted from the timeseries. The following steps
are based on such subsets.

First, a strict subset of the monitored KPIs are identified
(step S32 1n FIG. 3), where this subset includes judiciously
selected KPIs. Namely, this subset includes abnormal KPIs
and potential explanatory KPls, which are respectively
noted aKPIs and xKPIs to ease the exposition. Thus, the
identified subset of KPIs actually consist of two subsets,
which respectively include aKPIs and xKPIs. The aKPIs can
be regarded as the symptoms of the detected anomaly, while
the xKPIs are potential causes of such symptoms. Now, the
key question to be answered 1s how to automatically identify
the root causal culprits of the identified symptoms (the
aKPIs) at an affordable computational cost? Here, things get
complicated by the fact that an observed symptom may
actually be the cause of another observed symptom. Thus, a
suiliciently perceptive method 1s needed, which should
nevertheless be computationally tractable.

To that aim, a second operation 1s performed based on the
timeseries portions, 1.¢., based on KPI values corresponding
to the determined time windows. I.¢., the timeseries portions
considered all have a same length and correspond to same
time points. Still, the KPIs considered are restricted to the
sole subset (aKPIs and xKPIs) identified above, to ease
computations. The second operation aims at obtaiming a
causal graph, see steps S35-S38 1n FIG. 3. The causal graph
connects vertices, which correspond to the KPIs of the strict
subset 1dentified. That 1s, such KPIs are mapped onto the
vertices of the graph.

The causal graph 1s obtamned by running a causality
algorithm, which evaluates weights of directed edges con-
necting the vertices (each directed edge corresponds to an
ordered pair of vertices) and accordingly obtains one or
more directed paths, where each path connects an xKPIs to
an aKPIs. Several paths are obtained in practice, given the
number ol KPIs involved (typically a few dozen), notwith-
standing the selection performed. In the present context,
cach directed path (or dipath) 1dentified 1s a finite sequence
of distinct edges, which join a sequence of distinct vertices,
where the edges are all directed 1n a same direction, 1.e.,
going from one xKPI to one aKPI. In principle, additional

10

15

20

25

30

35

40

45

50

55

60

65

6

paths may possibly be identified i1n practice, which join
several aKPlIs, without involving any xKPIs.

Such paths establish causality chains, which may be
worth mvestigating by experts, whether they be computer-
1zed processes run on computers or humans. To that aim, the
method returns (i.e., stores and/or displays) the obtained
causal graph, with a view to help an expert troubleshoot the
detected anomaly.

The proposed method allows an explainable root cause
analysis to be performed using a fully unsupervised pipeline,
whereby abnormal KPIs (the symptoms of the anomaly
detected) can be causally linked to explanatory KPIs (the
potential causes of the symptoms). This 1s made possible
thanks to the troubleshooting time window determined. All
the KPIs subsequently considered span the same time
pertod, which allows a variety of causal methods to be
employed. In addition, the present methods works, by con-
struction, on reduced subsets of KPIs (the aKPIs and xKPIs),
which allows computationally tractable implementations of
the causality algorithms. Running a causality algorithm on
the entire set of KPIs would likely be prohibitive 1n practice,
grven that hundreds of KPIs may potentially be monitored 1n
a large computerized system.

In that respect, the range of KPIs monitored may typically
include between 50 and 260 KPlIs, mitially. However, one
may preferably consider between 70 and 130 KPIs, e.g.,
approximately 100 KPIs. The KPIs are computed based on
data collected (e.g., streamed) from the computerized sys-
tem 2 of interest. The KPIs may be formed using any
suitable metric. Such KPIs may for instance relate to CPU
utilizations, read/write response times, and read/write input/
output (I/0) rates. Other KPIs may for instance relate to
access rights, disk-to-cache transier rates or, conversely,
cache-to-disk transier rates, possibly using volume cache
(VC) or volume copy cache (VCC) metrics for volumes. In
practice, however, cache-related KPIs are found to be less
useiul than read/write data 1n the present context. Many
other types of KPIs are known to the skilled person.

The timeseries can be aggregated based on data collected
at regular time intervals from the system 2. I.e., the KPIs
may be streamed and sampled at any suitable frequency, e.g.,
288 times per day, 1.e., every 300 seconds (every 5 minutes).
Higher frequencies may be contemplated, 1f necessary. Still,
the collected data may possibly be up/sub-sampled, 1n order
to form the timeseries. The KPIs are formed as timeseries,
i.e., as objects of the form { . . ., Xy, X; .1, X;
1o Xy o X, o0 X, o) Where { LX) 0 Xy,
X, .5 denote values obtained at distinct time points (t) for a
same KPI (here x,), while x,, . . ., X, denote distinct KPIs.
Of course, the multiple KPIs may be regarded as one
multivariate timeseries.

The present approach may for example be applied to build
a causal, directed acyclic graph, as a causal sequence dia-
gram that identifies the causal factors and depicts the
sequence of causal relationships that lead to the occurrence
of an anomaly, as illustrated 1n FIG. 5.

All this 1s now described 1n detail, 1n reference to par-
ticular embodiments of the invention. To start with, the
aKPIs can be determined 1n accordance with the anomaly
detection algorithm, e.g., based on outputs of this algorithm,
as 1n embodiments described below. In principle the xKPIs
can be determined based on statistics, e.g., as those KPIs that
are mostly determined to be the causes of anomalies. How-
ever, they are preferably determined by a feature importance
attribution method.

Namely, the present methods may run (step S32-S33) a
feature 1mportance attribution algorithm, where this algo-

US 11,809,267 B2

7

rithm causes to determine relative importance values of the
monitored KPIs to each of the identified aKPIs during the
considered time period. The relative importance values
make 1t possible to 1dentily the xKPIs. That 1s, the relative
importance values are determined for connected pairs of
KPIs, where such pairs are connected at one or more aKPlIs.
I.e., each pair consists of an aKPI and another KPI.

The xKPIs are 1dentified as those KPIs that are the most
important to the selected aKPIs. Some of the initial KPIs
will be found to be unimportant, such that they can be
discarded. One may possibly apply a threshold determined
importance scores to identily the important xKPIs. By
design, the feature importance attribution algorithm may
already discard the less important KPIs. Eventually, the
xKPIs can be 1dentified as the union of the KPIs 1dentified
by the feature importance attribution algorithm (excluding
the xKPIs, which are already identified at this point).

The above process automatically reduces the number of
KPIs considered. In other words, using a feature importance
attribution algorithm makes 1t possible to restrict the feature
space for causal discovery to the sole set of aKPIs and xKPlIs
determined. Still, an mmportance score reflects a mutual
importance between an xKPI and an aKPI; 1t does not
provide a direction vet, hence the advantage of the causality
algorithm, which 1s subsequently run to identity directed
edges and also weight such edges.

The feature importance attribution algorithm 1s preferably
an additive algorithm. Additive feature attribution methods
are known per se; they allow a substantial simplification of
the underlying computational problem. Additive feature
attribution methods are local methods explaining each
model prediction separately by a same, simple, interpretable
explanation model. In variants, the feature importance attri-
bution algorithm may be a multiplicative algorithm, whether
linear or not.

Example of suitable feature importance attribution algo-
rithms are:

“LIME” (Local Interpretable Model-Agnostic Explana-

tions), reference [3];

“DeepLIFT” (Deep Learning Important FeaTures, refer-
ence [4]);

“LRP” (Layer-Wise Relevance Propagation, reference
[1]); and

“SHAP” (Shapley Additive exPlanation, reference [2]).

The SHAP framework 1s particularly appealing, inasmuch
as 1t unifies LIME, LRP, and DeepLIFT under the class of
additive feature attribution (AFA) methods.

The relative importance values found by the {feature
attribution algorithm may advantageously be stored in asso-
ciation with edges connecting the vertices corresponding to
the selected KPIs. Such values may be of interest for the
subsequent investigations. In particular, the present methods
may compute S33 Shapley values, based on outputs from the
feature 1mportance attribution algorithm used. To that aim,
use can advantageously be made of the SHAP explaiability
framework. SHAP proposes a unified measure of feature
importance, leading to so called SHAP values, which attri-
bute to each feature i1ts importance as the change in the
expected model prediction when conditioning on that fea-
ture. However, exact computation of SHAP values 1s chal-
lenging.

Reference [2] proposes three main methods for approxi-
mating such values, which are the so-called:

“Shapley values™ approach, where a classic game-theory
approach 1s used to retrains the model on all feature
subsets and attributes to each feature an importance
value representing the weighted-average effect on the

5

10

15

20

25

30

35

40

45

50

55

60

65

8

model prediction of including this feature. To avoid
retraining for all subsets, Shapley Sampling values
approximate the effect of removing a variable from the
model by integrating over samples from the training
dataset;

“Kernel-SHAP”, a regression-based, model-agnostic
method that uses linear LIME, along with Shapley
values, to find a weighting kernel for building a local
explanation model; and

“Deep-SHAP”, a deep neural network model-specific
approach that leverages DeepLIFT and information
about the network composition to approximate Shapley
values for the whole network.

SHAP has a number of desirable properties that its
precursors lacked: (1) local accuracy of the explanation
model prediction; (1) missingness—ieatures missing in the
original input must have no impact; and (111) consistency
when revising the original model. SHAP can be simply
adapted to the present context. In particular, 1t can be
adapted to a back-end frame 30 (see FIG. 2) aiming to aid
explainability and validation to the anomalies detected by
the mid-end platform 10, which preferably relies on an
autoencoder, as discussed later.

As noted above, the feature attribution need be comple-
mented by a causal analysis to be able to direct the edges of
the graph. Several causality algorithms can be contemplated.
What 1s more, several causality algorithms may be concur-
rently or successively run, given the small number of KPIs
retained and their relatively small span, as per the time
window selected. That 1s, the causality algorithm run to
obtain the causal graph may include independent causality
(sub) algorithms. As such, running the overall causality
algorithm results 1 obtaining distinct causal graphs, having
distinct sets of directed edges with distinct sets of evaluated
weights of directed edges. The distinct sets of directed edges
form distinct sets of directed paths.

Interestingly, the method may obtain S40 and return a
composite graph by combining the distinct causal graphs
obtained. Thus, experts may subsequently investigate a
composite graph juxtaposing several sets of edges with
different weight types, as shown in FIG. 5.

In addition, the distinct causal graphs may be further
combined with a preliminary graph obtained based on the
importance values and/or other outputs from the feature
importance attribution algorithm. That 1s, the present meth-
ods may further obtain S32 a preliminary graph of vertices
mapping the aKPIs and xKPls, where the vertices are
connected by edges weighted 1n accordance with outputs
from the feature importance attribution algorithm. The pres-
ent methods may then combine S40 the preliminary graph
with the distinct causal graphs to form a composite graph 36
such as shown in FIG. 3. In thus example, the full-line arrows
correspond to edges weighted 1n accordance with the feature
importance attribution algorithm. However, such edges are
subsequently oriented thanks to outcomes of the causality
algorithms. Additional directed edges are discovered by the
causality algorithms 1n this example. The dashed-dotted
edge 1s 1dentified and weighted by a pairwise temporal
causality algorithm, while the dashed edge 1s obtained via an
unsupervised, deep learning model discussed below.

As evoked above, the causality algorithm may notably
include a pairwise temporal causality algorithm, which
performs a temporal causality test. This test determines a
causal direction and a corresponding weight for each pair of
the vertices, so as to eventually determine directed edges and
corresponding weights. Again, the directed edges form cau-
sality chains. The pairwise temporal causality algorithm 1s

US 11,809,267 B2

9

preferably based on a statistical, pairwise co-determination
method. In particular, the temporal causality test performed
may be a Granger causality test.

A Granger causality test 1s a statistical hypothesis test for
determining whether one timeseries 1s useful in forecasting
another. In the present context, the Granger algorithm tests
for Granger causality across the targeted time period, and
may reflect short delay lags (e.g., less than 10 time steps) in
the causality chains. In more detail, the present methods may
apply the Granger causality test (GCT) for every metrics
pair (X, Y,) via two ordinary least-square regressions to
analyze the model power of predicting: (1) X, with Y., and
(11) X, with the time-lagged Y, ., for a predefined maximum
lag, which 1s chosen large enough to cover the potential
cause-ellect delays. The two models can be compared via a
statistical F-test with the null-hypothesis H, being that Y,
does not Granger-cause X . H, 1s rejected 1t the p-values are
below a significance threshold. Once all Granger causalities
have been obtained via GCT, a causal graph of all considered
KPIs (which are preferably limited to most representative
KPIs, as explained later) 1s built and the cause—eflect
relationships are depicted as directed edges. The edge
welghts can for instance be set as the causal delays, which
can be defined as the most significant lags (lowest p-values)
in the GCT pair-wise regression forecasting models.

Importantly, this temporal causality test applies only to
targeted pairs resulting from the feature importance attribu-
tion. l.e., the determination of the aKPIs/xKPI and the
causality algorithm are hierarchically implemented to lower
the feature space and, thus, the computational complexity.

The above causality algorithm can advantageously be
complemented by a validation algorithm, the execution (step
S36) of which discards some of the directed edges deter-
mined by the temporal causality algorithm. In particular, this
validation may attempt to discard edges corresponding to
bidirectional causations. In addition, or i1n variants, the
validation algorithm may discard corresponding to causal
relationships that persist after random shuflling a cause in a
corresponding causality chain. I.e., 1in that case, a permuta-
tion-validation method 1s used to validate causalities found
by discarding relationships that persist aiter random shui-
fling of the cause. The resulting causality algorithm gives
rise to an interpretable, statetul, metrics dependency extrac-
tor, which enables scalable and targeted pair-wise causality
exploration.

Other causality algorithms can be contemplated, in place
of or 1n addition to the above causality algorithm. In
particular, the present methods may run S38 a cognitive
algorithm (after the pairwise co-determination S35-536),
where the cognitive algorithm learns the causal graph struc-
ture of the causal graph by discovering causal relationships
between the xKPIs and the aKPls. Such algorithms are
known. For example, the cognitive algorithm may be based
on or derived from the so-called “Temporal Causal Discov-
ery Framework™ (TCDF). However, 1n the present context,
the TCDF framework 1s applied to a restricted set of KPIs,
thanks to the feature importance attribution method used
S32.

Further algorithms may similarly be used, and various
heuristics may be contemplated, to combine the resulting
causal graphs. In variants, the final causal graph may be
obtained according to more basic graph operations. For
examples, 1 each graph, edge weights that do not exceed a
given threshold may be discarded. Then, the graphs may be
combined by way of an intersection, whereby only the
redundant causal edges would be maintained. Conversely,

10

15

20

25

30

35

40

45

50

55

60

65

10

the final graph can be obtained as a umion of the distinct
graphs obtained, to make sure to maintain all available
information.

In embodiments, the anomaly 1s detected S10 by execut-
ing S7-S10 a sophisticated anomaly detection pipeline, e.g.,
implemented by the front-end component 7 and mid-end
component 10 shown in FIG. 2.

The anomaly detection pipeline 7, 10 relies on monitored
KPIs. The KPIs are categorized, before being fed to a
cognitive model for characterizing the target system 2. Each
KPI is categorized into one of n types of KPIs, where n=2.
This categorization 1s preferably achieved thanks to a clus-
tering process, which 1s described later in detail. Next, KPI
values are channeled through n bufler channels, 1 accor-
dance with the n types of KPIs identified. That 1s, each of the
n bufler channels bullers KPI values of KPIs of a respective
one of the n types. Fach bufler channel 1s basically a
memory for temporarily storing values of the KPIs. I.e., the
bufler channels store KPIs with a view to subsequently
injecting the stored KPI values in mput channels of the
cognitive model, in order to characterize the system 2 based
on outputs of the model. I.e., the KPI values buflered in the
n butler channels serve as mput data for the cognitive model
and are referred to as “initial KPI values™ 1n the following.
The processing performed by the cognitive model pret-
erably decomposes as follows. The mnitial KPI values (as
buflered 1n the n bufler channels) are fed to n respective
input channels of the cognitive model. The latter 1s 1imple-
mented as an autoencoder by a trained neural network, 1.e.,
an artificial neutral network (ANN). The autoencoder nota-
bly includes an encoder and a decoder. Basically, the ANN
processes the initial KPI values to produce output values,
based on which reconstructions errors are obtained. Remark-
ably, the encoder may include temporal convolutional layer
blocks. The latter are connected by each of the n input
channels. Consistently, the decoder includes deconvolution
layer blocks, which are connected by the encoder. 1.e., input
channels connect to the encoder, which connects to the
decoder. The ANN 1s configured 1n such a manner that the
initial KPI values are independently processed in the n input
channels, then compressed via the temporal convolutional
layer blocks of the encoder, prior to being reconstructed via
the deconvolution layer blocks of the decoder.

Eventually, reconstruction errors are obtained by compar-
ing the reconstructed KPI values with the imitial KPI values.
I.e., reconstructs from the latent space of the autoencoder are
exploited to compute reconstruction errors. This, 1 turn,
makes 1t possible to characterize the computerized system 2
based on the reconstruction errors obtained, in an unsuper-
vised manner.

The above approach enables an unsupervised pipeline,
which exploits reconstruction errors obtained for KPIs chan-
neled through multiple mput channels of the ANN {for
characterizing the target computerized system 2, e.g., to
detect an anomaly in the system 2 and troubleshoot the
system 2, thanks to causal graphs obtained as explained
above. The proposed architecture (in particular the temporal
convolutional blocks and deconvolution counterparts) has
advantages 1n terms of interpretability (explainability), scal-
ability, and root cause analysis.

The encoder compresses the input KPIs 1nto a latent space
mamnifold that encodes the essential signal and then process
it via the decoder, which attempts to reconstruct the initial
KPIs from their compressed representations. Moreover, the
cognitive model may possibly ingest a frontend data stream,
which may already be compressed, e.g., by way of a
selection of most representative KPIs. Still, the cognitive

US 11,809,267 B2

11

model allows additional compression to be achieved 1n its
latent space, which 1s exploited for characterizing the system
2. The latent space manifold preferably mvolves 32 to 128
neurons (more preferably 64 neurons), as opposed to the
hundreds to thousands of nodes used in 1nput.

The temporal convolutional layer blocks allow temporal-
ity to be taken into account, in addition to spatial correla-
tions between the KPIs. The temporal convolutional layer
blocks enable interpretability inasmuch as dilation factors,
even small, can directly be related to causality lags, a thing
that 1s not possible with non-dilated convolutional models.
In a causality context, non-linear neural networks have
advantages as they allow to go beyond pairwise co-deter-
mination algorithms. Furthermore, the above scheme makes
it possible to relax KPI constraints in terms of strict station-
arity and linear time-invariance that prior methods often
1Impose.

The data aggregation and categorization can be performed
repeatedly, so as to continually feed the cognitive model
with data and continually characterize the system 2 of
interest, possibly in (near) real-time. I.e., KPI values may
possibly be continually fed into respective input channels of
the cognitive model. Thus, the anomaly detection pipeline
may be used to detect potential anomalies in (near) real-
time. However, the present detection methods may also be
performed on specific occasions, €.g., 1n respect of past
timeseries, to detect past anomalies 1n the system 2 (e.g., for
forensic purposes).

Some of the mitial KPIs may possibly be discarded, after
preprocessing. The KPls are categorized as objects of n
respective types, 1.e., as objects having different properties
as per the procedure used to identity them. Now, the
categorization performed may advantageously mvolve sub-
stantial precompression, thanks to a clustering process and
a selection of representative KPIs 1n each cluster. Namely,
alter the preprocessing, the KPIs may be clustered, so as to
obtain k clusters, where k=2. Fach cluster includes at least
m KPIs, where m>n. That 1s, each cluster should include a
number m of KPIs that 1s larger than the number n of input
channels, for reasons that will become apparent below. Next,
representative KPIs can be 1dentified 1n each of the clusters
formed. That 1s, for each cluster of the k clusters obtained
thanks to the clustering process, n representative KPIs are
identified in each cluster. The representative KPIs are 1den-
tified as objects of distinct types. Finally, KPI values of the
n representative KPIs identified can be bullered in respective
ones of the n bufler channels.

The representative KPIs are preferably identified so as to
exhibit antagonistic or contrasting properties, as per the
metric used to 1dentity them. Preferred 1s to select a central
KPI and a peripheral KPI in each cluster. That 1s, the n
representative KPIs 1dentified 1n each cluster may include a
central KPI (cR-KPI) and a peripheral KPI (pR-KPI) of this
cluster, e.g., the most central and the most peripheral KPlIs.
For example, the KPIs can be ordered in each cluster
according to their distances to the centroid of that cluster,
which makes 1t possible to easily determine the representa-
tive KPIs. Preferably, use 1s made of the most central KPI
and the most peripheral KPI only, such that only two buller
channels and two mputs channels are needed 1n that case.
The most central and the most peripheral KPIs can be
regarded as statistically normal and abnormal KPlIs, respec-
tively.

In preferred embodiments, the KPIs are iteratively clus-
tered thanks to a k-shape algorithm. The k-shape clustering,
algorithm 1s a robust, iterative refinement algorithm that
scales linearly with the number of features and creates

10

15

20

25

30

35

40

45

50

55

60

65

12

k-well-separated, homogeneous clusters. This clustering
process 1s iterative: the algorithm first randomly initializes
the timeseries’ assignments to clusters and then iteratively
updates the assignments based on distances to the cluster
centroids. In practice, one preferably seeks to obtain 8 to 10
clusters, eventually. The k-shape algorithm relies on the
so-called shape-based distance (SBD), which uses a normal-
1zed cross-correlation (NCC) measure that compares the
shapes of the timeseries shapes and hence can detect pair-
wise similarities, even for lagged (non-simultaneous) co-
dependencies.

Next, the algorithm may aggregate timeseries correspond-
ing to representative KPIs of each type. l.e., representative
KPIs of a given type form a set {X,;, X, . . ., X, |, {X4.
Xias « + o s Xgmf» - - - J» Where 1X;,, Xjos - - . X;,,; corresponds
to one representatwe KPI of that glven type. The corre-
sponding KPIs are then fed into a respective mput channel
of the neural network. In other words, n-uplets of KPIs are
identified, and the KPIs of each n-uplet 1s subsequently fed
into the n” input channel of the cognitive model. Time data
do typically not need to be fed into the model, because they
do not provide learnable information. However, they are
typically saved, 1 order to later map the anomalous 1ndices
detected to time points, e.g., when investigating incidents.

In principle, one may have any number n of mnput chan-
nels, provided that this number 1s smaller than the average
number of KPIs 1n each cluster. That 1s, if k clusters of KPIs
are 1dentified, which, on average, include M KPlIs, then n
must be strictly smaller than M. To that aim, one may need
to adapt the number k of clusters formed to ensure that a
sufliciently large number of KPIs are included in each
cluster. That said, the number n of channels 1s preferably
chosen to be small, to increase the compression achieved
through the clustering and selection process.

The number n of channels 1s preferably chosen to be equal
to 2 (1.e., n=2). In that case, the two representative KPIs
identified for each cluster may correspond to the most
central KPI (cCR-KPI) and the most peripheral KPI (pR-KPI)
in this cluster. This means that the bufler channels consist of
two buller channels only. Similarly, the input channels of the
neural network consist of two 1nput channels only, 1.e., a first
input channel and a second input channel. Thus, the central
KPIs of the k clusters can be bullered 1n a first bufler channel
and fed into the first input channel, while perlpheral KPIs of
the k clusters are butlered 1n a Seeend bufler channel and fed
into the second iput channel. For example, two data
streams of representative KPIs (central and peripheral KPIS)
can be formed, from which two compressed channels (the
bufler channels) are built, which are later ingested by the
cognitive model. Combining the k-shape clustering algo-
rithm with a two-channel extraction (for central and perlph-
eral representatwe KPIs only) allows a particularly eflicient
compression to be achieved.

In addition, a frequency-based aggregation mechanism
can be used, whereby the most frequently occurring KPIs are
selected, e.g., according to a percentage or heuristic. The
aggregation mechanism may for instance aggregate weekly
representative KPIs that are the most frequently occurring in
one month 1nto monthly KPI channels. Applying this to both
the central and peripheral representative KPIs yields two
monthly channels. Still, the channeling algorithm may
ensure that both channels are equally sized, according to a
predefined channel size (e.g., specified by a user). This
makes it possible to achieve balance between capturing: (1)
the current representative trends, and (11) the core system
behavior during an extended time period. For example, each
KPI may be a vector aggregating one week of data (2016

US 11,809,267 B2

13

points), corresponding to 5 min time lags. The same proce-
dure can be run for several successive weeks: the most
frequent KPIs are then picked up to extract monthly repre-
sentatives.

In addition, the clusters are preferably ordered by cardi-
nality, prior to feeding the buflered KPIs into the input
channels. More precisely, the KPIs (as buflered 1in each of
the two buller channels) may be ordered 1n descending order
of cardinality of the respective clusters. In other words, the
representative KPIs of large clusters are buflered first. In
practice, the ingestion tensor may be built cluster-by-cluster,
from the largest to the smallest cluster by cardinality number
of KPIs 1n each cluster. That 1s, one may first sort the clusters
by cardinality, then sort and select the KPIs according to
their distances to the centroids of the clusters, to select the
representative KPIs. The benefit of such an ordering on the
model performance can be evaluated at run-time.

The detection of an anomaly may notably lead to trouble-
shooting the computerized system 2, e.g., by performing a
causal analysis as described earlier, albeit based on a selec-
tion of the representative KPIs that have been determined to
contribute the most to the anomaly detected. In that respect,
reducing the feature space to only a small number of KPIs
(as achieved thanks to a pre-compression scheme proposed
above) allows support engineers to analyze the system
performance behavior more eflectively, based on only a
fraction of the large number of 1nitial KPIs, and accordingly
reduces incident resolution times. Moreover, this feature
compression 1s crucial for scalable causality discovery of
root anomalous culprits.

The following explains how anomalies can be detected, in
preferred embodiments. Such embodiments rely on time-
dependent indicators, which are obtained based on the
reconstruction errors computed thanks to outputs provided
by the ANN. The reconstruction errors are typically obtained
by computing differences between the reconstructed KPI
values and the 1nitial KPI values, for each KPI and for each
time point. Next, one may seek to identily abnormal values
of the time-dependent indicators obtained. In turn, the
computerized system can be characterized based on a selec-
tion of the KPIs that are found to contribute the most to the
abnormal values 1dentified. For example, the algorithm may
pick the top-h KPIs that contribute the most to a given,
abnormal value. In vanant, the algorithm may select all the
KPIs that contribute to more than a given fraction (e.g.,
50%) of any abnormal value 1dentified. In both cases, 1t 1s
possible to automatically identily those KPIs that are
responsible for the characterized state of the system 2, which
cases the task of support engineers when analyzing the
system 2, e.g., to resolve incidents. These KPIs are aggre-
gated to form the aKPIs used in the root cause analysis
discussed earlier.

The time-dependent indicators may notably be obtained
by summing absolute values of the reconstruction errors
obtained for the KPI values over all of the KPIs and, this, for
cach time point. That 1s, at each time point, the algorithm
sums the reconstructions errors obtained for all KPI values
corresponding to this time point. In varants, one may sum
reconstruction errors obtained for a subset of the KPI values,
this resulting in a small performance improvement. Abnor-
mal values can then be i1dentified by detecting those critical
time points, at which the time-dependent indicators take
abnormal values, e.g., exceed a threshold value.

Note, the algorithm may advantageously smooth the
time-dependent indicators over time, to minimize false posi-
tives. More precisely, the reconstructions errors may be
smoothed over time, after summing them, e.g., by summing

10

15

20

25

30

35

40

45

50

55

60

65

14

the KPI values at each time point and then computing a
moving average. This way, the time-dependent indicators
are obtained as smoothed values for each time point and the
critical time points are identified as points corresponding to
time points at which the smoothed values exceed a threshold
value.

One may for instance calculate the reconstruction error,
for each KPI, as the squared distance between the 1nitial KPI
and reconstructed KPI (considered as vectors). The resulting
distance can be normalized, e.g., by scaling 1n the [0, 1]
range. Then, the mean error over all KPIs 1s smoothed over
time, €.g., via a moving average function with a rolling (e.g.,
4-hour) window with a certain overlap to obtain smoothed
errors. The overlap may for example amount to 1, 2, or 3
hours. Preferably, a 3-hour overlap 1s used, which amounts
to 75% of the rolling window, to achieve more granularity.
In vanants, other smoothing functions can be used, such as
convolutions or low-pass filters.

In embodiments, the time points are identified according
to a K-sigma thresholding method, 1.e., based on the mean
value m and the dispersion value s (e.g., the standard
deviation) obtained for the smoothed values. The underlying
assumption 1s that the majority of the data have a normal
behavior and, thus, are correctly learned and reconstructed
by the cognitive model. The K-sigma thresholding method
classifies a time point as anomalous if the corresponding
smoothed error exceeds m+Kxs. That 1s, a timestep t 1s
classified as anomalous 1if and only 11 1ts smoothed error
exceeds a threshold set to m+Kxs. The hyper parameter K
controls the tolerance to outliers and 1s usually set to 2,
which corresponds to the 957 percentile of a Gaussian
distribution. Finally, for each anomaly, the algorithm may
for instance extract the top-1 KPI contributors to the anoma-
lous reconstruction error. Consecutive anomalous time-
points are preferably grouped in anomaly windows. l.e., a
residual error-based post-processor 1s used to identity the
anomaly windows. In some applications, sustained anoma-
lies (e.g., lasting several hours) may be particularly inter-
esting to track. In such applications, the algorithm may for
instance {filter out point outliers (short-lived bursts), e.g.,
lasting less than 15-minutes, as these do typically not require
further i1nvestigation by the support engineers. In such
applications, the outputs provided to the support engineers,
at post-processing (1.e., downstream the cognitive model),
may include anomaly windows, together with corresponding
top-1 KPI contributors, 1.e., the aKPlIs, as well as the causal
graphs (or the composite graph) computed for each anomaly.

Next, according to another aspect, the invention can also
be embodied as a computer program product, which com-
prises a computer readable storage medium having program
instructions embodied therewith. Such nstructions typically
form a software, e.g., stored 1n the storage 120 of a com-
puterized unit such as shown 1 FIG. 6 (also corresponding
to the computer 1 1n FIG. 1). The program instructions can
be executed by processing means 105 of such a unit 101 to
cause the latter to perform steps according to the present
methods.

The above embodiments have been succinctly described
in reference to the accompanying drawings and may accom-
modate a number of variants. Several combinations of the
above features may be contemplated.

FIG. 3 shows a high-level flow of operations according to
preferred embodiments. Multiple KPIs are continuously
monitored, step S3. Such KPIs form respective univariate
timeseries. Various preprocessing steps are performed at
step S7, including a substantial dimensionality reduction,
whereby representative KPIs are selected via a clustering

US 11,809,267 B2

15

process, as described above. Next, when an anomaly 1s
detected (based on preprocessed KPIs), step S10, a causal
graph 1s constructed S30, in an unsupervised manner. To
start with, an adequate troubleshooting time window (of
given time period) 1s determined at step S31. At step S32, a
subset of the KPIs 1s determined, including aKPIs and
xKPIs. The aKPlIs are determined by the anomaly detection
pipeline, whereas a prionn1 relevant xKPIs are identified
thanks to a feature importance attribution algorithm, which
scores S33 the importance of xKPIs to aKPIs as Shapley
values. Next, a first causality algorithm (Granger) 1s used
S35 to obtain a first causal graph with weighted, directed
edges. Such edges are subsequently refined S36 using a
permutation-validation method, which notably discard bidi-
rectional causations and coincidentally persisting causal
relationships. A second causal graph 1s then obtained S38
using the TCDF framework. All graphs are finally combined
at step S40 and then provided S50 to support engineers for
investigation.

As seen 1 FIG. 2, a preferred architecture involves a

front-end 7, a mid-end 10, and a back-end 30. The front-end

7 performs the preprocessing, including the dimensionality
reduction, based on timeseries obtained by monitoring the
raw KPIs 5. As explained in section, this notably leads to
cluster KPIs, with a view to identilying representative KPIs
15. The latter are used by the mid-end 10 to detect anoma-
lies. The mid-end 10 outputs corresponding time windows,
as well as the top abnormal KPIs 25, which are used to form
the aKPI set. In turn, trimmed timeseries portions corre-
sponding to the aKPIs are used by the back-end 30 to enable
the root cause analysis. The back-end 30 outputs the xKPIs
and the causal (or composite) graphs 33, for further analysis
by automated process or support engineers. This architecture
notably allows a reduced (sub)set of judiciously selected
KPIs to be identified, e.g., to detect cloud performance
anomalies, and their respective root causal culprits, all
without critically compromising accuracy.

The proposed approach provides an explainable anomaly
detection pipeline, capable to drill via causal inference from
symptoms to root causes, and thus automate the deeply
involved root cause analysis of anomalous events as occur-
ring 1n complex systems such as cloud infrastructures.

FIG. 4 shows a composite graph obtained by apply a
hierarchical ensemble (feature 1mportance attribution,
granger causality, and TCDF) to build a temporal causal
graph as a composition of all subgraphs. The composition
resembles a union, except for the edge weights.

Referring to FIG. 5, the pipeline of FIG. 2 was used to find
the most-representative anomalous points during a detected
anomaly and then explain the top-k contributors (T-KPlIs),
which are extracted based on their autoencoder reconstruc-
tion error. The T-KPIs are first explained using the SHAP
framework, which provides feature importance Shapley
values. Namely, the Read Transfer Size 1s explained by
Cache to Host Transfer Response Time, the Shapley value 1s
equal to 0.66, while the Back-end Write I/O Rate yields a
value of 0.59. The Response Time 1s explained by Port to
Local Node Send Queue Time (Shapley value: 0.29).

Next, causal relationships are discovered via a Granger
method (dotted-dashed arrows) and a TCDF-based algo-
rithm (dashed arrows), using a 16-hour troubleshooting
window centered at the investigated anomalous point. One
causal relationship with lag was found by each method.
According to the Granger method, Port to Local Node Send
Queue Time causes Back-end Write I/O Rate with lag value

5

10

15

20

25

30

35

40

45

50

55

60

65

16

B 12 (i.e., 2 points), while the TCDF-based algorithm finds
the Back-end Write I/O Rate to cause Response Time with
lag value A 11 (1.e., 1 point).

The analysis suggest that one potential root cause 1s Port
to Local Node Send Queue Time (cause), as 1t causes
Back-end Write I/O Rate (infection), which then causes
Response Time (symptom). The total causal lag 1s the sum
of the two corresponding lag values, 1.e., lag value A+lag
value B=3 points (15-minutes). Such composite graphs have
received positive validation from Subject Matter Experts
(SMEs5s).

Computerized systems and devices can be suitably
designed for implementing embodiments of the present
invention as described herein. In that respect, 1t can be
appreciated that the methods described herein are largely
non-interactive and automated. In exemplary embodiments,
the methods described herein can be implemented either in
an interactive, a partly-interactive, or a non-interactive sys-
tem. The methods described herein can be implemented in
soltware, hardware, or a combination thereof. In exemplary
embodiments, the methods proposed herein are imple-
mented 1n software, as an executable program, the latter
executed by suitable digital processing devices. More gen-
erally, embodiments of the present invention can be 1mple-
mented wherein virtual machines and/or general-purpose
digital computers, such as personal computers, workstations,
etc., are used.

For instance, each of the systems 1 and 2 shown in FIG.
1 may comprise one or more computerized units 101 (e.g.,
general- or specific-purpose computers), such as shown 1n
FIG. 6. Each unit 101 may interact with other, typically
similar units 101, to perform steps according to the present
methods.

In exemplary embodiments, 1n terms of hardware archi-
tecture, as shown 1n FIG. 6, each unit 101 includes at least
one processor 105, and a memory 110 coupled to a memory
controller 115. Several processors (CPUs, and/or GPUs)
may possibly be involved in each unit 101. To that aim, each
CPU/GPU may be assigned a respective memory controller,
as known per se.

One or more mnput and/or output (I/0) devices 145, 150,
155 (or peripherals) are communicatively coupled via a local
input/output controller 135. The I/O controller 135 can be
coupled to or include one or more buses and a system bus
140, as known 1n the art. The 1/O controller 135 may have
additional elements, which are omitted for simplicity, such
as controllers, buflers (caches), drivers, repeaters, and
receivers, to enable communications. Further, the local
interface may include address, control, and/or data connec-
tions to enable appropriate communications among the
alorementioned components.

The processors 105 are hardware devices for executing
software, including instructions such as coming as part of
computerized tasks triggered by machine learming algo-
rithms. The processors 105 can be any custom made or
commercially available processor(s). In general, they may
involve any type of semiconductor-based microprocessor (in
the form of a microchip or chip set), or more generally any
device for executing soitware instructions, including quan-
tum processing devices.

The memory 110 typically includes volatile memory
clements (e.g., random-access memory), and may further
include nonvolatile memory elements. Moreover, the
memory 110 may incorporate electronic, magnetic, optical,
and/or other types of storage media.

Software 1n memory 110 may include one or more sepa-
rate programs, each of which comprises executable mnstruc-

US 11,809,267 B2

17

tions for implementing logical functions. In the example of
FIG. 6, mstructions loaded 1n the memory 110 may include
instructions arising ifrom the execution of the computerized
methods described herein 1n accordance with exemplary
embodiments. The memory 110 may further load a suitable
operating system (OS) 111. The OS 111 essentially controls
the execution of other computer programs or instructions
and provides scheduling, I/O control, file and data manage-
ment, memory management, and communication control
and related services.

Possibly, a conventional keyboard and mouse can be
coupled to the input/output controller 135. Other I/O devices
140-155 may be included. The computerized umt 101 can
turther include a display controller 125 coupled to a display
130. The computerized unit 101 may also include a network
interface or transceiver 160 for coupling to a network (not
shown), to enable, 1n turn, data communication to/from
other, external components, e.g., other units 101.

The network transmits and receives data between a given
unit 101 and other devices 101. The network may possibly
be implemented 1n a wireless fashion, e.g., using wireless
protocols and technologies, such as Wifi, WiMax, etc. The
network may notably be a fixed wireless network, a wireless
local area network (LAN), a wireless wide area network
(WAN), a personal area network (PAN), a virtual private
network (VPN), an intranet or other suitable network system
and includes equipment for recerving and transmitting sig-
nals. Preferably though, this network should allow very fast
message passing between the units.

The network can also be an IP-based network for com-
munication between any given unit 101 and any external
unit, via a broadband connection. In exemplary embodi-
ments, network can be a managed IP network administered
by a service provider. Besides, the network can be a packet-
switched network such as a LAN, WAN, Internet network,
an Internet of things network, etc.

The present invention may be a method, and/or a com-
puter program product. The computer program product may
include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing processors to carry out aspects of the present
invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but 1s not limited to, an
clectronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

10

15

20

25

30

35

40

45

50

55

60

65

18

Computer readable program 1nstructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface 1 each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
istructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine 1nstructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, con-
figuration data for integrated circuitry, or etther source code
or object code written 1 any combination of one or more
programming languages, including an object oriented pro-
gramming language such as Smalltalk, C++, or the like, and
procedural programming languages, such as the “C” pro-
gramming language or similar programming languages. The
computer readable program instructions may execute
entirely on the user’s computer, partly on the user’s com-
puter, as a stand-alone software package, partly on the user’s
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, 1n order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart i1llustrations and/or block diagrams of
methods, systems, and computer program products accord-
ing to embodiments of the invention. It will be understood
that each block of the flowchart illustrations and/or block
diagrams, and combinations of blocks in the flowchart
illustrations and/or block diagrams, can be implemented by
computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general-purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
istructions which implement aspects of the function/act
specified in the flowchart and/or diagram block or blocks.

US 11,809,267 B2

19

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series ol operational
steps to be performed on the computer, other programmable
apparatus, or other device to produce a computer 1imple-
mented process, such that the istructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block 1n the flowchart
or block diagrams may represent a module, segment, or
portion ol instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the blocks may occur out of the order
noted in the Figures. For example, two blocks shown in
succession may, 1n fact, be executed substantially concur-
rently, or the blocks may sometimes be executed 1n the
reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks in
the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems
that perform the specified functions or acts or carry out
combinations ol special purpose hardware and computer
instructions.

It 1s to be understood that although this disclosure refers
to embodiments mvolving cloud computing, implementa-
tion of the teachings recited herein are not limited to a cloud
computing environment. Rather, embodiments of the present
invention are capable of being implemented in conjunction
with any other type of computing environment now known
or later developed. Cloud computing 1s a model of service
delivery for enabling convenient, on-demand network
access to a shared pool of configurable computing resources
(e.g., networks, network bandwidth, servers, processing,
memory, storage, applications, virtual machines, and ser-
vices) that can be rapidly provisioned and released with

mimmal management effort or interaction with a provider of

the service.

While the present invention has been described with
reference to a limited number of embodiments, variants, and
the accompanying drawings, 1t will be understood by those
skilled in the art that various changes may be made, and
equivalents may be substituted without departing from the
scope ol the present invention. In particular, a feature
(device-like or method-like) recited 1n a given embodiment,
variant or shown in a drawing may be combined with or
replace another feature in another embodiment, variant, or
drawing, without departing from the scope of the present
invention. Various combinations of the features described 1n
respect of any of the above embodiments or variants may
accordingly be contemplated, that remain within the scope
of the appended claims. In addition, many minor modifica-
tions may be made to adapt a particular situation or material
to the teachings of the present invention without departing,
from its scope. Therefore, 1t 1s intended that the present
invention not be limited to the particular embodiments
disclosed, but that the present invention will iclude all
embodiments falling within the scope of the appended
claims. In addition, many other variants than explicitly
touched above can be contemplated.

5

10

15

20

25

30

35

40

45

50

55

60

65

20

What 1s claimed 1s:

1. A computer-implemented method of root cause analysis
of computerized system anomalies, wherein the method
COmMprises:

monitoring key performance indicators (KPIs) for a com-

puterized system of iterest, wherein KPI values of the
monitored KPIs form respective timeseries;

detecting an anomaly 1n the computerized system based

on the monitored KPIs;

determining a troubleshooting time window extending

over a given time period, in accordance with the
detected anomaly;
identifying a strict subset of the monitored KPIs based on
portions of the respective timeseries spanning the given
time period, wherein the strict subset comprises abnor-
mal KPIs (aKPIs) and potential explanatory KPIs (xK-
Pls);

obtaining a causal graph of vertices mapping KPIs of the
strict subset by running a causality algorithm to evalu-
ate weights of directed edges connecting the vertices
and accordingly obtain one or more directed paths,
cach connecting one of the xKPIs to one of the aKPlIs;
and

returning the obtained causal graph to help troubleshoot

the detected anomaly.
2. The method of claim 1, wherein 1dentitying the strict
subset further comprises:
identitying the aKPIs based on outputs from an anomaly
detection algorithm run to detect the anomaly; and

running a feature importance attribution algorithm which
causes to determine relative importance values of the
monitored KPIs to each of the identified aKPIs during
the given time period and 1dentify the xKPIs based on
the relative importance values determined.

3. The method of claim 2, wherein the method further
COmprises:

storing the relative importance values 1n association with

edges connecting the vertices.

4. The method of claim 2, wherein:

the feature importance attribution algorithm 1s an additive

feature attribution algorithm.

5. The method of claim 2, wherein the method further
COmMprises:

computing Shapley values based on outputs from the

feature 1mportance attribution algorithm.

6. The method of claim 2, wherein the causality algorithm
run to obtain the causal graph includes independent causality
algorithms, whereby running the causality algorithm results
in obtaining distinct causal graphs having distinct sets of
directed edges with distinct sets of evaluated weights of
directed edges, the distinct sets of directed edges forming
distinct sets of directed paths each connecting one of the
xKPIs to one of the aKPIs, and wherein the method further
comprises: obtaining a composite graph by combining the
distinct causal graphs, whereby the obtained causal graph
returned 1s the composite causal graph.

7. The method of claim 6, further comprising:

alter 1dentitying the strict subset of the monitored KPlIs

and prior to obtaining the causal graph, obtaining a
preliminary graph of vertices mapping the KPIs of the
strict subset, wherein the vertices are connected by
edges weighted 1n accordance with outputs from the
feature 1mportance attribution algorithm; and
obtaining the composite graph by further combining the
preliminary graph with the distinct causal graphs.

US 11,809,267 B2

21

8. The method of claim 1, wherein

running the causality algorithm comprises running a pair-
wise temporal causality algorithm to perform a tempo-
ral causality test which determines a causal direction
and a corresponding weight for each pair of the vertices
and to determine the directed edges and the correspond-
ing weights, wherein the directed edges form causality
chains.

9. The method of claim 8, wherein the pairwise temporal
causality algorithm 1s based on a statistical, pairwise co-
determination method.

10. The method of claim 8, wherein the temporal causality
test performed 1s a Granger causality test.

11. The method of claim 8, wherein the causality algo-

rithm further comprises a validation algorithm, which 1s run
as part of the causality algorithm to discard some of the
directed edges determined by the temporal causality algo-
rithm.

12. The method of claim 11, wherein the discarded edges
comprise edges corresponding to bidirectional causations.

13. The method of claim 11, wherein the discarded edges
turther comprise edges corresponding to causal relationships
that persist after random shuflling of a cause 1 a corre-
sponding one of the causality chains.

14. The method of claim 1, wherein running the causality
algorithm includes running a cognitive algorithm that learns
a causal graph structure of the causal graph by discovering
causal relationships between the xKPIs and the aKPlIs.

15. The method of claim 1, wherein the anomaly 1is
detected by executing an anomaly detection pipeline, which
causes 1o:

categorize the monitored KPIs 1nto one of n types of KPIs,

where n=2;:

channel KPI values of the KPIs through n bufler channels,

in accordance with the n types, wherein each of the n
bufler channels buflers KPI values of KPIs of a respec-
tive one of the n types;

obtain reconstruction errors by feeding initial KPI values,

as buflered i the n buffer channels, to n respective
input channels of a cognitive model, wherein the cog-
nitive model 1s implemented as an autoencoder by a
trained neural network, the autoencoder comprising an
encoder with temporal convolutional layer blocks con-
nected by each of the n input channels and a decoder
comprising deconvolution layer blocks connected by
the encoder, and wherein the mmitial KPI values are
independently processed in the n input channels, then
compressed via the temporal convolutional layer
blocks of the encoder prior to being reconstructed via
the deconvolution layer blocks of the decoder, and
wherein the reconstruction errors are obtained by com-
paring the reconstructed KPI values with the mitial KPI
values, and wherein the anomaly being detected 1is
based on the reconstruction errors obtained.

16. The method of claim 15, wherein executing the
anomaly detection pipeline turther comprises, prior to chan-
neling the KPI values;

10

15

20

25

30

35

40

45

50

55

22

clustering the KPIs to obtain k clusters, each k cluster
comprising at least m KPIs, where m>n and k=2; and
for each cluster of the k clusters obtained, 1dentifying n
representative KPIs 1n each cluster as objects of the n
respective types, respectively, wherein the n represen-
tative KPIs 1identified for each cluster include a central

KPI and a peripheral KPI.

17. The method of claim 16, wherein n=2, such that the
n bufller channels comprise two bufler channels, including a
first bufler channel and a second bufler channel, and the
input channels of the cognitive model comprise two 1nput
channels, mncluding a first input channel and a second 1nput
channel, and wherein the representative KPIs 1dentified for
cach cluster comprise the central KPI and the peripheral
KPI, and wherein central KPIs of the k clusters are buffered
in the first bufler channel and fed 1nto the first input channel,
while peripheral KPIs of the k clusters are buflered in the
second builer channel and fed into the second imput channel.

18. The method of claim 15, wherein executing the
anomaly detection pipeline further causes to obtain time-
dependent indicators based on the reconstruction errors
obtained and identify abnormal values of the time-dependent
indicators, and wherein the anomaly 1s detected based on a
selection of the KPIs that contribute most to the abnormal
values 1dentified, and wherein the aKPIs are determined
based on the selection of the KPIs.

19. The method of claim 18, wherein the time-dependent
indicators are obtained by summing the reconstruction errors
obtained for the KPI values over all of the KPIs for each time
point of the time points spanned by the KPIs, and wherein
the abnormal values are identified by identifying critical
time points of the time points, at which the time-dependent
indicators exceed a threshold value.

20. A computer program product for root cause analysis of
computerized system anomalies, the computer program
product comprising: one or more computer-readable tan-
gible storage medium and program instructions stored on at
least one of the one or more computer-readable tangible
storage medium, the program instructions executable by a
processor capable of performing a method, the method
comprising: monitoring key performance indicators (KPIs)
for a computerized system of interest, wherein KPI values of
the monitored KPIs form respective timeseries; detecting an
anomaly 1n the computerized system based on the monitored
KPIs; determining a troubleshooting time window extending
over a given time period, i accordance with the detected
anomaly; 1dentifying a strict subset of the monitored KPIs
based on portions of the respective timeseries spanning the
grven time period, wherein the strict subset comprises abnor-
mal KPIs (aKPIs) and potential explanatory KPIs (xKPlIs);
obtaining a causal graph of vertices mapping KPIs of the
strict subset by running a causality algorithm to evaluate
weights of directed edges connecting the vertices and
accordingly obtain one or more directed paths, each con-
necting one of the xKPIs to one of the aKPIs; and returning
the obtained causal graph to help troubleshoot the detected
anomaly.

	Front Page
	Drawings
	Specification
	Claims

