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HYBRID AUDIO BEAMFORMING SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Patent Application No. 63/142,711, filed Jan. 28, 2021,
which 1s fully incorporated by reference in 1ts entirety
herein.

TECHNICAL FIELD

This application generally relates to an audio beamiorm-
ing system. In particular, this application relates to a hybnid
audio beamiforming system having narrower beams and
improved directivity, through the use of a time domain
beamiormer for processing upper frequency band signals of
an audio signal and a frequency domain beamformer for
processing lower frequency band signals of the audio signal.

BACKGROUND

Conferencing environments, such as conference rooms,
boardrooms, video conferencing applications, and the like,
can involve the use of microphones for capturing sound
from various audio sources active in such environments.
Such audio sources may include humans speaking, for
example. The captured sound may be disseminated to a local
audience 1n the environment through amplified speakers (for
sound reinforcement), and/or to others remote from the
environment (such as via a telecast and/or a webcast). The
types of microphones and their placement in a particular
environment may depend on the locations of the audio
sources, physical space requirements, aesthetics, room lay-
out, and/or other considerations. For example, 1n some
environments, the microphones may be placed on a table or
lectern near the audio sources. In other environments, the
microphones may be mounted overhead to capture the sound
from the entire room, for example. Accordingly, micro-
phones are available i a variety of sizes, form factors,
mounting options, and wiring options to suit the needs of
particular environments.

Traditional microphones typically have fixed polar pat-
terns and few manually selectable settings. To capture sound
in a conierencing environment, many traditional micro-
phones can be used at once to capture the audio sources
within the environment. However, traditional microphones
tend to capture unwanted audio as well, such as room noise,
echoes, reverberations, and other undesirable audio ele-
ments. The capturing of these unwanted noises 1s exacer-
bated by the use of many microphones.

Array microphones having multiple microphone elements
can provide benefits such as steerable coverage or pick up
patterns having beams or lobes, which allow the micro-
phones to focus on the desired audio sources and reject
unwanted sounds such as room noise. The ability to steer
audio pick up patterns provides the benefit of being able to
be less precise 1n microphone placement, and 1n this way,
array microphones are more forgiving. Moreover, array
microphones provide the ability to pick up multiple audio
sources with one array microphone or unit, again due to the
ability to steer the pickup patterns.

Beamiorming 1s used to combine signals from the micro-
phone elements of array microphones in order to achieve a
certain pickup pattern having one or more beams or lobes.
However, due to longer wavelengths of sound at lower
frequencies, the widths of beams generated using typical
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2

beamiorming algorithms (e.g., delay and sum operating in
the time domain) on broadband audio signals can be wider

than what 1s configured or desired. Furthermore, the direc-
tionality of the beams may not be optimal when using typical
beamiorming algorithms on broadband audio signals. The
wider beam widths and the non-optimal beam directionality
can result in the sensing of undesired audio, reduced per-
formance of the array microphone, and user dissatisfaction
with the array microphone. In addition, using frequency
domain beamforming across the entire frequency range can
be computationally and memory resource intensive.

Accordingly, there 1s an opportunity for an audio beam-
forming system that addresses these concerns. More par-
ticularly, there 1s an opportunity for a hybrid audio beam-
forming system having narrower beams and improved
directivity, through the use of a time domain beamiormer for
processing upper frequency band signals of an audio signal
and a frequency domain beamiformer for processing lower
frequency band signals of the audio signal.

SUMMARY

The invention 1s itended to solve the above-noted prob-
lems by providing audio beamiormer systems and methods
that are designed to, among other things: (1) provide a time
domain beamiormer to generate a first beamformed signal
based on upper ifrequency band signals derived from audio
signals, and using a time domain beamforming techmque;
(2) provide a frequency domain beamiormer to generate a
second beamformed signal based on lower frequency band
signals derived from the audio signals, and using a first
frequency domain beamiforming technique for a first group
of the lower frequency band signals and using a second
frequency domain beamiforming technique for a second
group ol the lower frequency band signals; (3) output a
beamiormed output signal based on the first beamfiormed
signal generated by the time domain beamformer and the
second beamformed signal generated by the frequency
domain beamformer; (4) have an improved width and direc-
tionality of the beams, particularly in lower frequencies; and
(5) reduce the use of computational and memory resources
by avoiding the use of frequency domain beamiorming
across the entire frequency range.

In an embodiment, a beamforming system includes a first
beamiormer configured to generate a first beamiormed sig-
nal based on first frequency band signals derived from a
plurality of audio signals, a second beamiormer configured
to generate a second beamiformed signal based on second
frequency band signals derived from the plurality of audio
signals, and an output generation unit in communication
with the first and second beamiormers. The first beamformer
1s configured to process the first frequency band signals
using a first beamiorming technique, the second beamformer
1s configured to process the second frequency band signals
using a second beamiforming technique, and the output
generation unit 1s configured to generate a beamiformed
output signal based on the first beamformed signal and the
second beamiformed signal.

In another embodiment, a beamforming system includes
a first beamformer configured to generate a first beamformed
signal based on upper frequency band signals derived from
a plurality of audio signals, a second beamformer configured
to generate a second beamformed signal based on lower
frequency band signals derived from the plurality of audio
signals, and an output generation unit in communication
with the first and second beamiormers. The first beamformer
1s configured to process the upper {frequency band signals
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using a time domain beamforming technique, and the second
beamformer 1s configured to process a first group of the
lower frequency band signals using a first frequency domain
beamforming technique and a second group of the lower
frequency band signals using a second frequency domain
beamforming technique. The output generation unit 1s con-
figured to generate a beamiormed output signal based on the
first beamformed signal and the second beamformed signal.

In a further embodiment, a method includes recerving a
plurality of audio signals; generating a first beamformed
signal based on upper frequency band signals derived from
the plurality of audio signals, using a time domain beam-
forming technique; generating a second beamformed signal
based on lower frequency band signals derived from the
plurality of audio signals, using a frequency domain beam-
forming technique; and generating a beamiformed output
signal based on the first beamformed signal and the second
beamformed signal.

In another embodiment, a beamforming system includes
a first beamformer configured to generate a first beamformed
signal based on first frequency band signals derived from a
plurality of audio signals, a second beamformer configured
to generate a second beamformed signal based on second
frequency band signals derived from the plurality of audio
signals, and an output generation unit in communication
with the first and second beamiormers. The first beamiormer
1s configured to process the first frequency band signals
using a time domain beamforming technique, and the second
beamformer 1s configured to process a first group of the
second frequency band signals using a first frequency
domain beamforming technique, and a second group of the
second Irequency band signals using a second frequency
domain beamforming technique. The output generation unit
1s configured to generate a beamiormed output signal based
on the first beamformed signal and the second beamformed
signal.

These and other embodiments, and various permutations
and aspects, will become apparent and be more fully under-
stood from the following detailed description and accom-
panying drawings, which set forth illustrative embodiments
that are indicative of the various ways 1 which the prin-
ciples of the mvention may be employed.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of a hybrid audio beamforming
system for use with an array microphone, in accordance with
some embodiments.

FI1G. 2 1s a flowchart 1llustrating operations for the beam-
forming of audio signals of a plurality of microphones using
the hybrid audio beamforming system of FIG. 1, 1n accor-
dance with some embodiments.

FIG. 3 1s a flowchart illustrating operations for the beam-
forming of upper frequency band signals derived from the
audio signals of the plurality of microphones and using a
time domain beamformer, 1n accordance with some embodi-
ments.

FI1G. 4 1s a flowchart 1llustrating operations for the beam-
forming of lower frequency band signals derived from the
audio signals of the plurality of microphones and using a
frequency domain beamformer, in accordance with some
embodiments.

DETAILED DESCRIPTION

The description that follows describes, illustrates and
exemplifies one or more particular embodiments of the
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4

invention 1n accordance with its principles. This description
1s not provided to limit the mvention to the embodiments
described herein, but rather to explain and teach the prin-
ciples of the invention 1n such a way to enable one of
ordinary skill in the art to understand these principles and,
with that understanding, be able to apply them to practice
not only the embodiments described herein, but also other
embodiments that may come to mind in accordance with
these principles. The scope of the mvention 1s mntended to
cover all such embodiments that may fall within the scope
of the appended claims, either literally or under the doctrine
ol equivalents.

It should be noted that in the description and drawings,
like or substantially similar elements may be labeled with
the same reference numerals. However, sometimes these
clements may be labeled with differing numbers, such as, for
example, 1n cases where such labeling facilitates a more
clear description. Additionally, the drawings set forth herein
are not necessarily drawn to scale, and 1n some instances
proportions may have been exaggerated to more clearly
depict certain features. Such labeling and drawing practices
do not necessarily implicate an underlying substantive pur-
pose. As stated above, the specification 1s mtended to be
taken as a whole and interpreted in accordance with the
principles of the invention as taught herein and understood
to one of ordinary skill 1n the art.

The hybrid audio beamiforming systems and methods
described herein can enable array microphones to have
narrower beams, improved beam directionality, and better
overall performance across diflerent frequency ranges. The
hybrid audio beamiforming system may include a time
domain beamformer configured to process upper Irequency
band signals using a time domain beamiorming technique,
and a frequency domain beamformer configured to process
groups of lower frequency band signals using multiple
frequency domain beamforming techniques. The upper fre-
quency band signals and the lower frequency band signals
may be derived from audio signals, such as audio signals
from microphone elements of an array microphone. The
hybrid audio beamforming system may generate a beam-
formed output signal based on the first beamiormed signal
from the time domain beamiformer and the second beam-
formed signal from the frequency domain beamiormer.

The frequency domain beamformer may convert the time
domain audio signal into the frequency domain using a
transform such as a discrete Fourier Transform (DFT) with
a hop size less than the DFT block size. The frequency
domain beamiormer may utilize a first frequency domain
beamiorming technique to process a first group of the lower
frequency band signals, such as lower frequency compo-
nents ol the lower frequency band signals. The frequency
domain beamformer may also utilize a second frequency
domain beamforming technique to process a second group
of the lower frequency band signals, such as upper ire-
quency components of the lower frequency band signals. By
using multiple frequency domain beamforming techniques
in the frequency domain beamformer, the frequency domain
beamiformer may generate narrower beams with improved
directionality for audio in lower frequency ranges. The
beamiormed signal from the frequency domain beamformer
may be converted to the time domain such as an inverse
DFT, and the converted time domain signal may be further
smoothed using the weighted overlap-add (WOLA) method.

As such, combining the time domain beamformer that
uses a time domain beamforming techmque and the fre-
quency domain beamformer that uses frequency domain
beamiorming techniques can result in beam widths and
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directionality that are more optimal over different frequency
ranges while using the same sets of microphone elements in
an array microphone. In addition, the increased computa-
tional and memory resources needed when using frequency
domain beamforming across the entire frequency range can °
be avoided. Latency, computational resources, and the stor-
age of weight coeflicients for the beamiormers can therefore
be minimized through the use of the hybrid audio beam-
forming systems and methods described herein.

FIG. 1 1s a block diagram of a hybrid audio beamiorming
system 100. The hybrid audio beamforming system 100 may
include microphone elements 102a, b, ¢, . . . , z that are
included 1n an array microphone; a lower frequency band
signal path 103 that includes a low pass filter 104, a
decimator 106, a frequency domain beamformer 108, an
interpolator 110, and a low pass filter 112; an upper Ire-
quency band signal path 113 that includes a high pass filter
114, a time domain beamiformer 116, and a delay element
118; a weight determination unit 120; and an output gen- 20
eration unit 122. Various components included in the hybrid
audio beamforming system 100 may be implemented using
soltware executable by a computing device with a processor
and memory, and/or by hardware (e.g., discrete logic cir-
cuits, application specific mtegrated circuits (ASIC), pro- 25
grammable gate arrays (PGA), field programmable gate
arrays (FPGA), etc.)

The array microphone that includes the microphone ele-
ments 102a, b, ¢, . .., zcan detect sounds from audio sources
at various Irequencies. The array microphone may be uti-
lized 1n a coniference room or boardroom, for example,
where the audio sources may be one or more human speak-
ers and/or other desirable sounds. Other sounds may be
present in the environment which may be undesirable, such
as noise from ventilation, other persons, audio/visual equip-
ment, electronic devices, etc. In a typical situation, the audio
sources may be seated in chairs at a table, although other
configurations and placements of the audio sources are
contemplated and possible. 40

The array microphone may be placed on a table, lectern,
desktop, etc. so that the sound from the audio sources can be
detected and captured, such as speech spoken by human
speakers. The array microphone may include any number of
microphone elements 102q, b, ¢, . . ., z, and be able to form 45
multiple pickup patterns using the hybrid beamiforming
audio system 100 so that the sound from the audio sources
1s more consistently detected and captured. The microphone
clements 1024, b, ¢, . . . , z may be arranged 1n any suitable
layout, including 1n concentric rings and/or be harmonically 50
nested. The microphone elements 102q, b, ¢, . . . , z may be
arranged to be generally symmetric or may be asymmetric,
in embodiments. In further embodiments, the microphone
clements 102q, b, ¢, . . . , z may be arranged on a substrate,

placed 1n a frame, or individually suspended, for example. 55
An embodiment of an array microphone 1s described in
commonly assigned U.S. Pat. No. 9,565,493, which 1s
hereby 1ncorporated by reference 1n its entirety herein.

The microphone elements 102q, b, ¢, . . ., z may each be
a MEMS (micro-¢lectrical mechanical system) microphone, 60
in some embodiments. In other embodiments, the micro-
phone elements 1024, b, ¢, . . ., z may be electret condenser
microphones, dynamic microphones, ribbon microphones,
piezoelectric microphones, and/or other types ol micro-
phones. In embodiments, the microphone elements 65
102q, b, ¢, . .., zmay be umidirectional microphones that are
primarily sensitive 1n one direction. In other embodiments,
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the microphone elements 102q, b, ¢, . . . , z may have other
directionalities or polar patterns, such as cardioid, subcar-
dioid, or omnidirectional.

Each of the microphone elements 102q, b, ¢, . . ., z1n the
array microphone may detect sound and convert the sound
to an audio signal. Components in the array microphone,
such as analog to digital converters, processors, and/or other
components, may process the audio signals and ultimately
generate one or more digital audio output signals. The digital
audio output signals may conform to the Dante standard for
transmitting audio over Ethernet, 1n some embodiments, or
may conform to another standard. In other embodiments, the
microphone elements 102a, b, ¢, . . . , z 1n the array
microphone may output analog audio signals so that other
components and devices (€.g., processors, mixers, recorders,
amplifiers, etc.) external to the array microphone 100 may
process the analog audio signals.

I1 the microphone elements 1024, b, ¢, . . ., z are only used
with a typical beamiormer (e.g., a delay and sum beam-
former operating 1n the time domain), then the beam width
may be wider than desired and the directivity of the beam
may not be optimal, especially at lower frequencies. This
may be due to the longer wavelengths of sound at these
lower frequencies. Furthermore, beamforming of lower fre-
quencies 1n the time domain can result in excessive side
lobes, relatively high latencies, and/or higher computational
load during processing.

However, as described 1in further detail herein, both the
lower frequency band signal path 103 (including the fre-
quency domain beamiformer 108) and the upper frequency
band signal path 113 (including the time domain beam-
former 116) may be 1n commumnication with the microphone
clements 102a, b, ¢, . . . , z. In particular, the frequency
domain beamiformer 108 may be used to process lower
frequency band signals that are derived from the audio
signals of the microphone elements 1024, b, ¢, . . ., z. The
lower frequency band signals may be from 0-12 kHz, for
example. The time domain beamformer 116 may be used to
process upper frequency band signals that are also derived
from the audio signals of the microphone elements
102a, b, ¢, . . ., z. The upper frequency band signals may be
from 12-24 kHz, for example. As such, using the hybrid
audio beamforming system 100 may result in beam widths
that are narrower and with improved directionality over
different frequencies, including at lower frequencies.

An embodiment of a process 200 for the hybrid beam-
forming of audio signals 1n the array microphone 1s shown
in FIG. 2. The process 200 may be utilized to output a
beamiormed output signal from the array microphone using
the hybrid audio beamforming system 100 shown in FIG. 1,
where the beamformed output signal has a narrower beam
and improved directionality. One or more processors and/or
other processing components (e.g., analog to digital con-
verters, encryption chips, etc.) within or external to the
system 100 may perform any, some, or all of the steps of the
process 200. One or more other types of components (e.g.,
memory, input and/or output devices, transmitters, receivers,
buflers, drivers, discrete components, etc.) may also be
utilized 1 conjunction with the processors and/or other
processing components to perform any, some, or all of the
steps of the process 200.

At step 202, the weight determination unit 120 may
determine the weight coeflicients for the frequency domain
beamiormer 108 (which processes the lower frequency band
signals) and the time domain beamformer 116 (which pro-
cesses the upper frequency band signals), based on a desired
location and width of a beam. In some embodiments, the
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desired location and width of a beam may be determined
programmatically or algorithmically using automated deci-
sion making schemes, e.g., automatic focusing, placement,
and/or deployment of a beam. Embodiments of such
schemes are described in commonly assigned U.S. patent
application Ser. Nos. 16/826,115 and 16/887,790, which are
hereby incorporated by reference in their entirety herein. In
other embodiments, the desired location and width of a beam
may be configured by a user, e.g., via a user interface on an
clectronic device 1n communication with the weight deter-
mination unit 120.

The desired location of a beam may be determined or
configured as a particular three-dimensional coordinate rela-
tive to the location of the array microphone, such as in
Cartesian coordinates (1.e., X, y, z), or in spherical coordi-
nates (1.e., radial distance r, polar angle 0 (theta), azimuthal
angle @ (ph1)), for example. The desired width of a beam
may be determined or configured in gradations (e.g., narrow,
medium, wide, etc.), or as an angle of the field of view (e.g.,
degrees, change in degrees, percentage change, etc.), for
example.

In some embodiments, some or all of the weight coetli-
cients for various locations and widths of the beams may be
predetermined and stored 1mn a memory 1n the weight deter-
mination unit 120 or that 1s 1 communication with the
weight determination unit 120. In other embodiments, some
or all of the weight coellicients for various locations and
widths of the beams may be calculated on the fly, 1n order
to reduce the amount of memory needed for storage of the
weight coeflicients. For example, it may be possible to
calculate such weight coeflicients on the fly for a delay and
sum beamiorming technique operating in the frequency
domain 1n a relatively eflicient and low latency manner. The
calculations can take advantage of the constant gain for all
the microphone elements 102q, b, ¢, . . . , z and the uniform
incremental phase shift amounts.

In embodiments, the weight coetlicients for various loca-
tions and widths of the beams for certain beamiforming
techniques (e.g., minimum variance distortionless response
operating in the frequency domain) may be generated using
static noise covariance to obtain a narrower beam width, or
using dynamic noise covariance for improved signal to noise
ratio.

Audio signals from the microphone elements
102q, b, ¢, . .., z may be received at step 204 at the lower
frequency band signal path 103 (in embodiments, at the low
pass filter 104) and also at the upper frequency band signal
path 113 (in embodiments, at the high pass filter 114). At
step 206, a first beamiormed signal may be generated using
the time domain beamformer 116 based on upper frequency
band signals derived from the audio signals from the micro-
phone elements 102q, b, ¢, . . . , z received at step 204, and
through the use of a time domain beamforming technique.
The upper frequency band signals may include middle and
higher frequencies, e.g., 12-24 kHz. The time domain beam-
forming technique used 1n the time domain beamformer 116
may utilize the weight coellicients determined at step 202.
An embodiment of step 206 1s described below with respect
to FIG. 3.

At step 208, a second beamformed signal may be gener-
ated using the frequency domain beamiormer 108 based on
lower frequency band signals derived from the audio signals
from the microphone elements 102q, b, ¢, . . ., z recerved at
step 204, and through the use of frequency domain beam-
forming techniques on different groups of the lower fre-
quency band signals. The audio signals may be converted
from the time domain to the frequency domain in order to
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produce the lower frequency domain signals utilized in the
frequency domain beamformer 108. The lower frequency
band signals may include signals with lower frequencies
than the upper frequency band signals, e.g., 0-12 kHz. The
frequency domain beamiforming techniques used in the
frequency domain beamformer 108 may utilize the weight
coellicients determined at step 202. An embodiment of step
208 1s described below with respect to FIG. 4. In embodi-
ments, steps 206 and 208 may be performed substantially at
the same time or may be performed at different times.

A beamiormed output signal may be generated by the
output generation unit 122 at step 210. The beamformed
output signal may be generated by combining the first
beamiormed signal and the second beamformed signal that
are generated by the time domain beamformer 116 and the
frequency domain beamformer 108, respectively. In
embodiments, the first beamformed signal and the second
beamiormed signal may be combined by being summed
together by the output generation unit 122 to generate the
beamiormed output signal. The beamiormed output signal
may be a digital signal, such as a signal conforming to the
Dante standard for transmitting audio over Ethernet, for
example. In embodiments, the beamiormed output signal
may be output to components or devices (e.g., processors,
mixers, recorders, amplifiers, etc.) external to the hybnd
audio beamforming system 100 and/or the array micro-
phone.

FIG. 3 shows an embodiment of a process 206 for the time
domain beamforming of upper frequency band signals using
the upper frequency band signal path 113 that includes the
time domain beamiformer 108. The process 206 shown in
FIG. 3 may correspond to step 206 of the process 200 shown
in FIG. 2. In the process 206 of FIG. 3, the audio signals
received at step 204 of the process 200 may be filtered at step
302 by the high pass filter 114. The high pass filter 114 may
be configured to pass the audio signals having frequencies in
an upper frequency range, €.g., 12-24 kHz. In embodiments,
the spectrum response of the high pass filter 114 may be
matched to the spectrum response of the low pass filter 104
(of the lower frequency band signal path 103), 1n order to
flatten the spectrum response of the broadband signal, 1.e.,
the beamformed output signal.

At step 304, the upper frequency band signals from the
high pass filter 114 may be processed by the time domain
beamiormer 116 using a time domain beamforming tech-
nique. The time domain beamiformer 116 may utilize a delay
and sum beamiormer technique, in embodiments. As
described previously, the weight coellicients used by the
time domain beamformer 116 may be received from the
weight determination unit 120 at step 202, based on the
desired location and width of the beam.

At step 306, the signal generated by the time domain
beamiormer 116 may be delayed by the delay element 118
to generate the first beamiformed signal that 1s provided to
the output generation unit 122. The output generation unit
122 can combine the first and second beamformed signals at
step 210 of the process 200, as described previously. The
delay element 118 may add an appropriate amount of delay
to the signal from the time domain beamiormer 116 1n order
to align the signal with the second beamformed signal
generated by the lower frequency band signal path 103. This
may be due to the lower frequency band signal path 103
having a larger latency due to 1ts additional components (1.¢.,
low pass filters 104, 112, decimator 106, and interpolator
110), as well as due to the frequency domain beamformer
108. Accordingly, the amount of delay added by the delay
clement 118 may be based on the difference in the latency
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between the lower frequency band signal path 103 and the
upper Irequency band signal path 113.

FIG. 4 shows an embodiment of a process 208 for the
frequency domain beamforming of lower frequency band
signals using the lower frequency band signal path 103 that
includes the frequency domain beamformer 108. The pro-
cess 208 shown 1n FIG. 4 may correspond to step 208 of the
process 200 shown 1n FIG. 2. In the process 208 of FIG. 4,
the audio signals received at step 204 of the process 200 may
be filtered at step 402 by the low pass filter 104. The low
pass lilter 104 may be configured to pass the audio signals
having frequencies 1n a lower frequency range, e.g., 0-12
kHz.

The filtered signals from the low pass filter 104 may be
processed by the decimator 106 to generate the lower
frequency band signals for processing by the frequency
domain beamformer 108 at step 404. In particular, the
decimator 106 may downsample the filtered signals by a
particular factor to a lower sampling rate, as compared to the
sampling rate of the audio signals received at step 204. The
filtered signals may be downsampled in order to simplity the
computation and complexity of processing by the frequency
domain beamformer 108. In embodiments, the decimator
106 may downsample the filtered 31gnals by a factor of 2 to
a 24 kHz sampling rate from the 48 kHz sampling rate of the
audio signals. In other embodiments, the decimator 106 may
downsample the filtered signals by a different factor to
another appropnate sampling rate.

At step 403, the decimated filtered signals may be trans-
formed from the time domain into the frequency domain
using a suitable frequency transform, such as a fast Fourier
transform, a short-time Fourier transtform, a discrete Fourier
transform, a discrete cosine transform, or a wavelet trans-
torm. The lower frequency band signals may be processed
using frequency domain beamiforming techniques 1n order to
avoid 1ssues with excessive side lobes and the need to use a
high order filter bank that may occur when using time
domain beamforming techniques on lower frequency band
signals.

At steps 406 and 408, the frequency domain beamformer
108 may process two groups of the lower frequency band
signals using differing frequency domain beamiorming tech-
niques. While FIG. 4 shows the lower frequency band
signals being processed in two groups, it 1s contemplated
and possible for the frequency domain beamiformer 108 to
process more than two groups of the lower frequency band
signals using two or more frequency domain beamiorming
techniques, in embodiments.

In embodiments, the lower frequency band signals 1n the
frequency domain may be transformed using a weighted
overlap-add (WOLA) methodology. The WOLA methodol-
ogy may break up the lower frequency band signals into
overlapping frames having a particular size, in order to
reduce the artifacts at the boundaries between the frames.
The frames may be transformed 1nto frequency bins using a
frequency transform. The frequency bins may be divided
into a first group (e.g., lower frequency components of the
lower frequency band signals) and into a second group (e.g.,
upper frequency components of the lower frequency band
signals).

In embodiments, the frame size of the WOLA methodol-
ogy may be configurable to allow a tradeoil between (1)
latency 1n the lower frequency band signal path 103, and (2)
computational resources and memory usage. In particularj if
the frame size 1s smaller than or equal to a block size of the
frequency transform, then the latency of the lower frequency
band signal path 103 may be reduced while utilizing rela-
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tively higher computational resources and memory. The
block size of the FFT transform and the frame size may be
expressed 1n a number of samples. For example, the latency
of the lower frequency band signal path 103 when the block
size of the FFT transform 1s 256 and the frame size 1s 256
may be greater than the latency of the lower frequency band
signal path 103 when the frame si1ze 1s 128 or 192 (and when
the block size of the FFT transform remains at 256), using

a zero padding method to make up a whole block of data for
the FFT.

At step 406, the first group of the lower frequency band
signals may be processed by the frequency domain beam-
former 108 using a first frequency domain beamiorming
technique. In embodiments, the first group may be lower
frequency components of the lower frequency band signals,
and the first frequency domain beamiorming technique may
be a superdirective beamforming technique, such as a mini-
mum variance distortionless response (MVDR) beamiorm-
ing technique. In other embodiments, the first frequency
domain beamforming technique may be another appropriate
superdirective beamforming techmque. The frequency range
of the lower frequency components of the lower frequency
band signals may be dependent on the physical aperture size
of the microphone array the beamformer 1s being used with,
such as the frequencies corresponding to below the aperture
size. For example, in embodiments, the lower frequency
components of the lower frequency band signals may be 1n
the range of approximately 0-1 kHz or approximately 0-2
kHz. As described previously, the weight coeflicients used
by the first frequency domain beamforming technique 1n the
frequency domain beamformer 116 may be received from
the weight determination unit 120 at step 202, based on the
desired location and width of the beam.

At step 408, the second group of the lower frequency band
signals may be processed by the frequency domain beam-
former 108 using a second frequency domain beamiorming
technique. In embodiments, the second group may be upper
frequency components of the lower frequency band signals,
and the second frequency domain beamforming technique
may be delay and sum beamforming technique. In other
embodiments, the second frequency domain beamiorming
technique may be another appropriate beamiorming tech-
nique. The frequency range of the upper frequency compo-
nents of the lower frequency band signals may also be
dependent on the physical aperture size of the microphone
array the beamiformer 1s being used with, such as the
frequencies corresponding one to two octaves above the
aperture size. For example, in embodiments, the upper
frequency components of the lower frequency band signals
may be 1n the range of approximately 1 kHz or 2 kHz and
above. As described previously, the weight coethicients used
by the second frequency domain beamforming technique in
the frequency domain beamformer 116 may be received
from the weight determination unit 120 at step 202, based on
the desired location and width of the beam. In embodiments,
steps 406 and 408 may be performed substantially at the
same time or may be performed at different times.

At step 409, the signal generated by the frequency domain
beamiformer 108 (that 1s based on the first and second
frequency beamforming techniques) may be transformed
from the frequency domain into the time domain using a
suitable inverse frequency transiorm, such as an inverse fast
Fourier transform, an inverse short-time Fourier transform,
an i1nverse discrete Fourier transform, an inverse discrete
cosine transform, or an i1nverse wavelet transform. In
embodiments, the transformation of the signal from the




US 11,785,380 B2

11

frequency domain to the time domain may use the WOLA
methodology, as previously described.

At step 410, the transformed signal (based on the signal
generated by the frequency domain beamformer 108) may
be processed by the interpolator 110. In particular, the
interpolator 110 may upsample the signal generated by the
frequency domain beamiormer 108 by a particular factor to
a higher sampling rate. In embodiments, the interpolator 110
may upsample the signal by a factor of 2 to a 48 kHz
sampling rate. In other embodiments, the interpolator 110
may upsample the signal by a different factor to another
appropriate sampling rate.

The low pass filter 122 may filter the upsampled signal
from the interpolator 110 at step 412, and generate the
second beamiormed signal that 1s provided to the output
generation unit 122. The output generation unit 122 can
combine the first and second beamformed signals at step 210
of the process 200, as described previously. The low pass
filter 122 may be configured to pass components of the
upsampled signal having frequencies in a lower frequency
range, e.g., 0-12 kHz.

It should be noted that while FIGS. 2-4 describe that the
audio signals may be divided for processing into the groups
of upper frequency band signals, lower frequency compo-
nents of the lower frequency band signals, and upper ire-
quency components of the lower frequency band signals, 1t
1s contemplated and possible that the audio signal may be
divided into groups for processing based on any suitable
frequency ranges. Moreover, any ol the groups may be
processed by the superdirective beamiorming technique in
the frequency domain, the delay and sum beamiorming
technique 1n the frequency domain, and/or the delay and sum
beamforming technique in the time domain, as appropriate.

Any process descriptions or blocks in figures should be
understood as representing modules, segments, or portions
of code which include one or more executable instructions
for implementing specific logical functions or steps in the
process, and alternate implementations are included within
the scope of the embodiments of the mvention in which
functions may be executed out of order from that shown or
discussed, including substantially concurrently or 1n reverse
order, depending on the functionality involved, as would be
understood by those having ordinary skill in the art.

This disclosure 1s intended to explain how to fashion and
use various embodiments 1n accordance with the technology
rather than to limit the true, intended, and fair scope and
spirit thereof. The foregoing description 1s not intended to be
exhaustive or to be limited to the precise forms disclosed.
Modifications or variations are possible 1n light of the above
teachings. The embodiment(s) were chosen and described to
provide the best illustration of the principle of the described
technology and its practical application, and to enable one of
ordinary skill 1n the art to utilize the technology in various
embodiments and with various modifications as are suited to
the particular use contemplated. All such modifications and
variations are within the scope of the embodiments as
determined by the appended claims, as may be amended
during the pendency of this application for patent, and all
equivalents thereof, when interpreted 1n accordance with the
breadth to which they are fairly, legally and equitably
entitled.

The invention claimed 1s:

1. A beamforming system, comprising:

a first beamformer configured to generate a first beam-
formed signal based on first frequency band signals
derived from a plurality of audio signals, wherein the
first beamformer 1s configured to process the first
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frequency band signals using a first beamforming tech-
nique comprising a delay and sum beamforming tech-
nique preformed 1n the time domain;

a second beamformer configured to generate a second
beamformed signal based on second frequency band
signals derived from the plurality of audio signals,
wherein the second beamformer 1s configured to pro-
cess the second frequency band signals using a second
beamforming technique, wherein the second frequency
band signals comprise a first group and a second group,
and wherein the second beamformer 1s further config-
ured to process the first group using a superdirective
beamforming technique performed in the frequency
domain, and process the second group using a delay
and sum beamiforming technique 1n the frequency
domain; and

an output generation unit 1n communication with the first
and second beamformers, the output generation unit
configured to generate a beamiormed output signal
based on the first beamiormed signal and the second
beamiormed signal.

2. The beamforming system of claim 1, wherein the first
beamiorming technique comprises a time domain beam-
forming technique and the second beamiorming technique
comprises a frequency domain beamiforming technique.

3. The beamiorming system of claim 1,

wherein the second beamforming techmque comprises a
first frequency domain beamforming technique and a
second frequency domain beamiorming technique; and

wherein the second beamiormer i1s further configured to
process the first group using the first frequency domain
beamiorming technique and process the second group
using the second frequency domain beamiorming tech-
nique.

4. The beamiorming system of claim 3, wherein the first
and second frequency domain beamiorming techniques are
based on a weighted overlap-add (WOLA) methodology
with a frame size that 1s smaller than or equal to a block size
of a frequency domain transform.

5. The beamforming system of claim 4, wherein the frame
s1Zze 1s configurable.

6. The beamforming system of claim 3, further compris-
ing an interpolator configured to generate the second beam-
formed signal based on a signal generated by the first and
second frequency domain beamforming techniques.

7. The beamforming system of claim 6, wherein the
interpolator comprises a low pass filter configured to filter
the signal generated by the first and second frequency
domain beamiforming techniques into a filtered signal, and
the interpolator 1s further configured to convert the filtered
signal 1nto the second beamiformed signal.

8. The beamforming system of claim wherein the super-
directive beamiforming technique comprises a minimum
variance distortionless response (MVDR) beamiorming
technique performed 1n the frequency domain.

9. The beamiorming system of claim 1, wherein:

the first frequency band signals comprise upper frequency
band signals;

the second frequency band signals comprise lower fre-
quency band signals;

the first group of the lower frequency band signals com-
prises lower frequency components of the lower fre-
quency band signals; and

the second group of the lower frequency band signals
comprises upper frequency components of the lower
frequency band signals.
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10. The beamiorming system of claim 1, wherein the first
frequency band signals comprise upper frequency band
signals and the second frequency band signals comprise
lower frequency band signals.

11. The beamforming system of claim 1, further compris-
ing a decimator configured to convert the plurality of audio
signals 1nto the second frequency band signals.

12. The beamiorming system of claim 11, wherein the
decimator comprises a low pass filter configured to filter the
plurality of audio signals into filtered audio signals, and the
decimator 1s further configured to convert the filtered audio
signals 1nto the second frequency band signals.

13. A method, comprising:

receiving a plurality of audio signals;

generating a first beamformed signal based on first fre-

quency band signals derived from the plurality of audio
signals, using a first beamforming technique;
generating a second beamiformed signal based on second
frequency band signals derived from the plurality of
audio signals, using a second beamforming technique,
wherein the second frequency band signals comprises a
first group and a second group, and wherein the second
beamforming technique comprises a first frequency

domain beamiforming technique and a second fre-
quency domain beamiforming technique that are each
based on a weighted overlay-add (WOLA) methodol-
ogy with a frame size that 1s smaller than or equal to a
block size of a frequency domain transform; and

generating a beamformed output signal based on the first
beamiormed signal and the second beamformed signal,
comprising processing the first group using the {first
frequency domain beamiorming technique and pro-
cessing the second group using the second frequency
domain beamiorming technique.

14. The method of claim 13, wherein the first beamtorm-
ing technique comprises a time domain beamforming tech-
nique and the second beamiorming technique comprises a
frequency domain beamiforming technique.

15. The method of claim 13, wherein the frame size 1s
configurable.

16. The method of claam 13, wherein generating the
second beamformed signal comprises interpolating a signal
generated by the first and second frequency domain beam-
forming techniques to generate the second beamformed
signal.

17. The method of claim 16, wherein interpolating the
signal comprises:

low pass filtering the signal generated by the first and

second frequency domain beamforming techniques into
a filtered signal; and

converting the filtered signal into the second beamformed

signal.

18. The method of claim 13

wherein the first beamforming technique comprises a

delay and sum beamiforming technique performed 1in
the time domain; and

wherein generating the second beamformed signal com-

prises processing the first group using a superdirective
beamforming technique performed in the frequency
domain, and processing the second group using a delay
and sum beamforming technique in the Irequency
domain.

19. The method of claim 18, wherein the superdirective
beamforming technique comprises a minimum variance
distortionless response (MVDR) beamforming technique
performed 1n the frequency domain.
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20. The method of claim 18, wherein:

the first frequency band signals comprise upper frequency

band signals;

the second frequency band signals comprise lower ire-

quency band signals;

the first group of the lower frequency band signals com-

prises lower frequency components of the lower fre-
quency band signals; and

the second group of the lower frequency band signals

comprises upper frequency components of the lower
frequency band signals.

21. The method of claim 13, wherein the first frequency
band signals comprise upper ifrequency band signals and the
second Ifrequency band signals comprise lower frequency
band signals.

22. The method of claim 13, further comprising decimat-
ing the plurality of audio signals into the second frequency
band signals.

23. The method of claim 22, wherein decimating the
plurality of audio signals comprises:

low pass filtering the plurality of audio signals into

filtered audio signals; and

converting the filtered audio signals into the second

frequency band signals.

24. An array microphone, comprising:

a plurality of microphone elements each configured to

generate one of a plurality of audio signals; and

a beamformer configured to generate a beamformed out-

put signal based on the plurality of audio signals,
wherein the beamformer comprises a plurality of beam-
formers each configured to process first and second
frequency band signals using a different beamiorming
technique, and wherein the first and second frequency
band signals are derived from the plurality of audio
signals;

wherein a {irst beamformer of the plurality of beamform-

ers 1s configured to process the first frequency band
signals using a delay and sum beamforming technique
in the time domain; and

wherein a second beamformer of the plurality of beam-

formers 1s configured to process a first group of the
second Irequency band signals using a superdirective
beamforming technique preformed in the frequency
domain, and process a second group of the second
frequency band signals using a delay and sum beam-
forming technique in the frequency domain.

25. The array microphone of claim 24, wherein the
superdirective beamforming technique and the delay and
sum beamiorming technique of the second beamiormer are
based on a weighted overlap-add (WOLA) methodology
with a frame size that 1s smaller than or equal to a block size
of a frequency domain transform.

26. The array microphone of claim 24, wherein:

the first frequency band signals comprise upper frequency

band signals; and

the second frequency band signals comprise lower Ire-

quency band signals.

277. The array microphone of claim 26, where:

the first group of the lower frequency band signals com-

prises lower frequency components of the lower fre-
quency band signals; and

the second group of the lower frequency band signals

comprises upper frequency components of the lower
frequency band signals.
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INVENTOR(S) : Wenshun Tian et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims

Claim 1, Column 12, Line 3, “preformed” should be changed to --performed--.

Claim 8, Column 12, Line 53, “claim wherein” should be changed to --claim 1, wherein--.
Clamm 13, Column 13, Line 22, “signals comprises” should be changed to --signals comprise--.
Claim 13, Column 13, Line 27, “overlay-add” should be changed to --overlap-add--.

Claim 18, Column 13, Line 54, “claim 13” should be changed to --claim 13,--.

Claim 24, Column 14, Line 44, “preformed” should be changed to --performed--.
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Third Day of September, 2024

Katherme Kelly Vidal
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