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MEDICAL DEVICE INCLUDING A
SOLDERABLE LINEAR ELASTIC
NICKEL-TITANIUM DISTAL END SECTION
AND METHODS OF PREPARATION
THEREFOR

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation of U.S. patent applica-
tion Ser. No. 13/172,278, filed 29 Jun. 2011, the disclosure
of which 1s incorporated herein by reference 1n 1ts entirety.

BACKGROUND
1. The Field of the Invention

The present invention relates to guide wires, particularly
to guide wires used to guide a catheter 1n a body lumen such
as a blood vessel.

2. The Relevant Technology

Guide wires are used to guide a catheter for treatment of
intravascular sites, such as percutaneous transluminal coro-
nary angioplasty (“PTCA”), or in examination such as
cardio-angiography. A guide wire used 1 the PTCA 1s
inserted 1nto the vicinity of a target angiostenosis portion
together with a balloon catheter, and 1s operated to guide the
distal end portion of the balloon catheter to the target
angiostenosis portion.

A guide wire needs appropriate tlexibility, pushability and
torque transmission performance for transmitting an opera-
tional force from the proximal end portion to the distal end,
and kink resistance (resistance against sharp bending). To
meet such requirements, superelastic materials such as a
N1—T1 alloy and high strength materials have been used for
forming a core member (i.e., a wire body) of a guide wire.

Near equiatomic binary nickel-titanium alloys are known
to exhibit “pseudoelastic” behavior when given certain cold
working processes or cold working and heat treatment
processes following hot working. Pseudoelasticity can be
turther divided into two subcategories: “linear” pseudoelas-
ticity and ‘“‘non-linear” pseudoelasticity. “Non-linear”
pseudoelasticity 1s sometimes used by those 1n the industry
synonymously with “superelasticity.”

Linear pseudoelasticity typically results from cold work-
ing. Non-linear pseudoelasticity results from cold working
and subsequent heat treatment. Non-linear pseudoelasticity,
in 1ts 1dealized state, exhibits a relatively flat loading plateau
in which a large amount of recoverable strain i1s possible
with very little increase 1n stress. This flat plateau can be
seen 1n the stress-strain hysteresis curve of the alloy. Linear
pseudoelasticity exhibits no such flat plateau. Non-linear
pseudoelasticity 1s known to occur due to a reversible phase
transformation from austenite to martensite, the latter more
precisely called stress-induced martensite (“SIM”). Linear
pseudoelastic materials exhibit no such phase transforma-
tion. Linear pseudoelastic mickel titanium alloy can be
permanently deformed or shaped by overstressing the alloy
above a plateau stress that 1s at least partially dependent on
the amount of cold-worked martensite structure present in
the linear pseudoelastic structure. This 1s in marked contrast
to non-linear pseudoelastic nickel titammum alloy, which

cannot be permanently deformed by overstressing.

BRIEF SUMMARY

The present disclosure describes guide wire devices and
methods for theirr manufacture. Guide wire devices
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described herein include an elongate shaft member having a
shapeable distal end section that 1s formed from a linear
pseudoelastic nickel-titantum (N1—11) alloy that has linear
pseudoelastic behavior without a phase transformation or
onset of stress-induced martensite. Linear pseudoelastic
N1—T1 alloy, which 1s distinct from non-linear pseudoelastic
(1.e., superelastic) N1—T1 alloy, 1s highly durable, corrosion
resistant, and has high stifiness. The shapeable distal end
section 1s shapeable by a user to facilitate gmiding the guide
wire through tortuous anatomy. In addition, linear
pseudoelastic N1—11 alloy 1s more durable tip material than
other shapeable tip materials such as stainless steel. This
may, for example, allow practitioners to use one wire to treat
multiple lesions, potentially reducing costs and procedure
time.

In one embodiment, a shapeable guide wire device 1s
described. The shapeable guide wire device includes an
clongate shaft member that includes a proximal end section
and a shapeable distal end section having a solder material
applied thereto, wherein the shapeable distal end section
includes a cold-worked nickel titanium alloy exhibiting
linear pseudoelasticity. The shapeable guide wire device
turther includes a helical coil section disposed about at least
the shapeable distal end section and an atraumatic cap
section attached to the helical coil section and the solder
material of the shapeable distal end section via a soldered
jomt. According to the present disclosure, the soldered joint
1s fTormed without substantial loss of the linear pseudoelas-
ticity of the shapeable distal end section.

In another embodiment, a method for fabricating a guide
wire device 1s disclosed. The method includes (1) fabricating
an elongate shaft member that includes a proximal end
section and a distal end section. In one embodiment, the
distal end section includes a distal nickel-titamum alloy
member that has a first cross-sectional dimension. The
method further includes (2) applying a solder material to at
least a portion of the distal end section, (3) cold working at
least a portion of the distal end section having the solder
material applied thereto, wherein the cold working yields a
distal shapeable end section having a second cross-sectional
dimension and linear pseudoelastic deformation behavior,
and (4) soldering the distal shapeable section and a helical
coil section disposed about the distal shapeable section to an
atraumatic cap without substantial loss of the linear
pseudoelasticity of the distal shapeable section.

In one embodiment, fabricating an elongate shait member
that includes a proximal end section and a distal end section
may include attaching (e.g., by welding) a proximal end
section fabricated from a first material such as stainless steel
to a distal end section fabricated from a second material such
as nickel-titantum alloy. Alternatively, the elongate shaft
member can be fabricated from a single material such as, but
not limited to, a mickel-titanium alloy.

In one embodiment, fabricating an elongate shaft member
may further include drawing at least a portion of the elongate
shaft member through a drawing die, rolling, calendaring, or
ogrinding to form or reshape the at least a portion of the
clongate shaft member and cleaning the elongate shaft
member such as by ultrasonically cleaning.

Ni1—T1 alloys, such as those described herein, are very
difticult to solder due to the formation of a tenacious,
naturally occurring oxide coating which prevents the molten
solder from wetting the surface of the alloy. It has been
found that by first treating the surface of the refractory
superelastic alloy with molten alkali metal hydroxide, e.g.,
sodium, potassium, lithium or mixtures thereof to form a
nascent alloy surface and then pretinning (1.e., applying a
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suitable solder material, such as, a gold-tin solder, a gold-
indium solder, a gold-germamum solder, a silver-tin solder,

a silver-gold-tin solder, or another suitable solder) without
contacting air, that Ni—T1T1 alloys can be readily soldered 1n
a conventional manner. In one embodiment, solder can be
applied to at least a portion of the distal end section by
dipping the at least the distal end section into a bath of a
molten solder material, wherein the bath of molten solder
material includes an upper layer of a molten metal hydroxide
and a lower layer of the molten solder material.

Subsequently, at least a portion of the distal end section,
with the solder matenal applied thereto, can be cold-worked
to yield a distal shapeable end section having a second
cross-sectional dimension. After applying the solder mate-
rial and cold working, a helical coil section can be
assembled around the a distal portion of the elongate shaft
member, i1ncluding the distal shapeable section, and a
rounded plug (i.e., an aturaumatic cap section) can be
tformed at the distal end of the assembly by soldering the
distal shapeable section and a helical coil section disposed
about the distal shapeable section to the rounded plug
without substantial loss of the linear pseudoelasticity of the
distal shapeable section. The pretinning followed by cold
working and forming the atraumatic cap at the distal end of
the elongate shalft member yields a user-shapeable distal end
section that exhibits linear pseudoelastic deformation behav-
10r without a phase transformation or onset of stress-induced
martensite.

In a more specific embodiment, a method for fabricating
a guide wire device that has a shapeable distal end section
1s disclosed. The method includes (1) providing an elongate
shaft member that includes a proximal end section and a
distal end section, wherein the distal end section includes a
nickel-titanium alloy member, (2) grinding at least a portion
of the distal end section to a first cross-sectional dimension,
and (3) ultrasonically cleaning at least the distal end section.
After grinding and cleaning, the method further includes (4)
dipping at least a portion of the distal end section 1nto a bath
of a molten solder material, wherein the bath of molten
solder material includes an upper layer of a molten metal
hydroxide and a lower layer of the molten solder material,
and (35) cold working at least a portion of the distal end
section, wherein the cold working yields a distal shapeable
section having a linear pseudoelastic nickel-titantum micro-
structure. After cold working at least a portion of the distal
end section, the method continues with (6) ultrasonically
cleaning at least the distal end section, (7) disposing a helical
coill section about the distal shapeable section, and (8)
forming an atraumatic cap section coupling the helical coil
section and the distal shapeable section via a soldered joint,
wherein the soldered joint 1s formed without loss of the
linear elastic nickel-titanium microstructure.

These and other objects and features of the present
disclosure will become more fully apparent from the fol-
lowing description and appended claims, or may be learned
by the practice of embodiments of the invention as set forth
hereinatter.

BRIEF DESCRIPTION OF THE DRAWINGS

To further claniy the above and other advantages and
teatures of the present disclosure, a more particular descrip-
tion of the embodiments of the invention will be rendered by
reference to the appended drawings. It 1s appreciated that
these drawings depict only illustrated embodiments of the
invention and are therefore not to be considered limiting of
its scope. The embodiments of the mmvention will be
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described and explained with additional specificity and
detail through the use of the accompanying drawings in
which:

FIG. 1A 1llustrates a partial cut-away view of a guide wire
device according to one embodiment of the present inven-
tion;

FIG. 1B illustrates an enlarged view of a distal end portion
of the guide wire device illustrated 1n FIG. 1A;

FI1G. 2 illustrates stress-strain curves for stainless steel, a
linear pseudoelastic Ni—T1 alloy, and a superelastic (i.e.,
non-linear pseudoelastic) Ni—T1T1 alloy;

FIG. 3 1s a diagram schematically illustrating the rela-
tionship between degree of cold work and shapeability of a
N1—T1 alloy;

FIG. 4 1s a diagram 1illustrating the vield stress of samples
of N1—T1 alloy having various degrees of cold work; and

FIG. 5 1s a diagram 1llustrating loss of linear pseudoelastic
character of Ni1—T1 alloy as a result of moderate heat
exposure for varying amounts of time.

DETAILED DESCRIPTION

I. Introduction

The present disclosure describes guide wire devices and
methods for their manufacture. Guide wire devices disclosed
herein include an elongate shait member having a shapeable
distal end section that 1s formed from a linear pseudoelastic
nickel-titanium (N1—T11) alloy that has linear pseudoelastic
behavior without the onset of stress-induced martensite
during deformation. Linear pseudoelastic Ni—T1 alloy,
which 1s distinct from non-linear pseudoelastic (1.e., super-
clastic) N1i—T1T1 alloy, 1s highly durable, corrosion resistant,
and has a relatively high stiflness. Linear pseudoelastic
N1—T1 1s 1n the martensite phase at body temperature (e.g.,
about 37° C.); 1n contrast, superelastic N1i—1T1 used for
medical devices 1s typically manufactured in the austenite
phase at body temperature and superelastic Ni—T11 experti-
ences an austenite to martensite phase transformation when
stressed. The shapeable distal end section 1s shapeable by a
user to facilitate guiding the guide wire through tortuous
anatomy. In addition, linear pseudoelastic N1i—T1T1 alloy 1s
more durable tip material than other shapeable tip materials,
such as stainless steel. This may, for example, allow prac-
titioners to use one wire to treat multiple lesions, potentially
reducing costs and procedure time.

Guide wire devices are used 1n minimal 1nvasive proce-
dures such as, but not limited to, percutaneous transluminal
coronary angioplasty (PTCA) to track through vessels,
access and cross lesions, and support interventional devices
for a varniety of procedures. Because they are designed to
track through a patient’s vasculature, for example, guide
wire devices may be quite long (e.g., about 150 cm to about
300 cm 1n length) and thin. Guide wire devices need to be
long enough to travel from an access point outside a
patient’s body to a treatment site and narrow enough to pass
freely through the patient’s vasculature. For example, a
typical guide wire device has an overall diameter of about
0.2 mm to about 0.5 mm for coronary use (e.g., about the
diameter of the pencil leads typically used in automatic
pencils). Larger diameter guide wires may be employed in
peripheral arteries and other body lumens. The diameter of
the guide wire device aflects 1ts flexibility, support, and
torque. Thinner wires are more flexible and are able to
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access narrower vessels while larger diameter wires ofler
greater support and torque transmission.

II. Guide Wire Devices

In one embodiment of the present invention, a shapeable
guide wire device 1s described. The shapeable guide wire
device includes an elongate shait member that includes a
proximal end section and a shapeable distal end section
having a solder material applied thereto. The shapeable
distal end section includes a cold-worked linear nickel-
titanium alloy exhibiting linear pseudoelastic deformation
behavior imparted by cold work. The shapeable guide wire
device further includes a helical coil section disposed about
at least the shapeable distal end section, and an atraumatic
cap section that 1s attached to (e.g., soldered to) the helical
coil section and the shapeable distal end section. The atrau-
matic cap section may be formed from a bead of solder
material that 1s applied to the helical coil section and the
shapeable distal end section. According to the present
embodiment, the atraumatic cap section 1s attached to the
helical coil and the distal end section without loss of the
linear elastic nickel-titanium microstructure.

Referring now to FIG. 1A, a partial cut-away view of a
guide wire device 100 according to an embodiment of the
invention 1s illustrated. The guide wire device 100 may be
adapted to be inserted into a patient’s body lumen, such as
an artery. The guide wire device 100 includes an elongated
proximal portion 102 and a distal portion 104. In one
embodiment, the elongated proximal portion 102 may be
formed from a first material such as stainless steel (e.g.,
316L stainless steel) or a N1i—T1 alloy and the distal portion
may be formed from a second material such as a Ni—T1
alloy. In another embodiment, the elongated proximal por-
tion 102 and the distal portion 104 may be formed from a
single material, such as a Ni—11 alloy. If the elongated
proximal portion 102 and the distal portion 104 are formed
from different matenials, the elongated proximal portion 102
and the distal portion 104 may coupled to one another via a
welded joint 116 or another joint such as an adhesive joint,
a brazed joint, or another suitable joint that couples the
proximal portion 102 and the distal portion 104 into a torque
transmitting relationship.

The distal portion 104 has at least one tapered section 106
that becomes smaller 1n diameter 1n the distal direction. The
length and diameter of the tapered distal core section 106
can, for example, aflect the trackability of the guide wire
device 100. Typically, gradual or long tapers produce a guide
wire device with less support but greater trackability, while
abrupt or short tapers produce a guide wire device that
provides greater support but also greater tendency to pro-
lapse (1.e., kink) when steering.

The tapered distal core section 106 further includes a
shapeable distal end section 108 that 1s formed from a
N1—T1 alloy in a linear pseudoelastic state. As will be
discussed 1n greater detail below, the linear pseudoelastic
state can be imparted upon N1—T1T1 alloy by cold work. With
increasing cold work, the elastic modulus of the linear
section of the stress-strain curve increases, imparting dif-
terent degrees of linear pseudoelasticity. Linear pseudoelas-
tic N1—T1 can readily be permanently deformed by stressing,
the material beyond 1ts elastic strain limit. As such, the
shapeable distal end section 108 can allow a practitioner to
shape the distal and of the guide wire device 100 to a desired
shape (e.g., a J-bend) for tracking through the patient’s
vasculature.
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The N1i—T1T1 alloy portion(s) of the guide wire device 100
discussed herein, e.g., the distal portion 104, are, 1n some
embodiment, made of an alloy material that includes about
30 to about 52% titanium and a balance nickel. The alloy
may also include up to about 10% of one or more other
alloying elements. The other alloying elements may be
selected from the group consisting of 1ron, cobalt, vanadium,
platinum, palladium and copper. The alloy can contain up to
about 10% copper and vanadium and up to 3% of the other
alloying elements. Cold worked N1i—T1T1 alloy portions (e.g.,
the shapeable distal end section 108) exhibit linear
pseudoelastic behavior that 1s in the martensite phase with-
out the appearance of stress-induced martensite upon defor-
mation.

In one embodiment, the shapeable distal end section 108
1s manufactured by, for example, drawing and grinding the
distal end of the N1—Ti distal section 104 to a first cross-
sectional dimension, applying a solder material to the distal
section 104, and cold-working (e.g., by flattening) the
ground portion to a second cross-sectional dimension. In
another embodiment, the shapeable distal end section 108 1s
manufactured by, for example, drawing and grinding the
distal end of the N1i—T1 distal section 104 to a first cross-
sectional dimension (e.g., a thickness or a diameter), cold-
working a first time, applying a solder material to the distal
section 104, and cold-working a second time (e.g., by
flattening) the ground portion to a second cross-sectional
dimension (e.g., a thickness). If cold working 1s performed
prior to applying the solder material, 1t may be desirable to
use a solder material with a sufliciently low melting tem-
perature (e.g., as low as about 150° C.) such that a minimal
amount of cold work 1s lost due to exposure to the molten
solder.

The first dimension can be 1n a range from about 0.1 mm
to about 0.07 mm, or about 0.08 mm. The second cross-
sectional dimension, which 1s formed by, for example,
cold-work flattening at least a part of the ground distal
section, 15 1n a range from about 0.065 mm to about 0.008
mm, about 0.055 mm to about 0.03 mm, about 0.05 to about
0.04 mm, or about 0.045 mm. In other words, the shapeable
distal end section 108 1s made from a Ni1—T1 alloy that
exhibits linear pseudoelastic deformation behavior imparted

by about 20% to about 90% cold work, about 25% to about
65% cold work, about 40% cold work to about 50% cold
work, or about 45% cold work.

The length of the shapeable distal end section 108 can, for
example, allect the steerability of the guide-wire device 100.
In one embodiment, the shapeable distal end section 108 1s
about 1 cm to about 10 cm 1n length, about 2 cm to about 6
cm 1n length, about 2 cm to about 4 cm 1n length, or about
2 cm 1n length.

As 1llustrated 1n FIG. 1A, the guide wire device 100
includes a helical coil section 110. The helical coil section
110 affects support, trackability, and visibility of the guide
wire device and provides tactile feedback. In some embodi-
ments, the most distal section of the helical coil section 110
1s made of radiopaque metal, such as platinum or platinum-
nickel alloys, to facilitate the observation thereof while 1t 1s
disposed within a patient’s body. The helical coil section 110
1s disposed about all or only a portion of the distal portion
104 and the shapeable distal end section 108, and has a
rounded, atraumatic cap section 120 on the distal end
thereof. In some embodiments, the atraumatic cap section
120 1s formed from a bead of solder applied to the helical
coill section 110 and the shapeable distal end section 108.
Typical solder materials that can be used for forming the
atraumatic cap section 120 include 80/20 gold-tin or 95/5
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silver-tin. However, other suitable types of medical-grade,
lead-free solder can be used. The helical coil section 110 1s
secured to the distal portion 104 at proximal location 114
and at intermediate location 112 by a suitable solder material
and/or a suitable adhesive.

Referring now to FIG. 1B, a cut-away view of an enlarged
portion of the distal end of the gmde wire device 100 1s
illustrated. The portion of the guide wire device 100 1llus-
trated in FIG. 1B shows the tapered distal section 106, the
shapeable distal end section 108, the helical coil section 110,
and the atraumatic cap 120. The shapeable distal end section
108 includes a distal wire portion 124 composed of a N1—T1
alloy that extends from the tapered distal section 106. As
illustrated, the distal wire portion 1s coated with a layer of
solder matenial 126 (e.g., a gold-tin solder, a gold-indium
solder, a gold-germanium solder, a silver-tin solder, a silver-
gold-tin solder, or another suitable solder). At least a portion
of the distal wire portion 124 1s cold worked after applica-
tion of the layer of solder material 126 in order to form the
shapeable distal end section 108.

The helical coil section 110 1s attached to the shapeable
distal end section 108 by soldering the rounded, atraumatic
cap section 120 onto the helical coil section 110 and the
shapeable distal end section 108. As illustrated, a portion
110a of the helical coil section 110 1s embedded in the
atraumatic cap 120, thus attaching the atraumatic cap 120 to
the helical coil 120. The atraumatic cap 120 forms a soldered
joint 122 with the shapeable distal end section 108 by
forming a solder bond with the layer of solder material 126
that 1s 1n turn bonded to the distal wire portion 124. Because
N1—T1 alloy forms a persistent oxide layer, 1t can be dithcult
to solder N1—T1. Methods of manufacture will be discussed
in detail below. However, because the distal wire portion
124 has a layer of solder material 126 bonded thereto, the
atraumatic cap 120 can readily form a joint 122 with the
shapeable distal end section 108. By using the methods and
procedures described herein, the atraumatic cap 120 can be
soldered to or formed on the shapeable distal end section 108
without significant loss of the linear pseudoelastic nickel-
titanium deformation behavior.

In one embodiment, portions of the guide wire device 100
are coated with a coating 118 of lubricous material such as
polytetrafluoroethylene (PTFE) (sold under the trademark
Teflon by du Pont, de Nemours & Co.) or other suitable
lubricous coatings such as the polysiloxane coatings, poly-
vinylpyrrolidone (PVP), and the like.

The guide wire device 100 that includes a N1i—Ti alloy
portion 104 with a shapeable distal end section 108 having
linear pseudoelastic characteristics, which facilitates shap-
ing of the distal tip section 108 of the guide wire 100. The
Ni1—T1 alloy portion 104 may also include a superelastic
portion proximal to the shapeable distal end section 108 to
tacilitate the advancing of the guide wire in a body lumen.
The linear pseudoelastic and superelastic portions exhibit
extensive, recoverable strain, which greatly minimizes the
risk of damage to arteries during the advancement therein.

The proximal portion 102 of the guide wire device 100 1s
typically made from stainless steel. Stainless steel 1s gener-
ally significantly stronger, i.e., higher yield strength and
ultimate tensile strength, than superelastic or linear pseudo
clastic N1—T1. Suitable high strength maternals include 304
or 316L stainless steel, which 1s a conventional material 1n
guide wire construction.

To 1llustrate the foregoing points, FIG. 2 contains the
clastic component of three idealized stress-strain curves for
316L stainless steel 222, linear pseudoelastic Ni—1T11 218/
220, and non-linear pseudoelastic Ni—T1T1 alloy 200. The
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stress/strain relationship 1s plotted on x-y axes, with the x
ax1is representing strain and the y axis representing stress.

In curve 200, when stress 1s applied to a specimen of a
N1—T1 alloy exhibiting non-linear pseudoelastic character-
1stics at a temperature at or above where the materials 1s 1n
the austenitic phase, the specimen deforms elastically in
region 202 until it reaches a particular stress level where the
alloy then undergoes a stress-induced phase transformation
from the austenitic phase to the martensitic phase (1.e., the
stress-induced martensite phase). As the phase transforma-
tion progresses, the alloy undergoes significant increases in
strain with little or no corresponding increases in stress. On
curve 200, this 1s represented by the upper, nearly tlat stress
platecau 204. The strain increases while the stress from
continued deformation remains essentially constant until the
transformation of the austenitic phase to the martensitic
phase 1s complete at approximately region 206. Thereatter,
further increase 1n stress 1s necessary to cause further
deformation to point 208. The martensitic metal first yields
clastically upon the application of additional stress and then
plastically with permanent deformation (not shown).

If the load on the specimen 1s removed before any
permanent deformation has occurred, the martensitic Ni—T1T1
alloy elastically recovers and transforms back to the auste-
nitic phase. The reduction in stress first causes a decrease in
strain along region 210. As stress reduction reaches the level
at which the martensitic phase transforms essentially com-
pletely back into the austenitic phase at region 212, the stress
level 1 the specimen remains essentially constant to con-
tinue relieving strain along lower plateau 214 (but less than
the constant stress level at which the austenitic crystalline
structure transforms to the martensitic crystalline structure
until the transformation back to the austenitic phase 1s
complete); 1.e., there 1s significant recovery in strain with
only negligible corresponding stress reduction.

After the transformation back to austenite 1s complete,
further stress reduction results in elastic strain reduction
along region 216. This ability to incur significant strain at
relatively constant stress upon the application of a load and
to recover from the deformation upon the removal of the
load 1s commonly referred to as non-linear pseudoelasticity
(or superelasticity).

FIG. 2 also includes a curve 218/220 representing the
idealized behavior of linear pseudoelastic N1—T1 alloy as
utilized 1n the shapeable distal end section 108 1n the present
invention. The slope of curve 218/220 generally represents
the Young’s modulus of the linear pseudoelastic N1i—T1
alloy. Also, curve 218/220 does not contain any flat plateau
stresses found 1n curve 200. This stands to reason since the
N1—T1 alloy of curve 218-220 remains 1n the martensitic
phase throughout and does not undergo any phase change.
To that end, curve 218/220 shows that increasing stress
begets a proportional increase in reversible strain, and a
release of stress begets a proportional decrease 1n strain. The
arecas bounded by curves 200 and 218-220 represent the
hysteresis 1n the N1—T11 alloy.

As 1s apparent from comparing curve 218/220 to curve
200 1 FIG. 2, with the use of linear pseudoelastic N1—T1

alloy, the mechanical strength of linear pseudoelastic N1—T1
alloy and non-linear pseudoelastic N1—T1 alloy 1s similar.
Consequently, a major benefit of the distal end section 108
made from linear pseudoelastic Ni—T11 alloy 1s that it 1s
shapeable, whereas a distal end section made from non-
linear pseudoelastic Ni—T1T1 alloy 1s practically un-shapeable
because 1t 1s very dificult to overstramn non-linear

pseudoelastic N1—11 alloy.
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FIG. 2 also includes curve 220 which 1s the elastic
behavior of a standard 3161 stainless steel. Stress 1s 1ncre-

mentally applied to the steel and, just prior to the metal
deforming plastically, decrementally released.

I1I. Methods for Fabricating a Guide Wire Device

In one embodiment, a method for fabricating a guide wire
device 1s disclosed. The method includes (1) fabricating an
clongate shaft member that includes a proximal end section
and a distal end section. In one embodiment, the distal end
section includes a nickel-titanium alloy member that has a
first cross-sectional dimension (e.g., a thickness). The
method further includes (2) dipping at least a portion of the
distal end section 1n a molten solder matenal to apply (e.g.,
coat) the molten solder material thereon, (3) cold working at
least a portion of the distal end section having the solder
material coated thereon, wherein the cold working yields a
distal shapeable section having a linear pseudoelastic nickel-
titanium microstructure, and (4) soldering the distal shape-
able section and a helical coil section disposed about the
distal shapeable section to an atraumatic cap without sub-
stantial loss of the linear pseudoelasticity of the distal
shapeable section.

In one embodiment, fabricating an elongate shaft member
that includes a proximal end section and a distal end section
may include may include attaching (e.g., by welding) a
proximal end section fabricated from a first material such as
stainless steel to a distal end section fabricated from a
second material such as nickel-titanium alloy. Alternatively,
the elongate shaft member can be fabricated from a single
material such as, but not limited to, a nickel-titanium alloy.

In one embodiment, fabricating an elongate shaft member
may further include drawing at least a portion of the elongate
shaft member through a drawing die, rolling, calendaring,
grinding, or combinations thereof to form or reshape the at
least a portion of the elongate shait member and cleaning the
clongate shaft member such as by ultrasonically cleaning.
N1—T1 alloys, such as those described herein, are very
difficult to solder due to the formation of a tenacious,
naturally occurring oxide coating which prevents the molten
solder from wetting the surface of the alloy. It has been
found that by first treating the surface of the Ni—1T1 alloy
with molten alkali metal hydroxide, e.g., sodium, potassium,
lithium or mixtures thereot to form a substantially oxide-free
alloy surface and then pretinning (i.e., applying a suitable
solder material, such as, a gold-tin solder, a gold-indium
solder, a gold-germanium solder, a silver-tin solder, a silver-
gold-tin solder, or another suitable solder) without contact-
ing air, that Ni—1T1 alloys can be readily soldered in a
conventional manner. In one embodiment, solder can be
applied to at least a portion of the distal end section by
dipping the at least the distal end section into a bath, wherein
the bath includes an upper layer of a molten metal hydroxide
and a lower layer of the molten solder material. Alterna-
tively, a layer of solder material can be applied to at least a
portion of the distal end section by chemical vapor deposi-
tion (CVD), physical vapor deposition (PVD), sputter coat-
ing, and the like, and combinations thereof.

Subsequently, at least a portion of the distal end section,
with the solder maternial applied thereto, can be cold-worked
to yield a distal shapeable end section having a second
cross-sectional dimension. After applying the solder mate-
rial and cold working, a helical coil section can be
assembled around the a distal portion of the elongate shaft
member, 1ncluding the distal shapeable section, and a
rounded plug (i.e., an aturaumatic cap section) can be
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formed at the distal end of the assembly by soldering the
distal shapeable section and a helical coil section disposed
about the distal shapeable section to the rounded plug
without substantial loss of the linear pseudoelasticity of the
distal shapeable section. The pretinning followed by cold
working and forming the atraumatic cap at the distal end of
the elongate shaft member yields a user-shapeable distal end
section that exhibits linear pseudoelastic deformation behav-
10r without a phase transformation or onset of stress-induced
martensite.

In a more specific embodiment, a method for fabricating
a guide wire device that has a shapeable distal end section
includes (1) providing an eclongate shaft member that
includes a proximal end section and a distal end section,
wherein the distal end section includes a mickel-titanium
alloy member, (2) grinding at least a portion of the distal end
section to a first cross-sectional dimension, and (3) ultra-
sonically cleaning at least the distal end section. After
orinding and cleaning, the method further includes (4)
dipping at least a portion of the distal end section into a bath
of a molten solder material, wherein the bath of molten
solder material includes an upper layer of a molten metal
hydroxide and a lower layer of the molten solder material,
and (5) cold working at least a portion of the distal end
section, wherein the cold working yields a distal shapeable
section having a linear pseudoelastic nickel-titanium micro-
structure. After cold working at least a portion of the distal
end section, the method continues with (6) ultrasonically
cleaning at least the distal end section, (7) disposing a helical
coill section about the distal shapeable section, and (8)
forming an atraumatic cap section coupling the helical coil
section and the distal shapeable section via a soldered joint,
wherein the soldered joint 1s formed without loss of the
linear elastic nickel-titanium microstructure.

Ni1—T1 alloys, such as those described herein, are very
difficult to solder due to the formation of a tenacious,
naturally occurring oxide coating which prevents the molten
solder from wetting the surface of the alloy in a manner
necessary to develop a sound, essentially oxide free, sol-
dered joint. It has been found that by first treating the surface
of the N1—T1 alloy with molten alkali metal hydroxide, e.g.,
a hydroxide of sodium, potassium, lithium, or mixtures
thereof to form a sufliciently oxide free alloy surface and
then pretinning with a suitable solder such as a gold-tin
solder or the like without contacting air, that the N1—T1
piece can be readily soldered 1n a conventional manner.

A presently preferred alkali metal hydroxide 1s a mixture
of about 59% KOH and about 41% NaOH. The solder may
have a melting point temperature 1n a range of about 150° C.
to about 350° C. or about 280° C. to about 300° C. The
solder may contain from about 60 to about 85% gold and the
balance tin, with the presently preferred solder contaiming
about 80% gold and about 20% tin. Other suitable solders
may include gold-indium, gold-germanium, silver-tin, and
silver-gold-tin.

In a presently preferred procedure, a multilayered bath 1s
provided with an upper layer of molten alkali metal hydrox-
ide and a lower layer of molten gold-tin solder. The part of
the superelastic distal portion, which 1s to be soldered, 1s
thrust into the multilayered bath through the upper surface of
the molten alkali metal hydroxide which removes the oxide
coating, leaving a sufliciently oxide free alloy surface, and
then into the molten solder which wets the cleaned surface.
When the solder solidifies upon removal from the molten
solder 1nto a thin coating on the metal alloy surface, the
underlying alloy surface 1s protected from the oxygen-
containing atmosphere. Any of the alkali metal hydroxide on
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the surface of the solder can be easily removed with water
without detrimentally affecting either the pretinned layer or
the underlying alloy surface. The pretinned Ni—T11 member
1s then ready for further processing and/or soldering. The
pretinning procedure may be employed for soldering other
metal alloys having significant titanium levels.

In one embodiment, the distal end section may be drawn
and ground to a first dimension (e.g., about 0.08 mm),
ultrasonically cleaned, and pretinned according to the
method described above. In one embodiment, the distal end
section can be dipped 1n the molten solder material at least
a second time 1f a thicker coating of solder 1s desired or 1f
the distal end section was not completely coated 1n the first
dip. After pretinning, the distal end section 1s cold-worked,
ultrasonically cleaned, and soldered using conventional sol-
dering procedures.

Suitable examples of cold working procedures that can be
used to cold work the distal end section include, but are not
limited to, high force flattening, stamping, rolling, calendar-
ing, and combinations thereof. High force flattening 1s the
currently preferred cold-working procedure.

The cold working procedure and the degree of cold
working 1s important for obtaining a distal end section that
1s shapeable by a user. This 1s graphically illustrated 1n FIG.
3. FIG. 3 1s a diagram schematically illustrating the rela-
tionship between degree of cold work and shapeability of a
N1—T1 alloy. As can be seen i FIG. 3, when superelastic
Ni1—1T1 has little or no cold work, the material has too much
superelastic character to be shaped. At the other end of the
spectrum, N1—T11 alloy material that has too much cold work
becomes essentially unshapeable by manual means because
its yield stress 1s too high. That 1s, highly cold-worked
N1—T1 alloy may be shapeable, but the stress that must be
exceeded to exceed the elastic limit of the matenal (1.e., the
yield stress) 1s too high to be conveniently shaped by hand.
In the middle of the spectrum, there 1s shown a region where
the degree of cold work 1s such that the Ni—T1 material 1s
highly shapeable.

Specific examples of this phenomenon are illustrated 1n
FIG. 4, which illustrates the vyield stress of samples of
Ni1—T1 alloy having various degrees of cold work. The
as-ground (0.08 mm) sample 1s illustrated at curve 402. The
superelastic, as-ground material cannot be permanently
deformed with any degree of reliability. Curves 404-410
illustrate the eflect associated with increasing amounts of
cold work. The sample 1llustrated 1n curve 404 was flattened
from the as-ground diameter of about 0.08 mm to about

0.045 mm, which corresponds to about 45% cold work. The
sample 1llustrated in curve 404 has a yield stress of about
1200 MPa (~175 ksi1). The samples illustrated in curves 406
and 408 were flattened from the as-ground diameter of about
0.08 mm to about 0.041 mm and 0.036 mm (respectively),
which corresponds to about 49-55% cold work. The samples
illustrated in curves 406 and 408 have yield stresses of about
1900 MPa (~275 ksi). The sample 1llustrated in curve 410
was flattened from the as-ground diameter of about 0.08 mm
to about 0.028 mm, which corresponds to about 65% cold
work. The sample illustrated 1n curve 410 has a yield stress
of about 2070 MPa (~300 ksi).

Based on the results illustrated in FIG. 4, the distal
shapeable section can be cold-worked to have a yield stress
in a range ol about 690 MPa (~100 ksi) to about 2070 MPa
(~300 ks1) or about 1034 MPa (~150 ks1) to about 1380 MPa
(~200 ks1). Yield stresses 1n these ranges are obtained when
the distal shapeable section that has a cold-worked micro-
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structure that includes about 25% to about 65% cold work,
about 40% to about 50% cold work, or about 45% cold
work.

The linear pseudoelastic microstructure can be lost 1t the
N1—T1 material 1s heated after cold working. This 1s 1llus-
trated 1n FIG. 5, which shows the progressive loss of linear
pseudoelastic character of Ni—1T1 alloy as a result of mod-
crate heat exposure for varying amounts of time. FIG. 5
illustrates the loss of cold work 1n three samples of cold-
worked Ni1i—T1 alloy having been exposed to 300° C. heat
treatment for 2 minutes, 20 minutes, and 180 minutes.
Curves 1n region 300 show more linear pseudoelastic behav-
ior, while curves 1 region 510 show more superelastic
behavior. All curves show potentially significant loss of cold
work induced linear pseudoelastic behavior.

Comparing the results of FIGS. 4 and 5, 1t 1s apparent why
it 15 1mportant to pretin and then cold work as opposed to
cold working followed by pretinning. That 1s, 1t can be seen
that the yield stress 1s relatively sensitive to the amount of
cold work. For example, samples 406 and 408 have rela-
tively similar amount of cold work, yet their yield stresses
are considerably different. In order to obtain a distal shape-
able section that can be reliable shaped, it 1s important to
carefully select the amount of cold work. On the flip side, 1t
1s 1mportant to not lose that cold work by pretinning after
cold working.

While 1t 1s believed that pretinning after cold working
may lead to loss of cold work, 1t 1s not believed that
soldering leads to significant loss of cold work 1n the distal
shapeable section. This 1s believed to be due to the fact that
soldering 1nvolves only localized application heat as
opposed to solder dipping, which involves general applica-
tion of heat that could lead to potentially significant loss of
cold work 1induced linear pseudoelastic behavior.

The present invention may be embodied 1n other specific
forms without departing from 1ts spirit or essential charac-
teristics. The described embodiments are to be considered in
all respects only as illustrative and not restrictive. The scope
of the invention 1s, therefore, indicated by the appended
claims rather than by the foregoing description. All changes
which come within the meaning and range of equivalency of
the claims are to be embraced within their scope.

What 1s claimed 1s:

1. A shapeable medical device configured to allow a
practitioner to shape a distal end to a desired shape for
tracking through a patient’s vasculature, the shapeable medi-
cal device comprising:

an clongate shaft member comprising:

an elongate proximal portion;

a distal portion extending distally from the elongate
proximal portion, the distal portion comprising a
distal end portion comprising a proximal end section
and a practitioner-shapeable distal end section,
wherein the proximal end section 1s formed of a
material that does not exhibit superelasticity and the
practitioner-shapeable distal end section (1) being
formed of a nickel titanium alloy, (11) 1n a martensite
phase at body temperature and having a stress-strain
curve without any flat plateau stresses, (111) with a
metallic material applied over and coating an entirety
of the nickel titanium alloy and a portion of the
proximal end section of the distal end portion, a
proximal terminal end of the metallic material being
distal a proximal terminal end of the proximal end
section, (1v) such that the practitioner-shapeable dis-
tal end section does not exhibit a phase transforma-
tion or onset of stress-induced martensite as the
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practitioner-shapeable distal end section 1s stressed
and 1s linear pseudoelastic;
a second distal portion between the proximal end

section and the practitioner-shapeable distal end sec-
tion, wherein the second distal portion between the
proximal end section and the distal end section
comprises a superelastic nickel-titanium alloy, and
wherein (1) the proximal end section comprises a
material that does not exhibit superelasticity and (11)
the distal end section 1s linear pseudoelastic;

a helical coil section disposed around at least the
practitioner-shapeable distal end section; and

an atraumatic cap section attached to the helical coil
section and the metallic material of the practitioner-
shapeable distal end section,

wherein a portion of the helical coil 1s embedded 1n the
atraumatic cap section and the practitioner-shapeable
distal end section has a yield stress from 100 ksi1 to
300 ks1 and exhibits 20% to 90% cold work.

2. The shapeable medical device of claim 1, wherein the
clongate shaft member comprises stainless steel, a super-
clastic nickel-titanium alloy, or a combination thereof.

3. The shapeable medical device of claim 1, wherein the
practitioner-shapeable distal end section has a yield stress in
a range of 150 ksi to 225 ksi.

4. The shapeable medical device of claim 1, wherein the
practitioner-shapeable distal end section has a yield stress in
a range of 150 ksi to 200 ksi.

5. The shapeable guide wire device of claim 1, wherein a
core of the distal end section surrounded by the metallic
material consists of the nickel titammum alloy.
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6. The shapeable medical device of claim 1, wherein the
practitioner-shapeable distal end section has a yield stress in

a range ol 150 ks1 to 200 ksi and the nickel-titanium alloy

exhibits 40% to 50% cold work.

7. The shapeable medical device of claim 1, wherein the
atraumatic cap section comprises a cap of solder and
wherein the solder material includes a eutectic alloy.

8. The shapeable medical device of claim 7, wherein the
cutectic alloy comprises a gold-tin solder, a gold-indium
solder, a gold-germanium solder, a silver-tin solder, or a

silver-gold-tin solder.

9. The shapeable medical device of claim 7, wherein the
gold-tin solder includes 80 weight % (wt %) gold and 20 wt
% tin.

10. The shapeable medical device of claim 1, wherein the
atraumatic cap section comprises a cap of solder soldered to
the helical coil section and the practitioner-shapeable distal
end section.

11. The shapeable medical device of claim 1, wherein the
metallic material has a melting temperature of about 150° C.

12. The shapeable medical device of claim 1, wherein a
distal section of the helical coil section 1s made of
radiopaque material.

13. The shapeable medical device of claim 1, wherein the
helical coil section 1s secured to the distal portion at a
proximal location and at an intermediate location.

14. The shapeable medical device of claim 1, wherein one
or more portions of the shapeable medical device are coated
with a lubricous material.
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