12 United States Patent
Singh et al.

USO011799989B2

US 11,799,989 B2
*Oct. 24, 2023

(10) Patent No.:
45) Date of Patent:

(54) METHOD OF USING BIT VECTORS TO
ALLOW EXPANSION AND COLLAPSE OF
HEADER LAYERS WITHIN PACKETS FOR
ENABLING FLEXIBLE MODIFICATIONS
AND AN APPARATUS THEREOFK

(71) Applicant: Marvell Asia Pte., Ltd., Singapore
(5G)

(72) Inventors: Chirinjeev Singh, San Jose, CA (US);
Tsahi Daniel, Palo Alto, CA (US);
Gerald Schmidt, San Jose, CA (US)

(73) Assignee: MARVELL ASIA PTE, LTD.,
Singapore (SG)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 227 days.

This patent 1s subject to a terminal dis-
claimer.

(21) Appl. No.: 17/330,782

(22) Filed: May 26, 2021

(65) Prior Publication Data
US 2021/0329104 Al Oct. 21, 2021

Related U.S. Application Data

(63) Continuation of application No. 15/457,970, filed on
Mar. 13, 2017, now Pat. No. 11,050,859, which 1s a

(Continued)
(51) Int. CL
HO4L 69/22 (2022.01)
HO4L 69/04 (2022.01)
(Continued)
(52) U.S. CL
CPC HO4L 69722 (2013.01); HO4L 49/3009
(2013.01); HO4L 69/04 (2013.01); HO4L 69/08

(2013.01)

(38) Field of Classification Search
None

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

3/1998 Whittaker
7/1998 Baker et al.

(Continued)

5,729,712 A
5,781,729 A

FOREIGN PATENT DOCUMENTS

CN 101026586 A 8/2007
CN 101095310 A 12/2007
(Continued)

OTHER PUBLICATTIONS

Office Action dated Apr. 30, 2021 for Korean Application No.
10-2015-0084526.

(Continued)

Primary Examiner — Ch1 H Pham
Assistant Examiner — Raul Rivas

(57) ABSTRACT

Embodiments of the apparatus for moditying packet headers
relate to a use of bit vectors to allow expansion and collapse
of protocol headers within packets for enabling flexible
modification. A rewrite engine expands each protocol header
into a generic format and applies various commands to
modily the generalized protocol header. The rewrite engine
maintains a bit vector for the generalized protocol header
with each bit 1n the bit vector representing a byte of the
generalized protocol header. A bit marked as O 1n the bit
vector corresponds to an invalid byte, while a bit marked as
1 1n the bit vector corresponds to a valid byte. The rewrite
engine uses the bit vector to remove all the invalid bytes
alter all commands have been operated on the generalized
protocol header to thereby form a new protocol header.

27 Claims, 24 Drawing Sheets

—— 1800

v

Receiving a packet at an incoming port of the network switch

0. 1905

4

Generalizing sach protoco! header of the packet according to a
genenc format for the protocot header

;f'L191ﬂ

i

i

Maintaining a bit vecior for each generalized protocol header, |
wherein the bit vector includes bit marked as U tor invahd fields and +77 . 1915
bits marked as 1 for valid fields !

i

Madifving at least one of the generalized protocol headers,
updating the bit vector

_______________________________________ =

hereby Ly 1920

L. L. e

Collapsing the updated bit vector

rLwawL.

¢

Forming a compact protocol header based on the collapsed bit vector i—"? " 1930

US 11,799,989 B2

Page 2
Related U.S. Application Data 2005/0256821 A1 11/2005 Mishra
o o 2005/0276230 Al 12/2005 Akahane et al.
continuation of application No. 14/309,659, filed on 2005/0281281 Al 12/2005 Nair et al.
Jun. 19, 2014, now Pat. No. 9,635,146. 2006/0039372 Al 2/2006 Sarkinen et al.
2006/0168309 Al 7/2006 Sikdar et al.
2006/0215653 Al 9/2006 LaVigne
(51) Int. CI. 2006/0215695 Al 9/2006 Olderdissen
HO4L 49/00 (2022.01) 2006/0259620 A1 11/2006 Tamai
HO4L 69/08 (2022.01) 2006/0280178 Al 12/2006 Miller et al.
2007/0078997 Al 4/2007 Stern
- 2007/0263660 Al 11/2007 Mitsumori
(56) References Cited 2007/0268931 Al 11/2007 Shaikli
- 2008/0008159 Al 1/2008 Bourlas et al.
U.s. PATENT DOCUMENLS 2009/0067325 Al 3/2009 Baratakke et al.
5805808 A 9/1998 Hasani et al. 2009/0007446 AL 372000 Lee
2009/0234818 Al 9/2009 Lobo et al.
5,951,651 A 9/1999 Takshman | -
2009/0238190 Al 9/2009 Cadigan, Jr. et al.
6,088,356 A 7/2000 Hendel et al. - .
| , . 2009/0307660 A1 12/2009 Srimivasan
0,341,129 BL 172002 Schroeder et al 2010/0272125 Al 10/2010 Franke et al.
0,550,951 BL 572002 Gentry 2010/0329255 Al 12/2010 Singhal et al
6,606,301 Bl 8/2003 Muller et al | . - -
_ h 2011/0022732 Al 1/2011 Hutchison et al.
6,952,425 Bl 10/2005 Nelson 2011/0058514 Al 3/2011 Lee et al.
7017162 B2 3/2006 - Smith 2011/0134920 Al 6/2011 Dyke
7,187,694 Bl 3/2007 Liao 2011/0142070 Al 6/2011 Lim et al.
7,277,957 B2 1072007 Rowley et al 2011/0261698 Al 10/2011 Kamerkar et al.
7,293,113 Bl 11/2007 Krishsna - - L
| / | 2011/0261812 Al 10/2011 Kini et al.
7,302,405 Bl 42008 dinne 2011/0268123 Al 11/2011 Kopelman et al.
7367,052 Bl 4/2008 Desanti | | .
2011/0310892 Al 12/2011 DiMambro
7.391,735 B2 6/2008 Johnson | - -
_ 2012/0159132 Al 6/2012 Abel
7,502,374 Bl 3/2009 Parker et al - | |
| 2012/0257627 Al 10/2012 Nguymetal
7,568,047 B1 — 7/2009 " Aysan et al 2012/0281714 Al 11/2012 Chang et al.
7,000,263 Bl 10/2009 " Parker 2013/0039278 Al 2/2013 Bouazizi et al.
7,710,959 B2 52010 Ramasamy et al. 2013/0163427 Al 6/2013 Beliveau et al.
7,715,611 B2 5/2010° Eaton et al 2013/0163475 Al 6/2013 Beliveau et al.
7,802,009 B2 972010 Cul et al. 2013/0195457 Al 82013 Levy et al.
7,822,032 Bl 10/2010 Parker et al - - g 4
) Parker ¢ 2013/0215906 Al 872013 Hidai
7,903,689 B2 3/2011 Nunomi et al. 2013/0238792 Al 9/2013 Kind et al.
8,031,640 B2 1072011 Mitsumor 2013/0326083 Al 12/2013 Boucher et al.
8,054,744 Bl “;QO_L Bishara et al. 2014/0056141 Al 2/2014 Breternitz, Jr.
8,112,800 BL 2/2012 Yang et al 2014/0078902 Al 3/2014 Edsall et al
8,144,706 Bl 3/2012 Daniel et al. 2014/0119231 Al 5/2014 Chan et al.
8,576,173 B2 11/2013 Verhaegh . . . -
_ 2014/0269307 Al 9/2014 Banerjee et al.
8,705,533 Bl 4/2014 Venkatraman 2014/0328354 Al 11/2014 Michael
8,804,733 Bl 82014 Safai | | | -
_ . 2014/0369363 Al 12/2014 Hutchison
0,064,058 B2 6/2015 Daniel - - - -
_ 2014/0369365 Al 12/2014 Denio et al.
2,313,115 B2 4/2016 Kamerlar et al 2015/0081726 Al 3/2015 Izenberg
9,379.963 B2 6/2016 lran 2015/0172189 Al 6/2015 Pitchai
9,525,647 B2 12/2016 Koponen - - -
| 2015/0187419 Al 7/2015 Tran
0,590,820 Bl 3/2017 Shukla - - -
_ . 2015/0189047 Al 7/2015 Naaman et al.
9,590,914 B2 3/2017 Alizadeh Attar et al. 2015/0222533 Al 82015 Birittella et al
0,742,694 B2 8/2017 Anand | | | .
_ 2015/0277911 Al 10/2015 Khartikov et al.
2001/0050914 Al 12/2001 Akahane et al. | | |
| 2016/0028623 Al 1/2016 Kamath
2002/0009076 Al 1/2002 Engbersen et al. _ _ _ .
| '8P 2016/0274944 Al 9/2016 Winkel
2002/0016852 Al 2/2002 Nishihara 10048 144 A1 2017 1.
2002/0062394 Al 5/2002 Bunn et al. . . el
2002/0076142 Al 6/2002 Song B B
2002/0083210 Al 6/2002 Harrison et al. FOREIGN PATENT DOCUMENTS
2002/0101867 Al 8/2002 O’Callaghan et al
2002/0163935 Al 11/2002 Paatela et al. CN 101112056 A 1/2008
2002/0191521 Al 12/2002 Minamino et al. CN 101237419 A 8/2008
2003/0037154 Al 2/2003 Pggio et al. CN 101286215 A 10/2008
2003/0144993 Al 7/2003 Kishigami CN 101543018 A 9/2009
2003/0152078 Al 8/2003 Henderson et al. CN 101563908 A 10/2009
2003/0193949 Al 10/2003 Kojima et al. CN 101686102 A 3/2010
2003/0198216 Al 10/2003 Lewis CN 101694627 A 4/2010
2003/0210702 Al 11/2003 Kendall CN 101777791 A 7/2010
2003/0218978 Al 11/2003 Brown CN 101854361 A 10/2010
2003/0231625 Al 12/2003 Calvignac et al. CN 101958902 A 1/2011
2004/0019733 Al 1/2004 Garinger CN 102104541 A 6/2011
2004/0064589 Al 4/2004 Boucher et al. CN 102204180 A 9/2011
2004/0148425 Al 7/2004 Haumont CN 102273149 A 12/2011
2005/0076228 Al 4/2005 Davis et al. CN 102353894 A 2/2012
2005/0193240 Al 9/2005 Ash CN 102377803 A 3/2012
2005/0213570 Al 9/2005 Stacy et al. CN 102656850 A 9/2012
2005/0220107 Al 10/2005 Regno CN 102866961 A 1/2013
2005/0232303 Al 10/2005 Deforche et al. CN 103444138 A 2/2013
2005/0246716 Al 11/2005 Smith CN 103347013 A 10/2013

US 11,799,989 B2
Page 3

(56) References Cited
FORFEIGN PATENT DOCUMENTS

CN 103384224 A 11/2013
CN 103460751 A 12/2013
CN 103597794 A 2/2014
CN 103856405 A 6/2014
CN 103959302 A 7/2014
CN 104010049 A 8/2014
CN 104012065 A 8/2014
EP 1735957 A 12/2006
EP 2529528 A 12/2012
JP 2000196672 A 7/2000
JP 2000253061 A 9/2000
JP 2003308206 A 10/2001
JP 2003308206 A 10/2003
JP 2005522948 A 7/2005
JP 2007503770 A 2/2007
JP 2007166514 6/2007
JP 2007166514 A 6/2007
JP 2009260880 A 11/2009
JP 2009272912 A 11/2009
JP 2013055642 A 3/2013
JP 2014510504 A 4/2014
KR 100441317 6/2013
WO 2005036834 A 4/2005
WO 2011078108 A 6/2011
WO 2011093835 Al 8/2011
WO 2012138370 A 10/2012

OTHER PUBLICATIONS

Office Action dated Apr. 30, 2021 for Korean Application No.

10-2015-0086042.

Korean Oflice Action dated May 27, 2021 for Korean Patent
Application No. 10-2015-0086078.

Korean Oflice Action dated May 27, 2021 for Korean Patent
Application No. 10-2015-0087785.

Korean Oflice Action dated May 27, 2021 for Korean Patent
Application No. 10-2015-0087800.

Office Action dated Jul. 17, 2019 for Chinese Patent Application No.
201510276426 4.

Oflice Action dated Jul. 17, 2019 for Chinese Patent Application No.
201510276588.8.

Office Action dated Jul. 29, 2019 for Chinese Patent Application No.
2015102724093.

Office Action dated Aug. 2, 2019 for Chinese Patent Application No.
2015102369392.

Office Action dated Aug. 5, 2019 for Chinese Patent Application No.
201510272163X.

Office Action from the Chinese Patent Application No. 201510229770.8
dated Aug. 5, 2019.

Chinese Oflice Action dated May 7, 2020 for the Chinese Patent
Application No. 201510272409.3,

Chinese Office Action dated May 8, 2020 for the Chinese Patent
Application No. 201510229779.9,

Chinese Oflice Action dated May 18, 2020 for the Chinese Patent
Application No. 201510229610.3.

Chinese Oflice Action dated May 18, 2020 for the Chinese Patent
Application No. 201510272436.0,

Chinese Notice of Allowance dated Jun. 15, 2020 for the Chinese
Patent Application No. 201510236939.2.

Chinese Office Action dated Mar. 18, 2020 for the Chinese Patent
Application No. 201680015083.9,

Oflice Action dated Aug. 19, 2019 for Chinese Patent Application
No. 201502297799,

Office Action dated Aug. 26, 2019 for Japanese Patent Application
No. 2015122562.

Office Action dated Aug. 27, 2019 for Chinese Patent Application
No. 201502724360,

Oflice Action dated Aug. 27, 2019 for Chinese Patent Application
No. 20150229610.3.

Office Action dated Sep. 3, 2019 for Chinese Patent Application No.
2015102726703.

Chinese Ofhce Action dated Nov. 3, 2020 for the Chinese Patent
Application No. 201510272436.0,

Chinese Oflice Action dated Nov. 3, 2020 for the Chinese Patent
Application No. 201510272409.0,

Chinese Ofhce Action dated Nov. 5, 2020 for the Chinese Patent
Application No. 201510229779.9,

Office Action for the Japanese Application No. 2015122564 dated
Mar. 25, 2019.

Japanese Office Action dated Mar. 18, 2019, for Japanese Patent
Application No. 2015-122560.

Office Action for the Japanese Application No. 2015122559 dated
Mar. 18, 2019.

Office Action for the Japanese Application No. 2015122561 dated
Mar. 18, 2019.

Oflice Action for the Japanese Application No. 2015-122562 dated
Mar. 18, 2019.

Indian Office Action dated Sep. 24, 2020 for the Indian Patent
Application No. 847/DEL/2015.

Indian Oflice Action dated Sep. 25, 2020 for the Indian Patent
Application No. 836/DEL/2015.

Notice of Allowance dated Aug. 28, 2020 for the Chinese Patent
Application No. 2016800150839.3.

Notice of Allowance dated Aug. 27, 2020 for the Chinese Patent
Application No. 201510229610.3,

Notice of Allowance dated Jul. 24, 2020 for the Chinese Patent
Application No. 201510272409.3,

Notice of Allowance dated Jul. 24, 2020 for the Chinese Patent
Application No. 201510229770.8,

Chinese Office Action dated Mar. 12, 2020 for the Chinese Patent
Application No. 201510229770.8,

Chinese Office Action dated Mar. 2, 2020 from the Chinese Patent
Application No. 201510272163 X.

Chinese Office Action dated Mar. 2, 2020 from the Chinese Patent
Application No. 201510236939.2,

Oflice Action and English Translation for the Taiwanese application
No. 104111755,

Office Action and English Translation for the Taiwanese application
No. 104110829,

Indian Oflice Action for the Application No. 834/DEL/2015 dated
Jul. 27, 2020.

Kozanitis et al. Leaping Multiple Headers in a Single Bound:
Wire-Speed Parsing Using the Kangaroo System.

Second Oflicial Action dated Nov. 28, 2022, from the Indian Patent
Application No. 836/DEL/2015.

Office Action dated Apr. 29, 2021 for Korean Application No.
10-2015-0083631.

Second Official Action dated Jan. 19, 2023 from the Indian Patent
Application No. 841/DEL/2015.

Official Action dated Nov. 18, 2021, from the Korean Patent
Application: 10-2015-0086042.

U.S. Patent Oct. 24, 2023 Sheet 1 of 24 US 11,799,989 B2

,—100

LayerQ Lavyer1 |ayer? Layerd Layer5 L.ayert Layer7

ETHERNET
ETHERNET

ETHERNET| IPV4 e

ETHERNET| IPV4

ETHERNET

ETHERNET| IPV4 ARP
ETHERNET| IPV4 UDP | VXLAN | IPv4

US 11,799,989 B2

Sheet 2 of 24

Oct. 24, 2023

U.S. Patent

(1onoed B tiyim
14els JoAe]
SiY} SI0UM)
18S0I0AET

10U
"WINSHOBYD s.

UONS O} OSHA

Uojjewilojul NioAe

JuRuI3/dan
/d01/dl B8}
adA | 1eheT

130U
WNSYoaYyo se
UoNs oju OSHA

(ooed B uiLhim|

pels sehe| |
SiUl si8Um) |

uoljeutiojl LisAe

JouseyIa/dan |
14O 1idl 0°9)

}

busi

| ‘winsyoayo se
adAjieheT | yons ojuj oSy

(ejep
| s8Ae| Jo uBlg) |

19S50
eleq JeAe

uojeulIoul Q4sAeT

 JoussUI/dan |

1dD1/di 6°9)
odA j1ehe

U.S. Patent Oct. 24, 2023 Sheet 3 of 24 US 11,799,989 B2

300
Cstart 4

A parser engine examining an incoming packet to identify a

PktiD of the packet 305
A rewrite engine referencing a protocol table that defines
different packet structures of packets 310

l

The rewrite engine modifying the packet based on data stored in
the table 315

(CEnd >
Fig. 3

U.S. Patent Oct. 24, 2023 Sheet 4 of 24 US 11,799,989 B2

— 400
_ y

Storing in a memory a protocol table that defines different packet
structures of packets, wherein each of the packet structures is indexed /7 __ 405

by a PktiD
Receliving a packet at an incoming port ¢ _-410
ldentifying the PkUiD of the packet 415

Accessing information for each protocol layer of the packet, wherein _
the information is located in the table (420

US 11,799,989 B2

Sheet 5 of 24

Oct. 24, 2023

U.S. Patent

Ji8Ae] jestuoued

}

ZisAg] jesiuouen

L 18AR] jeououe)

004 (\\

Qi9AB| [BoIUouUR)

QlaAe]

1epesy

U.S. Patent

Oct. 24, 2023

Format of a double tagged Ethernet header

'

Sheet 6 of 24

US 11,799,989 B2

,/- 600

SA
(6 Bytes)

Bit Vector

AT

DA
(6 Bytes)

AT

Byte Numbering

0[1|2|3|4|5|6|7|8|opa11| 12} 13|14 | 15|16 [17]18[19] 20 | 21

Tag (4Bytes)

AEAENER

Tag (4Bytes)

Fig. 6A

Service VLAN |[Customer VLANIETHERTYPE

(ZByles)

o 605

Fig. 6B

U.S. Patent Oct. 24, 2023 Sheet 7 of 24 US 11,799,989 B2

'/— /700

Format of a single tagged Ethernet header

SA DA Customer VLANIETHERTYPE
{0 Bytes) (6 Bytes) Tag (4Bytes) (2Bytes)

Fig. 7A
/—700'

Format of the single tagged Ethernet header in generic format

SA DA service VLAN 1 omer VLANIETHERTYPE

Tag {(4Bytes)
{6 Bytes) (6 Bytes) Marked Invalid Tag (4Bytes) (2Bytes)

Fig. 7B

Bit Vector

WWI*[’*W 0IO]O|O.1[11111 LLL]

Byte Numbering

0]1|2|3|4|5|6]7|8|9|@1[12|13|14|15[16|17[18|19] 20] 21 |

Fig. 7C

U.S. Patent Oct. 24, 2023 Sheet 8 of 24 US 11,799,989 B2

'/-— 300

Format of an untagged Ethernet header
SA DA ETHERTYPE
{0 Bytes) (6 Bytes) (ZBytes)

Fig. 8A

Format of the untagged Ethernet header in generic format

’/—- 300’
SA DA Service VLAN (Customer VLAN ETHERTYPE

Tag (4Bytes) Tag (4Bytes)
(6Bytes) | (BBytes) |\ rked Invalid | Marked Invalid | (4BYt€S)

Fig. 8B

/- 805

EICIEIEIE olololo] 1 1
RIEIEIERE olololo

Byte Numbeting

ol1]|2{3l4]s5]6|7|8|ohal 12]13]14]15[16[17]18[19] 20 [21 |

Fig. 8C

U.S. Patent Oct. 24, 2023 Sheet 9 of 24 US 11,799,989 B2

/— 900

Format of a single tagged Ethernet header

SA DA Customer VLAN
(6 Bytes) (6 Bytes) Tag (4Bytes)

Fig. 9A

ETHERTYPE
(2Bytes)

’/— 905

Format of the single tagged Ethernet header in generic format

SA DA Service VLAN | o mer VLANIETHERTYPE

Tag (4Bytes
(6 Bytes) (6 Bytes) Max‘?(é g Izvali) . Tag (4Bytes) (2Bytes)

Fig. 9B

Bit Vector

oJojofo] KN

Byte Numbeting

0l1]2|3[4|5|6|7|8[ofioh 12 (13|14 (15|16 |17] 18|19 20 | 21

Fig. 9C

U.S. Patent Oct. 24, 2023 Sheet 10 of 24 US 11,799,989 B2

,/—915

Format of an untagged Ethernet header in generic format
Service VLAN |Customer VLAN
. Bsﬁ‘es) 6 gﬁes) Tag (4Bytes) | Tag (4Bytes) ET("Z'EE-;:)PE
Marked Invalid | Marked invalid

1[1[1]4]4]4] olololo e 1
RCNE olololo

nall

Bit Vector

Byte Numbering

O1112(314]|5i0i7{8i91Q1 % 1213114115 16{17 (18119 20 21

Fig. 9E
’/—925

Format of an untagged Ethernet header after modifications

ETHERTYPE
(2Bytes)

U.S. Patent Oct. 24, 2023 Sheet 11 of 24 US 11,799,989 B2

'/- 1000

Format of a double tagged Ethernet header

SA DA Service VLAN |Custiomer VLANIETHERTYPE
{0 Bytes) {0 Bytes) Tag {(4Bytes) Tag (4Bytes) (2Bytes)

Fig. 10A

Bit Veclor

1

(AENERENE R

Byte Numbering

o[1]2[3[4]s|6]7|sjopqt 12] 18] 14[15] 16 17| 18]10] 20 | 21

U.S. Patent Oct. 24, 2023 Sheet 12 of 24 US 11,799,989 B2

’(fﬂ“1010

Format of an untagged Ethernet header in generic format

Service VLAN |[Cusiomer VLAN
Tag {(4Bytes) Tag (4Bytes)
Marked Invalid | Marked invalid

Fig. 10C

SA DA
{0 Bytes) {6 Bytes)

ETHERTYPE
(2Bytes)

Bit Vector

] ofofo]o

Haaaag 0 JoJo o]

Byte Numbering

01112(314|516{718{1911G1 % 12[15}14 1151161171819 20 21

Fig. 10D
/—1020

Format of an untagged Ethernet header after modifications

SA DA ETHERTYPE
{0 Bytes) {0 Bytes) (2Bytes)

h

Fig. 10

U.S. Patent Oct. 24, 2023 Sheet 13 of 24 US 11,799,989 B2

/‘1100

Based on the detection, expanding the protocol header to a generic
format for a corresponding protocol {1110

U.S. Patent Oct. 24, 2023 Sheet 14 of 24 US 11,799,989 B2

’/—- 1200

(Start

Receiving a packet at an incoming port of the network switch -7 _-1205

Generalizing a protocol header of the packet according to a generic | _ _
format for a corresponding protocol {1210

Command to the generalized protocol header {1215

Removing all invalid bytes of the modified protocol headerto forma | . o
new header (1220

Sending out the packet with the new header via an outgoing port of the | "
network switch 1225

U.S. Patent Oct. 24, 2023 Sheet 15 of 24 US 11,799,989 B2

’/-~ 1300

Configuring the network switch to include software-defined mappings of| __ .
generic formats of protocols — 1305

Receiving a packet at an incoming port of the network switch 7 1310

Generalizing a protocol header of the packet based on one of the . ,
software-defined mappings (1315

the bit vector includes a bit per byte for each byte of the generalized) _-1320
protocol header

Fig. 13

U.S. Patent Oct. 24, 2023 Sheet 16 of 24 US 11,799,989 B2

,/— 1400

Obtaining an expanded protocol header, wherein the expanded protocol
header is a protocol header of an incoming packet that is generalized |- 1405
according to a generic format for a corresponding protocol

Maintaining a representation of the expanded protocol header, wherein
the representation is a structure that includes a continuous_bytes field 7 __ 1410
and a bitvector field

Setting the continuous_bytes field to a number of continuous valid o
bytes from a start of the expanded protocol header ~ 1415

invalid field after the continuous valid bytes, wherein each invalid field is;/7 __ 1420
a field that did not exist in the protocol header of the incoming packet

Marking a bit of the bitvector field as available for each byle of each
valid field after the continuous valid bytes, wherein each valid field is a
field existing in the protocol header of the incoming packet

1425

U.S. Patent Oct. 24, 2023 Sheet 17 of 24 US 11,799,989 B2

Generalizing a protocol header of the packet according to a generic | ..
format for a corresponding protoco! — 1510

Representing the generalized protocol header in a structure thatis | e
independent on a size of the protocol header 1915

Fig. 15

U.S. Patent Oct. 24, 2023 Sheet 18 of 24 US 11,799,989 B2

header includes a bit vector with bits marked as O for invalid fields and [&— 1605
bits marked as 1 for valid fields

Using af least one command from a set of generic commands that is
stored in a memory of the network switch to modify at least one
generalized protocol header

-1610

U.S. Patent Oct. 24, 2023 Sheet 19 of 24 US 11,799,989 B2

,/— 1700

(Start

Maintaining a set of generic commands in a memory of the network | __ _
switch - 1705

Receiving a packet at an incoming port of the network switch ' 1710

Generalizing each protocol header of the packet according to a generic |
format for the protocol header, wherein each generalized protocol |

header includes a bit vector with bits marked as 0 for invalid fields and | ~3715
bits marked as 1 for valid fields ?

Modifying at least one of the generalized protocol headers by applying |
at least one command from the set of generic commands to the ¢ _-1720

Forming a new protocol header based on the updated bit vector I/Z/1725

Transmitting the packet with the new protocol header via an outgoing | -
port of the network switch B 1730

U.S. Patent Oct. 24, 2023 Sheet 20 of 24 US 11,799,989 B2

,/' 1800

Maintaining a bit vector for each generalized protocol header —/__-1805

Updated the bit vector based on modification of at least one _ o
generalized protocol header 5 1810

Using the updated bit vector to compress the at least one generalized B N
protocol header - 1815

U.S. Patent Oct. 24, 2023 Sheet 21 of 24 US 11,799,989 B2

/‘- 1900

Receiving a packet at an incoming port of the network switch /1905

Generalizing each protocol header of the packet according to a , A
generic format for the protocol header (1910

Maintaining a bit vector for each generalized protocol header,
wherein the bit vector includes bit marked as O for invalid fields and /. _-1915
bits marked as 1 for valid fields

Modifying at least one of the generalized protocol headers, thereby | ..
updating the bit vector (.~ 1920

Collapsing the updated bit vector (1925

Forming a compact protocol header based on the collapsed bit vector 7 __ 1930

U.S. Patent Oct. 24, 2023 Sheet 22 of 24 US 11,799,989 B2

'/— 2000

_____________________ LayerPomterO:D
Propriety Header

Ethernet
{Pv4

L.ayerPointer1 = 16

LayerPointer2 = 36

L.ayerPointer3 = 48

| Remaining part of header that
modify

L.ayerPointerd4 = 56

HeaderSize-1 = 223

Fig. 20

U.S. Patent Oct. 24, 2023 Sheet 23 of 24 US 11,799,989 B2

Maintaining a pointer structure for each packet, wherein the pointer
structure includes layer pointers and a {otal size of all headers of the | _ o
packet, wherein each of the layer pointers corresponds to a start ~ (2105
position of an associated layer in the packet

""" layer modifications 2110

Updating the layer pointers based on the layer modifications - 2115

|

Stitching back together the layers based on the updated lavyer .

U.S. Patent Oct. 24, 2023 Sheet 24 of 24 US 11,799,989 B2

’/—" 2200

' Start

Receiving a packet at an incoming port of the network switch 7 _ 29205
Using a pointer structure to separate protocol layers of the packet ' 2210
Generalizing the individual protocol layers for modification) 99215

l
Updating the pointer structure based on the modification 2220

Using the updated pointer structure to intelligently stitch the modified | n
protocol layers back together to form a new protocol header stack (2223

Sending out the packet with the new protocol header stack viaan | _
outgoing port of the network switch (— 2230

US 11,799,989 B2

1

METHOD OF USING BIT VECTORS TO
ALLOW EXPANSION AND COLLAPSE OF
HEADER LAYERS WITHIN PACKETS FOR

ENABLING FLEXIBLE MODIFICATIONS
AND AN APPARATUS THEREOFK

RELATED APPLICATIONS

This application 1s a continuation of U.S. application Ser.
No. 15/457,970, filed on Mar. 13, 2017, and entitled “A
METHOD OF USING BIT VECITORS TO ALLOW
EXPANSION AND COLLAPSE OF HEADER LAYERS
WITHIN PACKETS FOR ENABLING FLEXIBLE MODI-
FICATIONS AND AN APPARATUS THEREOF,” which is
a continuation of U.S. application Ser. No. 14/309,659, filed
on Jun. 19, 2014, and entitled “A METHOD OF USING BIT
VECTORS TO ALLOW EXPANSION AND COLLAPSE
OF HEADER LAYERS WITHIN PACKETS FOR
ENABLING FLEXIBLE MODIFICATIONS AND AN
APPARATUS THEREOFE,” both of which are hereby incor-

porated by reference.

FIELD OF INVENTION

The present invention relates to packet header modifica-
tions. More particularly, the present mvention relates to a
method of using bit vectors to allow expansion and collaps-
ing of header layers within packets for enabling flexible
modifications and an apparatus thereof.

BACKGROUND OF THE INVENTION

A network packet carries data via protocols that the
Internet uses, such as Transmission Control Protocol/Inter-
net Protocol/Ethernet Protocol (TCP/IP/Ethernet). A typical
switch 1s able to modily various fields of incoming packets
prior to sending the packets out to a destination or to another
switch. Incoming packets are modified for various reasons,
such as where the packets are being forwarded to, the
protocol the destination supports, priority of the packets,
incoming format of the protocol header, etc. Since network
protocols are evolving, one or more fields of a protocol
header can be optional, which complicates the hardware of
the switch as a given field within a protocol header may not
be always at a fixed oilset.

During modification of a packet, the prior art switch
linearly processes each protocol layer in the packet. Such
processing can create network related performance issues,

including latency, which can cause an implementation to
OVErprovision processing resources.

BRIEF SUMMARY OF THE INVENTION

Embodiments of the apparatus for modifying packet head-
ers relate to a use of bit vectors to allow expansion and
collapse of protocol headers within packets for enabling
flexible modification. A rewrite engine expands each proto-
col header into a generic format and applies various com-
mands to modily the generalized protocol header. The
rewrite engine maintains a bit vector for the generalized
protocol header with each bit in the bit vector representing,
a byte of the generalized protocol header. A bit marked as O
in the bit vector corresponds to an mvalid byte, while a bat
marked as 1 1n the bit vector corresponds to a valid byte. The
rewrite engine uses the bit vector to remove all the invalid

10

15

20

25

30

35

40

45

50

55

60

65

2

bytes after all commands have been operated on the gener-
alized protocol header to thereby form a new protocol
header.

In one aspect, a method of a rewrite engine 1s provided.
The method includes maintaining a bit vector for each
generalized protocol header. The generalized protocol
header 1s a protocol header of a packet expanded to a generic
format. The generic format includes all possible fields of the
protocol. Each of the fields has the same oflset irrespective
of which vanation of the protocol the protocol header
corresponds to. The bit vector includes a bit per byte for each
byte of the generalized protocol header.

The method also includes updating the bit vector based on
modification of at least one generalized protocol header. In
some embodiments, the modification uses at least one com-
mand from a set of generic commands that 1s stored 1n a
memory of the network switch to modily the at least one
generalized protocol header.

The method also 1ncludes using the updated bit vector to
compress the at least one generalized protocol header. In
some embodiments, prior to using the updated bit vector, an
XOR operation 1s performed on the bit vector and the
updated bit vector to determine how many bits changed,
which allows the rewrite engine to account for the bytes
deleted and added.

In another aspect, a method of a network switch 1s
provided. The method includes recerving a packet at an
incoming port of the network switch, and generalizing each
protocol header of the packet according to a generic format
for the protocol header. Missing fields from the protocol
header of the packet are detected. Based on the detection, the
protocol header 1s expanded to the generic format by 1nclud-
ing the missing fields.

The method also includes maintaiming a bit vector for
cach generalized protocol header. The bit vector includes
bits marked as O for invalid fields and bits marked as 1 for
valid fields.

The method also includes modifying at least one of the
generalized protocol header, thereby updating the bit vector.
In some embodiments, the modification uses at least one
command from a set of generic commands that 1s stored 1n
a memory of the network switch to modily the at least one
generalized protocol header. In some embodiments, the
modification of the at least one generalized protocol header
1s based on egress portlype of the outgoing port of the
network switch.

The method also includes collapsing the updated bait
vector. In some embodiments, the updated bit vector 1s

collapsed by shifting the updated bit vector to remove each
bit marked as O in the updated bit vector.

The method also includes forming a compact protocol
header based on the collapsed bit vector. The packet with at
least the compact protocol header 1s transmitted via an
outgoing port of the network switch. In some embodiments,
prior to the packet being transmitted, a number of bytes
added or deleted for all operations performed 1s counted.

In yet another aspect, a network switch 1s provided. The
network switch includes an input port for receiving a packet
and a memory storing a set of generic commands. The set of
generic commands 1s used for header modifications 1rrespec-
tive of mncoming headers. In some embodiments, the set of
generic commands 1nclude a Delete command, a Copy
command and a Move command.

The network switch also includes a rewrite engine. The
rewrite engine uses bit vectors to allow expansion and

US 11,799,989 B2

3

collapse of protocols headers of the packet, thereby enabling
tflexible modification of the packet by using the set of generic

commands.

In some embodiments, each of the protocol headers 1s
generalized according to one of software-defined mappings
that 1s specific to a corresponding protocol. In some embodi-
ments, the software-defined mappings are stored in the
memory.

Each generalized protocol header includes a bit vector
with bits marked as O for invalid fields and bits marked as
1 for valid fields. In some embodiments, the rewrite engine
updates the bit vector after the generalized protocol header
1s modified. In some embodiments, the rewrite engine
removes each bit marked as 0 1n the updated bit vector to
collapse the updated bit vector. A new header 1s formed
based on the collapsed bit vector.

In some embodiments, the network switch also includes
an outgoing port for transmitting the packet with the new
header.

In yet another aspect, a network switch 1s provided. The
network switch includes an input port for receiving a packet,
wherein the packet includes a body and a protocol stack. The
network switch also includes an output port for transmitting,
modified packets. The network switch also includes a
memory to store a set of software-defined mappings of
generic formats of protocols and a set of generic modifica-
tion commands Typically, the set of generic modification
commands 1s used for header modifications irrespective of
incoming headers.

The network switch also includes a rewrite engine. The
rewrite engine converts each protocol header of the protocol
stack 1nto a generic format based on one from the set of
software-defined mappings, and maintains a bit vector for
cach converted protocol header. The bit vector includes a bit
per byte for each byte of the converted protocol header. The
bit vector includes bits marked as 0 for invalid fields of the
converted protocol header and bits marked as 1 for valid
fields of the converted protocol header. The rewrite engine
uses the set of generic modifications commands to modily
cach converted protocol header, updates each bit vector after
the bit vector, collapses each updated bit vector to thereby
form a new protocol stack, and attaches the new protocol
stack with the body to be transmitted via the output port.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing will be apparent from the following more
particular description of example embodiments of the inven-
tion, as illustrated 1n the accompanying drawings 1in which
like reference characters refer to the same parts throughout
the diflerent views. The drawings are not necessarily to
scale, emphasis instead being placed upon illustrating
embodiments of the present invention.

FIG. 1 illustrates exemplary protocol layer combinations
ol packets.

FIG. 2 1llustrates an exemplary structure of a local pro-
tocol table 1mn accordance with some embodiments of the
present invention.

FIG. 3 illustrates an exemplary method of a network
switch 1n accordance with some embodiments of the present
invention.

FIG. 4 1llustrates another exemplary method of the net-
work switch in accordance with some embodiments of the
present mvention.

FI1G. 5 1llustrates diagram of header expansion of layers of
an mcoming packet to generic formats 1n accordance with
some embodiments of the present invention.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIGS. 6A-6B illustrate an exemplary generalization of a
protocol header 1n accordance with some embodiments of
the present invention.

FIGS. 7A-7C illustrate another exemplary generalization
ol a protocol header in accordance with some embodiments
of the present invention.

FIGS. 8A-8C 1llustrate vet another exemplary generaliza-
tion of a protocol header 1n accordance with some embodi-
ments of the present mvention.

FIGS. 9A-9F illustrate an exemplary modification of a
protocol header 1n accordance with some embodiments of
the present invention.

FIGS. 10A-10E 1llustrate another exemplary modification
ol a protocol header 1n accordance with some embodiments
of the present invention.

FIG. 11 1illustrates a method of a rewrite engine 1n
accordance with some embodiments of the present inven-
tion.

FIG. 12 illustrates yet another method of the network
switch 1n accordance with some embodiments of the present
invention.

FIG. 13 illustrates yet another method of the network
switch 1n accordance with some embodiments of the present
invention.

FIG. 14 illustrates yet another method of the network
switch 1n accordance with some embodiments of the present
invention.

FIG. 15 illustrates yet another method of the network
switch 1n accordance with some embodiments of the present
invention.

FIG. 16 1llustrates another method of the rewrite engine 1n
accordance with some embodiments of the present inven-
tion.

FIG. 17 1illustrates yet another method of the network
switch 1n accordance with some embodiments of the present
invention.

FIG. 18 illustrates yet another method of the rewrite
engine in accordance with some embodiments of the present
invention.

FIG. 19 illustrates yet another method of the network
switch 1n accordance with some embodiments of the present
invention.

FIG. 20 illustrates an exemplary diagram of a layer
structure 1n accordance with some embodiments of the
present mvention.

FIG. 21 illustrates yet another method of the rewrite
engine switch 1n accordance with some embodiments of the
present 1vention.

FIG. 22 illustrates yet another method of the network
switch 1n accordance with some embodiments of the present
invention.

DETAILED DESCRIPTION OF TH.
INVENTION

(L]

In the following description, numerous details are set
torth for purposes of explanation. However, one of ordinary
skill in the art will realize that the invention can be practiced
without the use of these specific details. Thus, the present
invention 1s not intended to be limited to the embodiments
shown but 1s to be accorded the widest scope consistent with
the principles and features described herein.

INTRODUCTION

A network device, such as a network switch, 1s able to
switch/route network tratlic. The network switch includes at

US 11,799,989 B2

S

least one input/incoming port and at least one output/
outgoing port for receiving and transmitting packets. In
some embodiments, the network switch also includes a
parser and a rewriter. The parser can include one or more
parser engines to 1dentily contents of network packets, and
the rewriter can include one or more rewrite engines to
modily packets before they are transmitted out from the
network switch. The parser engine(s) and the rewrite engine
(s) are tlexible and operate on a programmable basis.

The network switch also includes memory to store data
used by the network switch. For example, the memory stores
a set of generic commands Brietly, the generic commands
are typically used to modily protocol headers. For another
example, the memory also stores software-defined mappings
of generic formats of protocols. Brefly, each protocol
header 1s represented according to one of the software-
defined mappings that 1s specific to a corresponding proto-
col. As 1t will become evident, these mappings can be used
on different variations of a protocol as well as on different
protocols, including new protocols. For vyet another
example, the memory also stores a protocol table. Brietly,
the protocol table includes layer information of each proto-
col layer of each protocol layer combination that i1s pro-
grammed 1nto the protocol table. For yet another example,
the memory also stores counters and statistics.

In Ethernet, packets include multiple protocol layers.
Each protocol layer carries different imformation. Some
examples of well known layers are:

Ethernet

PBB Ethernet

ARP
IPV4

ICMPv6

VXLAN

TRILL

CNM
Theoretically, the protocol layers can occur 1n any order.
However, only some well-known combinations of these
layers occur. Some examples of valid combinations of these
layers are:

Ethernet

FEthernet, ARP

FEthernet, CNM

FEthernet, FCoE

Ethernet, IPV4

Ethernet, IPV4, ICMP

Fthernet, IPV4, IGMP
Unique Packet Identifier

In some embodiments, the network switch supports 17
protocols and eight protocol layers. There are therefore 8"’
possible protocol layer combinations. FIG. 1 illustrates
exemplary protocol layer combinations of packets. For
example, a packet can include a three protocol layer com-
bination such as Ethernet, IPv4 and ICMP. For another
example, a packet can include a seven protocol layer com-
bination such as, Ethernet, IPv4, UDP, VXL AN, Ethernet
and ARP.

Although there are 8'7 possible protocol layer combina-
tions, only some well-known combinations of these layers

5

10

15

20

25

30

35

40

45

50

55

60

65

6

occur. All known protocol layer combinations are uniquely
identified and translated into a unique number called the
packet identifier (PktID). The protocol table stored in the
memory of the network switch 1s programmed to include
layer information of each layer of each known protocol layer
combination. In practice, the local protocol table includes
less than 256 protocol layer combinations. In some embodi-
ments, this local table includes 212 known protocol layer
combinations. The local table 1s programmed to include

more or less protocol layer combinations.

FIG. 2 illustrates an exemplary structure of the local
protocol table 200 in accordance with some embodiments of
the present invention. Each protocol layer combination in
the local table 200, which 1s indexed using PktID, includes
information for each protocol layer of that protocol layer
combination, which 1s shown as LayerO Information, Layerl
Information and LayerN Information. By indexing the
PktID, information for all N layers of a packet can be
accessed or retrieved.

The information for each protocol layer includes at least
the following: Layer Type, Layer Data Oflset and Miscel-
laneous Information. However, more information can be
stored 1n the local table 200. Briefly, the Layer Type refers
to an associated protocol (e.g., IP/TCP/UDP/Ethernet) of the
protocol layer, Layer Data Oflset provides a start location of
layer data in the protocol layer, and the Miscellaneous
Information includes data such as checksum and length data.

Typically, the parser engine 1s able to 1dentily the PktID
of an imcoming packet recerved at the network switch. The
rewrite engine uses the PktID as key to the protocol table,
which gives the rewrite engine all the information needed to
generalize each protocol layer of the packet for modification.
In other words, the rewrite engine uses the PktID to access
or retrieve information for each of the protocol layers 1n the
packet from the protocol table, instead of receiving parsed
results from the parser engine.

Layer Type. The umique combination of the Layer Type
and a hash on one or more fields of the packet provides the
rewrite engine a “generic format” for each protocol layer. In
some embodiments, this unique combination specifies one
ol software-defined mappings of generic formats of proto-
cols that are stored 1n the memory. The generic format 1s
used by the rewrite engine to expand the protocol layers and
to modily the protocol layers using software commands.
This mformation also tells the rewrite engine where each
protocol layer starts within the packet.

Layer Data Oflset. The rewrite engine uses data to modily
an incoming header layer. This data can be spread anywhere
in the packet. Since layer sizes can vary, so can the offsets
to the data that the rewrite engine needs to use during
modifications, which limits hardware flexibility on what
data the rewrite engine can pick up and from where.

Extracted data from incoming packet headers are arranged
in a layered manner. The extracted data structure 1s arranged
such that starting oflsets of layer-data-structure 1s unique per
PktID. The Layer Data Offset of each layer 1s used to
identify the location of the extracted data for modifications.
Since the structure of the layers within a packet and loca-
tions ol the extracted data from the layers are identified
through the PktID of the packet, software and hardware uses
the same unique identifier to manage the extracted data,
which simplifies the commands 1n the rewrite engine.

Miscellaneous information. Information, such as check-
sum and length data, tells the rewrite engine about special
handing requirements, such as checksum re-calculation and
header length update, for the associated protocol layer.

US 11,799,989 B2

7

The packet generalization scheme allows software to
define a small set of generic commands, which 1s purely
based on a given protocol layer and 1s independent of the
layers preceding or proceeding this protocol layer. The
packet generalizations scheme also provides hardware flex-
ibility to future-proof itself against protocol changes and
additions.

FIG. 3 illustrates an exemplary method 300 of the net-
work switch in accordance with some embodiments of the
present invention. The network switch typically includes the
parser engine and the rewrite engine.

At a step 305, the parser engine examines an incoming
packet to 1dentify a PktID of the packet. In some embodi-
ments, the parser engine passes the PktID to the rewrite
engine rather than passing parsed data of the packet to the
rewrite engine.

At a step 310, the rewrite engine references a protocol
table that defines different packet structures of packets
received by the network switch. The rewrite engine uses the
PktID as a key to the protocol table to extract information for
cach protocol layer of the packet necessary for modification.

At a step 315, the rewrite engine modifies the packet
based on data stored in the protocol table. Typically, the
rewrite engine expands each protocol layer of the packet
prior to modifying the packet. Protocol layer expansion and
modification are discussed elsewhere.

FIG. 4 illustrates another exemplary method 400 of the
network switch 1n accordance with some embodiments of
the present invention. The network switch typically includes
memory and at least one icoming port.

At a step 405, a protocol table 1s stored 1n the memory.
The protocol table defines different packet structures of
packets. Each of the packet structures 1s indexed by a PktID.
Each of the packet structures represents a protocol layer
combination and includes layer information of each protocol
layer of the protocol layer combination. The protocol table
can be updated to add a new packet structure representative
ol a new protocol. The protocol table can also be updated to
modily a packet structure in response to a change 1 a
protocol.

At a step 410, a packet 1s received at the incoming port.

At a step 415, the PktID of the packet 1s identified. In
some embodiments, a parser engine 1dentifies the PktID of
the packet.

At a step 420, information for each protocol layer of the
packet 1s accessed. Typically, the mformation 1s located in
the protocol table. In some embodiments, the information 1s
used to generalize the protocol header of the packet accord-
ing to a generic format for a corresponding protocol. The
generic format 1s software-defined 1n the memory.

As explained elsewhere, the generalized protocol header
can be modified by applying at least one command to the
generalized protocol header. In some embodiments, the
generalized protocol header 1s modified by using the infor-
mation to determine a location of data that 1s used to modify
the generalized protocol header. The rewrite engine of the
network switch typically generalizes the protocol header and
modifies the generalized protocol header.

Generic Format

As briefly explained above, the rewrite engine represents
cach protocol header of packets 1n a generic format specific
to a corresponding protocol to enable programmable modi-
fications of packets, resulting in hardware and software
flexibility 1n modifying packet headers.

FIG. 5 illustrates diagram 500 of header expansion of
layers of an mcoming packet to generic formats in accor-
dance with some embodiments of the present invention. In

10

15

20

25

30

35

40

45

50

55

60

65

8

FIG. 5, the incoming packet includes eight header protocol
layers. Each protocol layer has a header for a respective
protocol. More or less protocol layers are possible as 1ndi-
cated above. The rewrite engine 1s able to detect missing
fields from any of the protocol headers and to expand each
protocol header to its generic format as 1llustrated 1n FIG. 5.
A canonical layer refers to a protocol layer that has been
expanded to 1ts generic format. Briefly, each canonical layer
includes a bit vector with bits marked as 0 for mnvalid fields
and bits marked as 1 for valid fields.

FIGS. 6A-8C 1illustrate examples of how the rewrite
engine works on the FEthernet protocol 1n accordance with
some embodiments of the present invention. The examples
illustrated 1n FIGS. 6A-8C demonstrate that the rewrite
engine 1s able to work on diflerent variations of a protocol,
such as the Ethernet protocol. Each example illustrates an
incoming header of the Ethernet protocol and 1ts correspond-
ing generic format. Although other protocols are not dis-
cussed, 1t 1s noted that the rewrite engine works similarly on
the other protocols.

FIG. 6A 1llustrates a format 600 of an exemplary Ethernet
packet header of an incoming packet. The Ethernet packet
header 600 1s 22 bytes and includes five fields: a Source

Address (SA) field, a Destination Address (DA) field, a
Service VLAN Tag field, a Customer VLAN Tag field and
an Etherlype field. The SA field and the DA field are each
6 bytes. The Service VLAN Tag field and the Customer
VLAN Tag field are each 4 bytes. The EtherType field 1s 2
bytes. The packet with the Ethernet packet header 600 1s the
biggest variant of an Ethernet packet and has the maximum
s1ze of 22 bytes.

The rewrite engine processes the Ethernet packet header
600 and determines that none of the fields are missing from
the Ethernet packet header 600. A generic format of the
Ethernet packet header 600 1s thus the same as that of the
Ethernet packet header 600 since the Ethernet packet header
600 contains all possible fields. FIG. 6B illustrates a bit
vector 605 that represents the Ethernet packet header 600 of
FIG. 6 A. Each bit of the bit vector 603 corresponds to one
of the 22 bytes of the Ethernet packet header 600. The bit
vector 605 contains all 1’s since all the fields of the Ethernet
packet header 600 are valid or have values as the fields exist
in the . Ethernet

Ethernet packet header 600. Accordingly, the
packet header 600 1s represented by the generic format of
{22'b111111_111111_1111_1111_11}.

FIG. 7A 1llustrates a format 700 of another exemplary
Ethernet packet header of an incoming packet. The Ethernet
packet header 700 1s 18 bytes and includes only four fields:
the SA field, the DA field, the Customer VL AN Tag field and
the Etherlype field. The Ethernet packet header 700 1s
missing the Service VLAN tag field. The packet with the
Ethernet packet header 700 1s another variant of an Ethernet
packet.

The rewrite engine processes the Ethernet packet header
700 and determines that the Service VLAN tag field 1s
missing {rom the Ethernet packet header 700 and expands
the Ethernet packet header 700 to its maximum size of 22
bytes by including the missing Service VL AN tag field at the
appropriate location of a generic format of the Ethernet
packet header 700. FIG. 7B illustrates the generic format
700" of the expanded Ethernet packet header. The expanded
Ethernet packet header 700" includes all possible fields of the
Ethernet protocol, including the missing Service VLAN tag
fiecld. The valid fields in the expanded FEthernet packet
header 700" are the SA field, the DA field, the Customer
VLAN Tag field and the EtherType field, as they exist in the
Ethernet packet header 700. The ivalid field in the

US 11,799,989 B2

9

expanded Ethernet packet header 700' 1s the Service VLAN
tag field, as 1t did not exist in the Ethernet packet header 700
but 1s added in the expanded Ethernet packet header 700"

FIG. 7C 1llustrates a bit vector 705 that represents the
expanded Fthernet packet header 700' of FIG. 7B. Each bit
of the bit vector 705 corresponds to one of the 22 bytes of
the expanded Ethernet packet header 700'. The bit vector
705 contains 1°s for all valid fields, which are the SA field,
the DA field, the Customer VLAN Tag field and the
Etherlype field. The bit vector 705 contains 0’s for all
invalid fields, which 1s only the Service VLAN tag field.
Accordingly, the Ethernet packet header 700 1s represented
by the generic format of
{22'p111111_111111_0000_1111_11}.

FIG. 8A 1llustrates a format 800 of another exemplary
Ethernet packet header of an incoming packet. The Ethernet
packet header 800 1s 14 bytes and includes only three fields:
the SA field, the DA field and the EtherType field. The
Ethernet packet header 800 1s missing the Service VL AN tag
field and the Customer VL AN Tag field. The packet with the
Ethernet packet header 800 1s the smallest variant of an
Ethernet packet.

The rewrite engine processes the Ethernet header 800 and
determines that the Service VLAN tag field and the Cus-
tomer VLAN Tag field are missing from the Ethernet packet
header 800 and expands the Ethernet packet header 800 to
its maximum size of 22 bytes by including the missing
Service VLAN tag field and the missing Customer VLAN
Tag field at the approprnate locations of a generic format of
the Ethernet packet header 800. FI1G. 8B illustrates a generic
format 800" of the expanded Ethernet packet header. The
expanded FEthernet packet header 800" includes all possible
ficlds of the Ethernet protocol, mncluding the missing the
Service VLAN tag field and missing the Customer VLAN
Tag field. The valid fields 1n the expanded Ethernet packet
header 800" are the SA field, the DA field and the Etherlype
field, as they exist in the Fthernet packet header 800. The
invalid fields 1n the expanded Ethernet packet header 800
are the Service VL AN tag field and the Customer VL AN Tag
field, as they did not exist 1n the Ethernet packet header 800
but are added m the expanded Ethernet packet header 800'.

FIG. 8C 1illustrates a bit vector 805 that represents the
expanded Ethernet packet header 800" of FIG. 8B. Each bit
of the bit vector 805 corresponds to one of the 22 bytes of
the expanded Ethernet packet header 800'. The bit vector
805 contains 1°s for all valid fields, which are the SA field,
the DA field and the Etherlype field. The bit vector 8035
contains 0’s for all invalid fields, which are the Service
VLAN tag field and the Customer VL AN Tag field. Accord-
ingly, the Ethernet packet header 800 1s represented by the
generic format of {22'b111111_111111_0000_0000_11}.

As 1llustrated 1n FIGS. 6 A-8C, 1rrespective of the varia-
tion of an incoming FEthernet header, once the expansion of
the Ethernet header to the generic format 1s performed, field
oflsets are the same as the biggest sized Ethernet header
(e.g., Ethernet packet header 600 of FIG. 6A). The header
expansion advantageously allows for the same set of sofit-
ware commands to work, 1rrespective of the incoming
Ethernet header since the Ethernet header 1s expanded to the
biggest sized Ethernet header. As such, a command modi-
tying, for example, the EtherType field will always point to

the same oflset 1rrespective of which Ethernet header was
received.

Generic formats of headers result 1n hardware and soft-
ware tlexibility 1n terms of modifying the packet headers.
Hardware 1s able to modify the packet headers irrespective
of where fields reside within the packet headers. Hardware

5

10

15

20

25

30

35

40

45

50

55

60

65

10

can be programmed by software to support new protocols.
Software programs generic formats in a hardware table for
various header protocols.

Hypothetical 1 (incoming packet 1s a single tagged Eth-
ernet packet and outgoing packet 1s an untagged Ethernet
packet): Assume an imnput Ethernet port of the network
switch 1s receiving packets with Customer VLAN tag, and
the packets need to be forwarded as untagged to an output
Ethernet port. FIG. 9A illustrates a format 900 of an exem-
plary Ethernet packet header of a packet recerved at this
incoming FEthernet port. For the packet received at this
incoming Ethernet port, software programs the generic for-
mat of the Ethernet header to be
{22'b111111_111111_0000_1111_11}. The rewrite engine
receives the header protocol layer and indexes to the
memory, which tells the hardware that the generic format for
this header protocol 1S
{22'b111111_111111_0000_1111_11}. In this case, hard-
ware expects the first 12 continuous bytes (each marked as
1), and the next six bytes (each marked as 1) to be shifted
by four bytes. The four bytes corresponding to the four bits
in the bit vector marked as 0 are mvalid.

Based on the geNeric format of
{22'b111111_111111_0000_1111_11}, the rewrite engine
expands the incoming header protocol layer to the expanded
header 905 shown 1n FIG. 9B and maintains a bit per byte
for each byte of the expanded header layer 905. The corre-
sponding bit vector 910 for the expanded header 905 1s
shown 1n FIG. 9C. The bit vector 910 tells the hardware
which bytes are valid and which are invalid.

Based on the forwarding decision, 1n this Hypothetical 1,
the packet needs to be forwarded as untagged. The hardware,
based on the egress portType of the outgoing Ethernet port,
indexes to a command table which tells the hardware to
delete Customer VLAN Tag. Customer VLAN Tag always
starts at a fixed oflset, namely 16. Since the command 1s
applied to a generic format, the command to delete Cus-
tomer VLAN Tag 1s “delete 4 bytes (of Customer VLAN
Tag) starting from location 16.” The hardware simply marks
the four bytes as mvalid and deletes them. FIG. 9D 1llus-
trates the untagged FEthernet header 915 1n a generic format.
FIG. 9E illustrates the bit vector 920 for the untagged
Ethernet header 915. After removing all the invalid bytes,
the hardware forms the new header 925 shown 1n FIG. 9F.
The packet with the new header 925 1s sent out via the
outgoing Ethernet port.

Hypothetical 2 (incoming packet 1s a double tagged
Ethernet packet and outgoing packet 1s an untagged Ethernet
packet): Assume an mput Ethernet port of the network
switch 1s receiving packets with Service VLAN tag and
Customer VLAN tag, and the packets need to be forwarded
as untagged to an output Ethernet port. FIG. 10A illustrates
a format 1000 of an exemplary Ethernet packet header of a
packet received at this mmcoming Ethernet port. For the
packet received at this mmcoming Ethernet port, software
programs the generic format of Ethernet header to be
{22'b111111_111111_1111_1111_11}. The rewrite engine
receives the header protocol layer and indexes to the
memory, which tells the hardware that the generic format for
this header protocol 1S
{22'b111111_111111_1111_1111_11}. In this case, hard-
ware expects all 22 continuous bytes (each marked as 1).

Based on the geNeric format of
{22'b111111_111111_1111_1111_11}, the rewrite engine
does not need to expand the incoming header protocol layer
since the header protocol 1s already at 1ts maximum size. The
corresponding bit vector 1005 for the header 1000 1s shown

US 11,799,989 B2

11

in FIG. 10B. The bit vector 1005 tells the hardware which
bytes are valid and which are 1nvalid.

Based on the forwarding decision, in this Hypothetical 2,
the packet needs to be forwarded as untagged. The hardware,
based on the egress portlype of the outgoing Ethernet port,
indexes to the command table which tells the hardware to
delete Customer VLAN Tag and Service VLAN Tag. Cus-
tomer VLAN Tag always starts at a fixed oflset, namely 16.
Similarly, Service VLAN Tag always starts at a fixed oflset,
namely 12. Since the commands are applied to a generic
format, the command to delete Customer VLAN Tag 1is
“delete 4 bytes (of Customer VLAN Tag) starting from
location 16” and the command to delete Service VLAN Tag
1s “delete 4 bytes (of Service VLAN Tag) starting from
location 12.” The hardware simply marks the eight bytes as
invalid and deletes them. FIG. 10C illustrates the untagged
Ethernet header 1010 1n a generic format. FIG. 10D 1llus-
trates the bit vector 1015 for the untagged Ethernet header
1010. After removing all the invalid bytes, the hardware
forms the new header 1020 shown 1n FIG. 10E. The packet
with the new header 1020 1s sent out via the outgoing
Ethernet port.

Hypothetical 3 (incoming packets 1s either an untagged, a
single tagged or a double tagged Ethernet packet and out-
going packet 1s a double tagged Ethernet packet): Assume an
input Ethernet port of the network switch 1s receiving
packets with no tags, Service VLAN tag, Customer VLAN
tag, or both tags, and the packets need to be forwarded to as
double tagged, but with new tags, to an output Ethernet port.
If an incoming packet 1s a double tagged, then software
programs the generic format of the Ethernet header to be
{22'b111111_111111_1111_1111_11}. If an incoming
packet 1s untagged, then software programs the generic
format of the Ethernet header to be
{22'b111111_111111_1111_1111_11}. If an incoming
packet 1s a single tagged, then software programs the generic
format of the Ethernet header to be
{22'b111111_111111_1111_1111_11}.

Based on the forwarding decision, in this Hypothetical 3,
the packet needs to be forwarded as double tagged. The
hardware, based on the egress portlype of the outgoing
Ethernet port, indexes to the command table which tells the
hardware to replace Customer VLAN Tag and Service
VLAN Tag. Customer VLAN Tag always starts at a fixed
offset, namely 16. Similarly, Service VLAN Tag always
starts at a fixed offset, namely 12. For each of these cases,
the commands are the same. Since the commands are
applied to a generic format, the commands are “copy 4 bytes
(for Service VLAN Tag) from layerData.locationX to start-
Location=12" and “copy 4 bytes ({or Customer VLAN Tag)
from layerData.locationY to startLocation=16,” wherein the
contents are copied from locations specified by layerData-
JocationX and layerData.locationY.

As demonstrated 1n Hypotheticals 1-3, the rewrite engine
1s simplified 1n hardware and keeps the software command
set 1n the memory small. Consequently, the hardware
memory required to hold commands 1s shallow.

FIG. 11 1llustrates a method 1100 of the rewrite engine in
accordance with some embodiments of the present inven-
tion. At a step 1103, the rewrite engine detects missing fields
from a protocol header of an incoming packet.

At a step 1110, based on the detection, the rewrite engine
expands the protocol header to a generic format for a
corresponding protocol. The generic format includes all
possible fields of the protocol. Each of the fields has the
same oilset 1rrespective of which varniation of the protocol
the protocol header corresponds to. The rewrite engine

10

15

20

25

30

35

40

45

50

55

60

65

12

maintains a bit vector for the expanded protocol header,
wherein the bit vector includes a bit per byte for each byte
of the expanded protocol header. The rewrite engine marks
a bit as available for each byte of each valid field, wherein
cach valid field 1s a field existing in the protocol header of
the incoming packet. The rewrite engine marks a bit as
unavailable for each byte of each invalid field, wherein each
invalid field 1s a field that did not exist 1n the protocol header
of the incoming packet.

In some embodiments, the step 1105 and 1110 are per-
formed for each protocol layer of the incoming packet.

FIG. 12 illustrates yet another method 1200 of the net-
work switch in accordance with some embodiments of the
present invention. In some embodiments, the network switch
allows for software-defined mappings of generic formats of
protocols and stores the software-defined mappings 1n the
memory of the network switch. The network switch includes
the rewrite engine to generalize protocol headers. At a step
1205, a packet 1s received at an incoming port of the network
switch.

At a step 1210, a protocol header of the packet is
generalized according to a generic format for a correspond-
ing protocol. As explained above, hardware expands the
protocol header according to one of the mappings stored in
the memory of the network switch. A bit vector for the
expanded bit vector tells hardware which bytes are valid and
which bytes are invalid.

At a step 1215, the generalized protocol header 1s modi-
fied by applying at least one command to the generalized
protocol header. As explained above, hardware, based on the
egress portlype of the outgoing Ethernet port, indexes to a
command table to determine the at least one command to
apply to the protocol header.

At a step 1220, all invalid bytes of the modified protocol
header are removed to form a new header.

At a step 1225, the packet with the new header 1s sent out
via an outgoing port of the network switch.

FIG. 13 illustrates yet another method 1300 of the net-
work switch in accordance with some embodiments of the
present mvention. At a step 1305, the network switch 1s
configured to include software-defined mappings of generic
formats of protocols. The software-defined mappings are
stored 1n a memory of the network switch.

At a step 1310, a packet 1s received at an incoming port
of the network switch.

At a step 1315, a protocol header of the packet 1is
generalized based on one of the software-defined mappings.

At a step 1320, a bit vector for the generalized protocol
header 1s maintained. The bit vector includes a bit per byte
for each byte of the generalized protocol header.
Optimized Representation of Generalized Protocol Header

Each incoming layer can contain any number of bytes,
such as 64 bytes or 128 bytes or even larger number of bytes.
In the above examples, an expanded Ethernet header has 22
bytes. It 1s not eflicient to represent all bytes of a protocol
layer 1n a bit vector because allocating for the worst case
protocol 1s memory intensive. In modern system-on-chip
(SOC) designs, area and power budget of embedded
memory usually dominates the entire chip budget. As a
result, 1t 1s critical to efliciently utilizes the limited memory
resources.

If most protocols have few “holes™ or invalid bytes, then
it 15 cheaper to represent a generic format header with a
counter of continuous bytes and a smaller bit vector repre-
senting noncontiguous bytes. In some embodiments, the size
of this smaller bit vector 1s typically fixed, although the size
1s programmable. The size can be adjusted based on statis-

US 11,799,989 B2

13

tics of protocols that determine the maximum number of
noncontiguous bytes that has to be stored for a protocol to
represent.

In some embodiments, each generic format header of a
packet 1s represented 1n an optimized fashion that uses a data
structure that includes two fields: a continuous_byte field
and a bitvector field. The continuous_byte field represents
the number of continuous valid bytes from start of a protocol
layer. The bitvector field 1s a bit representation per byte of
the protocol layer. The bitvector field shows “holes” or
invalid bytes. The bitvector field 1s able to accommodate
most all protocols 11 not all protocols. Therefore, the opti-
mized representation can be represented by {continuous-
_byte, bitvector}. The data structure is independent of a size
of the protocol header.

For example, the compact representation of the bit vector
605 of FIG. 6B is {22, 0000_0000_0000_0000), which
represents 22 continuous bytes from the start of the Ethernet
packet header 600 of FIG. 6 A. The bitvector field contains
all 0’s because there are no mvalid bytes.

For another example, the compact representation of the
bit vector 705 of FIG. 7C is {12, 0000_1111_1100_000,
which represents 12 continuous bytes from the start of the
expanded Ethernet packet header 300' of FIG. 7B, followed
by four invalid bytes and then six valid bytes.

For yet another example, the compact representation of
the bit vector 805 of FIG. 8C is {12,
0000_0000_1100_0000), which represents 12 continuous
bytes from the start of the expanded Ethernet packet header
800' of FIG. 8B, followed by eight invalid bytes and then
two valid bytes.

FIG. 14 illustrates yet another method 1400 of the net-
work switch 1n accordance with some embodiments of the
present mvention. At a step 1405, an expanded protocol
header 1s obtained. As discussed above, the expanded pro-
tocol header 1s a protocol header of an incoming packet that
1s generalized according to a generic format for a corre-
sponding protocol. Typically, the rewrite engine generalizes
the protocol header by detecting missing fields from the
protocol header and, based on the detection, expanding the
protocol header according to the generic format. The generic
format 1ncludes all possible fields of the protocol, wherein
cach of the fields has the same offset 1rrespective of which
variation of the protocol the protocol header corresponds to.

At a step 1410, a representation of the expanded protocol
header 1s maintained. The representation 1s a data structure
that includes a continuous_byte field and a bitvector field.

Command

CMD: DELETE

Parameters: Start, Size

CMD: COPY

10

15

20

25

30

35

40

45

Parameters: Source,
SourceOffset, Size,

DestinationOflset,

Bitmask,

copyConstantBitMask,

copyConstantData

CMD: MOVE
Parameters:

14

At a step 1415, the continuous_byte field 1s set to a
number of continuous valid bytes from a start of the
expanded protocol header.

At a step 1420, a bit of the bitvector field 1s marked as
unavailable for each byte of each invald field after the
continuous valid bytes. Each invalid field 1s a field that did
not exist in the protocol header of the incoming packet.

At a step 1425, a bit of the bitvector field 1s marked as
available for each byte of each valid field after the continu-
ous valid bytes. Each valid field 1s a field existing in the
protocol header of the mncoming packet.

FIG. 15 illustrates yet another method 1500 of the net-
work switch in accordance with some embodiments of the
present invention. At a step 1505, a packet 1s recerved at an
incoming port of the network switch.

At a step 1510, a protocol header of the packet 1is
generalized according to a generic format for a correspond-
ing protocol. Typically, the rewrite engine configured to
generalize the protocol header.

At a step 1515, the generalized protocol header 1s repre-
sented 1n a data structure that 1s independent of a size of the
protocol header. In some embodiments, the data structure
includes a continuous_byte field and a bitvector field,
wherein the continuous_byte field represents the number of
continuous valid bytes from a start of the protocol header,
and the bitvector field 1s a bit representation per byte of the
protocol header.

This data structure helps 1n generalizing the representa-
tion for various protocol layers and removes the dependency
on the size of a protocol header layer. The compact repre-
sentation of a bit vector advantageously reduces hardware
COSTs.

Generic Commands for Header Modification

Modification uses a set of generic commands that 1s
applied to expanded protocol headers. All of the commands
are thus generic as these commands are independent of
incoming headers (e.g., size and protocol).

Table 1 lists generic commands used by the rewrite engine
for protocol header modifications. This small set of generic
commands 1s used for header modification irrespective of
incoming packet headers (e.g., size, protocol) as packet
headers are generalized prior to modification. Typically, the
generic commands behave as a microcode that the software
programs.

TABLE 1

Description

Starting at the Start position, this delete command deletes Size
number of bytes in a given protocol layer.

Keeps track of how many bytes 1s deleted.

This copy command copies data from various sources such as
extracted layer data, common fields extracted by the parser, current
layer of the header and copies them to the current header layer

starting at DestinationOflset.

For all the bytes that are valid in source, this copy command
makes the corresponding destination bytes valid.

For all the bytes that are invalid in source, this copy

command 1nvalidates the bytes in the destination. (This copy
command can also act as the delete command in this case.)

If value of a bit in copyConstantBitMask is 1, corresponding
data byte comes from constant data. This allows specifying
constant values using this copy command.

Keeps track of how many bytes 1s added or deleted.

This move command moves the bytes within the protocol layer. This
move command is primarily used to Push and Pop MPLS labels

US 11,799,989 B2

TABLE 1-continued
Command Description
StartOffset, efficiently.

DestinationOflset, Size

16

For all the bytes that are valid in source, this move command

copies the corresponding data in the destination, validates

the destination bytes and invalidates the source bytes.
For all the bytes that are invalid 1in source, this move

command invalidates the destination bytes and the source bytes.
Keeps track of how many bytes i1s added or deleted.

The DELETE command deletes Size bytes within the
current generalized protocol layer from Start position by
invalidating those bytes. Bits of a bit vector representing
those bytes are marked as O.

The COPY command copies data of Size bytes from
SourceOllset of Source to DestinationOflset of the current
generalized header layer. The COPY command makes the
corresponding destination bytes either valid or mvalid
depending on whether the validity of the data 1s valid 1n
Source. Bits of a bit vector representing invalid bytes are
marked as 0. Bits of a bit vector representing valid bytes are
marked as 1. The COPY command can also use Bitmask for
bitmask operations. The COPY command can also use
copyConstantBitMask and copyConstantData. If copyCon-
stantBitMask contains a “1” at a bit location, a byte from the
corresponding position 1 copyConstantData 1s copied nto
the current generalized header layer at the corresponding
position. In some embodiments, the constant data is stored
in a table. In some embodiments, the constant data 1s
software-defined.

The MOVE command moves Size bytes within the cur-
rent generalized protocol layer from StartOffset to Destina-
tionOffset. The MOVE command makes the corresponding,
destination bytes either valid or invalid depending on
whether the validity of the data 1s valid 1n Source, and makes
the source bytes invalid. Bits of a bit vector representing,
invalid bytes are marked as 0. Bits of a bit vector represent-
ing valid bytes are marked as 1.

The number of bytes added or deleted 1s counted for all
operations performed by using at least one counter. The at
least one counter 1s a hardware counter. Alternatively, the at
least one counter 1s a software counter. The at least one
counter keeps track of the count for statistical purposes and
for other reasons. In some embodiments, the rewrite engine
performs an XOR operation on two bit vectors—the original
one with the modified one—+to tell hardware how many bits
changed, which 1s used for accounting the number of bytes
deleted or added.

FIG. 16 illustrates another method 1600 of the rewrite
engine in accordance with some embodiments of the present
invention. The rewrite engine 1s part of the network switch
and modifies packets before they are transmitted out of the
network switch. At a step 1605, each protocol header of a
packet 1s generalized according to a generic format for the
protocol header. The generic format includes all possible
fields of the protocol. As such, each of the fields has the same
oflset 1rrespective of which variation of the protocol the
protocol header corresponds to. Fach generalized protocol
header includes a bit vector. The bit vector includes a bit per
byte for each byte of the generalized protocol header. The bit
vector includes with bits marked as O for invalid fields and
bits marked as 1 for valid fields. Here, an invalid field is a
field that did not exist 1n the protocol header of the received
packet, and a valid field 1s a field that exist in the protocol
header of the received packet.

15

20

25

30

35

40

45

50

55

60

65

At a step 1610, at least one command from a set of generic
commands that 1s stored 1n a memory of the network switch
1s used to modily at least one generalized protocol header.
The modification of the at least one generalized protocol
header 1s based on egress portlype of an outgoing port of the
network switch. The modification of the at least one gener-
alized protocol header results 1n the bit vector being updated.

Since the set of generic commands 1s used for header
modification irrespective of incoming packet headers, the set
of generic commands can be used to modily a packet header
of a first vanation of a protocol and to modily a packet
header of a second vanation of the protocol. Similarly, the
set of generic commands can be used to modity a packet
header of a first protocol and to modily a packet header of
a second protocol.

FIG. 17 1llustrates yet another method 1700 of the net-
work switch in accordance with some embodiments of the
present invention. At a step 1705, a set of generic commands
1s maintained in the memory of the network switch.

At a step 1710, a packet 1s received at an incoming port
of the network switch.

At a step 1715, each protocol header of the packet is
generalized according to a generic format for the protocol
header. Missing fields from the protocol header of the packet
are detected. Based on the detection, the protocol header 1s
expanded to the generic format by including the missing
fields. Each generalized protocol header includes a bit vector
with bits marked as O for invalid fields and bits marked as
1 for valid fields. Here, an invalid field 1s a field that did not
exist 1n the protocol header of the recerved packet, and a
valid field 1s a field that exist in the protocol header of the
received packet.

At a step 1720, at least one of the generalized protocol
headers 1s modified by applying at least one command from
the set of generic commands to the generalized protocol
header, thereby updating the bit vector.

At a step 1725, a new protocol header 1s formed based on
the updated bit vector. At a step 1730, the packet with the
new protocol header 1s transmitted via an outgoing port of
the network switch. In some embodiments, prior to the
packet with the new protocol header 1s transmitted, a number
of bytes added or deleted 1s counted for all operations
performed.

Using Bit Vectors to Collapse Modified Protocol Headers

The rewrite engine not only uses a bit vector for each
protocol header to allow expansion of the protocol header
based a generic format for modification, the rewrite engine
also uses the bit vector to allow collapse of the protocol
header from the generic format to a “regular” header.
Typically, each bit 1n the bit vector represents a byte of the
generalized protocol header. A bit marked as O in the bat
vector corresponds to an 1nvalid byte, while a bit marked as
1 1n the bit vector corresponds to a valid byte. The rewrite
engine uses the bit vector to remove all the invalid bytes
after all commands have been operated on the generalized

US 11,799,989 B2

17

protocol header to thereby form a new protocol header. The
rewrite engine therefore uses bit vectors to allow expansion
and collapse of protocol headers of packets, thereby
enabling flexible modification of the packets by using a set
of generic commands.

For example, referring back to Hypothetical 1, the bit
vector 920 of FIG. 9E represents the modified protocol
header 915 of FIG. 9D after the Delete command has been
applied to generalized protocol header 905 of FIG. 9B. In
this Hypothetical 1, Customer VL AN Tag 1s deleted, thereby
invalidating the four bytes of Customer VL AN Tag. As such,
the bits 1n the bit vector 920 that correspond to Customer
VLAN Tag are marked as 0. After all commands have been
operated on, namely the Delete command 1n Hypothetical 1,
the rewrite engine uses the bit vector 920 to remove all the
invalid bytes, thereby collapsing the bit vector 920. A new
protocol header 1s formed based on the collapse bit vector.
FIG. 9F illustrates the new protocol header 925 after all the
invalid bytes are removed. The packet in Hypothetical 1
with the new header 925 1s sent out via the outgoing Ethernet
port.

For another example, referring back to Hypothetical 2, the
bit vector 1015 of FIG. 10D represents the modified protocol
header 1010 of FIG. 10C after the Delete commands have
been applied to the protocol header 1000 of FIG. 10A. In this
Hypothetical 2, Service VLAN Tag and Customer VLAN
Tag are deleted, thereby invalidating the four bytes of
Service VLAN Tag and the four bytes of Customer VLAN
Tag. As such, the bits 1n the bit vector 1015 that correspond
to Service VLAN Tag and Customer VLAN Tag are marked
as 0. After all commands have been operated on, namely the
two Delete commands 1n Hypothetical 2, the rewrite engine
uses the bit vector 1015 to remove all the mvalid bytes,
thereby collapsing the bit vector 1015. A new protocol
header 1s formed based on the collapse bit vector. FIG. 10E
illustrates the new protocol header 1020 after all the invalid
bytes are removed. The packet in Hypothetical 2 with the
new header 1020 1s sent out via the outgoing Ethernet port.

FI1G. 18 1llustrates yet another method 1800 of the rewrite
engine 1n accordance with some embodiments of the present
invention. The rewrite engine 1s part of the network switch
and modifies packets before they are transmitted out of the
network switch. At a step 1805, a bit vector for each
generalized protocol header 1s maintained. The generalized
protocol header 1s a protocol header of a packet expanded to
a generic format. The generic format includes all possible
ficlds of the protocol. Each of the fields has the same offset
irrespective of which vanation of the protocol the protocol
header corresponds to. The bit vector includes a bit per byte
for each byte of the generalized protocol header.

At a step 1810, the bit vector 1s updated based on
modification of at least one generalized protocol header. The
modification uses at least one command from a set of generic
commands that 1s stored 1n a memory of the network switch
to modily the at least one generalized protocol header.

At a step 1815, the updated bit vector 1s used to compress
the at least one generalized protocol header. In some
embodiments, prior to the step 1815, an XOR operation 1s
performed on the bit vector and the updated bit vector to
determine how many bits changed, which allows the rewrite
engine to account for the bytes deleted and added.

FIG. 19 illustrates yet another method 1900 of the net-
work switch in accordance with some embodiments of the
present invention. At a step 1905, a packet is received at an
incoming port of the network switch.

At a step 1910, each protocol header of the packet 1s
generalized according to a generic format for the protocol

10

15

20

25

30

35

40

45

50

55

60

65

18

header. Missing fields from the protocol header of the packet
are detected. Based on the detection, the protocol header 1s
expanded to the generic format by including the missing
fields.

At a step 1915, a bit vector for each generalized protocol
header 1s maintained. The bit vector includes bits marked as
0 for invalid fields and bits marked as 1 for valid fields.

At a step 1920, at least one of the generalized protocol
header 1s modified, thereby updating the bit vector. The
modification uses at least one command from a set of generic
commands that 1s stored 1n a memory of the network switch
to modily the at least one generalized protocol header. The
modification of the at least one generalized protocol header
1s based on egress portlype of the outgoing port of the
network switch.

At a step 1925, the updated bit vector 1s collapsed by
shifting the updated bit vector to remove each bit marked as
0 1n the updated bit vector.

At a step 1930, a compact protocol header 1s formed based
on the collapsed bit vector. The packet with at least the
compact protocol header 1s transmitted via an outgoing port
of the network switch. In some embodiments, prior to the
packet being transmitted, a number of bytes added or deleted
for all operations performed 1s counted.

Pointer Structure

A pointer structure can be used to extract the different
protocol layers within an incoming packet for generalization
and to reconstruct the packet after modifications of the
protocol layers. The pointer structure includes N+1 layer
pointers and a total size of all headers of the packet.
Typically, the pointer structure 1s mitially updated with data
provided by the parser engine for use by the rewrite engine
to split the packet into individual layers and to thereafter
intelligently stitch them back together. After the packet 1s
split into 1ndividual layers, the rewrite engine generalizes
the protocol headers, modifies the generalized protocol
headers and compresses the generalized protocol headers by
removing all invalid bytes. The layer pointers are updated by
the rewrite engine after each layer 1s modified. These
updated layer pointers are used to stitch the different pro-
tocol layers back together prior to transmitting the packet
out of the network switch.

FIG. 20 illustrates and exemplary diagram 2000 of the
layer structure 1n accordance with some embodiments of the
present invention. Assume an mcoming packet includes the
following protocol layers: proprietary header, Ethernet,
IPv4, UDP, VXLAN and Ethernet. Also assume the parser
engine of the network switch 1s able to parse up to eight
layers while the rewrite engine 1s able to only modity first N,
such as N=4, protocol layers (because of either software
requirement and/or hardware capability). In some embodi-
ments, the parser engine provides data, such as the start
location of each protocol header of the packet, to the rewrite
engine.

Since the rewrite engine 1s able to modity the first four
protocol layers of the packet, the rewrite engine uses only
relevant data from the parser engine, namely data regarding
the first four protocol layers: propriety header, Ethernet,
IPv4 and UDP. Using this data, the pointer structure for the
packet 1s mitialized: a LayerPointerO that is set to 0, which
1s the starting location for proprietary header (1.e., layer 0)
within the packet, a LayerPointer] that 1s set to 16, which 1s
the starting location for the Ethernet header (1.e., layer 1)
within the packet, a LayerPointer2 that 1s set to 36, which 1s
the starting location for IPv4 header (1.e., layer 2) within the
packet, a LayerPointer3 that 1s set to 48, which 1s the starting
location for UDP header (i.e., layer 3) within the packet, and

US 11,799,989 B2

19

a LayerPointer4d that 1s set to 56, which 1s the starting
location for the remaining part of the headers that the rewrite
engine does not modily. In some embodiments, the rewrite
engine calculates the size of the headers and sets HeaderSize
(1.e., total size of all headers) to 223.

By using the layer pointers, the rewrite engine generalizes
the first four protocol layers (1.e., proprietary header, Eth-
ernet, IPv4, UDP), as discussed above, for modification.
After modification, the rewrite engine compresses the modi-
fied protocol headers by removing all the invalid bytes.
Typically, the layer pointers are updated after the protocol
headers are modified.

The layer pointers form an end pointer. The end pointer
together with the HeaderSize 1s associated with a body of the
headers, which 1s the portion of the header that 1s not
modified and 1s carried forward for subsequent stitching.
After all the modifications are performed and the modified
protocol headers are compressed, the modified layer pointers
are used to stitch the modified headers back together with the
body of the headers.

The rewrite engine can be limited to a number of layers
the rewrite engine can modily. In some embodiments, the
rewrite engine can also be limited to how much the rewrite
engine can expand any given protocol layer to. In such
embodiments, the rewrite engine extracts the size of a
protocol layer by subtracting two adjacent layer pointers. I
the layer size exceeds the hardware capability of the rewrite
engine, the rewrite engines simply uses the previous layer
pointer and forms the body intelligently.

Assume a protocol layer cannot be expanded more than
40 bytes but the biggest variation of the associated protocol
1s 64 bytes. In some embodiments, the rewrite engine
expands the header protocol to the maximum 40 bytes for
modification. After modification, using the layer pointers,
the rewrite engine 1s able to similarly stitch the remaining,
bytes to the modified bytes.

Use of layer pointers significantly reduces hardware logic
and complexity as 1t needs to deal with only one given
protocol layer. The scope of hardware commands 1s limited
to a given layer. Since the commands engine has no depen-
dency on the preceding layer or the layer following it, the
commands hardware can be used i1n a multi-pass fashion 1f
more commands are needed per layer. Put differently, since
the commands have no internal state associated with the
commands, multiple commands can be used in parallel.
Similarly, multiple layers can be modified in parallel.

FI1G. 21 1llustrates yet another method 2100 of the rewrite
engine 1n accordance with some embodiments of the present
invention. The rewrite engine 1s part of the network switch
and modifies packets before they are transmitted out of the
network switch. At a step 2105, a pointer structure for each
packet 1s maintained. The pointer structure includes layer
pointers and a total size of all headers of the packet. Each of
the layer pointers corresponds to a start position of an
associate layer 1n the packet.

The pointer structure includes N+1 layer pointers. The
rewrite engine modifies N layers of the packet. The layer
pointers form an end pointer. The end point with the total
s1ze 1ndicates a body of the headers. The body of the headers
1s a portion of the headers that 1s not modified by the rewrite
engine.

At a step 2110, the layers of the packet are split based on
the layer pointers for layer modifications. Missing fields
from a protocol header of the packet are detected. Based on
the detection, the protocol header 1s expanded to a generic
format for a corresponding protocol. The generic format
includes all possible fields of the protocol. Each of the fields

10

15

20

25

30

35

40

45

50

55

60

65

20

have the same oilset irrespective of which varniation of the
protocol the protocol header corresponds to. Each general-
1zed protocol header includes a bit vector with bits marked
as unavailable or O for invalid fields and bits marked as
available or 1 for valid fields. At least one command from a
set of generic commands 1s used to modily the generalized

protocol header. Typically, the bit vector 1s updated after the
modification.

At a step 2115, the layer pointers are updated based on the
layer modifications.

At a step 2120, the layers are stitched back together based
on the updated layer pointers.

FIG. 22 illustrates yet another method 2200 of the net-
work switch in accordance with some embodiments of the
present invention. At a step 2205, a packet 1s recerved at an
incoming port of the network switch.

At a step 2210, a pointer structure 1s used to separate
protocol layers of the packet. The pointer structure imncludes
N+1 layer pointers to N+1 locations of the packet and a total
size of all headers of the packet. The locations include
starting positions of the protocol layers. The pointer struc-
ture 1s 1nitialized based on parsed data of the packet.

At a step 2215, the separated protocol layers are gener-
alized for modification. For each layer, the size of the layer
1s extracted to determine whether the size exceeds hardware
capability for modifying the layer. The size i1s extracted by
subtracting two adjacent layer pointers in the pointer struc-
ture. Based on the determination, a first of the two adjacent
layer pointers 1s used and a body 1s formed.

At a step 2220, the pointer structure 1s updated based on
the modification.

At a step 2225, the updated pointer structure 1s used to
intelligently stitch the modified protocol layers back
together to form a new protocol header.

At a step 2230, the packet with the new protocol header
1s sent out via an outgoing port of the network switch.

One of ordinary skill in the art will realize other uses and
advantages also exist. While the invention has been
described with reference to numerous specific details, one of
ordinary skill in the art will recognize that the invention can
be embodied in other specific forms without departing from
the spirit of the mnvention. Thus, one of ordinary skill in the
art will understand that the invention 1s not to be limited by
the foregoing illustrative details, but rather 1s to be defined
by the appended claims.

We claim:

1. A method of a network switch, the method comprising:

maintaining a bit vector for a generalized protocol header

layer of a packet, wherein the bit vector includes bits
marked as a first value for mvalid fields of the gener-
alized protocol header layer and bits marked as a
second value for valid fields of the generalized protocol
header layer; and

updating the bit vector based on modification of the

generalized protocol header layer forming an updated
bit vector;

collapsing the updated bit vector by removing each bit

marked as the first value 1n the updated bit vector.

2. The method of claim 1, wherein the generalized pro-
tocol header layer 1s a protocol header of a packet expanded
to a generic format.

3. A method of a network switch, the method comprising:

maintaining a bit vector for a generalized protocol header

layer of a packet, wherein the bit vector includes bits
marked as a first value for mvalid fields of the gener-

US 11,799,989 B2

21

alized protocol header layer and bits marked as a
second value for valid fields of the generalized protocol
header layer; and

updating the bit vector based on modification of the

generalized protocol header layer forming an updated
bit vector:;

collapsing the updated bit vector by removing each bit

marked as the first value 1n the updated bit vector,
wherein the generalized protocol header layer 1s
divided into a plurality of equal size subsections and
the bit vector includes a bit per subsection for each
subsection of the generalized protocol header layer.

4. The method of claim 1, wherein the modification uses
at least one command from a set of generic commands that
1s stored 1n a memory of the network switch to modify the
at least one generalized protocol header layer.

5. The method of claim 4, wherein the set of generic
commands include a Delete command, a Copy command
and a Move command.

6. The method of claim 5, further comprising, prior to
using the updated bit vector, comparing the bit vector and
the updated bit vector to determine how many bits changed.

7. The method of claim 6, further comprising modifying
the packet based on the updated bit vector and outputting the
packet from the network switch via an outgoing port of the
network switch.

8. The method of claim 7, wherein the modification of the
at least one generalized protocol header layer 1s based on
egress portlype of the outgoing port of the network switch.

9. The method of claim 8, further comprising forming a
new header for the packet based on the collapsed updated bit
vector.

10. A network switch comprising:

an 1put port for recerving a packet;

an output port for outputting the packet after the packet 1s

processed; and

a rewrite engine that:

maintains a bit vector for a generalized protocol header

layer of the packet, wherein the bit vector includes bits
marked as a first value for imnvalid fields of the gener-
alized protocol header layer and bits marked as a
second value for valid fields of the generalized protocol
header layer;

updates the bit vector based on modification of the

generalized protocol header layer forming an updated
bit vector; and

collapses the updated bit vector by removing each bit

marked as the first value 1n the updated bit vector.

11. The network switch of claim 10, wherein the gener-
alized protocol header layer 1s a protocol header of a packet
expanded to a generic format.

12. A network switch comprising:

an 1mput port for recerving a packet;

an output port for outputting the packet after the packet 1s

processed; and

a rewrite engine that:

maintains a bit vector for a generalized protocol header

layer of the packet, wherein the bit vector includes bits
marked as a first value for mvalid fields of the gener-
alized protocol header layer and bits marked as a
second value for valid fields of the generalized protocol
header layer;

updates the bit vector based on modification of the

generalized protocol header layer forming an updated
bit vector; and

collapses the updated bit vector by removing each bit

marked as the first value 1n the updated bit vector,

5

10

15

20

25

30

35

40

45

50

55

60

65

22

wherein the generalized protocol header layer 1is
divided into a plurality of equal size subsections and
the bit vector includes a bit per subsection for each

subsection of the generalized protocol header layer.

13. The network switch of claim 10, wherein the modi-
fication uses at least one command from a set of generic
commands that 1s stored 1n a memory of the network switch
to modily the at least one generalized protocol header layer.

14. The network switch of claim 13, wherein the set of
generic commands 1nclude a Delete command, a Copy
command and a Move command.

15. The network switch of claim 14, wherein the rewrite
engine, prior to using the updated bit vector, compares the
bit vector and the updated bit vector to determine how many
bits changed.

16. The network switch of claim 15, wherein the rewrite
engine modifies the packet based on the updated bit vector
and outputs the packet from the network switch via the
outgoing port of the network switch.

17. The network switch of claim 16, wherein the modi-
fication of the at least one generalized protocol header layer
1s based on egress portlype of the outgoing port of the
network switch.

18. The network switch of claim 17, wherein the rewrite
engine forms a new header for the packet based on the
collapsed updated bit vector.

19. A non-transitory computer readable medium storing a
rewrite engine for inputting, processing and outputting a
packet, wherein the rewrite engine:

maintains a bit vector for a generalized protocol header

layer of the packet, wherein the bit vector includes bits
marked as a first value for mvalid fields of the gener-
alized protocol header layer and bits marked as a
second value for valid fields of the generalized protocol
header layer;

updates the bit vector based on modification of the

generalized protocol header layer forming an updated
bit vector; and

collapses the updated bit vector by removing each bit

marked as the first value in the updated bit vector.

20. The medium of claam 19, wherein the generalized
protocol header layer 1s a protocol header of a packet
expanded to a generic format.

21. A non-transitory computer readable medium storing a
rewrite engine for mputting, processing and outputting a
packet, wherein the rewrite engine:

maintains a bit vector for a generalized protocol header

layer of the packet, wherein the bit vector includes bits
marked as a first value for mvalid fields of the gener-
alized protocol header layer and bits marked as a
second value for valid fields of the generalized protocol
header layer;

updates the bit vector based on modification of the

generalized protocol header layer forming an updated
bit vector; and

collapses the updated bit vector by removing each bit

marked as the first value i1n the updated bit vector,
wherein the generalized protocol header layer 1s
divided into a plurality of equal size subsections and
the bit vector includes a bit per subsection for each
subsection of the generalized protocol header layer.

22. The medium of claim 19, wherein the modification
uses at least one command from a set of generic commands
that 1s stored on the non-transitory computer readable
medium to modily the at least one generalized protocol
header layer.

US 11,799,989 B2
23

23. The medium of claim 22, wherein the set of generic
commands include a Delete command, a Copy command
and a Move command.

24. The medium of claim 23, wherein the rewrite engine,
prior to using the updated bit vector, compares the bit vector 53
and the updated bit vector to determine how many bits
changed.

25. The medium of claim 24, wherein the rewrite engine
modifies the packet based on the updated bit vector and
outputs the packet via the outgoing port of a network switch. 10

26. The medium of claim 25, wherein the modification of
the at least one generalized protocol header layer 1s based on
egress portlype of the outgoing port of the network switch.

27. The medium of claim 26, wherein the rewrite engine
forms a new header for the packet based on the collapsed 15
updated bit vector.

24

	Front Page
	Drawings
	Specification
	Claims

