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mport tripleblind as tb

T
7
5 th.initialize {api_token=tb.config.example}
4 tp.util.set_script _dir_current ()
5

ETE

5 model = th.Asset { "'modei_public_id" ]
/
&
O job = th.create_job {
10 job_name = “secure_MP{_test”
P operation = model,
12 gataset = "test_image . ipy’
13 params — {
14 security” D smpd,
15 ‘data_type” : image”
16 ‘Uata_shape” {224, 224 | 3]
17 }.
18
19 i job.submit () :
20 job.wait_for_compietion { }
2]
22 T jOob.success ¢
23 prediction = job.result.caption
24

FIG. 3
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ON THE SECOND ACCESS POINT WITHOUT THE FIRST ENTITY
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STORING A LIST OF ASSETS ON THE DATA STORAGE DEVI(E,
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SECOND DATA REMAINS STURED ON THE SECOND ACLESS POINT

RECEIVING A SELECTION OF THE SECOND DATA FRUM THE SECORD ~406
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MANAGING, BASED ON THE SELECTION OF THE SECOND DATA
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L RECEIVING A REGISTRATION OF A FIRST ASSET FROM A FIRST | 204
PARTY AND A SECOND ASSET FROM A SECOND PARTY

BASED ON A RECEIVED REQUEST FOR THE SECOND ASSET
FROM THE FIRST PARTY TO OPERATE ON THE FIRSTASSET [ _2U4
FROM THE FIRST PARTY, ENABLING A DISCOVERY
OF THE SECOND ASSET
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RECEIVING A BUNDLE OF DATA ASSCUIATED WiTH AN

OPERATION WHEREIN THE OPERATION 15 ASSOCIATED WITH
FHE FIRST ASSET AND THE SECOND ASSEY

NITIATING THE OPERATION BASED ON THE BUNDLE OF DATA >U8
VERIFYING AN EXISTENCE OF AT LEAST ONE OF THE HRSY 510
ASSET AND THE SECOND ASSET AND CONHREMING THAT -~
PERMISSION EXISTS TO USE THE SECOND ASSET
ONCE THE OPERATION 15 VALIDATED, CONTACTING A FIRST 512

PARTY ACCESS POINT 10 NOTIFY THE HIRST PARTY ACCESS
POINT THAT THE OPERATION CAN BEGIN

CONFIRMING WITH THE SECOND PARTY ACCESS POINTTHAT | 214
THE OPERATION 15 PROPER

cXECUTING THE OPERATION WHEREIN A COMPUTATION 516
REGINS BETWEEN THE FIRST PARTY ACCESS POINT AND THE 7
SECOND PARTY ACCESS POINT
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SYSTEMS AND METHODS FOR PROVIDING
A MULTI-PARTY COMPUTATION SYSTEM
FOR NEURAL NETWORKS

PRIORITY CLAIM

The present application claims priority to U.S. Provisional
Application No. 63/226,135, filed Jul. 27, 2021, which 1s
incorporated herein by reference.

TECHNICAL FIELD

The present disclosure generally relates to a secure multi-
party computation and more specifically to a system in
which a router or computing device 1s configured to enable
a first access point of a first entity and a second access point
of a second enfity to communicate directly with each other
to perform a secure multi-party computation on their joint
data and/or algorithm without each respective party having
access to the other party’s data or algorithm.

BACKGROUND

The rapid evolution of deep learning (DL) methods and
tools have led to significant results across an ever-growing,
number of domains, showcasing that well-trained DL mod-
cls are capable of assisting professionals in their expert
domains, including medicine, speech, vision, and finance.
Such powerful DL models present potential for research,
collaboration, and monetization by providing them for pre-
diction purposes. In contrast, parties with limited data and
resources cannot train their own DL models and, therefore,
could benefit from other parties” trained DL models to run
advanced analysis and predictions on their data.

However, the use of prediction services between parties
that hold sensitive data (e.g., medical and financial institu-
tions) raises several justifiable privacy and intellectual prop-
erty concerns and 1s subject to regulatory policies. Example
policies include the European General Data Protection
Regulation (GDPR), the California Consumer Privacy Act
(CCPA), and even more strict laws that prohibit sharing the
data outside a country’s geographical borders, such as data
residency laws in the Umted Arab Emirates (UAE), Indo-
nesia, Malaysia, and others. Specifically, most existing pre-
diction services either require the model provider to install
their proprietary model on the user’s device or require the
user to upload their input data to the provider’s service. The
former approach reveals the model’s intellectual property
while the latter harms the data privacy.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to describe the manner 1n which the above-recited
and other advantages and features of the disclosure can be
obtained, a more particular description of the principles
briefly described above will be rendered by reference to
specific embodiments thereof which are illustrated in the
appended drawings. Understanding that these drawings
depict only exemplary embodiments of the disclosure and
are not therefore to be considered to be limiting of its scope,
the principles herein are described and explained with
additional specificity and detail through the use of the
accompanying drawings 1n which:

FIG. 1 illustrates a general architecture for a secure
inference service between two parties: one holding the
model while the other holds some private data;
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2

FIG. 2 illustrates various components for a secure infer-
ence service available to data providers and model providers
according to some aspects of this disclosure;

FIG. 3 illustrates example computing code for access the
secure inference service;

FI1G. 4 1llustrates a method embodiment;

FIG. § illustrates another method embodiment; and
FIG. 6 illustrates an example system embodiment.

INTRODUCTION

Certain aspects and embodiments of this disclosure are
provided below. Some of these aspects and embodiments
may be applied independently and some of them may be
applied 1n combination as would be apparent to those of skill
in the art. In the following description, for the purposes of
explanation, specific details are set forth 1n order to provide
a thorough understanding of embodiments of the applica-
tion. However, 1t will be apparent that various embodiments
may be practiced without these specific details. The figures
and description are not intended to be restrictive.

The ensuing description provides example embodiments
only, and 1s not mtended to limit the scope, applicability, or
configuration of the disclosure. Rather, the following
description of the exemplary embodiments will provide
those skilled in the art with an enabling description for
implementing an exemplary embodiment. It should be
understood that various changes may be made 1n the func-
tion and arrangement of elements without departing from the
spirit and scope of the application as set forth 1n the
appended claims.

BRIEF DESCRIPTION

This disclosure addresses the fundamental 1ssue raised
above with respect to privacy problems that arise when
model owners need to share models and data owners need to
share data to be run on the models. The following first
reviews the current state of the cryptography-based methods
and highlights the state-oi-the-art and how the disclosed
concepts differ therefrom. This discussion includes refer-
ence to secure multi-party computation (MPC), homomor-
phic encryption, and trusted execution environments.

In general, secure training of deep learning models has
been attempted. While secure MPC has been used 1n a wide
range of applications from detecting tax fraud in business
transactions to studying the gender pay gap, 1t 1s only
applicable to a relatively small dataset but impractical to
train deep learning models using big data. Moreover, MPC
faces severe scalability challenges despite several attempts
to scale its performance to many parties. Nevertheless,
secure MPC 1s currently being used for the aggregation and
averaging of models 1n decentralized learning approaches,
such as secure averaging in federated learning. Moreover,
secure MPC plays a significant role in most existing pre-
diction systems.

The following discussion omits reference to secure train-
ing protocols since they are not the focus of this disclosure,
and 1nstead focuses on the related secure inference
approaches for neural networks.

DL inference 1s the process of applying a trained model on
new data to make a prediction; for example, running an
X-ray 1image into a tramned X-ray model to classity whether
or not the input X-ray image shows any specific disease. The
output of the model 1s referred to as the prediction result or
simply prediction. In secure DL inference, there are a
number of protocols. The majority of current approaches
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utilize secure MPC to implement their protocols. At a
high-level, these protocols can be categorized into either
2-party compute (2PC) or 3-party compute (3PC). Overall,
2PC protocols are considered more secure than 3PC since 1n
the latter two parties could collude to reveal the other party’s
data. In one aspect, the disclosed protocol can be considered
a 3PC protocol because of the usage of the Beaver triple
generator as disclosed herein. We note as well that while a
3PC protocol 1s mentioned as an example, this should not be
considered a restrictive implementation since the system
could extend the protocol to become a 2PC protocol. The
system design can include several implementation tech-
niques that prevent such colluding. For example, the trusted
party (which can be the Beaver set generator) in the dis-
closed system can be positioned as a slim web server that
includes four functions only which can prevent any outside
parties from running other functionality. The disclosed cur-
rent protocol implementation allows the system to convert it
into a 2PC protocol using the learning with errors (LWE)-
based beaver triple generation as mentioned above.

Homomorphic encryption, and specifically fully homo-
morphic encryption protocols, can be used to preserve the
privacy of the data used 1n an DL task by encrypting the data
with a key while preserving the structure of the underlying
operations. For example, the structure can relate to the
model layers in the case of deep learning. The user data 1s
encrypted on a client machine and then sent to a server
where the actual computations take place. Examples of this
approach include n-Graph, which does not support rectified
linear units (RelLU) 1n the neural network or other compli-
cated activation functions. Another example 1s CryptoNets,
which 1s one of the first works that utilized fully homomor-
phic encryption (FHE) for secure inference, and several
others works that built on it. Another example 1s CHET,
which 1s a compiler and runtime program for FHE neural
network inference that also does not support ReLU and
replaces them with polynomial approximations to efliciently
use FHE {for secure inference.

While FHE can preserve the privacy of the data wvia
encryption, 1t still faces several challenges in the context of
deep learning. For example, the supported operations on the
encrypted data are limited to addition and multiplication,
while other operations such as activation functions are often
approximated using polynomials, which can result 1n sig-
nificant accuracy degradation. Another critical limitation
that prevents FHE from being widely adopted 1s its expen-
sive computations and latency 1ssues, which makes training
medium to large-sized DL models impractical.

Trusted execution environments (or confidential comput-
ing) 1s discussed next. Hardware-based methods for privacy-
preserving inference have gained much attention recently.
Secure enclaves enable confidential computing, which 1s a
process that ensures that different programs running on the
same machine or cloud server cannot access one another’s
memory. This keeps data i use private. Confidential com-
puting relies on the usage of secure enclaves such as Intel
Software Guard Extensions (SGX) and provides crypto-
graphic proof to compute 1n a secure container within an
untrusted machine through memory 1solation and encryp-
tion.

While secure enclaves can aid data privacy 1ssues related
to keeping data private from others with access to the same
physical hardware on a public cloud, they still face several
challenges, including that secure enclaves do not allow
operations on EFuropean data to take place from the US and
the currently available secure enclaves maintain low secure
Processor Reserve Memory (PRM) that 1s not suflicient for
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4

even medium-sized DL models. For example, some of the
Intel SGX maintains 128 MB of secure PRM, of which 90

MB 1s the Enclave Page Cache (EPC), while a ResNet-50v2
(a common DL model architecture) i1s of the size 102 MB.
Overall, most existing confidential computing solutions
could offer better efliciency than secure MPC protocols
since the secured operations take place on the same
machine; however, this efliciency comes at the price of a
weaker threat model that requires trusting the hardware
vendor and providing powerful defenses against secure
enclave attacks.

DL inference attacks are also an 1ssue. A wide range of
inference attacks against deep learning models and the used
test data have emerged. The underlying common factor
among these attacks 1s that they do not require access to the
used model, instead they mainly depend on the output of the
prediction results. Therefore, secure MPC inference cannot
defend against such attacks, since the attack uses the infor-
mation resealed by the protocol. However, to defend against
such attacks, a number of studies have presented several
approaches, one approach being differential privacy {for
training DL models. Such privacy-preserving training meth-
ods are not an alternative to secure inference protocols-
which are used for the mference task-but are complementary
to the traiming process to present an end-to-end privacy-
preserving deep learming.

In order to address the issues raised, the following 1s
provided. A method can include (1) establishing an appli-
cation programming interface for coordinating joint opera-
tions between a first access point associated with a first
entity and a second access point associated with a second
entity related to performing a secure prediction task 1n which
the first access point and the second access point will
perform private computation of first data of the first entity
stored on the first access point and second data of the second
entity stored on the second access point without the first
entity having access to second data of the second entity
having access to the first data, (2) storing a list of assets on
the data storage device, the list of assets representing meta-
data about the first data and the second data, such as the data
type, size, shape, model input shape while the first data
remains stored on the first access point and the second data
remains stored on the second access point, (3) receiving a
selection of the second data from the second entity for use
with the first data from the first entity, (4) managing, based
on the selection of the second data for use with the first data,
an authentication and authorization of communications
between the first access point and the second access point
without storing the first data or the second data on the system
and (5) performing the secure prediction task using the
second data operating on the first data. Note that the data
storage device stores lists about the data and model at access
points 1 and 2, such as their type, location, hosting organi-
zation name, etc.; but never stores any part of their actual
data.

A system can include a processor and a computer-read-
able storage device storing instructions which, when
executed by the processor, cause the processor to perform
operations or steps including one or more of the steps
outlined above.

DETAILED DESCRIPTION

As introduced above, the disclosure 1n this case intro-
duces a new inirastructure that enables parties such as a data
provider and an algorithm provider (e.g., DL model) to be
able to select data for use 1n a secure multi-party computa-
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tion via a new application programming interface and new
user interfaces that enable the process to easily proceed to a
conclusion where the result of an algorithm operating on
data can be reported to the proper party.

To mitigate the privacy risks identified above, a number of 5

studies suggested the usage of cryptography-based tech-
niques such as fully homomorphic encryption (FHE) and
oblivious transier. However, the sigmificant computational
overhead required by FHE and oblivious transfer makes
them not suitable for real-world applications. The disclosed
approach involves a particular approach related to secure
MPC-based inference systems for neural networks.

Secure MPC 1s a cryptographic protocol that enables
individual parties to perform joint computations (e.g., infer-
ence) using their sensitive mputs (e.g., a private model and
private data) without revealing the respective inputs to each
other. For example, organization one, such as a hospital,
could develop a high-performance DL model to detect a
specific disease. Organization two, with new patients” data,
could use organization’s one model to detect the disease 1n
their patients” data by running them through the model (this
task 1s referred to as inference). Generally, to run this
inference task eirther organization one has to share their
model with organization two or organization two has to send
their data to organization one. However, organization one 1s
unwilling to share theirr model due to intellectual property
concerns and organization two cannot share their patients’
data due to privacy and legal concerns. In this scenario,
secure MPC inference allows both organizations to collabo-
rate and generate the inference results without having to
share neither the model nor the data with each other. MPC
was first proposed by Yao, where a constant round protocol
allowed two parties to securely evaluate a function on their
sensitive mputs.

Secure MPC can enable a neural network (NN) inference
to take place between a service provider (also known as a
server), such as orgamization one above, holding a trained
proprietary model, and a client device, holding sensitive data
for inference, such as organization two above, without
revealing neither the model nor the mput data. FIG. 1
illustrates a general architecture 100 for a secure 1nference
service between two parties: one holding the model while
the other holds some private data. A system 100 1s 1llustrated
in FIG. 1 that includes a client device 102 having private
data 104, a server or service provider 112 having a propri-
ctary trained model 114 and a cryptographic protocol 108 for
receiving via encryption 106 the data 104 from the client
device 102 and receiving via encryption 110 the trained
model 114. The cryptographic protocol 108 might utilize the
trained model 114 to process the private data 104 and return
a prediction result to the client device 102.

Such systems start by encrypting 106, 110 both the model
114 and the data 104 and then utilize different techniques,
¢.g., additive secret sharing, to calculate the inference result
over the encrypted inputs and finally reveal the inference
results to the client device 102.

While existing MPC-based inference techniques can pre-
serve the privacy of both the model and mput data, the
majority of the work 1n this domain still faces two major
challenges. The first challenge 1s that they require intensive
computations and communications between the ivolved
parties-leading to impractical execution times, especially for
industry usage. This 1s caused by the underlying implemen-
tation of the MPC cryptographic primitives. For example,
one of the currently most eflicient MPC protocols for NN
inference requires 1.16 seconds to run a single image
inference (of size 32x32 pixels) on a neural network with
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two convolutional layers and two tully-connected layers.
Thus, there remains a pressing demand to develop new MPC
primitives that accelerate NN’s inference without harming
its accuracy. The second major challenge 1s that existing
MPC inference methods are hard to adopt due to the lack of
proper tool support suitable for DL practitioners, who often
lack in-depth cryptograph expertise to implement the nec-
essary algorithms and tools themselves. Majornity of the
existing methods still require their users to be familiar with
the underlying cryptographic techniques to utilize MPC
inference, which puts them out of reach from most DL
practitioners. Thus, MPC-based inference systems for DL
models must provide intuitive and practical tool support that
does not require MPC-specific expertise.

The goal of secure multi-party computation (MPC) 1s to
cnable a group of parties (e.g., data owners) to jointly
compute a function that depends on theiwr private inputs
without having to trust each other. For example, one
approach uses a pre-trained model of one organization to
generate predictions from other organization’s data.

Formally, secure MPC enables n number of parties,
P, - - - P,» €ach holding some input data X,=; ,,; to jointly
compute a function § on their private data in a secure way
such that no party learns other party’s data. There are two
main types of MPC implementations: Arithmetic circuits
and Boolean circuits. Arithmetic circuits are functions con-
s1sting of addition and multiplication operations (also called
gates). Polynomials are a good example of anithmetic cir-
cuits. Square roots and natural logarithms are not considered
arithmetic circuits. Addition gates can be computed at each
party (see client device 102 and server provider 112 1n FIG.
1) without communication between them, while multiplica-
tion gates olten require several rounds ol communications
between the parties. Boolean circuits are a special case of the
arithmetic circuits operating 1n the binary field, consisting of
XOR and AND gates only. XOR 1s faster to compute than
AND gates, which are much slower.

The first MPC protocol proposed by Yao used a constant
round protocol for two parties to securely evaluate a func-
tion on their inputs. However, one of the 1ssues with Yao’s
protocol relates to its operations on the boolean gate level.
While several works tried to address this 1ssue by providing
techniques to convert any arbitrary function to 1ts boolean
representation, these tools fail to convert more complicated
functions, such as those of neural networks (e.g., sigmoid).

To reduce the computational and communication over-
head of such protocols, some recent work focuses on 1mple-
menting the MPC service over two computational phases:
(1) A prepossessing phase that 1s used to compute a majority
part ol the known multiplication operations and/or AND
gates based on the known functionality (e.g., existing
model). (2) An online computation phase, which 1nvolves
the actual computation mvolving both parties’” data (e.g.,
prediction task). Such implementations focus on optimizing
the prepossessing phase to improve the overall computation
elliciency. However, this requires the model to be constant.
Changing or updating the model requires re-runming the
preprocessing phase for both the server 112 and the client
102, which constitutes the majority of the computation.

In addition to the challenges imntroduced by the underlying
heavyweight implementations of MPC, most existing work
1s research-focused and lacks software support. Thus, the
adoption of MPC in DL applications 1s still considerably
limited, leading to a pressing demand for automated MPC
inference services that enable industry-level DL applica-
tions. It 1s also helpiul that these services are usable by DL
researchers and developers without background in cryptog-
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raphy. Some tools have recently evolved to address this
challenge, including the CrypTen library. However, Cryplen
does not support the Windows operating system currently
and 1s limited to DL models developed 1in TensorFlow. In
contrast, the disclosed system or tool exposes an intuitive
API that supports all operating systems and DL models
developed 1n TensorFlow, Keras, and PyTorch.

To appropnately address these various issues, disclosed
herein 1s an eflicient and automated system for neural
network secure MPC 1nference. The system enables orga-
nizations to automatically provide and consume NN predic-
tion services without compromising any of the mmvolved
parties’ privacy. The system achieves two main goals: (1) it
introduces new mnovative cryptographic primitives to opti-
mize and accelerate the MPC 1nference, and (2) 1t provides
an automated, user-friendly, machine learning (ML )-first
application programming interface (API) that caters to DL
practitioners and non-cryptography experts. Furthermore,
the secure MPC approach can technically evaluate any
arbitrary algorithm. The system supports prediction for
linear and logistic regression models, random forest trees,
XGBoost models, private set intersection, secure compari-
son, and neural networks. Other models could be used by the
system as well. It also supports activation functions and
layers that are not supported by other existing inference
protocols, including sigmoid, tan h, recurrent neural net-
works (RNNs), long-short term memory (LSTM), pooling,
and batch normalization.

The main contributions of this disclosure include the new
cilicient algorithms (also referred to as primitives) and
automated tool support for secure MPC for neural network’s
inference. The disclosure provides the underlying innovative
cryptographic primitives that enables the new system, such
as a new comparison primitive that supports both two-party
and three-party computation configuration. Another contri-
bution 1s an industry-scale solftware system with an auto-
mated, ML-first, user-friendly API for remote secure infer-
ence. Another contribution includes a suit of experiments to

evaluate and contrast the disclosed inference protocol to
current related work.

To evaluate the performance of the new system, the
inventors ran several experiments using five different NNs
with different architectures, including convolutional neural
networks (CNNs), fully-connected networks, LeNet5, and
VGG-16 using MNIST and CIFAR-10 datasets. Those of
skill 1n the art will understand and have access to these
various networks and datasets. The results illustrate that the
disclosed approach achieves better results than the current
state-oi-the-art NN inference methods, including MiniONN,
Gazelle, Chameleon, SecureNN, Blaze and Quotient. Again,
those of skill 1n the art will be aware of these current secure
MPC methods and their usage.

The rest of the disclosure 1s organized as follows. There
1s a brief overview of secure MPC and its implementation
methods. Next the disclosure presents the mnovative cryp-
tographic primitives and their protocols which are utilized in
the NN 1nference system. Then, the disclosure explains in
detail the implementation of the NN inference techniques.
The disclosure also provides a security proof of the primi-
tives. Further, the disclosure presents an analysis on the
execution time of the secure MPC inference. A discussion of
primitives 1s next followed by a discussion of FIG. 2 that
presents an overview of the inference software system.
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MPC Primitives

The proposed system includes underlying cryptographic
primitives and next 1s discussed the implementation of each
primitive, and then their round and communication com-

plexity.
Threat Model

As shown 1n FIG. 2, consider a system 200 1n which two
parties who wish to jointly compute a prediction function:
one party 222 holds the model 220 (known as server or
service provider 222) while the other 202 holds the input
data 204 (known as the client or client device). However,
both parties are unwilling or unable to compute the predic-
tion 1n plain text. To enable the disclosed secure MPC, both
parties use the provided system by installing the software
package in their own computing machines (on premise or on
the cloud)—those machines are referred to as access points
and represented by 206 for the client 202 and represented by
218 for the server 222. To use the system aifter installation,
the client positions their private data 204 1nto 1ts access point
206 and the server positions 1ts trained model 220 1nto 1ts
access point 218. In addition, there 1s a third trusted party
224 (also referred to as u,) 1n the setup, which can be a slim
web server responsible for generating the necessary Beaver
triples, as explained below. The client can also be referred to
as u, and the server can be presented by u,. The system 200
operates 1n a semi-honest setting, in which an adversary tries
to learn as much mformation as possible about the other
party’s private data but never deviates from the protocol.

The approach disclosed herein can also enforce an agree-
ment phase before the computation begins, 1n which both
parties decide on the task, mnput data, the results to disclose,
policies around the task, and a payment agreement for
monetization purposes, ii applicable. This agreement can be
presented and agreed to by each party prior to any data or
model being made available to the system.

During a preprocessing stage, participants (1.e., client 202,
u,, and server 222, u,) may jointly generate common seeds.
In one example, a trusted third party (224, u,) does not
generate the common seeds between users. The trusted third
party (224, u,) 1s not allowed to know the common seed
between them. The trusted third party (224, u,) can generate
in one example the common seed between u, and u, and
between u, and u, but not between u, and u,. In this manner,
the trusted web server 224, u,, generates these common
seeds between itsell and the other parties and distributes
them to the mvolved parties 202, 222.

The disclosed cryptography primitives also require an
encoding and a decoding stage in which the imputs to all of
the functions, which are explained in more detail below,
must 1n one example be integers, matrices, or vectors with
integer elements. Thus, the system encodes all inputs,
including the private data 204 and the proprietary trained
model 220 inside the system’s access points 206 and 218
corresponding to the client 202 and the server 222, respec-
tively. To do the encoding, the system multiplies the input by
an encoding factor I and uses the closest integer as the
encoded value. In the following functions, we assume the
inputs are already encoded 1nto integers. Similarly, when the
final result 1s computed using one of the primitives, the value
1s decoded back into a float value using the same encoding
factor 1.

The following explains in detail the underlying imple-
mentation of the proposed cryptographic primitives. For
cach primitive (also referred to as a function or algorithm),
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the disclosure first explains the required input under the
subtitle (Inputs), the expected output of the function under
the subtitle (Outputs), and the algorithm steps. Some of the
algorithms are also followed by a brief discussion for their
security or correctness.
A share generation stage as part of the process can include
a Tunction that exists on each party 206, 218 to generate two
uniformly random shares over the ring of the party’s data, as
follows.
ShareGeneration (a,R):
Inputs: A Pseudo Random Generator PRG(S, n, R), where
S 1s the seed, and the output 1s n random numbers over
R. User 1 (e.g., the client 202 inside the device 206),
denoted u,, provides integer a and user 2 (e.g., the
service provider 222 operating from within access point
218), denoted u,, 1s supposed to receive the additive
share of a. Let seed S* be a common seed and ring R*
be known to both parties u,, u,.
Output: u, receives a, for i={1, 2} such that a,+a,=a

10

15

10

It 1s clear that a=a, +a, and u, doesn’t learn anything from
a as nothing i1s shared with the other party. Hence, the
ShareGeneration algorithm leaks no information.

In an addition stage of the process, the system can use an
addition function. In this stage, the two parties 202, 222 can
add two secret values that they own, a and b, and receive the
addition result without knowing each other’s mput. Similar
to all algorithms disclosed 1n this document, all computa-
tions take place between the parties’ access points directly,
that 1s between access points 206 and 218. The Addition
algorithm 1s explained 1n the following.

ADD (a, b)

Inputs: User u, holds (a,, b,) and user u, holds (a,, b,).

Output: u, receives c, such that ¢, +c,=a+b

The ADD protocol 1s defined as follows:

(1) for i={1, 2}u, computes ¢, =a +b,

To compute a secure multiplication, the system 200 uses
Beaver triplets generated by a secure server 224. The

The ShareGeneration algorithm proceeds in the tollowing ., multiplication process for difterent values, including inte-

steps (protocol):
(1) u,, computes a,=a-PRG S* /1, R*
(2) u, computes a,=PRG S*,1, R*®

gers and matrices, 1s explained next.
First, we detail the integer multiplication Mult(a,b) as
follows.

Inputs: A Pseudo Random Generator PRG (8, n, R), where S is the seed, 5, 1s the
seed between u; and u; , and the output is n random numbers over R. User u; holds
a;, by, S(3 and user u- holds a,, b5, S>3, and u; holds S5 and S,;.

Output: u, receives ¢, such that ¢; + ¢, = ab

Protocol:

(1) u; computes p;, q;, Wy = PRG (813, 3, Zy64)

(2) u, computes p,, 4, = PRG (s,3,3, Z,64)

(3) uz computes p;, q;, Wy = PRG (sy3, 3, Z,64) and p,, q» = PRG (823, 2)
(4) uy computes w, = (p; + p>)(q; + g>) — w; and sends it to u,

(5) u; computes a,,
(6) u, computes a,,, =a, - p, and b,,, = b, — q, and sends a
(7) u; and u, computes a,, =

=a; - p; and b, =b; - q; and sends a

m_l?

b,,, to u,
b,,, to u,

1
ik

8y + 8y and by, = b, + b,

(8) u; computes ¢, =a,q; + b, p, +w; +4a,b,,
(9) u, computes ¢, = a,,q-> + b, p> + Wy

40

45

50

The following illustrates the correctness of the above
multiplication protocol. In other words, the system
proves that ¢ ,+c,==ab 1s mndeed the correct output of
the multiplication.

C1+C>=a,,(q1+q5)+b,, (p+P5)+w +wota, b,

c+cr=a, g+b, p+w+a, b,

It 1s known that by construction w=pq hence:
ci+cy=(a,, +p )b, +q)

and the system knows that a, =a—p and b—q hence:
ci+cy=ab

Next 1s discussed an element-wise multiplication process
ElementWiseMult(a, b):

Inputs: A Pseudo Random Generator PRG (S, n, R), where S 1s the seed and S;; is the
seed between u; and u;, and the output 1s n random numbers over R. User u; holds
two vectors of size m, a; and b, a common seed S,; and user u- holds a,, b, (size m)
and a common seed S-5;. uy holds S5 and S,3, a socket 1s used for communication
between u,, u, and a socket is used for communication between u-, and us;.

Output: u, receives vector c; of size m such that ¢, + ¢, = element wise mult(a, b).

Protocol:

(1) u; computes B, an m by 3 matrix, such that B; = PRG(S;, 3m, Z,64)
(2) u, computes B,, an m by 2 matrix, such that

B, = PRG(S,3, 2m, Z,64))

(3) uy computes the following

B, = PRG(S,3, 2)

Note: B[, 1] stands for the 1,;, column of matrix B,
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-continued

(4) us computes by, =(B; [, 0]+ B, [, OD (B, [, 1]+ B, [1] -

B[, 2] and sends the results to u, and then u., concatenates this column to B,
(5) u,; computes

a,,, =a; —B,[, 0] and

b,,, =b; — B[.1] and sends a,, ,
(6) u, computes

a,,, = a, — B,[,0] and

b,., = b> — B,[.1] and sends a,,, b,,, to u,
(7) u; and u, compute

a,, = a,,, +a,, and

B, = b, + b,

(8) u; computes

c, =a,B.1]+b,B,[.0]+B, [.2] + a,b,,
(9) u, computes

c,=a,B,[,1]+b B,[, 0] + B, [, 2]

b, 10 Uy

Next 1s discussed a matrix multiplication approach Mat-
Mult(a, b).

Inputs: A Pseudo Random Generator PRG(S, n, R), where S 1s the seed, and the output
1s n random numbers over R. User u; holds two matrices a; and b, with size (z, w)
and (w, v) respectively, and a common seed S, and user u, holds a, and b, with size
(z, w) and {w, v) and a common seed S,5. u; holds S5 and S,5, a socket is used for
communication between u,, u, and a socket 1s used for communication between u,
and u;. {a=a, +a,, b=b, + b,)

Output: u, receives matrix c, of size (z, v), such that ¢, + c, = a*b

(* denotes matrix multiplication).

Protocol:

(1) u; computes beaver list bf] = [B,1, B12, B13]: such that their shapes are (z, w)
(w, v) {(z, v) respectively

B,1 = PRG (55, zw, Z,561)

B,2 =PRG(S 5 + 1, wv, Z,64)

B3 =PRG(S 5 + 2, zv, Z,64)

(2) u, computes beaver list b, = [B,1, B22]: such that their shapes are (z, w), (w, v)
respectively

B-51 = PRG(S,5, zw, Z.564)

B,2 = PRG(S,; + 1, wv, Z,64)

(3) u; computes

B ;1 = PRG(S 5, zw, Z,64)

B,2 =PRG(S 5 + 1, wv, Z,64)

B 3 = PRG(S 5 + 2, zv, Z,64)

B,1 = PRG(S,5, zw, Z,64)

B,2 = PRG(S,; + 1, wv, Z,64)

(4) uy computes B,3 =(B;1 + B,1) * (B2 + B2 ) — B3 and sends it to u, and u,
(5) u, computes a,, =a; —B,;l andb,, =b, —B,2 and sends a,, , b, tou,

(6) u, computes a,,, = a, — B,1 and b,,, = b, — B,2 and sends a,, , b, to u,

(7) u, and v, computes a,, = a,,, + a,, and b, =b,,, + b,

() u, computesc, =a,, *B,2+B,1*b, +B3+a,*b,

(9) u, computes c, =a_ *B,2+B,1 *b_+ B,3

In a division stage, 1n order to compute a secure division
operation, the system first needs to compute the reciprocal of
the denominator. The system can use a Newton-Raphson

12

a
Output: #; receives ¢; such that ¢y +¢; = fuﬂ)b—J

50
approach to compute the reciprocal. The following sequence Protacol
. L . rotocol:
gives us an approximation of the reciprocal x: (1) u, computes X, =Xo(2—2,Xo)
(2) u, computes x; =X, (—a,Xq) Type equation here.
X;1=%(2—ax;), where 0<x<2/a (3) for 1<j<n, u, computes X, =Mult (x; ;, 2-Mult(x; .,
35
The protocol may need to guess X,. If the system has no 2)) .
_ b _ Y _ S 0 Y o (4) for 15)<n, u, computes X, ;, =Mult (x, ., -Mult(x; .
information about x, it would be rather difficult to 2))
compute the reciprocal, but 1n some cases, like 1n (5) u, computes ¢ =Mult(a, x,, )
sigmoid and tan h functions, the system can select a " Another stage can include the use of exponential func-
good X, The division function is explained in the tions. In order to calculate exponential functions, the system

following.

Div(a, b)

Inputs: User u, holds a,, b,, X5, n and user u, holds a,, b,, 65

X, N. Where n 1s the desired precision that the system wants
to compute the division with, and f is the encoding factor.

uses the limit approximation. That 1s,
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The system can use the default value 10 for n, so each party
needs to compute

and multiply 1t to itself using the MPC multiplication
protocol n times. The exponent function can be explained in
the following:

Exp (a)

Inputs: User u; holds a,, n, f and user u, holds a,, n, f,
where f i1s the encoding and decoding factor. n is the
desired precision that we want to compute the expo-
nential with.

Output: u; receives c; such that cl+c2=f|_f-exp(a/f)J.

For 1llustrative purposes, assume the original value to
compute the exponential is 0.322 and f=1000, so after
encoding, the system has a=a,+a,=323. It 1s known that

e >"°=1.38126. The system will want to compute c,, ¢, such

that

c1+c2=1381=f fexp(a/P.

Another stage can mnclude a comparison function. One of
the 1nnovative contributions in this disclosure 1s the com-
parison function, which supports both 2-party and 3-party
computation setups. The underlying i1dea of the secure
comparison function 1s to binarize the subtraction shares
over Z,s«+ and then add binary shares over Z, (after the
binarization) using a binary Adder and check the most
significant bit (MSB) of the result. This 1dea could be used

if the MPC modulus 1s a power of 2.

This disclosure can apply both Ripple Carry Adder requir-
ing n rounds of communications for n bit numbers and Brent
Kung Adder requiring log(n) round of communications. The
comparison function can be explained in the following.

Comp(a b mode)
Inputs: User u, holds a;, b, and user u, holds a,, b-.

Output:
if mode = 1: u; receives ¢; such thatc; +c, =a> b
1if mode = O:

(1) if a 2 b: u; receives ¢; such that ¢, + ¢, = a

(2) i b > a: v, receives c; such thatc; +c, =b

Protocol:

(1) u; binanizes (m, = a, — b,) and generate 64 binary values, such that,
My, = My, Mgy My, - - - M
forall 1 €3 < 64, m; € {0,1}

() foralll £ < 64§uf runs ShareGeneration{m,

I; EZE)
(3) u, evaluates the adder circuit (ripple carry) 'DI'] (Brent Kung)
and compute dz-j such that for all 1 £ = 64:
d,, + d,. = d; this sum 1s over Z, (xor) and
j ]
dgsdgs ... d; =m
it is needed to check the 64™ bit of d to learn if a 2 b
(4) u, runs ShareGeneration(d, ” /.-64) and computes:
r; = Add (d,, ds ) — 2Mult(d, . d5 )
In this step the system converts the shares from Z, to Z,64
(5)if mode =1, u; returns ¢; = 1 —r, and u, returns ¢, =1,
(6) 1if mode = 0, they compute:
c, = ADD(Mult{1 — r, a), Mult(r, b)

Table 1 illustrates the round and the communication
complexity of the above defined protocols, including ele-
ment wise multiplication for two vectors of the size v, matrix
multiplication of two matrices of sizes (z, w), (w, v). In the
table, n denotes the desired output precision while 1 denotes
the number of the biats 1n the data.
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TABLE 1

Primitives Round and Communication complexity

Primitive Round Complexity
Share Generation 0 0
Element Wise multiplication 1.5 3vl
Matrix Multiplication 1.5 (zv + 2zw + 2wv)l
Addition 0 0
Division Zn + 1.5 (4n + 3)1
Exponential n+ 0.5 (2n + 1)1

This disclosure next presents innovative implementations
to evaluating neural network’s (NN) inference using secure
MPC based on the cryptographic algorithms introduced
above. The disclosed secure MPC algorithms and system
supports deep learning models built in TensorFlow, Keras,
PyTorch, ONNX, and other similar systems. Moreover, the
disclosed 1nnovation supports a wide range of NN’s layers
and functions that are not supported by other existing work,
including the functions of RNN, LSTM, pooling, sigmoid,
tan h, batch normalization, and others.

A neural network 1s denoted as D and its n layers as {1,
1, ... 1}. Given input X, a NN can be represented as a
function composition of its layers, such as D (x)=1_( ... L,
(x))). To use secure MPC for NN 1nference, 1.e., evaluating
the NN layer by layer, the disclosed system {first converts
each layer either to an arithmetic circuit or to its equivalent
Boolean circuit, based on the layer’s underlying operations.

In particular, to securely compute the inference result, the
automated system first extracts the model’s weights and
other parameters (e.g., the filter si1ze, pool size) as well as the
structure of the model at the service provider side (depicted
in 218 of 222 1n FIG. 2). Then, using the ShareGeneration
function, the system generates two shares of the model’s
welghts W (1.e., W,, W,). Similarly, the tool generates two
shares (1.e., D, D,) from the input data D, located at the
chient 202 access point 206 depicted 1n FIG. 2.

Then, each user exchanges one of their shares with the
other user. For example, the server (assume being user 1, u,)
sends the share Wi to the client (user 2 1n this scenario, u,).
The client also sends one of their shares to the server. Then,
based on the underlying function, the system carries out the
inference one layer at a time. Following 1s discussed the
implementation of different layers and functions.

Fully connected and convolutional layers: Fully-con-
nected layers are computed using the MatMult algorithm
defined above since this layer 1s exactly a matrix multipli-
cation. Similarly, the system can calculate the convolutional
layer as large matrix multiplication by expressing the con-
volution function as matrix multiplication between the con-
volution and kernel parameters. The following figure dem-
onstrates an example for rearranging the convolution
function mnto a matrix multiplication (x and k denote the
input values and the kernel parameters, respectively):

_ . _.Il X2 Xa Xs Fkl \I
X1 X2 X3
ki k> X2 X3 X5 X6 k>
Conv2D|| x4 x5 X6 | — ¢
ks Ky X4 X5 X7 Xg ks
| X7 Xg Xg | I
| X5 X Xg Xg K4 )

The depth of the multiplication 1n this layer 1s one. Thus,
the system can perform all the multiplications 1n parallel to
reduce the number of rounds of communications to 1, even
for batch evaluation, which further improves the efficiency
of the protocol.
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Maximum pool layer: The system uses the compare
function to evaluate the maximum pool layer. To find the
maximum of two inputs a, b, each party needs to run
Compare(a,b,0), which returns the maximum value without
revealing i1t to any party. So, assuming that the comparison
function needs k rounds of communications and the max
pool filter s1ze 1s NXN, the system can perform MaxPool2D
with kl_logz(Nz)_‘ rounds of communications. This means
that the system can perform a 2X2 max pooling in 2 k rounds
of communications.

Batch normalization layer: the system can compute the
batch normalization layer for an mnput X using the formula:

where E(X) is the average, V ar [x] is the variance, ¥ and
are the scale factor and the bias (trainable parameters), and
the system uses €=0.001. Other values and formulas are
contemplated as well. Besides the square root part and the
division, this layer could also be considered as an arithmetic
layer. During preprocessing, the model owner computes the
square root of the variance minus epsilon and sends the share
of the square root to the data owner.

RelLU: For the rectified linear unit, which outputs the
mput directly 1f positive or outputs zero otherwise, the
system can use the comparison function to compute the
output of the RelLU activation function. For each input a,
each party can run Compare (a, 0, 1).

Sigmoid: The system can approximate the exponential
part using the limit approximation approach and then can
compute the sigmoid function directly using the following
equation when the given value is in the range [-3.6f, 3.6]]
where J 1s the encoding factor.

sig{x)=Div(l,14+exp(—x))

If the value of x>3.6J the system outputs 1; if x<—3.6] the
system outputs 0. The above division function 1s our
encrypted division function defined above.

Tan h: Given that the function tan h can be expressed
using sigmoid, the system can utilize the following equation
to calculate tan h, where sigmoid can be calculated as
defined above:

tan A(x)=2(Sigmoid(2x))—1

The long-short term memory (LSTM) layer: Given the
fact the LSTMs are mainly made of sigmoid and tan h
functions, existing solutions rarely provide efficient and
accurate solutions since their underlying MPC 1implementa-
tion of these functions are bad approximations. However, as
disclosed above, the system can provide efficient and accu-
rate implementations for both sigmoid and tan h functions,
and, therefore, the system can accurately evaluate L.STM
layers, as explained 1n the following.

In the disclosed system, 1t can calculate L.STMs as fol-
lows:

i=sigmoid(M x+b, AW, htb, )

§=sigmoid(W,px 4b s+W, b, +b, ;)

g~tan i(W, x+b, +W, h, +b hg)

o=sigmoid(W. X +b, +W,6 h.  +b, )
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Cr=.fr><cr— (H X8,
h.=o,xtan h tan h(c,)

where, h, ¢, X, are the hidden state, cell state, and the
input at time t respectively and h,_; 1s the hidden state
of the layer at time t—1

i, J, g, o, are the input, forget, cell, and output gate

respectively. X 1s the Hadamard product.

The disclosed protocol provides full security and correct-
ness against corruption of the semi-honest users and any
subset of them. And 1t 1s also secure against single malicious
user. Given the perfect security definition, the disclosed

MPC protocol fulfills the perfect security requirements:
P[M=mg|C=co]=[M=m,|C=cy).

In other words, the cipher doesn’t reveal any information
about the message. In this implementation, M 1s the original
data belonging to one of the users (u.;) and C 1s the share sent
to other parties. To meet the perfect security definition, the
system needs to make sure that the share received by other
party does not reveal anything about the original data, using
the ShareGeneration function. Given a cipher, the probabil-
ity of the original data being m, 1s equal to the probability
of the original data being mu.

To meet perfect security, 1t 1s important that the Pseudo
Random Generator samples from the space with size equal
to the size of the original data space. This means the
disclosed protocol 1s secure against any cipher attack.
Regardless of the computational power of the adversary
(even quantum computers), the adversary cannot derive any
information from the cipher (share 1n this case). Intuitively,
it 1s clear that shares are independently generated from the
original data.

Perfect security doesn’t guarantee the correctness and
data privacy 1n the presence of a malicious party. The
disclosed MPC can be a semi-honest protocol which gen-
erates the correct result and data privacy if all parties follow
the protocol. Although, 1f only one of the parties does not
follow the protocol, they cannot compromise the data pri-
vacy but they can corrupt the final result. The service 224
(u;) can corrupt the result by generating wrong beaver
triples and compromise the data privacy by colluding with
either u, or u,. The user u, and u, also can corrupt the result
by not following the steps and wrong inputs and they can
compromise data privacy by colluding with u,.

Next 1s discussed an execufion time analysis. This dis-
closure sheds light on the execution time of the protocol
compared to the current state-of-the-art methods of secure
MPC. An experiment on a laptop with a 2.60 GHz Intel
Core-17 processor and a 16 GB of RAM running Linux
version 19.10 was performed. The experiment included
running an inference using a pre-tramned NN using our
secure MPC inference protocol, which 1s made of the
algorithms disclosed above. The inference protocol was
evaluated on different NN with the following architectures:

(1) Network-A: 3-layer fully-connected network with
Rel.U activations after each layer. Network-A can be
trained on the MNIST dataset.

(2) Network-B: one convolution layer followed by two
fully-connected layers and Rel.U activations. Net-
work-B can be trained on the MNIST dataset.

(3) Network-C: 4-layer network with two convolution

layers and two fully-connected layers with max pooling
and RelLU. Network-C can be trained on the MNIST

dataset.

(4) LeNet: two convolution layers and two fully con-
nected layers. LeNet can be tramned on the MNIST
dataset.
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(5) VGG-16: a well-defined NN with a deep architecture.
VGG-16 can be tramned on the CIFAR-10 dataset.

Table 2 lists the results of the execution time 1n seconds

of the disclosed approach compared to five other methods,
including SecureNN, Gazelle, Min-1ONN, and Chameleon
(with a smaller network of the shape 1 convolution+2

tully-connected layers). Those of skill in the art will under-
stand these other methods.

TABLE 2

Execution time comparison using different secure
MPC methods for an inference task over a LAN

New
Approach System SecureNN Gazzelle MmiONN  Chameleon
Network-A 0.039 0.043 0.09 1.04 1.36
Network-B 0.064 0.076 0.29 1.28 —
Network-C 0.11 0.13 1.16 9.32 —
LeNet 0.21 0.23 0.33 5.74 2.7
VGG-16 2.56 — — — —

The experiment results illustrate that the disclosed
approach 1s relatively ethicient. SecureNN uses a 3-party
setup algorithm for ReLLU and Private Compare so techni-
cally they cannot convert their protocol mto 2-party con-
figuration. The advantage of the disclosed protocol over
SecureNN 1s that the system can switch to 2-party compu-
tation by learning with errors (LWE)-based Beaver Triple
Generation. This disclosure also illustrates some of the
major differences among these methods based on the sup-
ported layers and functions. The lack of support for specific
layers and functions can drastically reduce the model’s
accuracy. Table 3 1illustrates that the presented approach
outperforms the current approaches by supporting additional

layers for NN, including division, sigmoid, batch normal-
1zation, and LLSTM.

TABLE 3

Comparison of the supported layers and operations
among the state-of-the-art secure MPC methods.

New System SecureNN Gazelle MiniONN Chameleon

Convolu- v v v v v

tional
Linear
Rel.U
Max pool
Batch
normali-
zation
Division
LSTM

AN NN
NSNS
IR RN
NSNS
NSNS

NN
N

The following 1s an overview of the disclosed system as
shown 1 FIG. 2. At a high level, the system 200 focuses on
developing an end-to-end solution for privacy-enhancing
technology that enables advanced analysis, training, and
inference for decentralized data over the cloud or any
network. The solution can be characterized as “tripleblind”
because none of the mnvolved parties can “see” others” data,
including the server 222, client device 202, router 214,
Beaver service 224, or other system. The overview of the
system architecture encompasses three major parts: the
router 214, one or more access points 206, 218 and a
software development kit (SDK) 208. In one aspect, the
router 214 1s a centralized system which allows browsing the
metadata of shared assets, coordination, orchestration and
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validation of joint operations between the parties. The router
214 can also provide an audit of operations. The SDK 208
provides 1nstructions and libraries to interface with an
application programming interface 212 as disclosed herein.
An asset can be a digital file, a collection of digital files or
other structure of data or models that belong typically to a
single party. In another example, a data asset can represent
data records, such as database rows, image files, or other
digital representations of information.

FIG. 2 also discloses an optional beaver service 224
which can provide the ability of a third party other than the
first and second parties 202, 222 to pre-compute beaver sets
and cache them 1n anticipation of future requests as part of
the secure multi-party computation.

In one aspect, the “system” may include any individual
node or computing device in the overall system 200. For
example, the router 214 can be characterized as providing a
secure 1nference service for other parties 202, 222. To
provide this service, the router 214 may manage routing
traflic between the parties 202, 222, where such tratflic takes
place between the parties” access points directly 206 and 218
without passing through the router 214. The router 214 also
enforces permissions and provides an audit trail for the
process and result. The router 214 can also manage an
application programming interface 212 that 1s made avail-
able to the parties 202, 222 to discover each others” available
assets 1n order to perform the secure multi-party computa-
tion inference.

The secure inference service occurs between two parties:
the server’s 222 access point 218 that holds a trained model
220 for some prediction task and a client’s 202 access point
206 with some private data 204 that wants to use 1t for
prediction. The model 220 can represent an algorithmic asset
that represents an operation which can be performed on a
data asset or the private data 204. This could be a trained
machine learning model, a procedural program or other
well-known operations. Using the system disclosed herein,
both parties 202, 222 can jointly run the input data 204 in the
model 220 to generate the imnference results without harming
their privacy and all computations generate and are
exchanged between the party access points directly (1.e., 206
and 218). To use this service, each party 202, 222 installs
soltware system as a docker container on their cloud or local
machines. The local machine 1n this case 1s referred to as an
access point 206, 218. Thus, the client has an access point
206 running the SDK 208 and the service provider 222 also
will have an access point 218 running the SDK.

Using the SDK 208, the involved parties 202, 222 can use
the automated APIs 212 to run prediction tasks and audit the
process. The router 214 (only) facilitates the management
and mitiation of the tasks and does not “see” any of the
parties’ data. The data never leaves any parties’ firewalls
210, 216.

An access pomnt (AP) 206, 218 1s a docker container
running software system within a dedicated machine nside
the organization’s (user) inirastructure. Note that the access
points 206, 218 are both with the respective firewalls 210,
216. The APs 206, 218 are used to host the organization’s
assets (1.e., data 204 and algorithms or models 220) and
connect the organization to the ecosystem via the APs 212.
In one example, the AP 206, 218 can be a software com-
ponent such as docker instance or other software module
that runs on the infrastructure of each party.

The AP 206, 218 has a feature relates to 1its ability to
utilize the user’s assets on-site and run the secure inference
services on them without sending the user’s data 204, 220
outside 1ts infrastructure. APs 206, 218 of different parties
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interact with each other directly using secure channel com-
munications, which are managed by the router 214 but take
place between the mvolved parties directly and never pass
through the router 214. The APs 206, 218 can, for example,
use an SQLite database, one type of databases to store and
manage data, to store and manage their status and the
running jobs, and use Flask, a library written in the Python
programming language to manage web frameworks, to
facilitate and manage the communications with the router
214.

The router 214 1s the primary management unit of the
ecosystem, deployed as a cloud service responsible for
managing and coordinating the users, jobs (1.e., secure MPC
inference), communications, permissions, and digital rights.
Permission 1s the aflirmative approval of one party to
another party allowing use of an asset (data or algorithmic)
owned by the first party. The router 214 exposes a set of
public APIs 212 for coordinating the joint operations and a
web user-interface (web-UI) for other management tasks
associated with asset listings. The web UI also allows users
to browse and explore information about the assets they
wish to index for monetary, collaboration, or research pur-
poses. For example, some organizations can list information
about their trained models on the web-UI for discovery by
others and allow other organizations to benefit from them by
running secure inference jobs using such models.

In one aspect, the system uses JSON Web Tokens (JWT)
for the authentication and authorization of the communica-
tions between AP-to-router, SDK-to-AP, and AP-to-AP.
Other security protocols could be used as well. Communi-
cations between the imnvolved parties 202, 222 can be carried
out using the encrypted communication protocol, HI'TPS
and the Secure Socket Layer (SSL) can be used to verily the
authenticity of all parties in the ecosystem and to encrypt the
communications between them.

The router 214 1n one aspect can use the PostgreSQL
database to store, organize, and manage the indexed assets,
permissions, agreements, jobs, and organizations” accounts.
PostgreSQL 1s an open-source relational database manage-
ment system. This type of database at the router 214 1s not
intended to be restrictive, as the system could use any other
type of databases, such as graph databases. Indexed assets
are managed by the owner organization either via a web-UI
or the SDK 208. In one example, an agreement can 1nclude
a codification of rules which can be used to determine
whether a usage of assets should be granted permission.
Metadata about the assets (their name, size, location, etc.)
can be stored 1n the router’s database (not shown), while the
actual raw data of the assets remain at the owner’s AP 206,
218 at all times. The router’s web-UI can be built using
React, an open-source javaScript library. The back-end of
the router 214 can be built using Django, a Python web
framework. To enable the router APIs 212, the Django REST
framework can be used by way of example. Each of these
protocols or approaches 1s described by way of example and
those of skill in the art will understand different ways of
programming and connecting the various components
shown 1n FIG. 2.

The SDK 208 can provide complete scripting control of
the secure inference services, including the secure MPC
inference, for the end-user. The SDK 208 can be 1nstalled on
the end user’s device (e.g., a data scientist’s workstation) to
manage the organization’s assets or operate on other orga-
nizations” assets for training, inferences, or analysis. The
SDK 208 supports Python, R, and provides command-line
utilities to interface with the rest of the ecosystem.
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The use of the SDK 208 and secure inference API 212 for
an end-to-end inference example 1s discussed next. The
following 1s an example of a secure inference workilow.
Assume Hospital A holds a proprietary DL model 220 to
detect pediatric pneumonia in chest X-rays. Hospital A
wishes to enable other parties 202 to use their model for
inference tasks, but do not want to reveal their model 220.
At the same time, Hospital B wants to use an automated
service to diagnose pediatric pneumonia in chest X-rays
since 1t does not have enough data or expertise to build their
own DL model. They also cannot share their patients’ chest
X-rays (1.e., private data 204) with other healthcare parties
that can diagnose pediatric pneumonia due to HIPAA regu-
lations.

Using the system, Hospital A can easily enable usage of
their model 220 with the rest of the world without compro-
mising 1ts privacy or having to send 1t to any party including
the system disclosed herein. Simply, Hospital A downloads
the system and uses the SDK 208 to list their model on the
web-Ul. This process only declares the existence of such a
model to other users and never uploads the model 220 to a
third-party server. The term asset positioning can refer to
providing the notice of the existence of the model and what
it does so that others can select the model 220 to process
some of their data 204. Asset positioning may involve the
model being stored at the server’s AP 218. The service
automatically makes the model 220 consumable by other
parties 202 for secure MPC 1nference.

Now that a pediatric pneumonia model 220 1s available
for inference, Hospital B 202 can learn this information from
a web-Ul and then use the SDK 208 to start a secure
inference job. FIG. 3 illustrates example code 300 to run a
secure MPC prediction task. In this example, the user 1s
indexing other party’s model 220 using 1ts public ID (Line
6), which can be obtained from the web-UI. Lines 9 to 17 of
the example code 300 describe the actual inference job. Line
11 indicates the model 220 to be used for the inference. Line
12 identifies the mnput to the secure inference service. Note
that the protocol supports batches of mput data. Line 13
specifles several example inference parameters, including
the type of security to be used (1.e., secure MPC), the used
data type, and the input data shape. Other parameters can be
used as well and any one or more parameters can be input
as part of the process. A successiul job will return the
inference results with several metadata about the job, as
shown i Line 23. The reference to “tb” 1s an alias for a
tripleblind library used in the SDK 208. Thus, line 1 can
mean to tripleblind as tb or a tripleblind library.

As noted above, the various examples disclosed herein
can take in terms ol what the “system” covers diflerent
approaches. In one aspect, the system may focus on the
router 214 or computing device that 1s used to manage the
process and enable the client device 202 and the server 222,
or the first access point 206 and a second access point 218
to communicate and achieve a secure multi-party computa-
tion. In this regard, an example system includes one or more
processors, a data storage device and a computer-readable
storage device storing instructions which, when executed by
the one or more processors, cause the one or more proces-
sors to perform one or more operations. The operations can
include establishing an application programming interface
for coordinating joint operations between a first access point
206 associated with a first entity 202 and a second access
point 218 associated with a second entity 222 related to
performing a secure prediction task in which the first access
pomnt 206 and the second access point 218 will perform
private computation of first data 204 of the first entity 202
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stored on the first access point 206 and second data 220 of
the second entity 222 stored on the second access point 218
without the first entity 202 having access to second data 220
of the second entity 222 having access to the first data 204.

The operations can further include storing a list of assets’
metadata on the data storage device, the list of assets
representing metadata about the data 204 and the second
data 220 while the first data 204 remains stored on the first
access point 206 and the second data 220 remains stored on
the second access point 218. The metadata can include one
or more of the data type, the data size, the data shape and/or
a model input shape, for example.

FIG. 4 1illustrates an example method 400 from the
standpoint of the router 214. The method can include
establishing an application programming intertace for coor-
dinating joint operations between a first access point 206
associated with a first entity 202 and a second access point
218 associated with a second entity 222 related to perform-
ing a secure prediction task i which the first access point
206 and the second access point 218 will perform private
computation of first data 204 of the first entity 202 stored on
the first access point 206 and second data 220 of the second
entity 222 stored on the second access point 218 without the
first entity 202 having access to second data 220 of the
second entity 222 having access to the first data 204 (402).

The method can turther include storing a list of assets on
the data storage device, the list of assets representing meta-
data about the first data 204 and the second data 220 while
the first data 204 remains stored on the first access point 206
and the second data 220 remains stored on the second access
point 218 (404), recerving a selection of the second data 220
from the second entity 222 for use with the first data 204
from the first entity 202 (406) and managing, based on the
selection of the second data 220 for use with the {first data
204, an authentication and authorization of communications
between the first access point 206 and the second access
point 218 without storing the first data 204 or the second
data 220 on the system 214 (408). The method 400 can also
include performing the secure prediction task using the
second data 220 operating on the first data 204 (410).

The method of operations can further include establishing,
a user-interface that enables the first entity 202 and the
second entity 222 to perform management tasks associated
with their asset listings.

In one aspect, the second data 220 can include an algo-
rithm which 1s available from the second access point 218
for use 1n performing the secure prediction task on the first
data 204 from the first access point 206. The secure predic-
tion task can include 1n one example a secure multi-party
computation. Other computations can also be used as well
and this disclosure 1s not limited to just secure multi-party
computations unless so claimed.

The operations can further include determiming a first
parameter defining an operation to use for the secure pre-
diction task, determining a second parameter defining a
dataset to use for the secure prediction task, determining a
third parameter defiming a type of security to use for the
secure prediction task, determining a fourth parameter defin-
ing a data type for the for the secure prediction task and
determining a fifth parameter defining a data shape for the
for the secure prediction task.

The router 214 can also include other functionality such
as providing an audit trail associated with completing the
secure prediction task.

In one aspect, the first entity 202 can be associated with
a first computer server having a first software development
kit (SDK) 208 enabling access to the system 214 and for
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transterring the first data 204 to the first access point 206.
The second entity 222 can be associated with a second
computer server having a second software development kit
208 enabling access to the system 214 and for transferring
the second data 220 to the second access point 218. Note that
the SDK 208 can also be configured on the respective access
points 206, 218 as well. In another aspect, software com-
ponents associated with the SDK 208 can be spread across
multiple devices or on multiple virtual machines.

In one aspect, the second entity 222 can be enabled to list
the second data 220 for public notice via the second software
development kit 208 configured on the second computer
server 222. In this scenario, the second data 220 1s not
uploaded to the system 214 but only a reference to the
second data 220 1s listed by the system 214 for selection by
another party. The second data 220 can include at least one
computer model.

In one aspect, the first access point 206 1s at a {irst location
associated with the first entity 202 behind its firewall 210
and the second access point 218 1s at a second location
associated with the second entity 222 and behind 1ts firewall
216. The first access point 206 and the second access point
218 communicate with each other directly using a secure
communication channel as managed by the system 214.

The operation of performing the secure prediction task
using the second data 220 operating on the first data 204
turther can include performing a first phase of preprocessing
to compute a majority part of known multiplication opera-
tions and/or AND gates based on an existing model and a
second phase of performing actual computations mvolving
the first data 204 and the second data 220.

In one aspect, the first software development kit 208
enables the first entity to perform one or more of exploring
assets mncluding the second data 220 for use with the first
data 204, starting tasks associated with the first data 204,
viewing results of the secure prediction task, providing
permit and audit requests to the system 214 and positioning
and managing the first data 204 on the first access point 206.

The operation of managing, based on the selection of the
second data 220 for use with the first data 204, the authen-
tication and authorization of communications between the
first access point 206 and the second access point 218
without storing the first data 204 or the second data 220 on
the system 214 and performing the secure prediction task
using the second data 220 operating on the first data 206
turther can include recerving a bundle of data at the system
214 associated with details about performing the secure
prediction task, validating an existence of the first data 204
and the second data 220 for performing the secure prediction
task, confirming with an existing agreement, if any, that a
proposed use of one of the first data 204 and the second data
220 matches parameters within the existing agreement to
yield a confirmation, granting, based on the confirmation,
permission to use one or more of the first data 204 or the
second data 220 and contacting the first access point 205 to
provide a noftification that the secure prediction task can
begin.

The first access point 206 can contact the second access
point 218 to create a temporary connection for the secure
prediction task. The second access point 218 can verily an
identity of the first access point 206 and confirm with the
system 214 that the temporary connection 1s appropriate and
associated with the secure prediction task. When the secure
prediction task 1s approved by the system 214, the first
access poimnt 206 and the second access point 218 can
perform the secure prediction task.
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In another aspect, the secure prediction task can include
a first portion of a first one-way encrypted version of the first
data 204 1s provided and a second portion of a second
one-way encrypted version of the second data 220 1s pro-
vided 1n a jomntly-proceeded computation in which each of
the first access point 206 and the second access point 218
provide a respective portion ol computational resources and
exchange intermediate one-way encrypted state data. As the
secure prediction task ends with a result being receirved and
stored on the first access point 206 based on a completion of
the secure prediction task using the first data 204 and the
second data 220.

The first entity 202 may have requested the secure pre-
diction task using the second data 220 as an algorithm for
processing the first data 204 on the first access point 206. In
other words, data owners may seek and select the algorithm
or model they desire to operate on their data to receive a
prediction result.

In one aspect, the secure multi-party computation
(SMPC) prediction task utilizes a Beaver service 224 shown
in FI1G. 2 that provides and caches pre-computed Beaver sets
of data for use 1 connection with the secure prediction task.
In a secure 3-party computation, one of the parties 224 can
provide a service utilized by the other two parties 202, 222
in the SMPC operation. The disclosure refers to this as a
“Beaver service” due to the information provided by the
service. A Beaver Set or Beaver Triple 1s a group of numbers
(typically three but other values can apply as well) with
special mathematical properties relating them. Typically, the
process ol calculating these values as part of the SMPC
operation 1s computationally expensive because it 1s a pro-
cess where an operation 1s performed by more than one
party. The beaver service 224 can optionally be applied and
act as a cache of computational power and randomness.
Utilizing the beaver service 224 allows the optimization or
improvement of SMPC computations between the multiple
parties 202, 222. The generation of the required beaver sets
1s delegated to the beaver service 224. The service 224 can
pre-compute beaver sets and cache them 1n anticipation of
future requests.

One aspect of this disclosure can be operations from the
standpoint of the beaver service 224 1n the context of
providing secure multi-party computation via the API 212.
The API 212 can be configured to enable the beaver service
224 to also communicate data necessary for the computa-
tion, such as the beaver set, 1n connection with the other data
provided by the two parties 202, 222 as part of the compu-
tation.

The secure prediction task can utilize one or more
approaches. For example, a first private comparison
approach can be deployed which compares a first number
and a second number 1 which a difference of the first
number and the second number 1s computed and binarized to
yield a binarized result and a most significant bit of the
binarized result determine whether the first number 1s less
than or equal to the second number. The 1dea 1s to compute
the difference of two numbers and binarize the difference
and add the results using a Private Adder to check the last
significant bit to see 1f the result 1s positive or negative. In
a multi-party Computatlon approach based on the additive
share system, comparing two numbers a, b 1s the most
challenging primitive to build. One solution 1s to compute
the difference of two numbers a, b and then check 1t it 1s
greater or smaller than zero by binarizing the result and
checking the last significant bit.

In one example, suppose the system supports 3-bit inte-
gers. It can be assumed that
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-3=101

-2=110

-1=111

0=000

1=001

2=010

3=011

4=100

If the system wants to compare the numbers 1 and 4, it
computes 1-4=-3 and checks the last significant bit of -3
which 1s 1. Based on this check, the system learns that 1<4.
On the other hand, to compare 4, 1 the difference 1s 4—1=3
whose most significant bit equals O. In this case, the system
learns that 4>1. After subtracting numbers, the system needs
to add two shares using a Private Adder to check the MSB
(most significant bit).

Another approach that can be used 1s a second private
comparison approach in which the first number and the
second number having two binary shares that are added to
check the most significant bit using a Brent Kung circuit
consisting of only AND and XOR gates. In multi-party
computation protocol when the system 1s computing private
comparison, 1n some cases it needs to add two binary shares
privately to check the most significant bit. One of the
solutions for completing this operation 1s to use the Brent
Kung circuit to add shares privately. Secure Multi party
computation only supports addition and multiplication gates
which are equivalent to XOR and AND gates. The Brent
Kung circuit consists of only AND and XOR gates so the
system can evaluate 1t using secure multi party computation.
There are advantages to using this approach. To add two
n-bit numbers, the Brent Kung circuit requires log n+l
rounds of communications. On the other hand, the 1imple-
mentation of Brent Kung adder can be much more compli-
cated than other adders such as the ripple carry adder. The
reason that this protocol could be helptul 1s that the depth of
the AND gates 1s O(log n) so 1t reduces the number of rounds
of communication.

The following 1s an example of the Brent Kung Adder
Implementation:

Considering that A=a,_a -1 . .

be n-bit binary numbers.

With sum being S=s__, s, ... s; and carry generated 1n

cach stage C=c, . .. c, will be carry-in to next stages.

For RCA, ¢,=0, and i the sum bit and carry bit generated

are ¢;=g, V (a,/\c,_;) \/(b,/\c,_,),

s=aPbDc, , fori=1,2,...n

s, . 1=C, respectively.

It 1s possible to transform the above ripple carry into

carry-lookahead (CLA) by defining the carry bit 1 as
Co=0,

.a, and B=b_b, -1 b, both

c,=(a./\b)\/(p,/\c;_,) where

g =a/\b,and p,=a,Pb, fori=1, 2, . . . n. p and g are known
as carry propagate and carry generate. This corresponds
to the fact that the carry cis either generated by a1 and
b1 or propagated from the previous carry c,_;.

Brent and Kung further transformed the carry generation

and propagation by defining an operator o as:

(a,b)olasbs)=(a\/(b/\ay),b,/\b5).

They also defined a function (G,, P, )=(g,, p,) for 1=1;

otherwise (g1, p1)o(Gi-1, Pi-1) for1=2, 3, . . . n. It can be
derived that G, 1n the

function 1s equivalent to c,. Also (G,,
recursively written as =(g_, p,.)o (g _,D,_{)O ..

p1)-

P, ) can be non-
: O(glj
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Taking advantage of the associativity of operator o(G,,
P ) can be computed 1n a tree-like manner using a tree
structure.

Another approach 1s to use a third private comparison
approach 1 which the first number and the second number
having two binary shares that are added to check the most
significant bit using a ripple carry circuit consisting of only
AND and XOR gates and which at each step a carry 1s
computed from a previous step and added to a current sum.

In multi-party computation protocol when the system 1s
computing private comparison, 1t often needs to add two
binary shares privately to check the most significant bit. One
ol the solutions 1s to use the Ripple Carry adder circuit to add
shares privately. Secure multi-party computation only sup-
ports addition and multiplication gates which are equivalent
to XOR and AND gates. The Ripple Carry adder circuit
consists of only AND and XOR gates so the system can
evaluate 1t using secure mult1 party computation. To add two
n-bit numbers, the Ripple Carry adder circuit requires n
rounds of communications on the other hand the implemen-
tation of Ripple Carry adder circuit 1s much easier than other
adders, so there 1s a trade-ofl between the implementation
and the number of rounds of communication.

To add two numbers at each step, the system can compute
the carry from the last step and add it to the current sum. For
example, to compute a=a, . .. a,a,, and b=, . . . b,b, carry
of step m could be computed as follows: carry(m)=carry
(m-1) XOR [[carry(m—1) XOR a(m-1)] AND [carry(m-1)
XOR b(m-1)]]. This 1s similar to the traditional addition.
For example, when adding 3123 and 999, the process starts
by adding 943 to arrive at 12. Since 12 1s greater than 10, the
process 1s to carry the “1” and add it to the next digit
addition. This 1s a similar process but in the binary space.

Yet another secure third-party computation approach
includes wherein a third party 1s added such that the first
entity 202 or the second entity 222 colludes with the third
party such that the third party generates at least one beaver
triple randomly as part of the secure prediction task. The
main 1dea of 2-party computation 1s to enable two parties to
evaluate a function on their mputs privately such that no
party sees the other party’s private data as outlined above. In
one example implementation, a 3-party computation entity
can be adding as a new party called a “trusted party” which
can be a Beaver set service 224 shown 1n FIG. 2 to facilitate
and accelerate the computational protocols. Although 1t’s
called “trusted party”, there 1s no need to actually trust this
party as they cannot act maliciously and learn any private
data.

There 1s a threat model that this approach can address. The
only security degradation that might be experienced can
occur by introducing a ““trusted party” 224 that might
collude with one of the participants. In that case, the trusted
party and the participant colluding with trusted party can
jointly reveal the private data of other parties.

In one application, the system can use the “Trusted Party™
224 to generate beaver triplets (or other data) randomly and
then distribute them between participants. In another appli-
cation, the system 200 uses the trusted party 224 to accel-
crate some of the protocols (e.g., using private compare).
There are advantages to this approach as long as the party
224 1s truly ““trusted.” The system can a substantial perfor-
mance boost (e.g., 120x 1n some cases). In a 2-party com-
putation setup, 1t takes about two minutes to evaluate a
4-layer convolutional neural network. However, using
3-party computation, the system 200 can reduce it to one
second by introducing the trusted party 224 and let them
generate the beaver triples.
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In one aspect, the secure third-party computation
approach further addresses the potential problem of the
third-party 224 colluding with the first entity 202 to jointly
reveal the first data 204 to the second enfity 222. Such
potential collusion 1s part of a security model to protect
against. The parties will know using the approach disclosed
herein that 11 the other party colludes with the third party, the
third party 1s able to reveal the private data. To address this
potential collusion, the private comparison further can uti-
lize a private adder to add two shares to check the most
significant bit.

In yet another approach, the system can use a pseudo
random number generator approach i which a trusted third
party 224 and the first entity 202 and/or the second entity
222 select a common seed during a preprocessing stage of
the secure prediction task and a pseudo random number
generator 15 used to reduce a communication size during a
beaver triple generation phase. In one example, the pseudo
random number generator can be part of the third party 224
or a separate entity. The 1dea 1n this scenario 1s to incorporate
the pseudo random generator to reduce the communication
s1ize during the beaver triple generation. Beaver triples are
used as noted 1n several examples above to compute the
multiplication gate 1n secure multi-party computation. One
solution 1s to let the trusted party 224 generate two sets of
beaver triples and distribute them between the participants
202, 222. If the system 200 wants to compute m multipli-
cations, the trusted party 224 will generate two m-x-3
matrices and send them to the participants 202, 222 so that
there will be 6 m integers communications.

A new or another approach 1s to let the trusted party
(which can be called u,) 224 and the other two parties (u,
and u,) 202, 222 select a common seed during the prepro-
cessing stage mentioned above. The common seed can be
such that u, 224 and u, 202 know S, ; and u, 224 and u, 222
know S,;. S,; 1s not known by u, 202 and S, ; 1s not known
by u, 222. In this scenario, u, 222 generates B, an m-x-3
matrix and uses 1t as the beaver triples using S,;. Then u,
202 generates B, a m-x-2 matrix using S,,. Next, u, 224
generates B, using S,, and generates B, using S,, and

computes the third column of B, as follow and sends it u,
202:

B1[,2]=52[,2]-(B2[,0]+B1[,0D(B2[, 1 [+B1[,1])

An advantage of this approach 1s that it reduces the
communication to m from 6 m, which 1s six times smaller.

FIG. 3§ illustrates another method 500 disclosed herein
from the standpoint of the router 214. The method 500 can
include one or more steps 1n any order mcluding receiving
a registration of a first asset from a first party and a second
asset from a second party (502). The method can further
include based on a received request for the second asset from
the first party to operate on the first asset from the first party,
enabling a discovery of the second asset (504), receiving a
bundle of data associated with an operation wherein the
operation 1s associated with the first asset and the second
asset (506), mitiating the operation based on the bundle of
data (508), veritying an existence of at least one of the first
asset and the second asset and confirming that permission
exists to use the second asset (510).

The method can further include, once the operation 1s
validated, contacting a first party access point 206 to notify
the first party access point 206 that the operation can begin
(512). The first party access pomnt 206 will contact the
second party access point 218 to create a temporary con-
nection for the operation. The second party access point 218
will verity the i1dentity of the first party and the operation
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with the router 214 before accepting the connection. In this
regard, the method can include confirming with the second
party access point 218 that the operation 1s proper (514) and
executing the operation wherein a computation begins
between the first party access point 206 and the second party
access point 218 (516).

When the computation involves a secure multi-party
computation, portions of a one-way encrypted version of
both the data (first asset 206) and the algorithm (second asset
218) are exchanged. Then the computation proceeds jointly,
with each of the access points 206, 218 providing some of
the computational resources and exchanging intermediate
one-way encrypted state data as the algorithm progresses.
Once the algorithm completes, the result emerges un-en-
crypted and 1s stored as a new asset behind the first party
access point 206.

In one aspect, each party can independently register the
existence of respective assets which exist behind their
respective access point 206, 218. This registration creates an
entry in the router 214, creating a unique asset 1D from
which the owner of the respective asset and location of the
respective asset can be determined.

In one aspect, the router 214 provides both graphical and
programmatic mechanisms for parties to find and obtain
information about registered assets. A umique 1dentifier for
cach asset 1s thus available. The exact content of the asset
remains hidden behind the respective access point 206, 218.
Asset owners can expose meta information such as a name,
a textual description, various types of summaries (such as an
Exploratory Data Analysis) and/or a pseudo-sample of the
respective asset 204, 220.

In one aspect, the router 214 can verily the existence of
the assets 204, 210, then will confirm that permission exists
to use them. Any existing agreements between the parties
will first be checked to see 11 the proposed use matches the
agreement parameters. For example, an agreement may
provide that party A will allow party B to perform the
specific algorithm 220 on the specific data asset 204 at any
time. The agreement can also include limitations such as
cost, timing, volume of data, how long the asset 220 can be
used, how many times an asset can be used, and so forth. IT
a match 1s found, permission i1s granted. Until Permission 1s
granted for all assets involved in the operation, the operation
will not begin execution.

If no matching agreement 1s found for any of the assets,
the owner of the asset 1s notified of a request to utilize their
asset 1n the operation. The owning party can accept or reject
the usage request.

This disclosure presents a novel cryptographic protocol
tor secure MPC. In particular, the approach introduces a set
ol mnovative cryptographic primitives based on arithmetic
and boolean MPC that operates on any arbitrary function.
This disclosure explains how the system 200 can aid neural
network inference and achieve two significant milestones:
(1) outperform current state-oi-the-art MPC inference pro-
tocols and (2) provide an automated, user-friendly system
with a set of APIs that allow providing and consuming DL
models for industry-scale applications.

FIG. 6 illustrates example computer device that can be
used in connection with any of the systems disclosed herein.
In this example, FIG. 6 illustrates a computing system 600
including components in electrical communication with
cach other using a connection 603, such as a bus. System
600 includes a processing unit (CPU or processor) 610 and
a system connection 603 that couples various system com-
ponents including the system memory 615, such as read only
memory (ROM) 620 and random-access memory (RAM)
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625, to the processor 610. The system 600 can include a
cache of high-speed memory connected directly with, 1n
close proximity to, or integrated as part of the processor 610.
The system 600 can copy data from the memory 615 and/or
the storage device 630 to the cache 612 for quick access by
the processor 610. In this way, the cache can provide a
performance boost that avoids processor 610 delays while
waiting for data. These and other modules can control or be
configured to control the processor 610 to perform various
actions. Other system memory 615 may be available for use
as well. The memory 615 can include multiple different
types of memory with different performance characteristics.
The processor 610 can include any general-purpose proces-
sor and a hardware or software service or module, such as
service (module) 1 632, service (module) 2 634, and service
(module) 3 636 stored in storage device 630, configured to
control the processor 610 as well as a special-purpose
processor where software mstructions are icorporated nto
the actual processor design. The processor 610 may be a
completely self-contained computing system, containing
multiple cores or processors, a bus, memory controller,
cache, etc. A multi-core processor may be symmetric or
asymmetric.

To enable user interaction with the device 600, an 1nput
device 645 can represent any number of 1nput mechanisms,
such as a microphone for speech, a touch-sensitive screen
for gesture or graphical input, keyboard, mouse, motion
input, speech and so forth. An output device 635 can also be
one or more of a number of output mechanisms known to
those of skill in the art. In some 1nstances, multimodal
systems can enable a user to provide multiple types of input
to communicate with the device 600. The communications
interface 640 can generally govern and manage the user
input and system output. There 1s no restriction on operating
on any particular hardware arrangement and therefore the
basic features here may easily be substituted for improved
hardware or firmware arrangements as they are developed.

Storage device 630 1s a non-volatile memory and can be
a hard disk or other types of computer readable media which
can store data that are accessible by a computer, such as
magnetic cassettes, tlash memory cards, solid state memory
devices, digital versatile disks, cartridges, random access
memories (RAMs) 623, read only memory (ROM) 620, and
hybrids thereof.

The storage device 630 can include services or modules
632, 634, 636 for controlling the processor 610. Other
hardware or soitware modules are contemplated. The stor-
age device 630 can be connected to the system connection
605. In one aspect, a hardware module that performs a
particular function can include the software component
stored 1n a computer-readable medium in connection with
the necessary hardware components, such as the processor
610, connection 603, output device 635, and so forth, to
carry out the function.

In some cases, such a computing device or apparatus may
include a processor, microprocessor, microcomputer, or
other component of a device that 1s configured to carry out
the steps of the methods disclosed above. In some examples,
such computing device or apparatus may include one or
more antennas for sending and recerving RF signals. In some
examples, such computing device or apparatus may include
an antenna and a modem for sending, receiving, modulating,
and demodulating RF signals, as previously described.

The components of the computing device can be 1mple-
mented 1 circuitry. For example, the components can
include and/or can be implemented using electronic circuits
or other electronic hardware, which can include one or more
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programmable electronic circuits (e.g., miCroprocessors,
graphics processing units (GPUs), digital signal processors
(DSPs), central processing umts (CPUs), and/or other suit-
able electronic circuits), and/or can include and/or be 1mple-
mented using computer software, firmware, or any combi-
nation thereof, to perform the various operations described
herein. The computing device may further include a display
(as an example of the output device or n addition to the
output device), a network interface configured to commu-
nicate and/or receive the data, any combination thereof,
and/or other component(s). The network interface may be
configured to communicate and/or receive Internet Protocol
(IP) based data or other type of data.

The methods discussed above are illustrated as a logical
flow diagram, the operations of which represent a sequence
ol operations that can be implemented in hardware, com-
puter instructions, or a combination thereof. In the context of
computer instructions, the operations represent computer-
executable instructions stored on one or more computer-
readable storage media that, when executed by one or more
processors, perform the recited operations. Generally, com-
puter-executable instructions include routines, programs,
objects, components, data structures, and the like that per-
form particular functions or implement particular data types.
The order in which the operations are described 1s not
intended to be construed as a limitation, and any number of
the described operations can be combined i1n any order
and/or 1n parallel to implement the processes.

Additionally, the methods disclosed herein may be per-
formed under the control of one or more computer systems
configured with executable instructions and may be 1mple-
mented as code (e.g., executable instructions, one or more
computer programs, or one or more applications) executing
collectively on one or more processors, by hardware, or
combinations thereof. As noted above, the code may be
stored on a computer-readable or machine-readable storage
medium, for example, in the form of a computer program
including a plurality of instructions executable by one or
more processors. The computer-readable or machine-read-
able storage medium may be non-transitory.

The term “computer-readable medium” mcludes, but 1s
not limited to, portable or non-portable storage devices,
optical storage devices, and various other mediums capable
of storing, containing, or carrying instruction(s) and/or data.
A computer-readable medium may include a non-transitory
medium in which data can be stored and that does not
include carrier waves and/or transitory electronic signals
propagating wirelessly or over wired connections. Examples
ol a non-transitory medium may include, but are not limited
to, a magnetic disk or tape, optical storage media such as
compact disk (CD) or digital versatile disk (DVD), flash
memory, memory or memory devices. A computer-readable
medium may have stored thereon code and/or machine-
executable instructions that may represent a procedure, a
function, a subprogram, a program, a routine, a subroutine,
a module, a software package, a class, or any combination
ol mstructions, data structures, or program statements. A
code segment may be coupled to another code segment or a
hardware circuit by passing and/or receiving information,
data, arguments, parameters, or memory contents. Informa-
tion, arguments, parameters, data, etc. may be passed, for-
warded, or transmitted via any suitable means including
memory sharing, message passing, token passing, network
transmission, or the like.

In some embodiments the computer-readable storage
devices, mediums, and memories can include a cable or
wireless signal containing a bit stream and the like. How-
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ever, when mentioned, non-transitory computer-readable
storage media expressly exclude media such as energy,
carrier signals, electromagnetic waves, and signals per se.

Specific details are provided 1n the description above to
provide a thorough understanding of the embodiments and
examples provided herein. However, 1t will be understood
by one of ordinary skill in the art that the embodiments may
be practiced without these specific details. For clarity of
explanation, 1n some instances the present technology may
be presented as including individual functional blocks
including devices, device components, steps or routines in a
method embodied 1n software, or combinations of hardware
and software. Additional components may be used other
than those shown 1n the figures and/or described herein. For
example, circuits, systems, networks, processes, and other
components may be shown as components in block diagram
form 1n order not to obscure the embodiments 1n unneces-
sary detail. In other instances, well-known circuits, pro-
cesses, algorithms, structures, and techniques may be shown
without unnecessary detail in order to avoid obscuring the
embodiments.

Individual embodiments may be described above as a
process or method which 1s depicted as a tflowchart, a flow
diagram, a data flow diagram, a structure diagram, or a block
diagram. Although a flowchart may describe the operations
as a sequential process, many of the operations can be
performed 1n parallel or concurrently. In addition, the order
of the operations may be re-arranged. A process 1s termi-
nated when its operations are completed, but can have
additional steps not included 1n a figure. A process may
correspond to a method, a function, a procedure, a subrou-
tine, a subprogram, etc. When a process corresponds to a
function, 1ts termination can correspond to a return of the
function to the calling function or the main function.

Processes and methods according to the above-described
examples can be implemented using computer-executable
instructions that are stored or otherwise available from
computer-readable media. Such instructions can include, for
example, instructions and data which cause or otherwise
configure a general purpose computer, special purpose coms-
puter, or a processing device to perform a certain function or
group ol Tunctions. Portions of computer resources used can
be accessible over a network. The computer executable
istructions may be, for example, binaries, intermediate
format 1nstructions such as assembly language, firmware,
source code. Examples of computer-readable media that
may be used to store instructions, information used, and/or
information created during methods according to described
examples include magnetic or optical disks, flash memory,
USB devices provided with non-volatile memory, net-
worked storage devices, and so on.

Devices implementing processes and methods according,
to these disclosures can include hardware, software, firm-
ware, middleware, microcode, hardware description lan-
guages, or any combination thereof, and can take any of a
variety ol form factors. When implemented in software,
firmware, middleware, or microcode, the program code or
code segments to perform the necessary tasks (e.g., a com-
puter-program product) may be stored 1n a computer-read-
able or machine-readable medium. A processor(s) may per-
form the necessary tasks. Typical examples of form factors
include laptops, smart phones, mobile phones, tablet devices
or other small form factor personal computers, personal
digital assistants, rackmount devices, standalone devices,
and so on. Functionality described herein also can be
embodied 1n peripherals or add-in cards. Such functionality
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can also be implemented on a circuit board among different
chips or different processes executing 1n a single device, by
way ol further example.

The 1nstructions, media for conveying such instructions,
computing resources for executing them, and other struc-
tures for supporting such computing resources are example
means for providing the functions described 1n the disclo-
sure.

In the foregoing description, aspects of the application are
described with reference to specific embodiments thereof,
but those skilled 1n the art will recognize that the application
1s not limited thereto. Thus, while 1llustrative embodiments
of the application have been described 1n detail herein, 1t 1s
to be understood that the inventive concepts may be other-
wise variously embodied and employed, and that the
appended claims are itended to be construed to include
such variations, except as limited by the prior art. Various
features and aspects of the above-described application may
be used individually or jointly. Further, embodiments can be
utilized 1n any number of environments and applications
beyond those described herein without departing from the
broader spirit and scope of the specification. The specifica-
tion and drawings are, accordingly, to be regarded as illus-
trative rather than restrictive. For the purposes of illustra-
tion, methods were described 1n a particular order. It should
be appreciated that 1n alternate embodiments, the methods
may be performed 1n a different order than that described.

One of ordinary skill will appreciate that the less than
(“<””) and greater than (*>") symbols or terminology used
herein can be replaced with less than or equal to (<) and
greater than or equal to (*2”") symbols, respectively, without
departing from the scope of this description.

Where components are described as being “configured to™
perform certain operations, such configuration can be
accomplished, for example, by designing electronic circuits
or other hardware to perform the operation, by programming
programmable electronic circuits (e.g., microprocessors, or
other suitable electronic circuits) to perform the operation,
or any combination thereof.

The phrase “coupled to” refers to any component that 1s
physically connected to another component either directly or
indirectly, and/or any component that 1s 1n communication
with another component (e.g., connected to the other com-
ponent over a wired or wireless connection, and/or other
suitable communication interface) either directly or indi-
rectly.

Claim language or other language reciting “at least one
of” a set and/or “one or more” of a set indicates that one
member of the set or multiple members of the set (1n any
combination) satisiy the claim. For example, claim language
reciting “at least one of A and B” or “at least one of A or B”
means A, B, or A and B. In another example, claim language
reciting “at least one of A, B, and C” or “at least one of A,
B, or C” means A, B, C, or A and B, or A and C, or B and
C, or A and B and C. The language “at least one of” a set
and/or “one or more” of a set does not limit the set to the
items listed 1n the set. For example, claim language reciting
“at least one of A and B or ““at least one of A or B” can mean
A, B, or A and B, and can additionally include items not
listed 1n the set of A and B.

Although a variety of examples and other information was
used to explain aspects within the scope of the appended
claims, no limitation of the claims should be implied based
on particular features or arrangements 1n such examples, as
one of ordinary skill would be able to use these examples to
derive a wide variety of implementations. Further and
although some subject matter may have been described 1n
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language specific to examples of structural features and/or
method steps, 1t 1s to be understood that the subject matter
defined 1n the appended claims 1s not necessarily limited to
these described features or acts. For example, such func-
tionality can be distributed differently or performed in
components other than those i1dentified herein. Rather, the
described features and steps are disclosed as examples of
components of systems and methods within the scope of the
appended claims.

Claim language reciting “at least one of” a set indicates
that one member of the set or multiple members of the set
satisly the claim. For example, claim language reciting “at
least one of A and B” means A, B, or A and B.

We claim:

1. A system comprising:

One Or mMore pProcessors;

a data storage device; and

a computer-readable storage device storing instructions

which, when executed by the one or more processors,

cause the one or more processors to perform operations

comprising:

establishing an application programming interface for
coordinating joint operations between a first access
point associated with a first entity and a second
access point associated with a second entity, wherein
the joimnt operations are related to performing a
secure prediction task in which the first access point
and the second access point will perform private
computation of first data of the first entity stored on
the first access point and second data of the second
entity stored on the second access point without the
first entity having access to second data or the second
entity having access to the first data;

storing a list of assets on the data storage device, the list
ol assets representing metadata about the first data
and the second data while the first data remains
stored on the first access point and the second data
remains stored on the second access point;

receiving a selection of the second data from the second
entity for use with the first data from the first entity;

managing, based on the selection of the second data for
use with the first data, an authentication and autho-
rization ol communications between the first access
point and the second access point without storing the
first data or the second data on the system; and

performing the secure prediction task using the second
data operating on the first data.

2. The system of claim 1, wherein the computer-readable
storage device stores additional instructions which, when
executed by the one or more processors, cause the one or
more processors to perform operations further comprising;:

establishing a user-interface that enables the first entity

and the second entity to perform management tasks
associated with asset listings.

3. The system of claim 1, wherein the computer-readable
storage device stores additional instructions which, when
executed by the one or more processors, cause the one or
more processors to perform operations further comprising;:

recerving the selection of the second data from the second

entity as a selection of a model for use with the first data
from the first entity.

4. The system of claim 1, wherein the second data
comprises an algorithm which 1s available from the second
access point for use 1n performing the secure prediction task
on the first data from the first access point.

5. The system of claim 1, wherein the secure prediction
task comprises secure multi- party computation.




US 11,792,646 B2

33

6. The system of claim 1, wherein the computer-readable
storage device stores additional instructions which, when
executed by the one or more processors, cause the one or
more processors to perform operations further comprising
one or more of:

determining a {irst parameter defining an operation to use

for the secure prediction task;

determining a second parameter defining a dataset to use

for the secure prediction task;

determining a third parameter defining a type of security

to use for the secure prediction task;

determining a fourth parameter defining a data type for

the for the secure prediction task; and

determining a fifth parameter defining a data shape for the

for the secure prediction task.

7. The system of claim 1, wherein the computer-readable
storage device stores additional instructions which, when
executed by the one or more processors, cause the one or
more processors to perform operations further comprising,
one or more of:

providing an audit trail associated with completing the

secure prediction task.

8. The system of claam 1, wherein the first entity 1s
associated with a first computer server having a first soit-
ware development kit enabling access to the system and for
transterring the first data to the first access point and wherein
the second entity 1s associated with a second computer
server having a second software development kit enabling
access to the system and for transferring the second data to
the second access point.

9. The system of claim 8, wherein the second entity 1s
ecnabled to list the second data for public notice via the
second software development kit configured on the second
computer server, wherein the second data 1s not uploaded to
the system but only a reference to the second data 1s listed
by the system.

10. The system of claim 9, wherein the second data
comprises at least one computer model.

11. The system of claim 1, wherein the first access point
1s at a first location associated with the first entity and the
second access point 1s at a second location associated with
the second entity.

12. The system of claim 1, wherein the first access point
and the second access point communicate with each other
directly using a secure communication channel as managed
by the system.

13. The system of claim 1, wherein performing the secure
prediction task using the second data operating on the first
data further comprises performing a first phase of prepro-
cessing to compute a majority part of known multiplication
operations and/or AND gates based on an existing model
and a second phase of performing actual computations
involving the first data and the second data.

14. The system of claam 1, wherein the first software
development kit enables the first entity to perform one or
more of exploring assets comprising the second data for use
with the first data, starting tasks associated with the first
data, viewing results of the secure prediction task, providing
permit and audit requests to the system and positioning and
managing the first data on the first access point.

15. The system of claim 1, wherein managing, based on
the selection of the second data for use with the first data, the
authentication and authorization of communications
between the first access point and the second access point
without storing the first data or the second data on the system
and performing the secure prediction task using the second
data operating on the first data further comprise:
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receiving a bundle of data at the system associated with
details about performing the secure prediction task;

validating an existence of the first data and the second
data for performing the secure prediction task;

conflirming with an existing agreement, 1f any, that a
proposed use of one of the first data and the second data
matches parameters within the existing agreement to
yield a confirmation;

granting, based on the confirmation, permission to use one
or more of the first data or the second data;

contacting the first access point to provide a notification
that the secure prediction task can begin, wherein the
first access point contacts the second access point to
create a temporary connection for the secure prediction
task and wherein the second access point verifies an
identity of the first access point and confirm with the
system that the temporary connection i1s appropriate
and associated with the secure prediction task and
wherein when the secure prediction task 1s approved by
the system, the fist access point and the second access
point perform the secure prediction task.

16. The system of claim 1, wherein the secure prediction
task comprises a first portion of a first one-way encrypted
version of the first data 1s provided and a second portion of
a second one-way encrypted version of the second data 1s
provided 1n a jointly-proceeded computation 1n which each
of the first access point and the second access point provide
a respective portion of computational resources and
exchange intermediate one-way encrypted state data and
wherein as the secure prediction task ends with a result being
received and stored on the first access point based on a
completion of the secure prediction task using the first data
and the second data.

17. The system of claim 16, wherein the first enfity
requested the secure prediction task using the second data as
an algorithm for processing the first data on the first access
point.

18. The system of claim 1, wherein the secure prediction
task utilizes a Beaver service that provides Beaver sets of
data for use 1n connection with the secure prediction task.

19. The system of claim 1, wherein the secure prediction
task utilizes one or more of:

a first private comparison approach of comparing a first
number and a second number 1n which a difference of
the first number and the second number 1s computed
and binarized to yield a binarized result and a most
significant bit of the binarized result determine whether
the first number 1s less than or equal to the second
number;

a second private comparison approach in which the first
number and the second number having two binary
shares that are added to check the most significant bit
using a Brent Kung circuit consisting of only AND and
XOR gates;

a third private comparison approach in which the first
number and the second number having two binary
shares that are added to check the most significant bit
using a ripple carry circuit consisting of only AND and
XOR gates and which at each step a carry 1s computed
from a previous step and added to a current sum;

a secure third-party computation approach i which a
third party 1s added such that the first entity or the
second entity colludes with the third party such that the
third party generates at least one beaver triple randomly
as part of the secure prediction task; and

a pseudo random number generator approach i which a
trusted third party and the first entity and the second entity
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select a common seed during a preprocessing stage of the
secure prediction task and a pseudo random number gen-

erator 1s used to reduce a communication size during a

beaver triple generation phase.

20. The system of claim 19, wherein the secure third-party
computation approach further comprises the third party
colluding with the first entity to jointly reveal the first data
to the second enfity.

21. The system of claim 1, wherein the private compari-
son further utilizes a private adder to add two shares to check
the most significant bat.

22. A method comprising:

establishing, via a computing device, an application pro-

gramming interface for coordinating joint operations
between a first access point associated with a first entity
and a second access point associated with a second
entity, wherein the join operations are related to per-
forming a secure prediction task i which the first
access point and the second access point will perform
private computation of first data of the first entity stored
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on the first access point and second data of the second
entity stored on the second access point without the first
entity having access to second data or the second entity
having access to the first data;

storing a list of assets on the data storage device, the list
of assets representing metadata about the first data and
the second data while the first data remains stored on
the first access point and the second data remains stored
on the second access point;

recerving a selection of the second data from the second
entity for use with the first data from the first entity;

managing, via the computing device and based on the
selection of the second data for use with the first data,
an authentication and authorization of communications
between the first access point and the second access
point without storing the first data or the second data on
the system; and

performing the secure prediction task using the second
data operating on the first data.
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