US011797520B2

12 United States Patent

Fender et al.

US 11,797,520 B2
Oct. 24, 2023

(10) Patent No.:
45) Date of Patent:

(54) ROWID ELIMINATION REWRITE (56) References Cited

U.S. PATENT DOCUMENTS

(71) Applicant: Oracle International Corporation,
Redwood Shores, CA (US) 5,897,632 A 4/1999 Dar et al.
5,901,754 A 11/1999 Raitto et al.
(72) Inventors: Pit Fender, Union City, CA (US); 6,339,769 Bl 1/2002 Cochrane et al.
Benjamin Schlegel Merced. CA (US) 6,370,524 B1* 4/2002 Witkowski GO6F 16/24535
. j j j 6,449,605 Bl 9/2002 Witkowski
Nipun Agarwal, Saratoga, CA (US) 6,449,606 B1* 9/2002 Witkowski GOGF 16/24537
6,477,536 B1 11/2002 Pasumansky et al.
(73) Assignee: Oracle International Corporation, 6,496,819 B1* 12/2002 Bello GOO6F 16/24539
Redwood Shores, CA (US) 6,643,636 B1* 11/2003 AU ..ccoovvrorrrrne... GOGF 16/24545
j 6,775,662 Bl 8/2004 Witkowski et al.
7,546,226 Bl 6/2009 Yeh et al.
(*) Notice: Subject to any disclaimer, the term of this 8,359,325 Bl 1/2013 Gui et al.
patent 18 extended or adjus‘[ed under 35 8,521,723 B1* &/2013 Ahmed GO6F 16/24534
U.S.C. 154(b) by 104 days. | 707/802
9,146,955 B2 9/2015 Nos et al.
9,519,701 B2 12/2016 Amule et al.
(21) Appl. No.: 16/699,524 9,619,581 B2 4/2017 Hughes et al.
10,067,954 B2 9/2018 Kociubes et al.
(Continued)
(65) Prior Publication Data FOREIGN PATENT DOCUMENTS
US 2021/0165778 Al Jun. 3, 2021
WO WO0-9521407 A2 * 8/1995 ... GO6F 17/30445
51) Int. CIL.
b (;106F 700 (2006.01) OTHER PUBLICATIONS
GO6F 16/23 (2019'();“) Boncz et al.,, “TPC-H Analyzed: Hidden Messages and Lessons
GO6F 16/22 (2019-O:~) Learned from an Inuential Benchmar”, dated 2013, 16 pages.
5 I(j’OS6FCi 6/2453 (2019.01) (Continued)
CPC ... GO6F 16/2379 (2019.01); GO6F 16/2282 Lrimary Examiner —Md 1 Uddin -
(2019.01); GO6F 16/24534 (2019.01)](37.4) Attormey, 2gent, or Firm — Hickman Becker
ingham Ledesma
(58) Field of Classification Search -

(57) ABSTRACT
Techniques described herein propose a ROWID Elimination

CPC GO6F 16/24549; GO6F 16/23779; GO6F
16/2282; GO6F 16/24534; GO6F

16/24535; GOO6F 16/24537;, GO6F

16/24539; GO6F 16/2454; GO6F 16/24;
GO6F 16/2452

USPC 707/713, 999.001, 999.003, 999.004
See application file for complete search history.

Rewrite that uses functional dependencies to substitute
and/or eliminate ROWID pseudo-columns referenced 1n a
query 1n order to reduce memory pressure and speed up
processing.

22 Claims, 7 Drawing Sheets

< D_Select_Statemant >

1

< 1_Count-Stopkey >

< 3_Sort-Order-By-Stopkey >

1

< 4_Hash-Group-By >

l

B_View-VM_NMVW_2>

j_Hagh-Joln

<~ T6_Table-Access-Full-Linelfem

0_Hash-Jain

< 15_Table-Access-Full-Orders” >

<__'14_Table-Accass-Full-Linetem >

K.

<12 _Table-Accass-Full-Nation > <713 _Table-Access-Full-Supplisr >

US 11,797,520 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2001/0013030 Al 8/2001 Colby et al.
2004/0122814 Al 6/2004 Zhang et al.
2011/0131199 Al 6/2011 Simon et al.
2011/0153593 Al 6/2011 Zhou et al.
2013/0238637 Al 9/2013 Gupte et al.
2014/0244690 Al 8/2014 Vundavalli
2018/0182049 Al 6/2018 Oberle
2018/0341677 Al 11/2018 Fan et al.
2019/0251194 Al 8/2019 Fender
2021/0224257 Al 7/2021 Fender
2022/0092069 Al 3/2022 Hartsing et al.

OTHER PUBLICATIONS

Rittmanmead, “Metadata Modeling in the Database with Analytic
Views”, Oracle Database, analytic views, metadata, obiee, DVD,

database, analytic view, self-service reporting, Apr. 3, 2017, 15
pages.

Oracle® Database, “Database In-Memory Guide”, 12¢ Release 2
(12.2), dated Jan. 2019, 227 pages.

Oracle® Database, “Database Data Warehousing Guide”, 12¢ Release
2 (12.2), dated Jan. 2018, 699 pages.

Oracle, “Oracle Database In-memory: In-Memory Aggregation”,
Oracle White Paper, Jan. 2016, 13 pages.

Live SQL, “Creating Analytic Views—Getting Started”, dated Jan.
4, 2017, 22 pages.

Fu et al.,, “CubiST: A New Algornithm for Improving the Perfor-
mance of Ad-hoc OLAP Queries”, dated 2000, 8 pages.

TPC Benchmark H Standard Specification Revision 2.17.1, dated
Jun. 2013, located on webpage http://tpc.org/tpch/spec/tpch 2.17.1.
pdf.

Eich et al, “Faster Plan Generation through Consideration of Func-
tional Dependencies and Keys”, PVLDB, vol. 9, dated 2016, 12

pages.

Bellamkonda et al., “Enhanced Subquery Optimizations 1n Oracle”,
PVLDB, 2(2):13661377, dated 2009, 12 pages.

Shane Grimes, “SQL Order by with aggregation”, Sep. 8, 2015, 19
pages.

Daniel Hutmacher, “Blocking/non-blocking aggregate operators™,
Structured Concepts, Jun. 15, 2014, 6 pages.

Hartsing, U.S. Appl. No. 17/027,238, filed Sep. 21, 2020, Notice of
Allowance and Fees Due, dated Jun. 6, 2022.

Hartsing, U.S. Appl. No. 17/027,238, filed Sep. 21, 2020, Final
Rejection, dated Apr. 27, 2022,

Fender, U.S. Appl. No. 16/744,635, filed Jan. 16, 2020, Notice of
Allowance and Fees Due, dated Mar. 23, 2022.

* cited by examiner

U.S. Patent Oct. 24, 2023 Sheet 1 of 7 US 11,797,520 B2

0_Select_Statement
1_Count-Stopkey
3_Sort-Order-By-Stopkey
4 Hash-Group-By

C6_Fiter >
C Hestlol>
15_Table-Access-Full-Orders

A1_Hash-Join> 14_Table-Access-Full-Lineitem
12_Table-Access-Full-Nation 13_Table-Access-Full-Supplier

Fig. 1

U.S. Patent Oct. 24, 2023 Sheet 2 of 7 US 11,797,520 B2

0 Select Statement
1_Sort-Order-By

3_Hash-Unique

5_Hash-Group-By
6_Hash-Join
[Table-Access-Full-Part 8 Hash-Join

14 Table-Access-Full-Lineitem

10 Hash-Join 3_Table-Access-Full-Partsupp

11_Table-Access-Full-Nation 12_Table-Access-Full-Supplier
Fig. 2

U.S. Patent Oct. 24, 2023 Sheet 3 of 7 US 11,797,520 B2

0 Select Statement
1_Count-Stopkey
3_Sort-Order-By-Stopkey
5 Window-Sort
6 Hash-Join
[Table-Access-Full-Part 8 Hash-Join

10_Table-Access-Full-Nation 11_Nested-Loops
2_Table-Access-Full-Region 13_Table-Access-Full-Supplier

Fig. 3

4_Table-Access-Full-Partsupp

U.S. Patent Oct. 24, 2023 Sheet 4 of 7 US 11,797,520 B2

Part (P_) Partsupp(PS_) Lineltem(L_) Orders(0_)
SF*200,000 SF*800,000 SF*6,000,000 SF*1,500,000
Partkey Partkey " OrderKey OrderKey

Name Suppkey — Partkey Custkey
MFGR AvallQTY Suppkey OrderStatus
Supply Cost TotalPrice
OrderDate
Customer(C_) ExtendedPrice Order-Priority
SF*150,000
Retail Price Custkey ShioPrion
Name ReturnFlag
Supplier(s.) ineStatus

SF*10.000 NationKey ShipDate

Suppkey Phone | |CommitDate

Name Acctbat ReceiptDate
MKT Segment Shiplnstruct
NationKey ShipMode
Nation(N_)
Acctbat 25 Region(R_)
NationKey g
Regionkey
Regionkey Name

Fig. 4

U.S. Patent Oct. 24, 2023 Sheet 5 of 7 US 11,797,520 B2

502
Receiving a particular query to generate therefrom a rewritten query

504 508

Determining whether one or more Determining whether one or more
rewrite criteria are satisfied removal criteria are satisfied

206 510
Replacing a rowid pseudo-column with a -

substitute column that has a functional Removing a rowid pseudo-column
dependency with rows in the first table

512
Executing the rewritten query in an offload engine

Fig. 5

US 11,797,520 B2

¥29
LSOH
029 = H
> __ m 709 |
S e _ JOV4YILNI "
= YHOMLIN ANIT | 919
= MHOMLAN ¢ NOILYDINNWINOD d0553004d |
3 m m 391A3Ad TOHLNOD
72 ; “
i |
| |
- "
e " “
- I 1
d m 779
R i NILSASENS O/l | 391A3A LNdNI
&
S m m
| |
i |
| |
| |
- “
~ I | l
> [o 20 309 m —
= 8 — m m 719
a 0€9 i “ 391A3d LNdLNO
_ IOVHOLS NOY AHOWIN !
. NEIWELR ! !
/2 . 2
-

(009 WALSAS HILNAWOD “b8) IHYMANVYH IMVY

0¢. /

US 11,797,520 B2

1 1
: i
“ i
e) MOLNOW IO A
01/
GL.
— (IND) 30V4Y3LNI
= H3SN TVOIHAYYO |
™~
.m (3N HO ‘TIOHANY ‘SOl ‘SO OYW XNNIT XINN ‘SMOANIM “b8)
s NJLSAS ONILYHIO
Ve
ol
g
&
3 0L < N AYHO0¥d g ¢ NYHO0Hd ¢ NVHO04d | NWHO0Nd |
o NOILYOITddY NOILYOI1ddV NOILYOI1ddV NOILYOIddY |
-

NCO. 9¢0. dci. Vc0.

00L

U.S. Patent

L

‘bI

US 11,797,520 B2

1
ROWID ELIMINATION REWRITE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s related to U.S. patent application Ser.

No. 16/516,898, entitled “Driving Massive Scale Out
through Rewrites of Analytical Functions,” wherein the

entire contents of which are hereby incorporated by refer-
ence as 1f fully set forth herein.

FIELD OF THE INVENTION

The present disclosure relates to the field of database
systems, and 1n particular to rewrite techmiques. For
instance, the disclosed rewrite technmiques eliminate pseudo-
columns referenced 1n a query.

BACKGROUND

The approaches described 1n this section are approaches
that could be pursued, but not necessarily approaches that
have been previously conceirved or pursued. Therefore,
unless otherwise indicated, 1t should not be assumed that any
of the approaches described in this section quality as prior
art merely by virtue of their inclusion 1n this section.

Modern RDBMS like the Oracle RDBMS employ query
rewrite techniques to yield better Query Execution Plans
(QEP). A family of import rewrite techniques ivolves the
area ol query unnesting, because evaluation of subqueries
can be very expensive and a QEP with an unnested subquery
can be executed order of magnitudes faster. The optimizer of
the ORACLE RDBMS uses rewrite techniques that employ
the usage of ROWIDs. That 1s, ROWIDs are not referenced
in the original query but are introduced, through the query
rewrite, 1n the rewritten query.

TPC 1s a non-profit corporation founded to define trans-
action processing and database benchmarks and has devel-
oped and published specifications including decision sup-
port benchmarks, such as TPC-H. There are three (3) out of
23 TPC-H Benchmark queries where modern optimizers,
like the one of the Oracle RDBMS, introduce ROWID
pseudo-columns for purpose of query unnesting.

The introduction of ROWIDs 1s problematic for some
offload engines for numerous reasons. First, ROWID 1s of a
relatively large data type (10 Bytes) that increases memory
pressure during processing. Further, ROWID processing
may not be supported well, if at all, by special hardware that
provides hardware acceleration for data movement and
partitioning operations.

Described herein are support ROWID based rewrite or
transformation techniques that can be offloaded to DBMSs
that do not support ROWIDs.

BRIEF DESCRIPTION OF THE DRAWINGS

The example embodiment(s) of the present invention are
illustrated by way of example, and not 1n way by limitation,
in the figures of the accompanying drawings and in which
like reference numerals refer to similar elements and 1n
which:

FIG. 1 illustrates a query execution plan of rewritten
TPC-H Q21.

FIG. 2 illustrates a query execution plan of rewritten
TPC-H Q20.

FIG. 3 illustrates a query execution plan of rewritten
TPC-H Q2.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 4 1llustrates an overview of a relational schema of
the TPC-H Benchmark tables.

FIG. 35 illustrates a block diagram depicting a ROWID

Elimination Rewrite technique according to an embodiment.
FIG. 6 illustrates a block diagram of a computing device
in which the example embodiment(s) of the present inven-
tion may be embodiment.
FIG. 7 illustrates a block diagram of a basic software
system for controlling the operation of a computing device.

DETAILED DESCRIPTION

In the following description, for the purposes of expla-
nation, numerous specific details are set forth 1 order to
provide a thorough understanding of the present invention.
It will be apparent, however, that the present invention may
be practiced without these specific details. In other
istances, well-known structures and devices are shown 1n
block diagram form 1n order to avoid unnecessarily obscur-
ing the present ivention.

General Overview

Modern query optimizers, like the optimizer of Oracle
RDBMS, rewrite queries with nested subqueries to speed up
processing by order of magnitudes. A rewritten query may
introduce ROWIDs from tables to prevent the output of
duplicates. However, 1n the context of offload engines, the
processing of those type of queries 1s often not possible. In
fact, often the offload of the whole query 1s not possible,
because tables are often not loaded together with the ROW-
IDs. A ROWID 1s a pseudo column that uniquely i1dentifies
a row 1n a database. It indicates the storage location of the
row within a database. For example, a ROWID of a row may
include data block address of a data block that stores the row
and ordinal position of the row among the rows in the data
block. A pseudo column 1s column that may be referenced in
a database statement and treated by a DBMS as a defined
column even though the pseudo column 1s not defined for the
table by the database dictionary of the database. The DBMS
generates a column value to return for the column as part of
executing the database statement.

For example, when executing a database statement, the
DBMS returns a row from a data block. The DBMS gener-
ates a ROWID derived, at least 1n part, from the data block
address of the data block the ordinal position of the row 1n
the data block.

In an embodiment, a RDBMS ROWID includes the
following elements: a data object number of an object, a
datafile 1n which a row resides, a data block in the datafile
in which the row resides, and a position of the row in the
data block. However, since loaded data in an offload engine
have a different data layout, ROWIDs in the offload engine
will be different from ROWIDs 1in the RDBMS. Therefore,
the RDBMS ROWIDs will not be available unless they were
specifically materialized during loading.

However, even assuming the RDBMS ROWIDs are avail-
able, the offload engine may not be able to process them
ciiciently. A RDBMS ROWID 1s a 64-base String occupy-
ing 10 Bytes and, as such, using RDBMS ROWIDS during
processing increases memory pressure. Further, the data
type may not be supported well, 1f at all, by special hardware
that provides hardware acceleration for data movement and
partitioning operations.

Accordingly, rewritten queries that specily RDBMS
ROWIDs are in most scenarios not be {feasible to be
executed 1n an offload engine or, 1f feasible, are often not

US 11,797,520 B2

3

supported by special hardware that provides hardware accel-
eration for data movement and partitioning operations.

A ROWID Elimination Rewrte technique described
herein substitutes ROWIDs with other columns of the same
table. In some scenarios, the ROWID Elimination Rewrite
technique 1s able to remove ROWIDs altogether. ROWID
Elimination Rewrite techmque reduces the memory pressure
and enable queries to be executed 1n an oflload engine.

For the TPC-H Benchmark, the ROWID Elimination

Rewrite technique 1s applicable for three (3) queries out of
23.

Query Optimization Overview

In query optimization, a query rewrite technique may
rewrite a representation of a query from one form to another
form as long as the two forms are semantically equivalent to
cach other. The representation of the query may be the query
expression or code itsell or may be an internally and/or
externally recognized representation of the query, such as a
query execution tree or other data structure. It the represen-
tation does not include the query expression itself, the
representation may include data that describes processes that
may be performed to execute the query, such as a query
execution plan (QEP). A QEP 1s a set of directives and
metadata that 1s prepared for an execution engine.

As used herein, a query representation 1s “rewritten” when
the representation represents a rewritten version of the
query, after the query has been rewritten from a first version
to a second version. A {irst version may be an original query
or may be another version rewritten from the original query.
Two query representations are semantically equivalent to
cach other when the two query representations, i executed,
would produce equivalent result sets, even 11 the result sets
are assembled 1n different manners by the two query repre-
sentations.

Expression Tree

An expression tree 1s a tree having a height of a least one,
where every node in the tree can be one of the following

types:

SELECT
FROM

10

15

20

25

30

35

40

4

input columns: Input columns can either be base columns
(e.g., 1f the expression tree 1s part of a table scan, or can
point to columns that are attributes of intermediate
relations. Input column nodes must be leal nodes 1n an
expression tree or root nodes, if there 1s just one node
in the expression tree.

operands: This node type 1s also known as expression-
node. Expression-nodes can represent arithmetic oper-
ands or comparison operands. Expression-nodes are
cither root nodes or inner nodes 1n the expression tree.

constants: This node type 1s also known as constant-node.
Constant-nodes must be leal nodes 1 an expression
tree or root nodes, 1f there 1s just one node in the
expression tree.

Each element of a projection list of an operator 1s an
expression tree. A predicate 1s also an expression tree. An

ORDER BY or GROUP BY column 1s also an expression
tree.

Unnested Query Rewrites of TPC-H Query 21,
Query 20 and Query 2

The three (3) TPC-H queries where modern optimizers

like the Oracle Optimizer applies rewrites, for purpose of
query unnesting, that result in the usage of ROWIDs are

TPC-H query 2 (also herein referred to as Q2), TPC-H query
20 (also herein referred to as Q20), and TPC-H query 21
(also herein referred to as (Q21). The Oracle Optimizer
employs query unnesting for these TPC-H queries in the
form of two rewrites applied 1n sequence: a Subquery
Coalescing Rewrite and a View Merging Rewrite. The
representation of each unnested query and the representation
of 1ts corresponding original query are semantically equiva-
lent as they both produce equivalent result sets. Fach of
these three (3) TPC-H queries 1s discussed below.

Table 1 shows the original TPC-H Q21. Table 2 shows the
unnested rewritten TPC-H Q21, after the Subquery Coalesc-
ing Rewrite and the View Merging Rewrite are applied. The
queries shown in Tables 1 and 2 are semantically equivalent.
As shown 1n Table 2, the unnested rewritten TPC-H Q21
introduces ROWIDs. FIG. 1 illustrates a QEP of rewritten
TPC-H Q21.

TABLE 1

Original TPC-H Q21

*Q21%/

(SELECT SNAME,

Count (*) AS numwait

FROM SUPPLIER,
LINEITEM L1,
ORDERS,
NATION

WHERE S SUPPKEY = L1.L._SUPPKEY

AND O_ORDERKEY = L1.L._ORDERKEY
AND O_ORDERSTATUS = °F°
AND L1.L_RECEIPTDATE > L1.L._ COMMITDATE
AND EXISTS (SELECT *
FROM LINEITEM 1.2
WHERE L2.I.._ORDERKEY = L1.._ORDERKEY
AND L2.I._SUPPKEY <>
L1.L._SUPPKEY)
AND NOT EXISTS (SELECT *
FROM LINEITEM L.3

WHERE

L3.L._ ORDERKEY = L1.L._ORDERKEY

AND L3.LL SUPPKEY <>
L1.L._SUPPKEY

AND L3. 1. RECEIPTDATE >
L3.L_COMMITDATE)

S

US 11,797,520 B2

TABLE 1-continued

Origimal TPC-H Q21

AND S_NATIONKEY = N_NATIONKEY
AND N_NAME = ‘SAUDIA_ARABIA’

GROUP BY S NAME
ORDER BY NUMWAIT DESC,
S NAME)

WHERE ROWNUM <= 100;

SELECT

TABLE 2

Unnested rewritten TPC-H Q21

“FROMS$_SUBQUERYS$_001".*NUMWAIT” “NUMWAIT”
FROM (SELECT “VM_NWVW_2"*“§VM_COL_1” “S_NAME”,

Count (*) “NUMWAIT”

FROM (SELECT “SUPPLIER”.“S_NAME” “§VM_COL_1"

FROM “TPCH”.“LINEITEM™ *1.37,

“TPCH”."SUPPLIER” “SUPPLIER”,

“TPCH”.“LINEITEM™ .17,

“TPCH”."ORDERS” “ORDERS”,
“TPCH”.*NATION” “*NATION”
WHERE “SUPPLIER”."S_SUPPKEY” = “L17."L_SUPPKEY”
AND “ORDERS".“O_ORDERKEY” = “L17."L._ORDERKEY™
AND “ORDERS”.“O_ORDERSTATUS” = *F’
AND “L17.°L_RECEIPTDATE” > *L17.%L_ COMMITDATE”

AND O <1

AND “SUPPLIER”.”S_NATIONKEY™ =
“"NATTON”."N_NATITONKEY™

AND “NATION”.*N_NAME”
‘SAUDI_ARABIA

/*Q21%*/ “FROMS$_SUBQUERYS$_0017.“S_NAME” “S_NAME",

AND “L37.°L_ORDERKEY” = “L17."L._ORDERKEY™
AND “L37.°L_SUPPKEY” <> “L17."L_SUPPKEY™

GROUP BY “L17.ROWID,
“NATION”.ROWID,
“ORDERS”.ROWID,
“SUPPLIER”.ROWID,
“SUPPLIER”."S_NAME’

HAVING SUM (CASE

)

WHEN “L37."L_RECEIPTDATE” >
“L37.5L_COMMITDATE”

THEN 1
ELSE 0O

END) = 0) “VM_NWVW_2”

GROUP BY “VM_NWVW_2”*“§VM_COL_1
ORDER BY COUNT(*) DESC,

el

“VM_NWVW_2"“§VM_COL_1")
“FROMS$_SUBQUERY$ 001~
WHERE ROWNUM <= 100;

It can be observed, from Table 2, that the ROWIDs are
only used by a grouping operator (operator 4 depicted 1n

FIG. 1). Specifically, as grouping columns, only the ROW-

IDs from all base tables that went into a hash join operator
(operator 9 depicted 1in FIG. 1) were added. The ROWIDs

from the second LLIN]
added as that would have renc

tion

useless, because the aggregation

HITEM table referenced as 1.3 were not
ered the GROUP BY opera-

columns are

L.3.L_RECEIPTDATE and L3.L_COMMITDATE.

Table 3 shows the original TPC-H Q20. Table 4 shows the
unnested rewrntten TPC-H Q20, after the Subquery Coalesc-
ing Rewrite and the View Merging Rewrite are applied. The

queries shown 1n Tables 3 and 4 are semantically equivalent.
As shown 1n Table 4, the unnested rewritten TPC-H Q20

1Ntrod

uces ROWIDs. FIG. 2 1llustrates a Q.

HP of rewritten

1TPC-.

1 Q20.

50

55

60

65

TABLE 3

Original TPC-H Q20

SELECT /*Q20% S_NAME,
S_ADDRESS
FROM SUPPLIER,
NATION

WHERE S_SUPPKEY IN (
SELECT PS_SUPPKEY
FROM PARTSUPP
WHERE PS_PARTKEY IN (SELECT P_PARTKEY
FROM PART
WHERE P_ NAME LIKE ‘forest%’)
AND PS_AVAILQTY > (
SELECT 0.5 * SUM (L_QUANTITY)
FROM LINEITEM
WHERE I._ PARTKEY
= PS_PARTKEY
AND L_SUPPKEY =

US 11,797,520 B2

7

TABLE 3-continued

Original TPC-H Q20

PS_SUPPKEY
AND L_SHIPDATE >=
DATE *1994-01-01"
AND L_SHIPDATE <
DATE *1994-01-01" +
INTERVAL ‘1 YEAR))
AND S_NATIONKEY = N_NATIONKEY
AND N_NAME = *CANADA’
ORDER BY S_NAME

TABLE 4

Unnested rewritten TPC-H Q20

SELECT Q0% “VM_NWVW_3"*§VM_COL_3” “S_NAME",

“VM_NWVW_3”“§VM_COL_2” “S_ADDRESS”

FROM
“SUPPLIER”.ROWID “"ROWID”,
“NATTON”.ROWID “"ROWID”,

10

(SELECT DISTINCT “SUPPLIER”.“S_NAME” “$VM_COL_3",

“PARTSUPP”.“PS_SUPPKEY” “$VM_COL_1",
“SUPPLIER”.“S_ADDRESS” “$§VM_COL_2”

FROM “TPCH”.“LINEITEM” “LINEITEM™,
“TPCH”."“PART™ “PARI™,
“TPCH”."PARTSUPP” “PARTSUPP”,
“TPCH”.*SUPPLIER” *SUPPLIER™,
“TPCH”."NATION” *NATION”
“SUPPLIER”."S_SUPPKEY” =
AND “SUPPLIER”."S_NATIONKEY” =
“NATION”.*N_NATIONKEY™

AND “NATION” *N_NAME” = *CANADA’
AND “LINEITEM™.*L._PARTKEY” =
“PARTSUPP”."PS_PARTKEY”

AND “LINEITEM™.*L_SUPPKEY” =
“PARTSUPP”."PS_SUPPKEY”

AND “PARTSUPP”.*“PS_PARTKEY” =
“PART”.“P_PARTKEY™

AND “PART”.“P_NAME” LIKE ‘forest%’

AND “LINEITEM™.“L_SHIPDATE” >=

WHERE

To date (*1994-01-01_00:00:00°, ‘syyyy-mim-

dd_hh24:mi:ss’)
AND “LINEITEM”.“L_SHIPDATE” <

To date(*1995-01-01._00:00:00°, ‘syyyy-mm-

dd_hh24:mi:ss’)

AND To date(*1995-01-01_.00:00:00", syyyy-mm-

dd_hh24:mi:ss’)

To date(*1994-01-01._00:00:00°, ‘syyyy-mm-

dd_hh24:mi:ss’)

BY “SUPPLIER”.*S_NAME”,
“LINEITEM™.*L._SUPPKEY",
“PARTSUPP”.ROWID,
“PART”.ROWID,
“PARTSUPP”.*“PS_AVAILQTY”,
“PARTSUPP”.“PS_SUPPKEY™,
“NATION”.ROWID,
“SUPPLIER”.ROWID,
“LINEITEM™.*L._PARTKEY”,
“SUPPLIER”.“S_ADDRESS”

HAVING “PARTSUPP”.“PS_AVAILQTY” >

GROUP

“PARTSUPP”.*PS_SUPPKEY”

0.5 * SUM(LINEITEM”.“L_QUANTITY”)) “VM_NWVW_3”

ORDER BY “VM_NWVW_3"“§VM_COL_3"

It can be observed, from Table 4, that the ROWIDs are
troduced as part of a grouping operator (operator 3

depicted in FIG. 2). Here, additionally to the grouping
columns, ROWIDs are used as projection columns (SE-
LECT clause) in form ol a unique operator (operator 3
depicted in FIG. 2). It can also be observed that for the
grouping columns, the ROWIDs from all base table, except
for the LINEITEM table, are selected, because LINEIT-
EM.L_QUANTITY 1s used as an aggregation column.

60

With the notion of an expression tree, 1t can be observed 65

that the ROWIDs introduced through query unnesting
rewrites for both TPC-H Q21 and TPC-H Q20 are always

the root of an expression tree, where the height of the tree
1s one. In other words, the ROWIDs introduced through

unnesting rewrites do not occur 1n expressions with more
than one element.

Table 5 shows the original TPC-H Q2. Table 6 shows the
unnested rewritten TPC-H Q2, after the Subquery Coalesc-
ing Rewrite and the View Merging Rewrite are applied. The

queries shown 1n Tables 5 and 6 are semantically equivalent.

As shown 1n Table 6, the unnested rewritten TPC-H Q2
introduces ROWIDs. FIG. 3 illustrates a QEP of rewritten
TPC-H Q2.

9

TABL

US 11,797,520 B2

(Ll

D

Original TPC-H Q2

SELECT /*Q2%/

FROM (SELECT S _ACCTBAL,
S NAME,
N_NAME,
P PARTKEY.
P MFGR ,
S_ADDRESS,
S_PHONE,
S_COMMENT

FROM PART,

SUPPLIER,
PARTSUPP,
NATION,
REGION

WHERE P_PARTKEY = PS_PARTKEY
AND S_SUPPKEY = PS_SUPPKEY

AND P_SIZE =

15

AND P_TYPE LIKE *%BRASS’
AND S_NATIONKEY = N_NATIONKEY
AND N_REGIONKEY = R_REGIONKEY

AND R_NAME

= ‘EUROPE’

AND PS_SUPPLYCOST = (SELECT Min (PS_SUPPLYCOST)
FROM PARTSUPP,

SUPPLIER.,
NATION,
REGION

WHERE

P_PARTKEY =
PS_PARTKEY

AND S_SUPP =
Ps_SUPPKEY

AND S_NATIONKEY =
N_NATIONALKEY

AND N_REGIONKEY =
R_REGIONKEY

AND R_NAME = "EUROPE’

ORDER BY S_ACCTBAL DESC,

N_NAME,
S NAME,

P_PARTKEY)

WHERE ROWNUM <= 100;

TABLE 6

Unnested rewritten TPC-H Q2

SELECT /*Q2*/ “FROMS$_SUBQUERYS$_0017.S_ACCTBAL” “S ACCTBAL”,

“FROM$_SUBQUERYS$_001
“FROM$_SUBQUERY$_001
“FROMS$_SUBQUERY$_001
“FROM$_SUBQUERYS$_001
“FROMS$_SUBQUERY$_001
“FROM$_SUBQUERYS$_001

“FROMS$_SUBQUERY$_00

TUS-NAME” *S_NAME™,
TON_NAME” *N_NAME™,

7P _PARTKEY™ “P_PARTKEY™,
7P MEGR” *P_MFEPGR”,
TES_ADDRESS” *S_ADDRESS”,
7S _PHONE” s _PHONE”,
17.5°S_COMMENT” *s_COMMENT”

FROM (SELECT "VW_WIF_175ITEM_17 *“5_ACCTBAL”,
“VW_WIF_175ITEM_27 *S5_NAME”,
“VW_WIF_17."ITEM_3" "N_NAME”,
“VW_WILF_17."TTEM_47 “P_PARTKEY™,
“VW_WIF_175ITEM_5" “P_MFGR™,
"VW_WIF_17."ITEM_6" *S_ADDRESS™,
“VW_WIF_17ITEM_77 *S_PHONE”,
“VW_WIF_17ITEM_8” *Ss_COMMENT™

FROM (SELECT “SUPPL

CR7LS_ACCTBALY “ITEM_17,

“SUPPL

CR7US_NAME™ “ITEM_27,

“"NATION”*N_NAME” “ITEM_37,
“PART”."P_PARTKEY™ “ITEM_4",
“PART”."P_MFGR” “ITEM_57,

“SUPPL

CR7.US_ADDRESS” “ITEM_67,

“SUPPL

SR7.US_PHONE” “ITEM_77,

“SUPPL

RS COMMENT™ “ITEM_8”,

CASE "PARTSUPP”."PS_SUPPLYCONT”
WHEN Min(“PARTSUPP”.“PS_SUPPLYCOST”)

OVER (
PARTITION BY
“PARTSUPP”.“PS_PARTKEY”) THEN

10

US 11,797,520 B2

11
TABLE 6-continued

Unnested rewritten TPC-H Q2

“PARTSUPP”.ROWID
END “VW_COL_9”
“TPCH”."REGION” “REGION™,
“TPCH”.*NATION" “*NATION",
“TPCH”.“PARTSUPP” “PARTSUPP”,
“TPCH”.*SUPPLIER” “SUPPLIER™,
“TPCH”."PART” “PART”
“REGION”."R_NAME” = ‘EUROPE’
AND “NATION”."N_REGIONKEY" =
“REGION”."R_REGIONKEY”
AND “SUPPLIER”.S _NATIONKEY” =
“NATION”."N_NATIONKEY”
AND “PART”."P_TYPE” LIKE "%0BRASS’
AND “PART™.“P_SIZE” = 15
AND “SUPPLIER”."S_SUPPKEY” =
“PARTSUPP”."PS_SUPPKEY”
AND "PART”."P_PARTKEY” =
“PARTSUPP”.*“PS_PARTKEY™)
“VW_WIF_17

"VW_WIF_17.*VW_COL_9”7 Is NOT NULL

BY *VW_WIF_17.“ITEM_17 DESC,

“VW_WIF_17TTEM_37,
“VW_WIF_17"TTEM_27,

FROM

WHERE

WHERE
ORDER

12

“VW_WIF_1”*ITEM_47) “FROMS$_SUBQUERY$_001"

WHERE ROWNUM <= 100;

It can be observed, from Table 6, that the ROWIDs are

introduced as part of an expression tree of size greater than
1. In particular, they are evaluated as part of a window
function operator (operator 5 depicted 1n FIG. 3). The root
of the expression tree 1s a CASE statement that 1s consumed
only by a filter (operator 5 depicted in FIG. 3). The filter 1s
a NOT NULL check, and the ROWID 1s used as a pseudo
attribute that never can be null as long as there 1s a
non-empty row.

For all of these rewritten queries, 1t can also be observed

that 1f a ROWID 1s introduced, 1t 1s never selected in the
projection list of a main or topmost query block. In other

words, a ROWID 1s never part of the SELECT clause of the
main query block.

ROWID Elimination Rewrite Critenia

From the above-described observations, 1f a ROWID 1s
introduced as part ol a query unnesting rewrite, its expres-
sion tree has a height not larger than one, except when the
ROWID 1s used as part of a CASE statement. In those
scenarios, not all branches of the CASE statement reference
the ROWID, and the CASE statement 1s the top of the
expression tree. Upstream operators consuming the CASE
statement are not arithmetic or logical operations, with the
exception ol a NULL check. Also, from the above-described
observations, a ROWID introduced by a query rewrite 1s not
referenced as part of the projection list of the main query
block.

Accordingly, as a general rule, the ROWID Elimination
Rewrite 1s only applied on ROWID columns that have been
previously introduced through other query rewrite transior-
mations.

There are diflerent ways to determine applicability. One
way to determine applicability 1s to check whether all of the
above-described observations hold true for a given ROWID
column; 1f so, then the ROWID Elimination Rewrite 1s
applicable. Another way to determine applicability 1s to
compare the original query with the rewritten query; only
the ROWIDs columns that are not referenced 1n the original
query are applicable for the ROWID Elimination Rewrite.

30

35

40

45

50

55

60

65

Determining Substitution Columns

A principle 1dea behind the ROWID Elimination Rewrite
1s to substitute applicable ROWIDs with alternative columns
while preserving the semantics of the rewritten query.

As discussed above, one important characteristic of the
rewritten queries 1n Tables 2, 4, and 6 1s that ROWIDs that
are introduced through a different query rewrite will not
appear 1n the projection list of the main query block. In other
words, those type of ROWIDs are not part of the query
result. Another important characteristic follows from the
first characteristic: i a ROWID of a base table uniquely
identifies the values of all the attributes of a tuple of the base
relation, then the ROWID cannot be null.

Referring to Tables 2, 4, and 6, ROWIDs are used for two
reasons. First, ROWIDs are used to uniquely identify a tuple
ol a base relation. This characteristic was used for TPC-H
Q20 and Q21. Here, the ROWIDs are used as grouping
columns. For TPC-H (20, ROWIDs are also used for a
distinct operation (e.g., HASH UNIQUE). However, a

GROUP BY operator can also be used to implement this
distinct operation. Second, ROWIDs cannot be null. In other
words, given a base table tuple, 1ts ROWID attribute can
never be null. This characteristic was used for TPC-H Q2.

Accordingly, only a specific type of columns can be used
to substitute a ROWID. For that type of columns, the same
characteristics must hold to adhere to the principle 1dea
described above. The characteristics described above are
formalized as functional dependencies (FD).

FDs are an important property in a database. Within a
relational database, a FD exists between two attributes A and
B 1n a relation if for every value of A 1n a tuple of the relation
the same value of B exists 1n the tuple. In other words, within
a relation, B 1s functionally dependent on A if for every value
in A for which there 1s an instance 1n a tuple, the same value
of B exists in the tuple. The notation of A functionally
determines B 1s A—=B. The right-side has a set of one or
more attributes, and left-side has one attribute. The attribute
on the right side 1s dependent on the combination of attri-

butes on the left side of the FD.

UsS 11,797,

13

A set of rows or tuples 1n a table or other type of relation
are referred to as being functionally dependent on a column
(or attribute) 1f for every column value 1n the column the
column uniquely identifies or corresponds to one and only
one row or tuple within the set.

A primary key 1s a column that uniquely 1dentifies each
row 1 a table. Thus, rows 1n the table are functionally

SELECT

Result of the ROW

520 B2

14

dependent on the primary key. Primary keys can thus
umquely 1dentity all other columns (e.g., a tuple) of a base
relation. Therefore, primary keys are valid substitution col-
umns for ROWIDs that have been introduced through pre-
v1ous query rewrites.

Table 7 shows the rewritten query for TPC-H Query 21
alter ROWID Elimination Rewrite has been applied.

TABLE 7

) Elimination Rewrite for TPC-H Q21

/*Q21*/ “FROMS$_SUBQUERYS$_001”.“S_NAME” “S_NAME”,

“FROMS$_SUBQUERYS$_001” *NUMWAIT” “NUMWAIT”
FROM (SELECT “VM_NWVW_2”“$VM_COL_1” “S_NAME”,
Count (*) “NUMWAIT”

FROM (SELECT “SUPPLIER”.*S_NAME” “§VM_COL, 1”

FROM

“TPCH”.*“LINEITEM™ *1.3%,
“TPCH”."SUPPLIER” *SUPPL
“TPCH”.“LINEITEM™ .17,
“TPCH”."ORDERS” “"ORDERS™,
“TPCH”.“*NATION" “*NATION”

5R”,

WHERE "SUPPLIER™."S_SUPPKEY” = “L17."L_SUPPKEY™

GROUP BY

HAVING

AND “ORDERS”.“O_ORDERKEY” = “L.1”.“l. ORDERKEY"’
AND “ORDERS”.“O_ORDERSTATUS” = °F’
AND *L17.“L_RECEIPTDATE” > “L.1”.“L_ COMMITDATE"
AND 0 < 1
AND “SUPPLIER”.“S_NATIONKEY” =
“NATION”.“N_NATIONKEY”
AND “NATION”.“N_NAME” =
'SAUDI_ARABIA’
AND *1.3”.“L. ORDERKEY” = “1.1”.“l. ORDERKEY”
AND *1.3”.“, SUPPKEY” <> “L.1”.“._ SUPPKEY”
“1,1”.“L._ORDERKEY”,
“1.17.“L_LINENUMBER”,
“NATION” “N_NATIONKEY”,
“ORDERS”.“O_ORDERKEY”,
“SUPPLIER”.“S_SUPPKEY”,
“SUPPLIER”.“S._ NAME”
SUM(CASE
WHEN “L3”.“L._ RECEIPTDATE” >
“1.3”.“L._COMMITDATE”
THEN 1
ELSE 0
END) = 0) “VM_NWVW_2”

GROUP BY “VM_NWVW_2"*“§VM_COL_1”

ORDER BY

COUNT(*) DESC,
“VM_NWVW _2”“$VM_COL_17)
“FROMS$_SUBQUERY$_001"

WHERE ROWNUM <= 100;

SELECT

FROM

FROM

WHERE

Result of the ROW

Table 8 shows the rewritten query for TPC-H Query 20
after ROWID Elimination Rewrite has been applied.

TABLE 3

) Elimination Rewrite for TPC-H Q20

Q0% “VM_NWVW_3"“§VM_COL_3" “S_NAME”,

“VM_NWVW_3"“§VM_COL_2” “S_ADDRESS”

(SELECT DISTINCT “SUPPLIER”.*“S_NAME” “$VM_COL_3",
“SUPPLIER”.ROWID “ROWID?”,
“NATION”.ROWID “ROWID”,
“PARTSUPP”.“PS_SUPPKEY” “$VM_COL_1",
“SUPPLIER”.“S_ADDRESS” “§VM_COL_2”

“TPCH”.“LINEITEM™” “LINEITEM™,

“TPCH”."PART” “PARI™,

“TPCH”."PARTSUPP” “PARTSUPP”,

“TPCH”.*“SUPPLIER” *SUPPLIER”,

“TPCH”.“*NATION" “*NATION”

“SUPPLIER”.*S_SUPPKEY™ = “PARTSUPP”.“PS_SUPPKEY™

AND “SUPPLIER”."S_NATIONKEY” =

“NATION”."N_NATIONKEY”

AND “NATION”.*N_NAME” = ‘CANADA’

AND “LINEITEM”.*L._PARTKEY” =

“PARTSUPP”."PS_PARTKEY™

AND “LINEITEM”.*L_SUPPKEY” =

“PARTSUPP”.*PS_SUPPKEY™

US 11,797,520 B2

15
TABLE 8-continued

Result of the ROWID Elimination Rewrite for TPC-H Q20

AND “PARTSUPP”.“PS_PARTKLEY” =

“PART”.“P_PARTKEY"™

AND “PART”.“P_NAME” LIKE ‘forest%’

AND “LINEITEM”.“L_SHIPDATE” >=
To date (*.1994-01-01_.00:00:00°, *syyyy-mm-
dd_hh24:mi:ss’)

AND “LINEITEM”.“L_SHIPDATE” <
To date(* .1995-01-01._.00:00:00°, ‘syyyy-mim-
dd_hh24:mi:ss’)

AND To date(* .1995-01-01_.00:00:00°, ‘syyyy-mim-
dd_hh24:mi:ss’)
To date(* 1994-01-01_.00:00:00°, *syyyy-mm-
dd_hh24:mi:ss’)

GROUP BY “SUPPLIER”.*S_NAME”,
“LINEITEM”.“L_SUPPKEY™,
“PARTSUPP”.“PS_PARTKEY™,
“PART”.“P_PARTKEY",
“PARTSUPP”.“PS_AVAILQTY™,
“PARTSUPP”.“PS_SUPPKEY™,
“NATION”.*N_NATIONKEY",
“SUPPLIER”.*S_SUPPKEY™,
“LINEITEM”.“L_PARTKEY™,
“SUPPLIER”.“S_ADDRESS”

HAVING “PARTSUPP”.“PS_AVAILQTY™ >

0.5 * SUM(LINEITEM”.*L_QUANTITY")) “VM_NWVW_3”
ORDER BY “VM_NWVW_3"“§VM_COL_3"

Table 9 shows the rewritten query for TPC-H Query 2
alter ROWID Elimination Rewrite has been applied.

TABLE 9

Result of the ROWID Elimination Rewrite for TPC-H Q2

SELECT /%Q2%/ “FROMS$_SUBQUERY$_0017.“S_ACCTBAL” “S ACCTBAL”,
“FROMS$_SUBQUERYS$_001”.“S-NAME” “S_NAME”,
“FROMS$_SUBQUERY$_0017”.“N_NAME” “N_NAME”,
“FROMS$_SUBQUERYS$_001”.“P_PARTKEY” “P_PARTKEY”,
“FROMS$_SUBQUERYS$_001”.“P_MFGR” “P_MFGR”,
“FROMS$_SUBQUERY$ 0017.“S_ADDRESS” “S_ADDRESS”,
“FROMS$_SUBQUERYS$_001”.“S_PHONE” “S_PHONE”,
“FROMS$_SUBQUERYS$_0017.%S_ COMMENT” “S_COMMENT”

FROM (SELECT “VW_WIF_1”.“ITEM_1” “S_ACCTBAL”,

“VW_WIF_1”.“ITEM_2” “S_NAME”,
“VW_WIF_1”.“ITEM_3” “N_NAME”,
“VW_WIF_1”.“ITEM_4” “P_PARTKEY”,
“VW_WIF_1”.“ITEM_5” “P_MFGR”,
“VW_WIF_1”.“ITEM_6" “S_ADDRESS”,
“VW_WIF_1”.“ITEM_7” “S_PHONE”,
“VW_WIF_1”.“ITEM_8” “S_COMMENT”

FROM (SELECT “SUPPLIER”.“S_ACCTBAL” “ITEM_1”,
“SUPPLIER”.“S_NAME” “ITEM_2",
“NATION”.“N_NAME” “ITEM_3",
“PART”.“P_PARTKEY” “ITEM_4”,
“PART”.“P_MFGR” “ITEM_57,
“SUPPLIER”.“S_ADDRESS” “ITEM_6",
“SUPPLIER”.“S_PHONE” “ITEM_7”,
“SUPPLIER”.“S_ COMMENT” “ITEM_8”,
CASE “PARTSUPP”.“PS_SUPPLYCOST”

WHEN Min(“PARTSUPP”.“PS_SUPPLYCOST”)
OVER (
PARTITION BY
“PARTSUPP”.“PS_PARTKEY”) THEN
“PARTSUPP”.“PARTKEY”
END “VW_COIL, 9”
FROM “TPCH” “REGION” “REGION”,
“TPCH” “NATION” “NATION”,
“TPCH” “PARTSUPP” “PARTSUPP”,
“TPCH”.“SUPPLIER” “SUPPLIER”,
“TPCH”.“PART” “PART”

WHERE “REGION”.“R_NAME” = ‘EUROPE’
AND “NATION”.“N_REGIONKEY” =
“REGION”.“R_REGIONKEY”’

AND “SUPPLIER”.“S_NATIONKEY” =

“NATION”."N_NATIONKEY™

16

US 11,797,520 B2

17 18
TABLE 9-continued

Result of the ROWID Elimination Rewrite for TPC-H Q2

AND “PART™.“P_TYPE” LIKE *%BRASS’
AND “PART”."P_SIZE” = 15

AND "SUPPLIER™."S_SUPPKEY™ =
“PARTSUPP”."PS_SUPPKEY”

AND "PART”."P_PARTKEY” =
“PARTSUPP”.“PS_PARTKEY™)

e rﬁﬁ 'T_WIF_l 3
WHERE “VW_WIF_17*VW_COL_9” Is NOT NULL
ORDER BY “VW_WIF_17."ITEM_17 DESC,

“VW_WIF_17"ITEM_37,

“VW_WIF_17FITEM_27,

“VW_WIF_1”*“ITEM_4") “FROM$_SUBQUERY$_001"
WHERE ROWNUM <= 100;

By substituting ROWIDs with primary keys, the rewritten For example, referring to the output of the sixth operator
queries shown in Tables 7-9 are semantically equivalent to HASH JOIN depicted i FIG. 2, tunctional dependencies
the previously rewritten queries shown in Tables 2, 4, and 6, are.
respectively. The rewritten queries shown in Tables 7-9, <Y {S_SUPPKEY ;—{NATION_KEY}
without referencing ROWIDs as they are substituted with {S_SUPPKEY,
primary keys, can be executed 1n an offload engine and can P_PARTKEY}—{PARTSUPP.ROWID}
benefit from hardware acceleration features, thereby reduc- From the second functional dependency, PARTSUP-

ing memory pressure and speeding up processing. »>5 PROWID could be removed as a grouping column because

for any unique value of the combination S_SUPPKEY,

Determining Removal of ROWID P_PARTKEY, there is only one value of PARTSUP-

| o _ P.ROWID. Hence, adding PARTSUPP.ROWID as grouping

In some scenarios, the ROWID Elimination Rewrite column does not add any additional group when applying

technique 1s able to simply remove one or more ROWIDs ., the GROUP BY operator. Accordingly, PARTSUPP.ROWID
from a query altogether. could be safely removed.

A candidate key 1s a column or a set of columns in a From the first functional dependency, NATION_KEY or

database that can qualify as a primary key. Candidate keys NATION.ROWID could also be removed as a grouping
can be determined for intermediate relations after relational column. Although NATION_KEY or NATION.ROWID 1s
operators like INNER JOINs, SEMI JOINs, ANTI JOINSs, 35 part of the projection list of the subquery, which would be
OUTER JOINSs, GROUP JOINs or GROUP BY's have been prevented 1from being removed, NAITION_KEY or
applied. Based on this, possible FDs can be deduced for an NATION.ROWID 1s not referenced in the parent query
intermediate result that 1s direct input to a GROUP BY block. Hence, it could be sately removed because, from the
operator. If there exist a FD where a ROWID 1s depended on first functional dependency, removing NATION_KEY or
another ROWID or primary key and 1s not part of the 49 NATION.ROWID has no further effect on the distinct third
projection list of the GROUP BY operator, then the ROWID operation HASH_UNIQUE operator depicted in FIG. 2.

could be removed as a grouping column. Table 10 shows a rewritten query for TPC-H Query 20

FIG. 4 illustrates an overview of a relational schema of after advanced ROWID FElimination Rewrite has been

the TPC-H Benchmark tables. The primary key/foreign key applied. This rewritten query only shows the PARTSUP-
constraints between the tables are of interest. P.ROWID being removed.
TABLE 10

Result of advanced ROWID Elimination Rewrite
for TPC-H Q20 (with NATION.ROWID not removed)

SELECT /FQ20%/ “VM_NWVW_3"“$VM_COL_3" “S_NAME",
“VM_NWVW_3"“§VM_COL_2” “S_ADDRESS”
FROM (SELECT DISTINCT “SUPPLIER”.“S_NAME” “$VM_COL_3",

“SUPPLIER”.ROWID “ROWID?”,
“NATION”. ROWID *ROWID?",
“PARTSUPP”.“PS_SUPPKEY” “$VM_COL_1",
“SUPPLIER”.“S_ADDRESS” “§VM_COL_2”
FROM “TPCH”.“LINEITEM™” “LINEITEM™,
“TPCH”."PART” “PARI™,
“TPCH”."PARTSUPP” “PARTSUPP”,
“TPCH”.*“SUPPLIER” *SUPPLIER”,
“TPCH”.“*NATION" “*NATION”
WHERE “SUPPLIER”.*S_SUPPKEY™ = “PARTSUPP”.“PS_SUPPKEY™

AND “SUPPLIER”."S_NATIONKEY” =
“NATION”."N_NATIONKEY”

AND “NATION”.*N_NAME” = ‘CANADA’
AND “LINEITEM”.*L._PARTKEY” =
“PARTSUPP”."PS_PARTKEY™

AND “LINEITEM”.*L_SUPPKEY” =
“PARTSUPP”.*PS_SUPPKEY™

US 11,797,520 B2

19
TABLE 10-continued

Result of advanced ROWID Elimination Rewrite
for TPC-H Q20 (with NATION.ROWID not removed)

AND “PARTSUPP”.“PS_PARTKEY” =
“PART”.“P_PARTKEY™
AND “PART”.“P_NAME” LIKE ‘forest®’
AND “LINEITEM”.“L_SHIPDATE” >=
To date (*..1994-01-01_.00:00:00°, ‘syyyy-mm-
dd_hh24:mi:ss’)
AND “LINEITEM”.*“L_SHIPDATE” <
To date(* .1995-01-01_00:00:00°, ‘syyyy-mm-
dd_hh24:mi:ss’)
AND To date(* .1995-01-01_.00:00:00°, ‘syyyy-mm-
dd_hh24:mi:ss’)
To date (*..1994-01-01_.00:00:00°, ‘syyyy-mm-
dd_hh24:mi:ss’)

GROUP BY “SUPPLIER”.*S_NAME”,
“LINEITEM”.“L_SUPPKEY™,
“PART”.“P_PARTKEY™,
“PARTSUPP”.“PS_AVAILQTY",
“PARTSUPP”.“PS_SUPPKEY™,
“NATION”.“N_NATIONKEY™,
“SUPPLIER™.“S_SUPPKEY™,
“LINEITEM”.“L_PARTKEY™,
“SUPPLIER”.*S_ADDRESS”

HAVING “PARTSUPP”.“PS_AVAILQTY” >

0.5 * SUM(LINEITEM”.*“L_QUANTITY™)) “VM_NWVW_3~
ORDER BY “VM_NWVW_3"“§VM_COL_3~

For another example, referring to the output of the fifth
operator VIEW_VM_VWVW 2 depicted 1n FIG. 1, a func-

tional dependency is: {S_SUPPKEY}—={NATION_KEY}. "
As a result, the NATION.ROWID or the NATION_KEY
column can be removed.

Table 11 shows the rewritten query for TPC-H Query 21
after advanced ROWID Flimination Rewrite has been
applied.

TABL

T

11

Result of advanced ROWID Elimination Rewrite for TPC-H Q21

SELECT /*Q21%*/ “FROM$_SUBQUERY$ 0017.“S_ NAME” “S_NAME”,
“FROMS$_SUBQUERYS$_001”.*NUMWAIT” “NUMWAIT”
FROM (SELECT “VM_NWVW_2”“$VM_COL_1” “S_NAME”,
Count (*) “NUMWAIT”
FROM (SELECT “SUPPLIER”.“S NAME” “$VM_COI, 1”
FROM “TPCH”.“LINEITEM” “1.3”,
“TPCH”.“SUPPLIER” “SUPPLIER”,
“TPCH”.“LINEITEM” “1.1”,
“TPCH”.“ORDERS” “ORDERS”,
“TPCH”.“NATION” “NATION”
WHERE “SUPPLIER”.“S_SUPPKEY” = “L1”.“L._SUPPKEY”
AND “ORDERS”.“O_ORDERKEY” = “L.1”.“L. ORDERKEY”
AND “ORDERS”.“O_ORDERSTATUS” = ‘F’
AND “L.17.I, RECEIPTDATE” >*L.1”.“L._COMMITDATE"
AND 0 < 1
AND “SUPPLIER”.“S_NATIONKEY” =
“NATION”.“N_NATIONKEY”
AND “NATION”.“N_NAME” =
’SAUDI_ARABIA’
AND “L3”.“L, ORDERKEY” = “L.1”.“L. ORDERKEY"
AND “L3”.“L, SUPPKEY” <> “L.1”.“L._SUPPKEY”
GROUP BY “1.1”.“L, ORDERKEY”,
“1.1”.“L, LINENUMBER”,
“ORDERS”.“O_ORDERKEY”,
“SUPPLIER”.“S_SUPPKEY”,
“SUPPLIER”.“S NAME”
HAVING SUM(CASE
WHEN “1.3”.“L._RECEIPTDATE” >
“1.3”.“L, COMMITDATE”
THEN 1
ELSE 0

END) = 0) “VM_NWVW_2”

20

US 11,797,520 B2

21
TABLE 11-continued

Result of advanced ROWID Elimination Rewrite for TPC-H Q21

GROUP BY “VM_NWVW_2” “§VM_COL_1"
ORDER BY COUNT(*) DESC,

“VM_NWVW_2"“§VM_COL_1")

“FROMS$_SUBQUERYS$ 001~
WHERE ROWNUM <= 100;

Query Optimizer Integration

There are several strategies for integrating the ROWID
Elimination Rewrite 1into a cost-based optimizer.

One strategy 1s to add the ROWID Elimination Rewrite
just as another rewrite rule. For example, Transformation-

Based Query Optimizers, like Columbia or Cascades, can be
extended to integrate the ROWID Elimination Rewrite.

There are two strategies to apply the ROWID Elimination
Rewrite in a generative query optimizer. A first possibility 1s,
as part of the Query Rewrite Phase I, the ROWID Elimina-
tion Rewrite could be placed after the family of Query
Unnesting rewrites. A second possibility 1s to itegrate the
ROWID Elimination Rewrite into Query Rewrite Phase II.
That 1s, once a QEP 1s formed, existing and eligible ROWID
can be substituted by the ROWID Elimination Rewrite.

The first possibility has the advantage over the second
possibility 1n that other optimizations can benefit as well
from the ROWID Elimination Rewrite, such as index access
path selection. Index path selection 1s particularly important
since the substitutes for the ROWID columns are often
primary key columns, where an index 1s most likely to be
existent.

ROWID FElimination Rewrite Flow Example

FIG. 5 illustrates a block diagram depicting a ROWID
Elimination Rewrite technique according to an embodiment.
At block 502, a DBMS (or, more particularly, an optimizer
or rewrite component of the DBMS) receives a particular
query to generate therefrom a rewritten query.

The particular query comprises a main or topmost query
block. The particular query references a first rowid pseudo-
column of a first table. The first rowid pseudo-column
comprises {irst rowids that each uniquely identifies a row 1n
the first table. In an embodiment, the particular query may
also reference a second rowid pseudo-column of a second
table. The second rowid pseudo-column comprises second
rowids that each uniquely identifies a row in the second
table.

In an embodiment, the particular query may be written
from another query, such as an original query, that does not
include the first rowid pseudo-column and the second rowid
pseudo-column. The first rowid pseudo-column and the
second rowid pseudo-column were added or mtroduced 1n
the particular query when 1t was written from the another
query. The particular query and the another query are
semantically equivalent.

At block 504, the DBMS parses the particular query to
determine whether one or more rewrite criteria are satisfied.

In an embodiment, a rewrite criterion may be the first
rowid pseudo-column not being referenced as part of a
projection list of the topmost query block.

In an embodiment, a rewrite criterion may be, when the
first row1d pseudo-column 1s not referenced 1n a case state-
ment, the first rowid pseudo-column being a root of an
expression tree having a height not greater than one.

10

15

20

25

30

35

40

45

50

55

60

65

22

In an embodiment, a rewrite criterion may be, when the
first rowid pseudo-column is referenced 1n a case statement,
the case statement being at a root of an expression tree
having a height greater than one.

In an embodiment, a rewrite criterion may be the first
row1id pseudo-column being previously introduced through
another one or more query rewrites, such as for purpose of
query unnesting.

At block 506, in response to determining that one or more
rewrite criteria are satisfied, the first rowid pseudo-column
1s replaced with a substitute column that has a functional
dependency with rows 1n the first table, in the rewritten
query. The substitute column includes a unique value for
cach tuple 1n the first table. In an embodiment, the substitute
column may be a primary key of the first table.

At block 508, the DBMS parses the particular query to
determine whether one or more removal criteria are satisfied.

In an embodiment, a removal criteria may be the second
rowid pseudo-column being dependent on the first rowid
pseudo-column and not being referenced as part of a pro-
jection list of a group by operator 1n the particular query.

At block 510, 1n response to determining that one or more
removal criteria are satisfied, the second rowid pseudo-
column 1s removed, 1n the rewritten query.

Block 504 and block 506 may occur concurrently or
sequentially. The rewritten query and the particular query
are semantically equivalent.

At block 512, the rewritten query 1s executed 1n an offload
engine. The rewritten query, without referencing any rowid
pseudo-columns, do not increase memory pressure when 1t
1s executed in the offload engine.

Advantages of ROWID Elimination Rewrite
Techniques

ROWID Elimination Rewrite technique substitutes ROW-
IDs with other columns of the same table. In some scenarios,
the ROWID Elimination Rewrite can eliminate the usage of
a ROWIDs without the need of introducing a new column,
because the substituting column may already be referenced.
In almost all practical cases, this leads to a smaller memory
footprint, which speeds up processing.

By substituting ROWIDs with other columns, the group-
ing operation can be sped up, given that the new columns are
indexed. In many cases, the cost based optimizer can be
using interesting orders to transform a hashed based group
by 1nto a sort based group by without the need of the sorting
operation by utilizing the underlying index.

As a consequence, performance improvements can be
major because a previously not feasible query can be ofl-
loaded, memory footprint 1s reduced and/or grouping opera-
tions can be executed at some fraction of the previous costs.

Database Overview

Embodiments of the present invention are used in the
context of database management systems (DBMSs). There-
fore, a description of an example DBMS 1s provided.

US 11,797,520 B2

23

A DBMS manages a database. A DBMS may comprise
one or more database servers. A database comprises database
data and a database dictionary that are stored on a persistent
memory mechanism, such as a set of hard disks. Database
data may be stored in one or more data containers. Fach 5
container contains records. The data within each record 1s
organized into one or more fields. In relational DBMSs, the
data containers are referred to as tables, the records are
referred to as rows, and the fields are referred to as columns.

In object-oriented databases, the data containers are referred 10
to as object classes, the records are referred to as objects,
also referred to herein as object records, and the fields are
referred to as attributes. Other database architectures may
use other terminology.

A database dictionary, also referred to herein as a data 15
dictionary, comprises metadata that defines database objects
physically or logically contained in a database. In eflect, a
database dictionary defines the totality of a database. Data-
base objects include tables, indexes, views, columns, data
types, users, user privileges, and storage structures, such as 20
tablespaces, which are used for storing database object data.

A tablespace 1s a database storage unit that groups related
logical structures together, and contains one or more physi-
cal data files. These logical structures may include segments,
or an allocation of space for a specific database object such 25
as a table, a table cluster, or an index. A segment may be
contained 1n one data file or may span across multiple data
files. A segment may be defined using a set of extents, where
an extent contains one or more contiguous database blocks.

A database block, also referred to as a data block, 1s a unit 30
of persistent storage. A database block 1s used by a database
server to store database records (e.g., to store rows of a table,
to store column values of a column). When records are read
from persistent storage, a database block containing the
record 1s copied into a database block buil

er 1 volatile 35
memory ol a database server. A database block usually
contains multiple rows, and control and formatting infor-
mation (e.g., oflsets to sequences of bytes representing rows
or other data structures, list of transactions aflecting a row).

A database block 1s referred to as being atomic because, 40
at least 1 part, a database block 1s the smallest unit of
database data a database server may request from a persis-
tent storage device. For example, when a database server
seeks a row that 1s stored 1n a database block, the database
server may only read the row from persistent storage by 45
reading in the entire database block.

A data block may be associated with a data block address
that uniquely identifies the data block and the data block’s
storage location within a storage device. A database server
may request from a storage device a data block by data block 50
address, or even by primary block address ranges of data
blocks.

Users 1nteract with a database server of a DBMS by
submitting to the database server commands that cause the
database server to perform operations on data stored m a 55
database. A user may be one or more applications running on
a client computer that interact with a database server.
Multiple users may also be referred to herein collectively as
a user.

A database command may be 1in the form of a database 60
statement. For the database server to process the database
statements, the database statements must conform to a
database language supported by the database server. One
non-limiting example of a database language that 1s sup-
ported by many database servers 1s SQL, including propri- 65
ctary forms of SQL supported by such database servers as

Oracle, (e.g. Oracle Database 11 g). SQL data definition

24

language (“DDL”) instructions are i1ssued to a database
server to create or configure database objects, such as tables,
views, or complex types. Data manipulation language
(“DML”) mstructions are 1ssued to a DBMS to manage data
stored within a database structure. For instance, SELECT,
INSERT, UPDATE, and DELETE are common examples of
DML 1nstructions found i some SQL implementations.
SQL/XML 1s a common extension of SQL used when
mampulating XML data 1n an object-relational database.

Generally, data 1s stored 1n a database 1n one or more data
containers, each container contains records, and the data
within each record 1s organized into one or more fields. In
relational database systems, the data containers are typically
referred to as tables, the records are referred to as rows, and
the fields are referred to as columns. In object-oriented
databases, the data containers are typically referred to as
object classes, the records are referred to as objects, and the
fields are referred to as attributes. Other database architec-
tures may use other terminology. Systems that implement
the present invention are not limited to any particular type of
data container or database architecture. However, for the
purpose ol explanation, the examples and the terminology
used herein shall be that typically associated with relational
or object-relational databases. Thus, the terms “table”,
“row” and “column” shall be used herein to refer respec-
tively to the data container, record, and field.

A multi-node database management system 1s made up of
interconnected nodes that share access to the same database.
Typically, the nodes are interconnected via a network and
share access, 1mn varying degrees, to shared storage, e.g.
shared access to a set of disk drives and data blocks stored
thereon. The nodes in a multi-node database system may be
in the form of a group of computers (e.g. work stations,
personal computers) that are interconnected via a network.
Alternately, the nodes may be the nodes of a grid, which 1s
composed of nodes 1n the form of server blades intercon-
nected with other server blades on a rack.

Each node in a multi-node database system hosts a
database server. A server, such as a database server, 1s a
combination of integrated solftware components and an
allocation of computational resources, such as memory, a
node, and processes on the node for executing the integrated
soltware components on a processor, the combination of the
software and computational resources being dedicated to
performing a particular function on behalf of one or more
clients.

Resources from multiple nodes 1n a multi-node database

system can be allocated to running a particular database
server’s soltware. Fach combination of the software and
allocation of resources from a node 1s a server that 1s referred
to herein as a “server instance” or “instance”. A database
server may comprise multiple database instances, some or
all of which are running on separate computers, imncluding
separate server blades.

Query Optimization and Execution Plans

(Query optimization generates one or more different can-
didate execution plans for a query, which are evaluated by
the query optimizer to determine which execution plan
should be used to compute the query.

Execution plans may be represented by a graph of inter-
linked nodes, referred to herein as operators or row sources,
that each corresponds to a step of an execution plan, referred
to herein as an execution plan operation. The hierarchy of
the graphs (1.e., directed tree) represents the order in which
the execution plan operations are performed and how data
flows between each of the execution plan operations. An
execution plan operator generates a set of rows (which may

US 11,797,520 B2

25

be referred to as a table) as output and execution plan
operations include, for example, a table scan, an index scan,
sort-merge join, nested-loop join, filter, and importantly, a
tull outer join.

A query optimizer may optimize a query by transforming
the query. In general, transforming a query involves rewrit-
ing a query mto another semantically equivalent query that
should produce the same result and that can potentially be
executed more efliciently, 1.e. one for which a potentially
more eilicient and less costly execution plan can be gener-
ated. Examples of query transformation include view merg-
ing, subquery unnesting, predicate move-around and push-
down, common subexpression elimination, outer-to-inner
j0in conversion, materialized view rewrite, and star trans-
formation.

Hardware Overview

Referring now to FIG. 6, it 1s a block diagram that
illustrates a basic computing device 600 in which the
example embodiment(s) of the present invention may be
embodied. Computing device 600 and i1ts components,
including their connections, relationships, and functions, 1s
meant to be exemplary only, and not meant to limit 1imple-
mentations of the example embodiment(s). Other computing,
devices suitable for 1mplementing the example
embodiment(s) may have different components, including
components with different connections, relationships, and
functions.

Computing device 600 may include a bus 602 or other
communication mechanism for addressing main memory
606 and for transierring data between and among the various
components ol device 600.

Computing device 600 may also include one or more
hardware processors 604 coupled with bus 602 for process-
ing information. A hardware processor 604 may be a general
purpose microprocessor, a system on a chip (SoC), or other
Processor.

Main memory 606, such as a random access memory
(RAM) or other dynamic storage device, also may be
coupled to bus 602 for storing information and software
instructions to be executed by processor(s) 604. Main
memory 606 also may be used for storing temporary vari-

ables or other intermediate information during execution of

soltware 1nstructions to be executed by processor(s) 604.

Soltware 1nstructions, when stored 1n storage media
accessible to processor(s) 604, render computing device 600
into a special-purpose computing device that 1s customized
to perform the operations specified 1n the software nstruc-
tions. The terms “software”, “software instructions”, “com-
puter program’, “computer-executable instructions™, and
“processor-executable instructions™ are to be broadly con-
strued to cover any machine-readable information, whether
or not human-readable, for instructing a computing device to
perform specific operations, and including, but not limited
to, application software, desktop applications, scripts, bina-
ries, operating systems, device drivers, boot loaders, shells,
utilities, system software, JAVASCRIPT, web pages, web
applications, plugins, embedded software, microcode, com-
pilers, debuggers, interpreters, virtual machines, linkers, and
text editors.

Computing device 600 also may include read only
memory (ROM) 608 or other static storage device coupled
to bus 602 for storing static information and software
instructions for processor(s) 604.

One or more mass storage devices 610 may be coupled to

bus 602 for persistently storing information and software

10

15

20

25

30

35

40

45

50

55

60

65

26

instructions on fixed or removable media, such as magnetic,
optical, solid-state, magnetic-optical, flash memory, or any
other available mass storage technology. The mass storage
may be shared on a network, or 1t may be dedicated mass
storage. Typically, at least one of the mass storage devices
610 (e.g., the main hard disk for the device) stores a body of
program and data for directing operation of the computing
device, including an operating system, user application
programs, driver and other support files, as well as other data
files of all sorts.

Computing device 600 may be coupled via bus 602 to
display 612, such as a liquid crystal display (LCD) or other
clectronic visual display, for displaying information to a
computer user. In some configurations, a touch sensitive
surface incorporating touch detection technology (e.g., resis-
tive, capacitive, etc.) may be overlaid on display 612 to form
a touch sensitive display for communicating touch gesture
(e.g., finger or stylus) mput to processor(s) 604.

An 1nput device 614, including alphanumeric and other
keys, may be coupled to bus 602 for commumicating infor-
mation and command selections to processor 604. In addi-
tion to or instead of alphanumeric and other keys, input
device 614 may include one or more physical buttons or
switches such as, for example, a power (on/ofl) button, a
“home” button, volume control buttons, or the like.

Another type of user input device may be a cursor control
616, such as a mouse, a trackball, or cursor direction keys for
communicating direction information and command selec-
tions to processor 604 and for controlling cursor movement
on display 612. This input device typically has two degrees
of freedom 1n two axes, a first axis (e.g., X) and a second axis
(e.g., v), that allows the device to specily positions 1n a
plane.

While 1n some configurations, such as the configuration
depicted 1n FIG. 6, one or more of display 612, input device
614, and cursor control 616 are external components (1.e.,
peripheral devices) of computing device 600, some or all of
display 612, input device 614, and cursor control 616 are
integrated as part of the form factor of computing device 600
in other configurations.

Functions of the disclosed systems, methods, and mod-
ules may be performed by computing device 600 1n response
to processor(s) 604 executing one or more programs of
soltware 1nstructions contained 1n main memory 606. Such
soltware 1nstructions may be read into main memory 606
from another storage medium, such as storage device(s) 610.
Execution of the software instructions contained in main
memory 606 cause processor(s) 604 to perform the functions
of the example embodiment(s).

While functions and operations of the example embodi-
ment(s) may be implemented entirely with software nstruc-
tions, hard-wired or programmable circuitry of computing
device 600 (e.g., an ASIC, a FPGA, or the like) may be used
in other embodiments 1n place of or 1n combination with
soltware 1nstructions to perform the functions, according to
the requirements of the particular implementation at hand.

The term “storage media” as used herein refers to any
non-transitory media that store data and/or software 1nstruc-
tions that cause a computing device to operate 1n a specific
fashion. Such storage media may comprise non-volatile
media and/or volatile media. Non-volatile media includes,
for example, non-volatile random access memory
(NVRAM), flash memory, optical disks, magnetic disks, or
solid-state drives, such as storage device 610. Volatile media
includes dynamic memory, such as main memory 606.
Common forms of storage media include, for example, a
floppy disk, a flexible disk, hard disk, solid-state drive,

US 11,797,520 B2

27

magnetic tape, or any other magnetic data storage medium,
a CD-ROM, any other optical data storage medium, any
physical medium with patterns of holes, a RAM, a PROM,
and EPROM, a FLASH-EPROM, NVRAM, flash memory,
any other memory chip or cartridge.

Storage media 1s distinct from but may be used in con-
junction with transmission media. Transmission media par-
ticipates 1n transierring information between storage media.
For example, transmission media includes coaxial cables,
copper wire and fiber optics, including the wires that com-
prise bus 602. Transmission media can also take the form of
acoustic or light waves, such as those generated during
radio-wave and infra-red data communications.

Various forms of media may be imnvolved 1n carrying one
or more sequences of one or more soltware instructions to
processor(s) 604 for execution. For example, the software
instructions may initially be carried on a magnetic disk or
solid-state drive of a remote computer. The remote computer
can load the software instructions into 1ts dynamic memory
and send the software instructions over a telephone line
using a modem. A modem local to computing device 600 can
receive the data on the telephone line and use an infra-red
transmitter to convert the data to an infra-red signal. An
inira-red detector can receive the data carried 1n the infra-red
signal and appropriate circuitry can place the data on bus
602. Bus 602 carries the data to main memory 606, from
which processor(s) 604 retrieves and executes the software
instructions. The software instructions received by main
memory 606 may optionally be stored on storage device(s)
610 cither before or after execution by processor(s) 604.

Computing device 600 also may include one or more
communication interface(s) 618 coupled to bus 602. A
communication interface 618 provides a two-way data com-
munication coupling to a wired or wireless network link 620
that 1s connected to a local network 622 (e.g., Ethernet
network, Wireless Local Area Network, cellular phone net-
work, Bluetooth wireless network, or the like). Communi-
cation interface 618 sends and receives electrical, electro-
magnetic, or optical signals that carry digital data streams
representing various types of information. For example,
communication interface 618 may be a wired network
interface card, a wireless network interface card with an
integrated radio antenna, or a modem (e.g., ISDN, DSL, or
cable modem).

Network link(s) 620 typically provide data communica-
tion through one or more networks to other data devices. For
example, a network link 620 may provide a connection
through a local network 622 to a host computer 624 or to
data equipment operated by an Internet Service Provider
(ISP) 626. ISP 626 in turn provides data communication
services through the world wide packet data communication
network now commonly referred to as the “Internet” 628.
Local network(s) 622 and Internet 628 use electrical, elec-
tromagnetic or optical signals that carry digital data streams.
The signals through the various networks and the signals on
network link(s) 620 and through communication interface(s)
618, which carry the digital data to and from computing
device 600, are example forms of transmission media.

Computing device 600 can send messages and receive
data, including program code, through the network(s), net-
work link(s) 620 and communication interface(s) 618. In the
Internet example, a server 630 might transmit a requested
code for an application program through Internet 628, ISP

626, local network(s) 622 and communication interface(s)
618.

10

15

20

25

30

35

40

45

50

55

60

65

28

The received code may be executed by processor 604 as
it 1s received, and/or stored in storage device 610, or other
non-volatile storage for later execution.

Software Overview

FIG. 7 1s a block diagram of a basic software system 700
that may be employed for controlling the operation of
computing device 600. Software system 700 and 1ts com-
ponents, including their connections, relationships, and
functions, 1s meant to be exemplary only, and not meant to
limit implementations of the example embodiment(s). Other
soltware systems suitable for implementing the example
embodiment(s) may have different components, including
components with different connections, relationships, and
functions.

Software system 700 1s provided for directing the opera-
tion ol computing device 600. Software system 700, which
may be stored 1n system memory (RAM) 606 and on fixed
storage (e.g., hard disk or flash memory) 610, includes a
kernel or operating system (OS) 710.

The OS 710 manages low-level aspects of computer
operation, 1ncluding managing execution ol processes,
memory allocation, file input and output (I/0), and device
I/O. One or more application programs, represented as
702A, 7028, 702C . . . 702N, may be “loaded” (e.g.,
transferred from fixed storage 610 into memory 606) for
execution by the system 700. The applications or other
soltware 1ntended for use on device 700 may also be stored
as a set ol downloadable computer-executable instructions,
for example, for downloading and installation from an
Internet location (e.g., a Web server, an app store, or other
online service).

Software system 700 includes a graphical user interface
(GUI) 715, for recerving user commands and data in a
graphical (e.g., “point-and-click™ or *“touch gesture™) fash-
ion. These inputs, 1n turn, may be acted upon by the system
700 1n accordance with instructions from operating system
710 and/or application(s) 702. The GUI 715 also serves to
display the results of operation from the OS 710 and
application(s) 702, whereupon the user may supply addi-
tional mputs or terminate the session (e.g., log oil).

OS 710 can execute directly on the bare hardware 720
(e.g., processor(s) 604) of device 600. Alternatively, a hyper-
visor or virtual machine momtor (VMM) 730 may be
interposed between the bare hardware 720 and the OS 710.
In this configuration, VMM 730 acts as a software “cushion”

or virtualization layer between the OS 710 and the bare
hardware 720 of the device 600.

VMM 730 instantiates and runs one or more virtual
machine mstances (“guest machines™). Each guest machine
comprises a “guest” operating system, such as OS 710, and
one or more applications, such as application(s) 702,
designed to execute on the guest operating system. The
VMM 730 presents the guest operating systems with a
virtual operating platform and manages the execution of the
guest operating systems.

In some 1instances, the VMM 730 may allow a guest
operating system to run as if 1t 1s running on the bare
hardware 720 of device 600 directly. In these instances, the
same version of the guest operating system configured to
execute on the bare hardware 720 directly may also execute
on VMM 730 without modification or reconfiguration. In
other words, VMM 730 may provide full hardware and CPU
virtualization to a guest operating system 1n some instances.

In other instances, a guest operating system may be
specially designed or configured to execute on VMM 730 for

US 11,797,520 B2

29

elliciency. In these instances, the guest operating system 1s
“aware” that 1t executes on a virtual machine monitor. In
other words, VMM 730 may provide para-virtualization to a
guest operating system 1n some instances.

The above-described basic computer hardware and soft-
ware 1s presented for purpose of illustrating the basic
underlying computer components that may be employed for
implementing the example embodiment(s). The example
embodiment(s), however, are not necessarily limited to any
particular computing environment or computing device con-
figuration. Instead, the example embodiment(s) may be
implemented 1n any type of system architecture or process-
ing environment that one skilled in the art, in light of this
disclosure, would understand as capable of supporting the
features and functions of the example embodiment(s) pre-
sented herein.

Extensions and Alternatives

Although some of the figures described 1n the foregoing
specification include flow diagrams with steps that are
shown 1n an order, the steps may be performed 1n any order,
and are not limited to the order shown in those flowcharts.
Additionally, some steps may be optional, may be performed
multiple times, and/or may be performed by different com-
ponents. All steps, operations and functions of a flow
diagram that are described herein are intended to indicate
operations that are performed using programming in a
special-purpose computer or general-purpose computer, 1n
various embodiments. In other words, each flow diagram in
this disclosure, in combination with the related text herein,
1s a guide, plan or specification of all or part of an algorithm
for programming a computer to execute the functions that
are described. The level of skill in the field associated with
this disclosure 1s known to be high, and therefore the flow
diagrams and related text in this disclosure have been
prepared to convey mformation at a level of sufliciency and
detail that 1s normally expected 1n the field when skilled
persons communicate among themselves with respect to
programs, algorithms and their implementation.

In the foregoing specification, the example embodiment
(s) of the present mvention have been described with refer-
ence to numerous specific details. However, the details may
vary from implementation to implementation according to
the requirements of the particular implement at hand. The
example embodiment(s) are, accordingly, to be regarded 1n
an 1llustrative rather than a restrictive sense.

What 1s claimed 1s:
1. A method comprising:
generating a rewritten query from a particular query,
wherein the particular query references a first rowid
pseudo-column of a first table, said first rowid pseudo-
column comprising first rowids that each uniquely
identifies a row 1n said first table, wherein said rewrit-
ten query and said particular query are semantically
equivalent, wherein generating a rewritten query com-
prises:
determining that one or more rewrite criteria are satis-
fied, wherein said particular query comprises a top-
most query block, wherein said rewrite criteria
includes said first rowid pseudo-column not being
referenced as part of a projection list of said topmost
query block; and
in response to determining that one or more rewrite
criteria are satisfied, replacing said first rowid
pseudo-column with a substitute column that has a

5

10

15

20

25

30

35

40

45

50

55

60

65

30

functional dependency with rows 1 said first table
and that cannot be NULL for said rewritten query;
and
executing said rewritten query in an offload engine,
wherein data for said first table 1s loaded into said
offload engine without loading said first rowids.

2. The method of claim 1, wherein said one or more
rewrite criteria include, when said first rowid pseudo-col-
umn 1s not referenced 1n a case statement, said first rowid
pseudo-column being a root of an expression tree and height
of said expression tree not being greater than one.

3. The method of claim 1, wherein said one or more
rewrite criteria include, when said first rowid pseudo-col-
umn 1s referenced 1n a case statement, said case statement
being at a root of an expression tree and height of said
expression tree being greater than one.

4. The method of claim 1, wherein said one or more
rewrite criteria include said first rowid pseudo-column being
previously introduced through another query rewrite.

5. The method of claim 1, wherein said substitute column
1s a primary key of said first table.

6. The method of claim 1, wherein said substitute column
includes a unique value for each tuple 1n said first table.

7. The method of claim 1, further comprising rewriting,
another query to generate said particular query, wherein said
another query does not include said first rowid pseudo-
column, wherein rewriting said another query includes add-
ing said first rowid pseudo-column to said particular query.

8. The method of claim 7, wherein said another query, said
particular query, and said rewritten query are all semanti-
cally equivalent.

9. The method of claim 1, wherein the particular query
references a second rowid pseudo-column of a second table,
said second rowid pseudo-column comprising second row-
1ids that each uniquely 1dentifies a row 1n said second table.

10. The method of claim 9, wherein generating a rewritten
query further comprises:

determining that one or more removal criteria are satis-

fied:

in response to determining that one or more removal

criteria are satisfied, removing said second rowid
pseudo-column.

11. The method of claim 10, wherein said one or more
removal criteria include said second rowid pseudo-column
being dependent on said first rowid pseudo-column and not
being referenced as part of a projection list of a group by
operator.

12. One or more non-transitory computer-readable stor-
age medium storing instructions that, when executed by one
Or more processors, cause the one or more processors to
perform functions comprising:

generating a rewritten query from a particular query,

wherein the particular query references a first rowid

pseudo-column of a first table, said first rowid pseudo-

column comprising first rowids that each uniquely

identifies a row 1n said first table, wherein said rewrit-

ten query and said particular query are semantically

equivalent wherein generating a rewritten query com-

Prises:

determining that one or more rewrite criteria are satis-
fied, wherein said particular query comprises a top-
most query block, wherein said rewrite criteria
includes said first rowid pseudo-column not being
referenced as part of a projection list of said topmost
query block; and

in response to determining that one or more rewrite
criteria are satisfied, replacing said first rowid

[

US 11,797,520 B2

31

pseudo-column with a substitute column that has a
functional dependency with rows 1 said first table
and that cannot be NULL for said rewritten query;
and

executing said rewritten query 1 an oflload engine,

wherein data for said first table 1s loaded into said
offload engine without loading said first rowids.

13. The one or more non-transitory computer-readable
storage medium of claim 12, wherein said one or more
rewrite criteria include, when said first rowid pseudo-col-
umn 1s not referenced 1n a case statement, said first rowid
pseudo-column being a root of an expression tree and height
ol said expression tree not being greater than one.

14. The one or more non-transitory computer-readable
storage medium of claim 12, wherein said one or more
rewrite criteria include, when said first rowid pseudo-col-
umn 1s referenced in a case statement, said case statement
being at a root of an expression tree and height of said
expression tree being greater than one.

15. The one or more non-transitory computer-readable
storage medium of claim 12, wherein said one or more
rewrite criteria include said first rowid pseudo-column being,
previously introduced through another query rewrite.

16. The one or more non-transitory computer-readable
storage medium of claim 12, wherein said substitute column
1s a primary key of said first table.

17. The one or more non-transitory computer-readable
storage medium of claim 12, wherein said substitute column
includes a unique value for each tuple 1n said first table.

18. The one or more non-transitory computer-readable
storage medium of claim 12, wherein the functions further

.

10

15

20

25

30

32

comprise rewriting another query to generate said particular
query, wherein said another query does not include said first
rowid pseudo-column, wherein rewriting said another query
includes adding said first rowid pseudo-column to said
particular query.

19. The one or more non-transitory computer-readable
storage medium of claim 18, wherein said another query,
said particular query, and said rewritten query are all seman-
tically equivalent.

20. The one or more non-transitory computer-readable
storage medium of claim 12, wherein the particular query
references a second rowid pseudo-column of a second table,
said second rowid pseudo-column comprising second row-
1ids that each uniquely 1dentifies a row 1n said second table.

21. The one or more non-transitory computer-readable
storage medium of claim 20, wherein generating a rewritten
query further comprises:

determining that one or more removal criteria are satis-

fied:

in response to determining that one or more removal
criteria are safisfied, removing said second rowid
pseudo-column.

22. The one or more non-transitory computer-readable
storage medium of claim 21, wherein said one or more
removal criteria include said second rowid pseudo-column
being dependent on said first rowid pseudo-column and not
being referenced as part of a projection list of a group by
operator.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 11,797,520 B2 Page 1 of 1
APPLICATIONNO. :16/699524

DATED : October 24, 2023
INVENTOR(S) : Fender et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page

bl e e

Column 2, under Other Publications, Line 2, delete “Inuential Benchmar”,” and insert -- Influential
Benchmark”, --, therefor.

In the Specification
In Column 4, Line 2, delete “scan,” and msert -- scan), --, therefor.

In the Claims

In Column 30, Line 38, in Claim 12, delete “equivalent” and insert -- equivalent, --, therefor.

Signed and Sealed this
~ Eleventh Day ot June, 2024

=

Katherine Kelly Vidal
Director of the United States Patent and Trademark Olffice

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

