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APPARATUS AND METHOD FOR
EFFICIENT MOTION ESTIMATION

CROSS-REFERENCE TO RELATED
APPLICATIONS D

This application 1s a continuation of U.S. patent applica-
tion Ser. No. 16/809,052 filed Mar. 4, 2020, which claims
priority to U.S. patent application Ser. No. 15/586,600, filed
May 4, 2017, now U.S. Pat. No. 10,593,015, granted Mar.
17, 2020, which claims priority under 35 U.S.C 119(e)(1) to
Indian Provisional Application No. 201641015446, filed
May 4, 2016, each of which 1s herein incorporated by
reference in 1ts entirety.

10

15

TECHNICAL FIELD OF THE INVENTION

The technical field of this mvention 1s 1mage compres-
S1011. 20

BACKGROUND OF THE INVENTION

Increasing video resolution and frame rates, along with
large number of searching and matching operations involved 55
in motion estimation demand very high performance. While
high performance can be achieved by increasing hardware
throughput and higher clock frequency, 1t 1s important to
identify and exploit parallelism present 1n the algorithm 1n
order to eiliciently utilize available hardware resources. 30

The Motion Estimation process involves searching opera-
tions which require accessing large amounts of reference
picture data from memory. Memory bandwidth 1s an expen-
s1ve resource which often limits the computational parallel-
ism that can be built 1n hardware. Further, this large data
traflic from the memory leads to large power dissipation.

Motion estimation finds a best match for each block 1n a
current video frame among blocks from previously coded
frame(s) (called as reference frames). Block size 1s typically
16x16 pixels.

A widely used metric to define the match 1s SAD (Sum Of
Absolute Difference 1n all the pixel values of current block
and a reference block).

The best match information 1s indicated by the motion 45
vector: 1f the current position of a block 1s (16,16) then
motion vector (4,1) means the best match lies at position
(20,17) 1n the reference frame.

The motion vector can also be 1n fraction pixel precision:
half pixel, quarter pixel etc. 50
Fractional pixels are calculated by interpolating neigh-

boring integer position pixels.

A motion estimation algorithm would typically include
these steps:

Stage 1: choosing best among a few predictor motion 353
vectors;,

Stage 2: search around winner of Stage 1;

Stage 3, 4: search around winner of Stage 2 and Stage 3
respectively;

Stage 5: sub-pixel search at interpolated positions. 60

35

40

SUMMARY OF THE INVENTION

A parallel motion estimation architecture 1s shown that
enables ethicient utilization of computational resources by 65
making use of the imherent parallelism of the motion esti-
mation algorithms.

2
BRIEF DESCRIPTION OF THE DRAWINGS

These and other aspects of this invention are 1llustrated 1n
the drawings, 1n which:

FIG. 1 illustrates the organmization of a typical digital
signal processor to which this mnvention i1s applicable (prior
art);

FIG. 2 illustrates details of a very long instruction word
digital signal processor core suitable for use 1n FIG. 1 (prior
art);

FIG. 3 illustrates the pipeline stages of the very long
istruction word digital signal processor core 1llustrated 1n
FIG. 2 (prior art);

FIG. 4 illustrates the instruction syntax of the very long
instruction word digital signal processor core 1llustrated 1n
FIG. 2 (prior art);

FIG. 5 illustrates an overview of the video encoding
process of the prior art;

FIG. 6 1illustrates an overview of the video decoding
process of the prior art;

FIG. 7 illustrates an overview of the motion estimation
engine of this invention; and

FIG. 8 illustrates one of the local buflers.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

FIG. 1 1illustrates the organmization of a typical digital
signal processor system 100 to which this invention 1s
applicable (prior art). Digital signal processor system 100
includes central processing unit core 110. Central processing
unit core 110 includes the data processing portion of digital
signal processor system 100. Central processing unit core
110 could be constructed as known 1n the art and would
typically includes a register file, an integer arithmetic logic
unit, an integer multiplier and program flow control units.
An example of an appropriate central processing unit core 1s
described below 1n conjunction with FIGS. 2 to 4.

Digital signal processor system 100 includes a number of
cache memories. FIG. 1 illustrates a pair of first level caches.
Level one mstruction cache (LL1I) 121 stores instructions
used by central processing unit core 110. Central processing
umt core 110 first attempts to access any instruction from
level one 1nstruction cache 121. Level one data cache (L1D)
123 stores data used by central processing unit core 110.
Central processing unit core 110 first attempts to access any
required data from level one data cache 123. The two level
one caches are backed by a level two unified cache (L.2) 130.
In the event of a cache miss to level one 1nstruction cache
121 or to level one data cache 123, the requested nstruction
or data 1s sought from level two unified cache 130. If the
requested 1nstruction or data 1s stored 1n level two unified
cache 130, then it 1s supplied to the requesting level one
cache for supply to central processing unit core 110. As 1s
known 1n the art, the requested instruction or data may be
simultaneously supplied to both the requesting cache and
central processing unit core 110 to speed use.

Level two unified cache 130 1s further coupled to higher
level memory systems. Digital signal processor system 100
may be a part of a multiprocessor system. The other pro-
cessors of the multiprocessor system are coupled to level
two unified cache 130 via a transier request bus 141 and a
data transfer bus 143. A direct memory access umt 150
provides the connection of digital signal processor system
100 to external memory 161 and external peripherals 169.

FIG. 2 1s a block diagram illustrating details of a digital
signal processor integrated circuit 200 suitable but not
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essential for use in this mvention (prior art). The digital
signal processor integrated circuit 200 includes central pro-
cessing unit 1, which 1s a 32-bit eight-way VLIW pipelined
processor. Central processing unit 1 1s coupled to level one
instruction cache 121 included in digital signal processor
integrated circuit 200. Dagital signal processor integrated
circuit 200 also 1ncludes level one data cache 123. Digital
signal processor integrated circuit 200 also includes periph-
crals 4 t0 9. These peripherals preferably include an external
memory interface (EMIF) 4 and a direct memory access
(DMA) controller 5. External memory interface (EMIF) 4
preferably supports access to supports synchronous and
asynchronous SRAM and synchronous DRAM. Direct
memory access (DMA) controller 5 preferably provides
2-channel auto-boot loading direct memory access. These
peripherals include power-down logic 6. Power-down logic
6 preferably can halt central processing unit activity, periph-
eral activity, and phase lock loop (PLL) clock synchroniza-
tion activity to reduce power consumption. These peripher-
als also 1include host ports 7, serial ports 8 and
programmable timers 9.

Central processing unit 1 has a 32-bit, byte addressable
address space. Internal memory on the same integrated
circuit 1s preferably organized 1n a data space including level
one data cache 123 and a program space including level one
instruction cache 121. When ofl-chip memory 1s used,
preferably these two spaces are unified 1nto a single memory
space via the external memory interface (EMIF) 4.

Level one data cache 123 may be internally accessed by
central processing unit 1 via two internal ports 3a and 35.
Each internal port 3a and 36 preferably has 32 bits of data
and a 32-bit byte address reach. Level one instruction cache
121 may be internally accessed by central processing unit 1
via a single port 2a. Port 2a of level one istruction cache
121 preferably has an mstruction-fetch width of 256 bits and
a 30-bit word (four bytes) address, equivalent to a 32-bit
byte address.

Central processing unit 1 includes program fetch umt 10,
instruction dispatch unit 11, instruction decode unit 12 and
two data paths 20 and 30. First data path 20 includes four
functional units designated L1 unit 22, S1 unit 23, M1 unait
24 and D1 unait 25 and 16 32-bit A registers forming register
file 21. Second data path 30 likewise includes four func-
tional units designated L2 unit 32, S2 unit 33, M2 unit 34
and D2 unit 35 and 16 32-bit B registers forming register file
31. The functional units of each data path access the corre-
sponding register file for their operands. There are two cross
paths 27 and 37 permitting access to one register in the
opposite register {ile each pipeline stage. Central processing
unit 1 includes control registers 13, control logic 14, and test
logic 15, emulation logic 16 and interrupt logic 17.

Program fetch unit 10, mstruction dispatch unit 11 and
instruction decode umt 12 recall instructions from level one
instruction cache 121 and deliver up to eight 32-bit instruc-
tions to the functional units every struction cycle. Pro-
cessing occurs simultaneously 1n each of the two data paths
20 and 30. As previously described each data path has four
corresponding functional units (L, S, M and D) and a
corresponding register file containing 16 32-bit registers.
Each functional unit 1s controlled by a 32-bit instruction.
The data paths are further described below. A control register
file 13 provides the means to configure and control various
processor operations.

FI1G. 3 1llustrates the pipeline stages 300 of digital signal
processor core 110 (prior art). These pipeline stages are
divided into three groups: fetch group 310; decode group
320; and execute group 330. All instructions in the mstruc-

5
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4

tion set flow through the fetch, decode, and execute stages
of the pipeline. Fetch group 310 has four phases for all
instructions, and decode group 320 has two phases for all
instructions. Execute group 330 requires a varying number
of phases depending on the type of istruction.

The fetch phases of the fetch group 310 are: Program
address generate phase 311 (PG); Program address send
phase 312 (PS); Program access ready wait stage 313 (PW);
and Program fetch packet receive stage 314 (PR). Digital
signal processor core 110 uses a fetch packet (FP) of eight
instructions. All eight of the instructions proceed through
tetch group 310 together. During PG phase 311, the program
address 1s generated 1n program fetch unit 10. During PS
phase 312, this program address 1s sent to memory. During
PW phase 313, the memory read occurs. Finally during PR
phase 314, the fetch packet 1s received at CPU 1.

The decode phases of decode group 320 are: Instruction
dispatch (DP) 321; and Instruction decode (DC) 322. During
the DP phase 321, the fetch packets are split into execute
packets. Execute packets consist of one or more nstructions
which are coded to execute 1n parallel. During DP phase
322, the instructions 1n an execute packet are assigned to the
appropriate functional units. Also during DC phase 322, the
source registers, destination registers and associated paths
are decoded for the execution of the instructions in the
respective functional units.

The execute phases of the execute group 330 are: Execute
1 (E1) 331; Execute 2 (E2) 332; Execute 3 (E3) 333;
Execute 4 (E4) 334; and Execute 5 (ES) 335. Diflerent types
of mstructions require diflerent numbers of these phases to
complete. These phases of the pipeline play an important
role 1n understanding the device state at CPU cycle bound-
aries.

During E1 phase 331, the conditions for the instructions
are evaluated and operands are read for all instruction types.
For load and store instructions, address generation 1s per-
formed and address modifications are written to a register
file. For branch instructions, branch fetch packet in PG
phase 311 1s affected. For all single-cycle instructions, the
results are written to a register file. All single-cycle 1nstruc-
tions complete during the E1 phase 331.

During the E2 phase 332, for load instructions, the
address 1s sent to memory. For store istructions, the address
and data are sent to memory. Single-cycle instructions that
saturate results set the SAT bit in the control status register
(CSR) 1t saturation occurs. For single cycle 16 by 16
multiply instructions, the results are written to a register file.
For M unit non-multiply mstructions, the results are written
to a register file. All ordinary multiply unit instructions
complete during E2 phase 322.

During E3 phase 333, data memory accesses are per-
formed. Any multiply instruction that saturates results sets
the SAT bit in the control status register (CSR) 11 saturation
occurs. Store 1nstructions complete during the E3 phase 333.

During E4 phase 334, for load instructions, data 1s
brought to the CPU boundary. For multiply extension
instructions, the results are written to a register file. Multiply
extension instructions complete during the E4 phase 334.

During E5 phase 3335, load mstructions write data into a
register. Load instructions complete during the E5 phase
335.

FIG. 4 1llustrates an example of the mstruction coding of
instructions used by digital signal processor core 110 (prior
art). Each instruction consists of 32 bits and controls the
operation of one of the eight functional units. The bit fields
are defined as follows. The creg field (bits 29 to 31) 1s the

conditional register field. These bits identily whether the
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instruction 1s conditional and 1dentily the predicate register.
The z bit (bit 28) indicates whether the predication 1s based
upon zero or not zero in the predicate register. If z=1, the test

1s for equality with zero. ITf z=0, the test 1s for nonzero. The
case of creg=0 and z=0 1s treated as always true to allow °
unconditional instruction execution. The creg field 1s
encoded 1n the instruction opcode as shown in Table 1.

TABLE 1
10
Conditional creg 7z
Register 31 30 29 28
Unconditional 0 0 0 0
Reserved 0 0 0 1 15
BO 0 0 1 Z
Bl 0 1 0 7z
B2 0 1 1 7
Al ’ 0 0 7z
A2 0 1 7
AQ 1 0 7z
20
Reserved 1 1 X

Note that “z” 1n the z bit column refers to the zero/not zero

comparison selection noted above and “x” 1s a don’t care
state. This coding can only specily a subset of the 32 25
registers 1n each register file as predicate registers. This
selection was made to preserve bits in the 1nstruction coding.

The dst field (bits 23 to 27) specifies one of the 32
registers 1n the corresponding register file as the destination
of the instruction results. 30

The scr2 field (bits 18 to 22) specifies one of the 32
registers 1n the corresponding register file as the second
source operand.

The scrl/cst field (bits 13 to 17) has several meanings
depending on the instruction opcode field (bits 2 to 12). The 35
first meaning specifies one of the 32 registers of the corre-
sponding register file as the first operand. The second
meaning 1s a 5-bit immediate constant. Depending on the
istruction type, this 1s treated as an unsigned integer and
zero extended to 32 bits or 1s treated as a signed integer and 40
sign extended to 32 bits. Lastly, this field can specily one of
the 32 registers 1n the opposite register file 1f the instruction
invokes one of the register file cross paths 27 or 37.

The opcode field (bits 2 to 12) specifies the type of
instruction and designates appropriate mstruction options. A 45
detailed explanation of this field 1s beyond the scope of this
invention except for the mstruction options detailed below.

The s bit (bit 1) designates the data path 20 or 30. If s=0,
then data path 20 is selected. This limits the functional unit
to L1 umt 22, S1 unit 23, M1 unit 24 and D1 unit 25 and the 50
corresponding register file A 21. Similarly, s=1 selects data
path 20 limiting the functional unit to L2 unit 32, S2 unit 33,
M2 unit 34 and D2 unit 35 and the corresponding register
file B 31.

The p bit (bit 0) marks the execute packets. The p-bit 55
determines whether the mstruction executes 1n parallel with
the following instruction. The p-bits are scanned from lower
to higher address. If p=1 for the current instruction, then the
next mstruction executes in parallel with the current instruc-
tion. If p=0 for the current 1nstruction, then the next instruc- 60
tion executes 1n the cycle after the current instruction. All
istructions executing in parallel constitute an execute
packet. An execute packet can contain up to eight mnstruc-
tions. Each instruction 1n an execute packet must use a
different functional unait. 65

FIG. 5 illustrates the encoding process 500 of video
encoding according to the prior art. Many video encoding

6

standards use similar processes such as represented in FIG.
5. Encoding process 500 begins with the n th (current) frame
F_501. Frequency transform block 502 transforms a mac-
roblock of the pixel data into the spatial frequency domain.
This typically involves a discrete cosine transform (DCT).
This frequency domain data 1s quantized in quantization
block 503. This quantization typically takes into account the
range of data values for the current macroblock. Thus
differing macroblocks may have differing quantizations. In
accordance with the H.264 standard, in the base profile the
macroblock data may be arbitrarily reordered via reorder
block 504. As will be explained below, this reordering 1s
reversed upon decoding. Other video encoding standards
and the H.264 main profile transmit data for the macroblocks
in strict raster scan order. The quantized data 1s encoded by
entropy encoding block 505. Entropy encoding employs
fewer bits to encode more frequently used symbols and more
bits to encode less frequency used symbols. This process
reduces the amount of encoded data that must be transmitted
and/or stored. The resulting entropy encoded data is the
encoded data stream. This invention concerns content adap-
tive binary arithmetic coding (CABAC) which will be
turther described below.

Video encoding standards typically permit two types of
predictions. In inter-frame prediction, data 1s compared with
data from the corresponding location of another frame. In
intra-frame prediction, data 1s compared with data from
another location in the same frame.

For inter prediction, data from n-1 th (previous) frame
F, _, 510 and data from the n th frame F, S01 supply motion
estimation block 511. Motion estimation block 511 deter-
mines the positions and motion vectors of moving objects
within the picture. This motion data 1s supplied to motion
compensation block 512 along with data from n-1 th frame
F, . 510. The resulting motion compensated frame data 1s
selected by switch 3513 for application to subtraction unit
506. Subtraction unmt 306 subtracts the inter prediction data
from switch 513 from the input frame data from n th frame
F_3501. Thus frequency transform block 302, quantization
block 503, reorder block 504 and entropy encoding block
505 encode the differential data rather than the original
frame data. Assuming there 1s relatively little change from
frame to frame, this differential data has a smaller magnitude
than the raw frame data. Thus this can be expressed 1n fewer
bits contributing to data compression. This 1s true even if
motion estimation block 3511 and motion compensation
block 512 find no moving objects to code. It the n th frame
F_and the n-1 th frame F,_, are identical, the subtraction
unmit 506 will produce a string of zeros for data. This data
string can be encoded using few bits.

The second type of prediction is intra prediction. Intra
prediction predicts a macroblock of the current frame from
another macroblock of the current frame. Inverse quantiza-
tion block 520 receives the quantized data from quantization
block 503 and substantially recovers the original frequency
domain data. Inverse frequency transiform block 521 trans-
forms the frequency domain data from inverse quantization
block 520 back to the spatial domain. This spatial domain
data supplies one input of addition umt 522, whose function
will be further described. Encoding process 500 includes
choose intra predication unit 514 to determine whether to
implement intra prediction. Choose intra prediction umt 514
recetves data from n th frame F, 501 and the output of
addition unit 522. Choose intra prediction unit 514 signals
intra prediction intra predication unit 315, which also
receives the output of addition unit 522. Switch 513 selects
the intra prediction output for application to the subtraction
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input of subtraction units 506 and an addition mmput of
addition unit 522. Intra prediction 1s based upon the recov-
ered data from inverse quantization block 520 and inverse
frequency transform block 521 1n order to better match the
processing at decoding. If the encoding used the original
frame, there might be drift between these processes resulting
1N growing errors.

Video encoders typically periodically transmit unpre-
dicted frames. In such an event the predicted frame 1s all 0’s.
Subtraction unit 506 thus produces data corresponding to the
n th frame F, 501 data. Periodic unpredicted or I frames
limits any drift between the transmitter coding and the
receive decoding. In a video movie a scene change may
produce such a large change between adjacent frames that
differential coding provides little advantage. Video coding
standards typically signal whether a frame 1s a predicted
frame and the type of prediction in the transmitted data
stream.

Encoding process 500 includes reconstruction of the
frame based upon this recovered data. The output of addition
unit 522 supplies deblock filter 523. Deblock filter 523
smoothes artifacts created by the block and macroblock
nature of the encoding process. The result 1s reconstructed
frame F' 524. As shown schematically in FIG. 3, this
reconstructed frame F' 3524 becomes the next reference
frame F,_, 510.

FIG. 6 1llustrates the corresponding decoding process 600.
Entropy decode unit 601 receives the encoded data stream.
Entropy decode umit 601 recovers the symbols from the
entropy encoding of entropy encoding unit 5305. This inven-
tion 1s applicable to CABAC decoding. Reorder unit 602
assembles the macroblocks in raster scan order reversing the
reordering of reorder unit 504. Inverse quantization block
603 receives the quantized data from reorder umt 602 and
substantially recovers the original frequency domain data.
Inverse Ifrequency transiform block 604 transforms the fre-
quency domain data from inverse quantization block 603
back to the spatial domain. This spatial domain data supplies
one mput of addition unit 605. The other mput of addition
input 605 comes from switch 609. In inter prediction mode
switch 609 selects the output of motion compensation unit
607. Motion compensation unit 607 receives the reference
frame F' _, 606 and applies the motion compensation com-
puted by motion compensation unit 512 and transmitted in
the encoded data stream.

Switch 609 may also select an 1ntra prediction mode. The
intra prediction 1s signaled 1n the encoded data stream. If this
1s selected, intra prediction unit 608 forms the predicted data
from the output of adder 605 and then applies the intra
prediction computed by intra prediction block 5135 of the
encoding process 500. Addition unit 6035 recovers the pre-
dicted frame. As previously discussed in conjunction with
encoding, 1t 1s possible to transmit an unpredicted or I frame.
If the data stream signals that a received frame 1s an I frame,
then the predicted frame supplied to addition unit 603 1s all
0’s.

The output of addition unit 605 supplies the input of
deblock filter 610. Deblock filter 610 smoothes artifacts
created by the block and macroblock nature of the encoding
process. The result 1s reconstructed frame F', 611. As shown
schematically 1in FIG. 6, this reconstructed frame F', 611

becomes the next reference frame F,_; 606.
The deblocking filtering of deblock filter 523 and deblock

filter 610 must be the same. This enables the decoding
process to accurately retlect the mput frame F, 501 without
error drift. The H.264 standard has a specific, very detailed
decision matrix and corresponding filter operations for this
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process. The standard deblock filtering 1s applied to every
macroblock 1n raster scan order. This deblock filtering
smooths artifacts created by the block and macroblock
nature of the encoding. The filtered macroblock 1s used as
the reference frame 1n predicted frames 1n both encoding and
decoding. The encoding and decoding apply the identical
processing the reconstructed frame to reduce the residual
error after prediction.

The architecture shown 1n this invention enables eflicient

utilization of computational hardware by making use of the
inherent parallelism 1n the motion estimation algorithm. Two
types of parallelism are exploited: (1) For a given current
macro-block, search operations in different reference frames
are independent of each other and can be performed 1n
parallel (or pipelined fashion). (2) Search operations for two
different macro-blocks can be performed 1n parallel.

Motion estimation algorithms many times involve a
global search followed by a local search phase. Global
search narrows down the search to one (or more) motion
vector candidates among several 1nitial candidates. The local
search that comes afterwards involves searching in a region
just around the candidate(s) identified during the global
search phase. Further, local search typically involves integer
motion vector search and fractional (sub-pixel) motion vec-
tor search.

The architecture shown 1 FIG. 7 provides parallel hard-
ware comprising of:

Intertace controller 708 connected to processing unit 711,
skip engine 706, skip input bufler 707, I/O management unit
710, predictor engine 701, vector SAD engine 702 and
subpel engine 703.

Programming interface 709 1s connected to skip engine
706 and skip bufler 705.

I/O management unit 710 1s connected to interface con-
troller 708, predictor engine 701, vector SAD engine 702
and subpel engine 703.

Processing unit 711 1s connected to interface controller
708, predictor engine 701, vector SAD engine 702, subpel
engine 703 and interpolation reference butfler 704.

Predictor engine 701 1s connected to interface controller
708, vector SAD engine 702 and subpel (sub pixel) engine
703.

Subpel engine 703 1s connected vector SAD engine 702,
predictor engine 701, interpolation reference bufller 704,
processing unit 711 and interface controller 708.

Vector SAD engine 1s connected to predictor engine 701,
subpel engine 703, processing unit 711 and interface con-
troller 708.

Skip engine 706 1s connected to interface controller 708,
skip input bufler 707, skip MB bufler 705 and programming,
intertace 709.

Buflers 704, 705 and 707 allow the implementation of
global search, local integer search and local sub-pixel search
operations in parallel. With this architecture, searches in
multiple reference frames can also be performed 1n pipelined
fashion, as shown 1n Table 2. This table shows LLO and L1
(forward and backward) direction search in B frame pro-
cessing. After completing predictor search (global search) in
L0 direction, local integer search (also called vector search)
in LO direction and global search in L1 direction happen 1n
parallel. Similarly, local integer search in L1 direction
happens 1n parallel with local sub pixel search 1n LO direc-
tion.

A separate sub pixel interpolation and cost calculation
engine 703 1s used to calculate skip and direct mode costs as

defined 1n H.264 standard.
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TABLE 2
Predictor Vector Sub Pixel
Search Search Search Skip SAD
MBnl.O
MBnl.1 MBnlO MBnl.O
MBnl.1 3nl.0 MBnl.1
Snl.1
MBn +1 LO
MBn +1 L1 MBn + 1 L.O MBn + 11.0
MBn + 111 Bn + 1 L.O MBn + 111
Bn + 1 1.1
b
TABLE 3
Predictor Vector Sub Pixel
Search Search Search Skip Sad
MBnlLO
MBn + 1 1O MBnl.1 MBnlLO Bnl.0
MBn +1 L1 MBnl.1 3nl.1
MBn + 11.0
MBn + 2 1.0 MBn + 111 MBn + 11.0 Bn + 11.0
MBn + 2 L1 MBn + 111 Bn + 11.1

For optimizing memory bandwidth, the architecture uses
local bufters 704, 705 and 707 to store the reference data
required for portions of the search. The local buflers also
free up memory ports and thus enable more parallel opera-
tions.

During local search, as shown in FIG. 8, the same
reference pixels are repeatedly accessed from the memory
801 by the search engine 804. We take advantage of this fact
and store all the data that may be required to perform the
local search 1n custom designed local bullers 803 inside the
search engine. Since the local search pattern 1s be known
ahead of time, a bounded region of reference pixels required
for local search around the starting point of local search
(referred as LS start mv) can be identified.

After performing global search, before starting local
search this bounded region is fetched from the memory and
stored 1nside a buller local to the motion estimation engine.
Entire local search is then carried out by accessing reference
data from the local bufler instead of fetching from the main
memory. This significantly reduces the amount of data
required to be fetched from the memory, thereby saving
power and freemng up memory bandwidth.

More than one 1nstance of local buflers may be included
in the design to store more than one reference region
required for local search. These reference regions may
belong to either the same or to different reference frames.

In addition to storing the integer pixel reference data, the
local bufler can also be used to store sub-pixel reference
data. For example, H.264 standard specifies a 6-tap filter for
half pixel calculation and 2-tap filter for quarter pixel
calculation. For quarter pixel calculation, half position pix-
els are required. During the search operation, typically
quarter pixel search 1s performed after half pixel search. The
half pixels calculated during half pixel search can be stored
in the local buller so that during quarter pixel search, half
pixel positions need not be recalculated.
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What 1s claimed 1s:
1. A device comprising:
a first processing engine; and
a second processing engine,
wherein the first processing engine 1s configured to:
receive video data that includes a current frame and a
plurality of reference frames, wherein the current
frame includes a first macroblock;
during a first processing cycle, determine a first refer-
ence motion block from the plurality of reference
frames based on the first macroblock; and
during a second processing cycle, determine a second
reference motion block from the plurality of refer-
ence frames based on the first macroblock,
wherein the second processing engine 1s configured to:
during the second processing cycle 1n parallel with the
second processing cycle at the first processing
engine, determine a {first pixel reference associated
with the first reference motion block; and
during a third processing cycle, determine a second
pixel reference associated with the second reference
motion block, and
wherein the device 1s configured to determine a motion
vector based on the first reference motion block, the
second reference motion block, the first pixel reference,
and the second pixel reference.
2. The device of claim 1 further comprising:
a third processing engine configured to:
during the third processing cycle, determine a first sub-
pixel reference associated with the first pixel reference;
and
during a fourth processing cycle, determine a second
sub-pixel reference associated with the second pixel
reference.
3. The device of claim 2, wherein:
the first sub-pixel reference and the second sub-pixel
reference are associated with half-pixel searches.
4. The device of claim 2, wherein:
the first sub-pixel reference and the second sub-pixel
reference are associated with quarter-pixel searches.
5. The device of claim 2, wherein:
the device 1s configured to determine the motion vector
based on at least one of the first sub-pixel reference and
the second sub-pixel reference.
6. The device of claim 1, wherein:
the second processing engine includes a second process-
ing engine builer.
7. The device of claim 6, wherein:
the device 1s configured to store a first bounded region of
pixels associated with the second reference motion
block in the second processing engine builer; and
the first bounded region of pixels 1s searched by the
second processing engine to determine the first pixel
reference.
8. The device of claim 7, wherein:
a third processing engine includes a third processing
engine builer.
9. The device of claim 8, wherein:
the device 1s configured to store a second bounded region
of pixels associated with the second reference motion
block in the third processing engine bufler; and
the second bounded region of pixels 1s searched by the
third processing engine to determine the first pixel
reference.
10. The device of claim 1, wherein:
the motion vector corresponds to a best match determined
by a vector Sum of Absolute Diflerences (SAD).
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11. The device of claim 10, wherein:

the second processing engine 1s configured to determine
during the second processing cycle the SAD between
the first macroblock and the first reference motion
block; and

the second processing engine 1s configured to determine
during the third processing cycle the SAD between the
first macroblock and the second reference motion
block.

12. The device of claim 11, wherein:

the device 1s configured to determine the motion vector
based on at least one of the SAD between the first
macroblock and the first reference motion block and the
SAD between the first macroblock and the second
reference motion block.

13. A method comprising;:

receiving video data that includes a current frame and a
plurality of reference frames, wherein the current frame
includes a first macroblock;

during a first processing cycle, determining a first refer-
ence motion block from the plurality of reference
frames;

during a second processing cycle, determiming a second
reference motion block from the plurality of reference
frames;

during the second processing cycle in parallel with deter-
mining the second reference motion block, determining
a first pixel reference associated with the first reference
motion block;

during a third processing cycle, determining a second
pixel reference associated with the second reference
motion block; and

determining a motion vector based on at least one of the
first reference motion block, the second reference
motion block, the first pixel reference, and the second
pixel reference.

14. The method of claim 13, further comprising:

during the third processing cycle, determining a first
sub-pixel reference associated with the first pixel ref-
erence; and

during a fourth processing cycle, determining a second
sub-pixel reference associated with the second pixel
reference.

15. The method of claim 14, wherein:

the determining of the motion vector 1s based on at least
one ol the first sub-pixel reference and the second
sub-pixel reference.

16. The method of claim 13, further comprising:

storing a {irst bounded region of pixels associated with the
second reference motion block 1n a bufler.

17. The method of claim 16, wherein:

the first bounded region of pixels i1s searched to determine
the first pixel reference.
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18. The method of claim 13, wherein:
the motion vector corresponds to a best match determined
by a vector Sum of Absolute Diflerences (SAD).
19. A device comprising:
a first processing engine;
a second processing engine; and
a third processing engine,
wherein the first processing engine 1s configured to:
receive video data that includes a current frame and a
plurality of reference frames, wherein the current
frame includes a first macroblock:
during a first processing cycle, determine a first refer-
ence motion block from the plurality of reference
frames based on the first macroblock; and
during a second processing cycle, determine a second
reference motion block from the plurality of refer-
ence frames based on the first macroblock,
wherein the second processing engine 1s configured to:
during the second processing cycle 1n parallel with the
second processing cycle at the first processing
engine, determine a {first pixel reference associated
with the first reference motion block; and
during a third processing cycle, determine a second
pixel reference associated with the second reference
motion block,
wherein the third processing engine 1s configured to:
during the third processing cycle in parallel with the
third processing cycle at the second processing
engine, determine a first sub-pixel reference associ-
ated with the first pixel reference; and
during a fourth processing cycle, determine a second
sub-pixel reference associated with the second pixel

reference, and
wherein the device 1s configured to determine a motion
vector based on the first sub-pixel reference, and the
second sub-pixel reference.
20. The device of claim 19, further comprising a skip

engine configured to:

during the second processing cycle in parallel with the
second processing cycle at the first processing engine
and 1n parallel with the second processing cycle at the
second processing engine, determine a first sum of
absolute differences (SAD) value between the first
macroblock and the first reference motion block; and

during the third processing cycle 1n parallel with the third
processing cycle at the second processing engine and 1n
parallel with the third processing cycle at the third
processing engine, determine a second SAD value
between the first macroblock and the second reference
motion block.
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