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SYSTEMS AND METHODS FOR MATCHING
OBJECTS IN COLLABORATIVE
PERCEPTION MESSAGES

TECHNICAL FIELD

The present disclosure relates to systems and methods for
matching objects 1n collaborative perception messages.

BACKGROUND

Vehicles communicate messages such as basic safety
messages (BSMs), collaborative perception messages
(CPMs), personal safety messages (PSMs) via vehicle to
vehicle communication (V2V) or vehicle to everything
communication (V2X). These messages may be used to
augment a vehicle’s local dynamic map to support various
onboard applications, €.g., collision avoidance, navigation,
etc. When a vehicle recerves multiple messages from mul-
tiple vehicles and generates a local dynamic map based on
the received messages, 1t 1s diflicult to i1dentily the same
object in the multiple messages because of uncertainty of the
location of the object.

Accordingly, a need exists for systems and methods for
accurately 1dentifying correspondence among objects 1n
multiple messages.

SUMMARY

The present disclosure provides systems and methods for
matching objects 1 messages received from multiple
vehicles, such as collaborative perception messages.

In one embodiment, a method of matching objects in
collaborative perception messages 1s provided. The method
includes obtaining a first collaborative perception message
(CPM) message from a first node, obtaining a second CPM
from a second node, calculating an adaptive threshold based
on uncertainty of the first CPM and uncertainty of the second
CPM, calculating scores for pairs of objects, each of the
pairs of objects including one object 1n the first CPM and
one object 1in the second CPM, filtering out one or more pairs
whose score 1s greater than the adaptive threshold to obtain
a filtered matrix; and implementing a fusion algorithm on
the filtered matrix to obtain correspondence identification
among objects.

In another embodiment, a vehicle includes a network
interface and a controller. The network interface 1s config-
ured to: receive a first collaborative perception message
(CPM) message from a first node; and receive a second CPM
from a second node. The controller 1s programmed to:
calculate an adaptive threshold based on uncertainty of the
first CPM and uncertainty of the second CPM, calculate
scores for pairs ol objects, each of the pairs of objects
including one object 1n the first CPM and one object 1n the
second CPM, filter out one or more pairs whose score 1s
greater than the adaptive threshold to obtain a filtered
matrix, and implement a fusion algorithm on the filtered
matrix to obtain correspondence i1dentification among
objects.

In another embodiment, a non-transitory computer read-
able medium storing instructions 1s provided. The nstruc-
tions, when executed by a processor, perform operations
including obtaining a first collaborative perception message
(CPM) message from a first node, obtaining a second CPM
from a second node, calculating an adaptive threshold based
on uncertainty of the first CPM and uncertainty of the second
CPM, calculating scores for pairs of objects, each of the
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pairs ol objects including one object 1n the first CPM and
one object 1n the second CPM, filtering out one or more pairs
whose score 1s greater than the adaptive threshold to obtain
a flltered matrix, and implementing a fusion algorithm on the
filtered matrix to obtain correspondence i1dentification
among objects.

These and additional features provided by the embodi-
ments of the present disclosure will be more fully under-

stood 1 view of the following detailed description, 1n
conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments set forth 1n the drawings are 1llustrative
and exemplary 1n nature and not intended to limit the
disclosure. The following detailed description of the 1llus-
trative embodiments can be understood when read in con-
junction with the following drawings, where like structure 1s
indicated with like reference numerals and 1n which:

FIG. 1A schematically depicts a system for identilying
correspondence among objects that are imncluded 1n collab-
orative perception messages, 1n accordance with one or more
embodiments shown and described herewith;

FIG. 1B schematically depicts a system for identifying
correspondence among objects that are included 1n collab-
orative perception messages, 1n accordance with one or more
embodiments shown and described herewith;

FIG. 2 depicts a schematic diagram of a system for fusing
data in CPMs using an adaptive threshold, according to one
or more embodiments shown and described herein;

FIG. 3 depicts a flowchart for determining correspon-
dence among objects 1n CPMs using an adaptive threshold,
according to one or more embodiments shown and described
herein;

FIG. 4 depicts an overall system process implemented by
an edge node, according to one or more embodiments shown
and described here; and

FIG. 5 depicts an example scenario where an ego vehicle
identifies correspondence among objects that are included 1n
collaborative perception messages from other vehicles,
according to one or more embodiments shown and described
herein.

DETAILED DESCRIPTION

The embodiments disclosed herein include systems and
methods for identifying correspondence among objects
specified 1n messages such as collaborative perception mes-
sages. A method includes obtaining a first collaborative
perception message (CPM) message from a first node,
obtaining a second CPM from a second node, calculating an
adaptive threshold based on uncertainty of the first CPM and
uncertainty of the second CPM, calculating scores for pairs
ol objects, each of the pairs of objects including one object
in the first CPM and one object 1n the second CPM, filtering
out one or more pairs whose score 1s greater than the
adaptive threshold to obtain a filtered matrix, and 1imple-
menting a fusion algorithm on the filtered matrix to obtain
correspondence 1dentification among objects.

Updating a local dynamic map may be implemented by
stacking up 1mcoming objects included in messages from
other vehicles onto a current map. However, the messages
from other vehicles, e.g., DSRC V2X messages, include
noises, the observations of objects reported 1n the messages
retain uncertainties. The uncertainties make diflicult to accu-
rately determine whether two objects reported in different
messages are the same object or not. The present disclosure
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calculates an adaptive threshold based on the uncertainties
of the messages. The adaptive threshold may be used to filter
out false positives ol matching pairs.

FIG. 1A schematically depicts a system for identifying
correspondence among objects that are included 1n collab-
orative perception messages, in accordance with one or more
embodiments shown and described herewith.

By referring to FIG. 1A, a vehicle 106 receives messages
from a vehicle 102 and a vehicle 104. Each of the vehicles
102, 104, 106 may be an automobile or any other passenger
or non-passenger vehicle such as, for example, a terrestrial,
aquatic, and/or airborne vehicle. In some embodiments, the
vehicle 1s an autonomous vehicle that navigates its environ-
ment with limited human input or without human input. The
messages may be collaborative perception messages
(CPMs). In some embodiments, the messages may be other
type of messages including, but not limited to, basic safety
messages (BSMs), personal safety messages (PSMs), efc.

The vehicle 102 may sense objects 122, 124, and 126
using its sensors, for example, LIDAR sensors, radar sen-
sOrs, sonar sensors, or other types of sensors. Based on the

sensed 1nformation, the vehicle 102 may generate a first
CPM that includes locations of the objects 122, 124, and

126. The first CPM may also include the headings of the
objects 122, 124, and 126. Then, the vehicle 102 transmuits
the first CPM to the vehicle 106. The vehicle 102 may also
transmit the location and/or heading of the vehicle 102 to the
vehicle 106. Similarly, the vehicle 104 may sense objects
126 and 128 using its sensors, for example, LIDAR sensors,
radar sensors, sonar sensors, or other types of sensors. Based
on the sensed information, the vehicle 104 may generate a
second CPM that includes locations of the objects 126 and
128. The second CPM may also include the headings of the
objects 126 and 128. Then, the vehicle 104 transmits the
second CPM to the vehicle 106. The vehicle may also
transmit the location and/or heading of the vehicle 104 to the
vehicle 106. The vehicle 106 may match objects included in
the first CPM with objects included 1n the second CPM using,
a fusion algorithm. In embodiments, the vehicle 106 may
use a bipartite graph, 1.e., a Hungarian algorithm, with
feature diflerences to match a pair of objects. In this
example, the vehicle 106 may match the object 126 1denti-

fied by the vehicle 102 with the object 126 i1dentified by the
vehicle 104.

The 1ssue of using the Hungarian algorithm 1s that the
Hungarian algorithm always tries to match at least a pair of
objects even 1f a pair ol objects are at drastically different
locations as 1llustrated 1n FIG. 1B. By referring to FIG. 1B,
the vehicle 102 may sense objects 132, 134, 136 using its
sensors. Based on the sensed information, the vehicle 102

may generate a first CPM that includes locations of the
objects 132, 134, 136. Then, the vehicle 102 transmits the

first CPM to the vehicle 106. The vehicle 102 may also
transmit the location and/or heading of the vehicle 102 to the
vehicle 106. Similarly, the vehicle 104 may sense an object
138 using 1ts sensors. Based on the sensed information, the
vehicle 104 may generate a second CPM that includes the
location of the object 138. Then, the vehicle 104 transmuits
the second CPM to the vehicle 106. The vehicle may also
transmit the location and/or heading of the vehicle 104 to the
vehicle 106. In contrast with the example of FIG. 1A, 1n this
example, the vehicle 102 and the vehicle 104 are located far
from each other. For example, the vehicle 102 1s located 1n
San Diego, and the vehicle 104 1s located 1n Los Angeles.
Since the vehicles 102 and 104 are located far from each
other, no matching should be made between the objects

identified by the vehicle 102 and the objects 1dentified by the
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vehicle 104. However, the Hungarian algorithm always
matches at least one pair. Thus, 1n this example, the vehicle
106 may erroneously match the object 136 with the object
138 even though the object 136 1s clearly different from the
object 138. Thus, the present disclosure prunes any match
that 1s likely to be false using an adaptive threshold that 1s
generated based on uncertainties of data, e.g., uncertainties
of locations of detected objects, and uncertainties of loca-
tions of vehicles. The details of calculating an adaptive
threshold will be described 1n detail below.

FIG. 2 depicts a schematic diagram of a system for fusing,
data in CPMs using an adaptive threshold, according to one
or more embodiments shown and described herein. The
system 1ncludes a first vehicle system 200, a second vehicle
system 220, and an edge system 240. While FIG. 2 depicts
that two vehicle systems communicate with the edge system
240, more than two vehicle systems may communicate with
the edge system 240.

It 1s noted that, while the first vehicle system 200 and the
second vehicle system 220 are depicted 1n 1solation, each of
the first vehicle system 200 and the second vehicle system
220 may be included within an edge node such as a vehicle
in some embodiments, for example, respectively within the
vehicles 102 and 104 of FIGS. 1A and 1B. Similarly, the
edge system 240 may be included within the vehicle 106 of
FIGS. 1A and 1B. Alternatively, the edge system 240 may be
included within an edge server or a road side unit that
communicates with the vehicles 102 and 104. In embodi-
ments 1 which each of the first vehicle system 200 and the
second vehicle system 220 1s included within an edge node,
the edge node may be an automobile or any other passenger
or non-passenger vehicle such as, for example, a terrestral,
aquatic, and/or airborne vehicle. In some embodiments, the
vehicle 1s an autonomous vehicle that navigates 1ts environ-
ment with limited human mnput or without human nput. In
some embodiments, the edge node may be an edge server
that communicates with a plurality of vehicles 1n a region
and communicates with another vehicle, such as the vehicle
106. In some embodiments,

The first vehicle system 200 includes one or more pro-
cessors 202. Each of the one or more processors 202 may be
any device capable of executing machine readable and
executable istructions. Accordingly, each of the one or
more processors 202 may be a controller, an integrated
circuit, a microchip, a computer, or any other computing
device. The one or more processors 202 are coupled to a
communication path 204 that provides signal interconnec-
tivity between various modules of the system. Accordingly,
the communication path 204 may communicatively couple
any number of processors 202 with one another, and allow
the modules coupled to the communication path 204 to
operate 1 a distributed computing environment. Specifi-
cally, each of the modules may operate as a node that may
send and/or receive data. As used herein, the term “com-
municatively coupled” means that coupled components are
capable of exchanging data signals with one another such as,
for example, electrical signals via conductive medium, elec-
tromagnetic signals via air, optical signals via optical wave-
guides, and the like.

Accordingly, the communication path 204 may be formed
from any medium that is capable of transmitting a signal
such as, for example, conductive wires, conductive traces,
optical waveguides, or the like. In some embodiments, the
communication path 204 may facilitate the transmission of
wireless signals, such as WiFi, Bluetooth®, Near Field
Communication (NFC), and the like. Moreover, the com-
munication path 204 may be formed from a combination of
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mediums capable of transmitting signals. In one embodi-
ment, the communication path 204 comprises a combination
of conductive traces, conductive wires, connectors, and
buses that cooperate to permit the transmission of electrical
data signals to components such as processors, memories,
sensors, mmput devices, output devices, and communication
devices. Accordingly, the communication path 204 may
comprise a vehicle bus, such as for example a LIN bus, a
CAN bus, a VAN bus, and the like. Additionally, 1t 1s noted
that the term “signal” means a wavelorm (e.g., electrical,
optical, magnetic, mechanical or electromagnetic), such as
DC, AC, sinusoidal-wave, triangular-wave, square-wave,
vibration, and the like, capable of traveling through a
medium.

The first vehicle system 200 includes one or more
memory modules 206 coupled to the communication path
204. The one or more memory modules 206 may comprise
RAM, ROM, flash memories, hard drives, or any device
capable of storing machine readable and executable mstruc-
tions such that the machine readable and executable instruc-
tions can be accessed by the one or more processors 202.
The machine readable and executable instructions may
comprise logic or algorithm(s) written 1n any programming
language of any generation (e.g., 1GL, 2GL, 3GL, 4GL, or
SGL) such as, for example, machine language that may be
directly executed by the processor, or assembly language,
object-oriented programming (OOP), scripting languages,
microcode, etc., that may be compiled or assembled into
machine readable and executable instructions and stored on
the one or more memory modules 206. Alternatively, the
machine readable and executable instructions may be writ-
ten 1n a hardware description language (HDL), such as logic
implemented via either a field-programmable gate array
(FPGA) configuration or an application-specific integrated
circuit (ASIC), or their equivalents. Accordingly, the meth-
ods described herein may be implemented 1mn any conven-
tional computer programming language, as pre-programmed
hardware elements, or as a combination of hardware and
software components. The one or more processor 202 along
with the one or more memory modules 206 may operate as
a controller for the first vehicle system 200.

Referring still to FIG. 2, the first vehicle system 200
comprises one or more sensors 208. The one or more sensors
208 may be any device having an array of sensing devices
capable of detecting radiation in an ultraviolet wavelength
band, a visible light wavelength band, or an infrared wave-
length band. The one or more sensors 208 may have any
resolution. In some embodiments, one or more optical
components, such as a mirror, fish-eye lens, or any other
type of lens may be optically coupled to the one or more
sensors 208. In embodiments described herein, the one or
more sensors 208 may provide image data to the one or more
processors 202 or another component commumnicatively
coupled to the communication path 204. In some embodi-
ments, the one or more sensors 208 may also provide
navigation support. That 1s, data captured by the one or more
sensors 208 may be used to autonomously or semi-autono-
mously navigate a vehicle.

In some embodiments, the one or more sensors 208
include one or more 1maging sensors configured to operate
in the visual and/or infrared spectrum to sense visual and/or
inirared light. Additionally, while the particular embodi-
ments described herein are described with respect to hard-
ware for sensing light 1n the visual and/or infrared spectrum,
it 1s to be understood that other types of sensors are
contemplated. For example, the systems described herein
could include one or more LIDAR sensors, radar sensors,
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sonar sensors, or other types of sensors for gathering data
that could be integrated into or supplement the data collec-
tion described herein. Ranging sensors like radar may be
used to obtain a rough depth and speed information for the
view of the first vehicle system 200.

The first vehicle system 200 comprises a satellite antenna
214 coupled to the communication path 204 such that the
communication path 204 communicatively couples the sat-
cllite antenna 214 to other modules of the first vehicle
system 200. The satellite antenna 214 1s configured to
receive signals from global positioning system satellites.
Specifically, 1n one embodiment, the satellite antenna 214
includes one or more conductive elements that interact with
clectromagnetic signals transmitted by global positioning
system satellites. The received signal 1s transformed 1nto a
data signal indicative of the location (e.g., latitude and
longitude) of the satellite antenna 214 or an object posi-
tioned near the satellite antenna 214, by the one or more
processors 202.

The first vehicle system 200 comprises one or more
vehicle sensors 212. Each of the one or more vehicle sensors
212 1s coupled to the communication path 204 and commu-
nicatively coupled to the one or more processors 202. The
one or more vehicle sensors 212 may include one or more
motion sensors for detecting and measuring motion and
changes 1n motion of a vehicle, e.g., the edge node 101. The
motion sensors may include inertial measurement units.
Each of the one or more motion sensors may include one or
more accelerometers and one or more gyroscopes. Each of
the one or more motion sensors transforms sensed physical
movement of the vehicle into a signal indicative of an
orientation, a rotation, a velocity, or an acceleration of the
vehicle.

Still referring to FIG. 2, the first vehicle system 200
comprises network interface hardware 216 for communica-
tively coupling the first vehicle system 200 to the second
vehicle system 220 and/or the edge system 240. The network
interface hardware 216 can be communicatively coupled to
the communication path 204 and can be any device capable
of transmitting and/or receiving data via a network. Accord-
ingly, the network interface hardware 216 can include a
communication transceiver for sending and/or receiving any
wired or wireless communication. For example, the network
interface hardware 216 may include an antenna, a modem,
LAN port, WiF1 card, WiMAX card, mobile communica-
tions hardware, near-field communication hardware, satel-
lite communication hardware and/or any wired or wireless
hardware for communicating with other networks and/or
devices. In one embodiment, the network interface hardware
216 1ncludes hardware configured to operate 1n accordance
with the Bluetooth® wireless communication protocol. The
network interface hardware 216 of the first vehicle system
200 may transmit its data to the second vehicle system 220
or the edge system 240. For example, the network interface
hardware 216 of the first vehicle system 200 may transmit
messages such as BSMs, CPMs, PSMs to the edge system
240.

The first vehicle system 200 may connect with one or
more external vehicle systems (e.g., the second vehicle
system 220) and/or external processing devices (e.g., the
edge system 240) via a direct connection. The direct con-
nection may be a vehicle-to-vehicle connection (“V2V con-
nection”), a vehicle-to-everything connection (“V2X con-
nection”), or a mmWave connection. The V2V or V2X
connection or mmWave connection may be established
using any suitable wireless communication protocols dis-
cussed above. A connection between vehicles may utilize
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sessions that are time-based and/or location-based. In
embodiments, a connection between vehicles or between a
vehicle and an infrastructure element may utilize one or
more networks to connect, which may be 1n lieu of, or in
addition to, a direct connection (such as V2V, V2X, 5
mmWave) between the vehicles or between a vehicle and an
infrastructure. By way of non-limiting example, vehicles
may function as infrastructure nodes to form a mesh network
and connect dynamically on an ad-hoc basis. In this way,
vehicles may enter and/or leave the network at will, such 10
that the mesh network may self-orgamize and self-modify
over time. Other non-limiting network examples include
vehicles forming peer-to-peer networks with other vehicles

or utilizing centralized networks that rely upon certain
vehicles and/or infrastructure elements. Still other examples 15
include networks using centralized servers and other central
computing devices to store and/or relay information between
vehicles.

Still referring to FIG. 2, the first vehicle system 200 may
be communicatively coupled to the edge system 240 by the 20
network 250. In one embodiment, the network 250 may
include one or more computer networks (e.g., a personal
area network, a local area network, or a wide area network),
cellular networks, satellite networks and/or a global posi-
tioming system and combinations thereof. Accordingly, the 25
first vehicle system 200 can be communicatively coupled to
the network 250 via a wide area network, via a local area
network, via a personal area network, via a cellular network,
via a satellite network, etc. Suitable local area networks may
include wired Ethernet and/or wireless technologies such as, 30
for example, Wi-Fi. Suitable personal area networks may
include wireless technologies such as, for example, IrDA,
Bluetooth®, Wireless USB, Z-Wave, ZigBee, and/or other
near field communication protocols. Suitable cellular net-
works include, but are not limited to, technologies such as 35
LTE, WiMAX, UMTS, CDMA, and GSM.

Still referring to FIG. 2, the second vehicle system 220
includes one or more processors 222, one or more memory
modules 226, one or more sensors 228, one or more vehicle
sensors 232, a satellite antenna 234, and a communication 40
path 224 communicatively connected to the other compo-
nents of the second vehicle system 220. The components of
the second vehicle system 220 may be structurally similar to
and have similar functions as the corresponding components
of the first vehicle system 200 (e.g., the one or more 45
processors 222 corresponds to the one or more processors
202, the one or more memory modules 226 corresponds to
the one or more memory modules 206, the one or more
sensors 228 corresponds to the one or more sensors 208, the
one or more vehicle sensors 232 corresponds to the one or 50
more vehicle sensors 212, the satellite antenna 234 corre-
sponds to the satellite antenna 214, the communication path
224 corresponds to the communication path 204, and the
network interface hardware 236 corresponds to the network
interface hardware 216). 55

Still referring to FI1G. 2, the edge system 240 includes one
or more processors 242, one or more memory modules 246,
network interface hardware 248, and a communication path
244. 'The one or more processors 242 may be a controller, an
integrated circuit, a microchip, a computer, or any other 60
computing device. The one or more memory modules 246
may comprise RAM, ROM, flash memories, hard drives, or
any device capable of storing machine readable and execut-
able mstructions such that the machine readable and execut-
able 1instructions can be accessed by the one or more 65
processors 242. The one or more memory modules 246 may
include a data fusion module 247 and a data storage 249.

8

The data fusion module 247 determines association
among objects 1n CPMs received from vehicles, e.g., from
the first vehicle system 200 and the second vehicle system
220, using an adaptive threshold value. The data fusion
module 247 may calculate the adaptive threshold using a
trained mapping function 1( ). Tramning of a mapping func-
tion 1( ) may be mmplemented using machine learming
algorithms such as a linear model, a logistic regression
model, and a neural network model.

The mapping function 1{ ) recerves uncertainties of CPMs
as mputs and outputs a threshold, e.g., a distance threshold.
The uncertainties of CPMs may include uncertainties of
locations of vehicles that transmitted the CPMs and uncer-
tainties of locations of objects detected by the vehicles. The
uncertainties of the locations of the vehicles and the uncer-
tainties of the locations of the objects may be represented as
covariance matrices. When the training 1s implemented by a
linear model, the training uses the following equation.

fA)=b Equation 1

A represents uncertainties of CPMs, e.g., covariance
matrices of locations of vehicles and covariance matrices of
locations of detected objects. 1( ) 1s a mapping function that
outputs a distance threshold b?"*? based on the input A. Here
b*°? is a predicted distance threshold for determining
whether two objects are the same object or not. For example,
if the distance between two objects 1n two different CPMs 1s
less than the predicted distance threshold, then 1t 1s deter-
mined that the two objects are the same object. The traiming
of 1( ) may be implemented by comparing a ground truth
threshold b“” and the predictive distance threshold b*™*7.
The ground truth threshold 1s a threshold distance that is
used to accurately determine whether two objects are the
same objects or not. The training of 1( ) may be implemented
until the prediction error of norm (b**?-b“?) is less than
a predetermined value. While the training may be imple-
mented 1n the edge system 240, the training of the mapping
function may be implemented by other entity, for example,
a cloud server, and the cloud server may transmit the trained
mapping function to the edge system 240.

Then, the data fusion module 247 may use the trained
mapping function 1{ ) to determine an adaptive threshold
based on real time 1mnputs. For example, by referring to FIG.
1B, the data fusion module 247 receive a first CPM from the
first vehicle 102 and a second CPM from the second vehicle
104. The first CPM may include the location of the first
vehicle 102 and the locations of the detected objects 132,
134, 136. Similarly, the second CPM may include the
location of the second vehicle 104 and the location of the
detected object 138. The data fusion module 247 may obtain
uncertainties of the locations of the first vehicle 102 and the
objects 132, 134, 136. For example, the uncertainties may be
covariance matrices for the locations of the first vehicle 102
and the objects 132, 134, 136. Similarly, the second CPM
may include the location of the second vehicle 104 and the
location of the detected object 138. Similarly, the second
CPM may include the location of the second vehicle 104 and
the location of the detected object 138. The data fusion
module 247 may obtain uncertainties of the locations of the
second vehicle 104 and the object 138. For example, the

uncertainties may be covariance matrices for the locations of
the second vehicle 104 and the object 138. Then, the data

fusion module 247 mput the covariance matrices for the

locations of the first vehicle 102 and the objects 132, 134,
136 and the covariance matrices for the locations of the

second vehicle 104 and the object 138 to the trained map-
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ping function 1{ ). In response, the trained mapping function
f( ) outputs an adaptive threshold distance b.

The data fusion module 247 obtains a score matrix that
includes scores representing distances between pairs of
objects in CPMs. By referring to FIG. 1B, the data fusion
module 247 may transform the covariance matrices of the
locations of the objects 132, 134, 136 into detections in the
coordinates of the ego vehicle 106. Similarly, the data fusion
module 247 may transform the covariance matrix of the
location of the object 138 into detection 1n the coordinates
of the ego vehicle 106. Then, the data fusion module 247
obtains a score matrix including scores for pairs of detected
objects. For example, the score matrix may include a score
for a pair of the object 132 and the object 138, a score for
a pair of the object 134 and the object 138, a score for a pair
of the object 136 and the object 138. The score may
represent a distance between two objects. Then, the data
fusion module 247 may compare the scores of the score
matrix with the adaptive threshold distance b to filter out
pairs of objects. In this case, all three scores of the score
matrix are bigger than the adaptive threshold because the
objects 132, 134, 136 are located far from the object 138 and
the adaptive threshold distance 1s set to be relatively small
to 1dentily two different objects that are relatively close to
cach other. Accordingly, the data fusion module 247 may
determine that there 1s no corresponding between a group of
the objects 132, 134, 136 and the object 138.

The data storage 249 may store CPMs recerved from other
systems and the trained mapping function 1( ).

FIG. 3 depicts a tlowchart for determining correspon-
dence among objects in CPMs using an adaptive threshold,
according to one or more embodiments shown and described
herein.

In step 310, an edge node obtains a first collaborative
perception message (CPM) from a first node. By referring to
FIG. 5, the edge node may be the vehicle 106 and the first
node may be the vehicle 102. The vehicle 106 receives a first
CPM from the vehicle 102. The first CPM includes the
location of the vehicle 102 and the locations of the detected
objects 502, 504, 506. The locations of the vehicle 102 and

the detected objects 502, 504, 506 may not be exact loca-
tions due to noises, calculation errors, or low resolution of
sensors. Thus, uncertainties of the locations of the detected
objects 502, 504, 506 may be represented as covariance
matrices.

Referring back to FIG. 3, 1 step 320, the edge node
obtains a second collaborative perception message (CPM)
from a second node. By referring to FIG. 5, the vehicle 106
receives a second CPM from the vehicle 104. The second
CPM includes locations of the vehicle 104 and the detected
objects 512, 514, 516. The locations of the location of the
vehicle 104 and the detected objects 512, 514, 516 may not

be exact locations due to noises, calculation errors, or low

resolution of sensors. Thus, uncertainties of the locations of

the detected objects 512, 514, 516 may be represented as

covariance matrices.
Referring back to FIG. 3, 1 step 330, the edge node
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calculates an adaptive threshold based on the uncertainty of 60

the first CPM and the uncertainty of the second CPM. In
embodiments, by referring to FIGS. 2 and 3, the data fusion
module 247 of the vehicle 106 may calculate an adaptive
threshold based on the uncertainty of the first CPM from the
vehicle 102 and the uncertainty of the second CPM form the
vehicle 104. Specifically, by referring to equation 1 above,
the data fusion module 247 mputs the uncertainty of the first

65
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CPM and the uncertainty of the second CPM to the trained
mapping function 1( ), which outputs an adaptive threshold
b.

The uncertainty of the first CPM from the vehicle 102
may include the uncertainties of the locations of the vehicle
102 and the objects 502, 504, 506 detected by the vehicle
102. Similarly, the uncertainty of the second CPM from the
vehicle 104 may include the uncertainties of the locations of
the vehicle 104 and the objects 512, 514, 516 detected by the
vehicle 104. The location uncertainty may be defined as a
scope of the location of a vehicle or a detected object. For
example, the eclipses 331, 533, 535, 537 represent the
uncertainties of the locations of the vehicle 102 and objects
502, 504, 506, respectively. The eclipses 541, 543, 545, 547
represent the uncertainties of the locations of the vehicle 104
and objects 312, 514, 516, respectively. The size of an
eclipse 1ncreases as the uncertainty becomes greater.

In embodiments, the uncertainties of the first CPM may be
represented as covariance matrices of the locations of the
vehicle 102 and the objects 502, 504, 506. The uncertainties
of the second CPM may be represented as covariance
matrices of the locations of the vehicle 104 and the objects
512, 514, 516. In this example, the adaptive threshold may
be 3.1.

Referring back to FIG. 3, in step 340, the edge node
calculates scores for pairs of objects. Each of the pairs of
objects includes one object 1n the first CPM and one object
in the second CPM. By referring to FIG. 35, the vehicle 106
may generate a 3 by 3 score matrix based on the first CPM
and the second CPM as 1illustrated 1in FIG. 5. The first CPM
includes information about the locations of the objects 502,
504, 506 and the second CPM includes information about
the locations of the objects 512, 514, 516. F

Each of the scores
in the score matrix may represent a value proportional to a
distance between a pair of objects.

The vehicle 106 may transform the first CPM 1nto detec-
tions 1n the coordinates of the vehicle 106 and transtorm the
second CPM 1into detections 1n the coordinates of the vehicle
106. Then, the vehicle 106 may calculate scores for pairs of
objects that are in the coordinates of the vehicle 106. For
example, the score for the pair of the objects 502 and 512 1s
2.1, the score for the pair of the objects 504 and 512 1s 4.4,
and the score for the pair of the objects 506 and 512 1s 3.2.
The score for the pair of the objects 502 and 514 1s 4.5, the
score for the palr of the objects 504 and 514 15 4.9, and the
score for the pair of the objects 506 and 514 15 0.2. The SCOTe
for the pair of the objects 502 and 516 1s 5.1, the score for
the palr of the objects 504 and 516 15 7.1, and the score for
the pair of the objects 506 and 516 1s 3. 4

Referring back to FIG. 3, 1n step 350, the edge node filters
out one or more pairs whose score 1s greater than the
adaptive threshold to obtain a filtered matrix. By referring to
FIG. 5, 1n this example, the adaptive threshold 1s determined
as 3.1 in step 330. Then, the pairs whose score 1s greater than
the adaptive threshold are filtered out to obtain a filtered
matrix. Specifically, the pairs of the objects 504 and 512, the
pairs of the objects 506 and 512, the pairs of the objects 502
and 514, the pairs of the objects 504 and 514, the pairs of the
objects 502 and 516, the pairs of the objects 504 and 516,
and the pairs of the objects 506 and 516 are filtered out.
Then, the filtered matrix includes only two pairs of potential
correspondence: a pair of the objects 502 and 512 and a pair
of the objects 506 and 514.

Referring back to FIG. 3, in step 360, the edge node
implements a fusion algorithm on the filtered matrix to
obtain correspondence identification among objects. By
referring to FIG. 5, the filtered matrix includes only two
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pairs: a pair of the objects 502 and 512 and a pair of the
objects 506 and 514 as identified in step 350. Then, the
vehicle 106 may implement a fusion algorithm, e.g., Hun-
garian algorithm, to obtain correspondence between the
object 506 and the object 514, but prune correspondence
between the object 502 and the object 512.

FIG. 4 depicts an overall system process implemented by
an edge node, according to one or more embodiments shown
and described herein. In block 402, an edge node, e.g., the
vehicle 106 1n FIG. 1A, receives a first CPM from a first
vehicle (e.g., the vehicle 102 1n FIG. 1A) that includes
detections of objects. The edge node obtains covariance
matrices of the locations of the first vehicle and the detected
objects 1 block 404. In parallel to blocks 402 and 404, 1n
block 412, the edge node receives a second CPM from a
second vehicle (e.g., the vehicle 104 1n FIG. 1A) that
includes detections of the objects. The edge node obtains
covariance matrices of the locations of the second vehicle
and the detected objects 1 block 414. The covariance
matrices obtained in block 404 and the covariance matrices
obtained in block 414 are 1nput to the mapping function 1(
), and the mapping function outputs an adaptive threshold 1n
block 420. The adaptive threshold 1s a threshold distance
specifically tailored for the detections in blocks 402 and 412.

The edge node transforms the detections 1 block 402 to
detections 1n the coordinates of the edge node 1n block 406.
For example, the edge node calculates the relative positions
of the location of the edge node and the location of the first
vehicle, and transtorms the coordinates of the objects in the
first CPM (1.e., coordinates of the objects from the perspec-
tive of the first vehicle) to the coordinates of the objects from
the perspective of the edge node based on the relative
positions. Similarly, the edge node calculates the relative
positions of the location of the edge node and the location of
the second vehicle, and transtforms the coordinates of the
objects 1n the second CPM (i.e., coordinates of the objects
from the perspective of the second vehicle) to the coordi-
nates of the objects from the perspective of the edge node
based on the relative positions.

In block 430, the edge node calculates a score matrix
based on the coordinates of the objects obtained 1n block 406
and the coordinates of the objects obtained 1n block 416.
Then, 1n block 440, the edge node filters out one or more
pairs by comparing the scores 1n the score matrix and the
adaptive threshold obtained 1n block 420. After the filtering
out process, the edge node implements a fusion algorithm on
the filtered matrix 1n block 450. In block 460, the edge node
obtains correspondence 1dentification among objects.

It should be understood that embodiments described
herein are directed to methods and systems for matching
objects 1n collaborative perception messages. The method
includes obtaining a first collaborative perception message
(CPM) from a first node, obtaining a second CPM from a
second node, calculating an adaptive threshold based on
uncertainty of the first CPM and uncertainty of the second
CPM, calculating scores for pairs ol objects, each of the
pairs of objects including one object 1n the first CPM and
one object 1in the second CPM, filtering out one or more pairs
whose score 1s greater than the adaptive threshold to obtain
a filtered matrix, and implementing a fusion algorithm on the
filtered matrix to obtain correspondence 1dentification
among objects.

The present disclosure fully exploits current CPM struc-
ture for multiple vehicles to achieve better collaborative
perception using an adaptive threshold. The adaptive thresh-
old that 1s determined based on uncertainties of locations of
detecting vehicles and detected objects may be used to filter
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out false positives of pairs of objects, and the accuracy of the
correspondence 1dentification among objects may be

enhanced.

It 1s noted that the terms “substantially” and “about” may
be utilized herein to represent the immherent degree of uncer-
tainty that may be attributed to any quantitative comparison,
value, measurement, or other representation. These terms
are also utilized herein to represent the degree by which a
quantitative representation may vary from a stated reference
without resulting in a change in the basic function of the
subject matter at 1ssue.

While particular embodiments have been illustrated and
described herein, it should be understood that various other
changes and modifications may be made without departing
from the spirit and scope of the claimed subject matter.
Moreover, although various aspects of the claimed subject
matter have been described herein, such aspects need not be
utilized in combination. It i1s therefore intended that the

appended claims cover all such changes and modifications
that are within the scope of the claimed subject matter.

What 1s claimed 1s:

1. A method comprising:

obtaining a first collaborative perception message (CPM)
from a first node;

obtaining a second CPM from a second node;

calculating an adaptive threshold based on uncertainty of
the first CPM and uncertainty of the second CPM;

calculating scores for pairs of objects, each of the pairs of
objects including one object 1n the first CPM and one
object 1n the second CPM;

filtering out one or more pairs whose score 1s greater than
the adaptive threshold to obtain a filtered matrix; and

implementing a fusion algorithm on the filtered matrix to
obtain correspondence 1dentification among objects.

2. The method of claim 1, wherein:

the uncertainty of the first CPM 1ncludes uncertainty of a
location of the first node; and

the uncertainty of the second CPM includes uncertainty of
a location of the second node.

3. The method of claim 2, wherein:

cach of the uncertainty of the location of the first node and
the uncertainty of the location of the second node 1s a
covariance matrix.

4. The method of claim 1, wherein:

the uncertainty of the first CPM 1includes uncertainties of
locations of objects detected by the first node; and

the uncertainty of the second CPM 1ncludes uncertainties
of locations of objects detected by the second node.

5. The method of claim 4, wherein:

cach of the uncertainties of locations of objects detected
by the first node and the uncertainties of locations of
objects detected by the second node 1s a covariance
matrix.

6. The method of claim 1, wherein calculating the adap-

tive threshold comprises:

calculating a mapping function using a machine learning,
algorithm; and

calculating the adaptive threshold based on the uncer-
tainty of the first CPM and the uncertainty of the second
CPM and the mapping function.

7. The method of claim 6, further comprising

training the mapping function using the uncertainty of the
first CPM and the uncertainty of the second CPM as
inputs and a comparison of a manual distance threshold
as an output and a ground truth threshold; and
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calculating an adaptive threshold based on uncertainty of
the first CPM and uncertainty of the second CPM and
the trained mapping function.

8. The method of claim 6, wherein the machine learning,
algorithm includes one of a linear model, a logistic regres-
sion model, and a neural network model.

9. The method of claim 1, wherein each of the first node
and the second node 1s one of a vehicle, a road side unit and
an edge device.

10. The method of claim 1, wherein the fusion algorithm
1s a Hungarian algorithm.

11. A vehicle comprising:

a network interface configured to:

receive a first collaborative perception message (CPM)
from a first node; and
recerve a second CPM from a second node; and
a controller programmed to:
calculate an adaptive threshold based on uncertainty of
the first CPM and uncertainty of the second CPM;
calculate scores for pairs of objects, each of the pairs of
objects including one object 1n the first CPM and one
object 1n the second CPM;
filter out one or more pairs whose score 1s greater than the
adaptive threshold to obtain a filtered matrix; and
implement a fusion algorithm on the filtered matrix to
obtain correspondence 1dentification among objects.

12. The vehicle of claam 11, wherein:

the uncertainty of the first CPM includes uncertainty of a

location of the first node;
the uncertainty of the second CPM 1ncludes uncertainty of
a location of the second node; and

cach of the uncertainty of the location of the first node and
the uncertainty of the location of the second node is a
covariance matrix.

13. The vehicle of claam 11, wherein:

the uncertainty of the first CPM includes uncertainties of

locations of objects detected by the first node;
the uncertainty of the second CPM includes uncertainties
of locations of objects detected by the second node; and

cach of the uncertainties of locations of objects detected
by the first node and the uncertainties of locations of
objects detected by the second node 1s a covariance
matrix.

14. The vehicle of claim 11, wherein the controller 1s
turther programmed to:

calculate a mapping function using a machine learning

algorithm; and

calculate the adaptive threshold based on the uncertainty

of the first CPM and the uncertainty of the second CPM
and the mapping function.
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15. The vehicle of claim 14, wherein the controller 1s
further programmed to:

train the mapping function using the uncertainty of the
first CPM and the uncertainty of the second CPM as
inputs and a comparison ol a manual distance threshold
as an output and a ground truth threshold; and

calculate an adaptive threshold based on uncertainty of
the first CPM and uncertainty of the second CPM and

the trained mapping function.

16. The vehicle of claim 14, wherein the machine learning
algorithm includes one of a linear model, a logistic regres-
sion model, and a neural network model.

17. The vehicle of claim 11, wherein the fusion algorithm
1s a Hungarian algorithm.

18. A non-transitory computer readable medium storing
instructions that, when executed by a processor, perform
operations comprising:

obtaining a first collaborative perception message (CPM)

message from a first node;

obtaining a second CPM from a second node;

calculating an adaptive threshold based on uncertainty of
the first CPM and uncertainty of the second CPM;

calculating scores for pairs of objects, each of the pairs of
objects including one object 1n the first CPM and one
object 1n the second CPM;

filtering out one or more pairs whose score 1s greater than
the adaptive threshold to obtain a filtered matrix; and

implementing a fusion algorithm on the filtered matrix to
obtain correspondence 1dentification among objects.

19. The non-transitory computer readable medium of
claim 18, wherein calculating the adaptive threshold com-
Prises:

calculating a mapping function using a machine learning,

algorithm; and

calculating the adaptive threshold based on the uncer-

tainty of the first CPM and the uncertainty of the second
CPM and the mapping function.

20. The non-transitory computer readable medium of
claim 19, where the operations further comprise:

training the mapping function using the uncertainty of the
first CPM and the uncertainty of the second CPM as
inputs and a comparison ol a manual distance threshold
as an output and a ground truth threshold; and

calculating an adaptive threshold based on uncertainty of
the first CPM and uncertainty of the second CPM and
the trained mapping function.
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It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Specification

In Column 2, Line(s) 63, after “make”, insert --1t--.

In Column 4, Line(s) 39, after “vehicle 106.”, delete “In some embodimments,”.
In Column 4, Line(s) 40, before “The”, insert --In some embodiments,--.

In Column 4, Line(s) 40, delete “The” and insert --the--, therefor.

In Column &, Line(s) 45, delete “receive’” and insert --recerves--, therefor.

In Column 9, Line(s) 635, delete “form™ and insert --from--, therefor.

In the Claims

In Column 12, Line 63, Claim 7, after “comprising”’, insert --:--.
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