US011765316B2

12 United States Patent (10) Patent No.: US 11,765,316 B2

Sohoni 45) Date of Patent: Sep. 19, 2023
(54) FAST IN-PLACE FMP4 TO MP4 (56) References Cited
CONVERSION

U.S. PATENT DOCUMENTS

(71) Applicant: Microsoft Technology Licensing, LLC, 0.888.051 Bl 2/2018 Rosenzweig et al
Redmond, WA (US) 2005/0169303 Al* 82005 Toma HO4N 21/2404
375/E7.267
(72) Inventor: Sudhanshu Uday Sohoni, Bothell, WA 2012/0265853 AL 10/2012° Knox et al.
(US) 2017/0093939 Al 3/2017 Bar-mashiah et al.
2020/0396504 Al*™ 12/2020 Ymcooevvvevinnnne. HO4N 21/435
(73) Assignee: Microsoft Technology Licensing, LLC, FOREIGN PATENT DOCUMENTS
Redmond, WA (US)
CN 1054477168 A 3/2016
(*) Notice: Subject to any disclaimer, the term of this CN L11083410-A 4/2020
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 34 days. OTHER PUBLICATTONS
“International Search Report and Written Opinion Issued in PCT
(21) Appl. No.: 17/063,691 Application No. PCT/US21/044107”, dated Oct. 28, 2021, 9 Pages.
(Continued)

(22) Filed: Oct. 5, 2020
Primary Examiner — Mishawn N. Hunter

(65) Prior Publication Data (74) Attorney, Agent, or Firm — WORKMAN
NYDEGGER
US 2022/0109806 Al Apr. 7, 2022
(57) ABSTRACT
(51) Imt. CI. In-place conversion of a fragmented MP4 (FMP4) file into
HO4N 5/92 (2006.01) an MP4 format without having to create separate {files 1s
G11B 27/34 (2006.01) discussed herein. Audio and visual data 1s captured by a
HO4N 5/77 (2006.01) multimedia application and stored an FMP4 file with an
HO4N 7/01 (2006.01) initial moov atom and one or more Iragment headers
HO4N 7/15 (2006.01) assigned to portions of the audio/video data. Once a cap-
(52) U.S. CL turing session 1s completed (e.g., user stops recording audio
CPC oo HO4N 5/92 (2013.01); GI1IB 27/3¢ ~ and video), the FMP4 file 1s converted to an MP4 file by

(2013.01); HO4N 5/77 (2013.01); HO4N 7/01 attaching a ﬁna! MmooV atom to thei EMP4 file .and changing
(2013.01); HO4N 7/155 (2013.01) the header designation of the initial moov(i) atom from

(58) Field of Classification Search “moov” to an “mdat” designation. This change in designa-

| | _ tion makes the imitial moov(1) atom of the FMP4 file opaque
CPC ... HO4AN 5/92; HO4N 5/77; HO4N 7/01; (2}71 /1?5{ a media player and converts the FMP4 file to MP4 format.

See application file for complete search history. 20 Claims, 8 Drawing Sheets

Client computing device

— 110
Processor 102 /O Components |4+
1}03 11jﬂb11ﬂc
104 .
W
1O Ports Q %}ﬂ
Communication | 106 Communication | L— 112
interface path
Memory 108
1
Operatirg system 4 116
1
Applications [118

-- 128

H__I__.-""
Multimedia application N

in-piace converter 126
l
126 o 128a
\ A 128a A
: ; FTTTTTE N,
Moov(i) | mdat | 1
b oo o ™
Moof mdat) 155
FMP4 ol MP4 N LT
™~ 13— ~ =N
@ 128n |Moov(f)[mdat}
—// '*n,,_[_.-*
I
130 T 124 132 128n

US 11,765,316 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

“Configure Recording File Size and Type”, Retrieved From: https://
www.epiphan.com/userguides/VGADVI-recorder-pro/Content/
UserGuides/Streaming/record/recordConfigure. htm, Retrieved Date:

Sep. 8, 2020, 4 Pages.

“How to Repair Unplayable Video Files Recorded with Your Phone,
Drone or Digital Camera?”, Retrieved From: https://tehnoblog.org/
video-repair-guide-corrupted-mp4-avi-h264-file-fix/, May 17, 2017,
30 Pages.

“Information Technology—Coding of Audio-Visual Objects—Part
14: MP4 File Format”, Retrieved From: https://www.1s0.0org/standard/
38538 .html, Nov. 2003, 3 Pages.

“Packaging for Unified Origin™, Retrieved From: http://web.archive.
org/web/20140417192046/https:/docs.unified-streaming.com/
documentation/package/package.html, Apr. 17, 2014, 6 Pages.

* cited by examiner

U.S. Patent Sep. 19, 2023 Sheet 1 of 8 US 11,765,316 B2

Client computing device

102 /0 Components
1102 110b 110c
* l

FProcessor -

_ — 104

/0 Ports 10

Communication | 106 | Communication P S r
inerface path

i
+
'] [y
- L] +
'+
-
+ +
+

l

Memory 108
. .~ 110
Operating system
~— 4118
Applications
- 420
Multimedia apphlication h
:
* in-piace converter 126
% 126 \ 128a
‘\\= A ‘12:&’:} ’ 1 3 :
e L |||
N Lu;r?mifl“ ;
FMP4 N\ ~ 122

U.S. Patent Sep. 19, 2023 Sheet 2 of 8 US 11,765,316 B2

(Recording)
126

FViF4 mdat

Vo —148n
130— |

FG. 2

U.S. Patent Sep. 19, 2023 Sheet 3 of 8 US 11,765,316 B2

(Recording stopped)

126
|

- iViFP4

U.S. Patent Sep. 19, 2023 Sheet 4 of 8 US 11,765,316 B2

(Converted)
126
|
\
124 . i
S Moov(i) |
e e e _
o o
e N —128a
. mdat T
N /
M4 mdat
P
N 128
+ mdat }
130—"
Mioov(T)
\1
:
132

U.S. Patent

00000054
Q000064
OUO0U74
0000084
00000084
QUOUO0A4
OUO000B4
00000004
QOO0000L4
JOO000E4
QL0GL0H4
Q0000104
00000114
00000124
Q0000134
Q0000144
u0000154
00000164
Q0000174
00000184
Q0000184
QUOUOTAS
00000184
U00001C4

Sep. 19, 2023 Sheet 5 of 8

U0 01020304 05060708 08 0A0BOCLDO0OECOF

0135846064 6174 0000 00 7880 76 68 64
U1 0000 00 00 GO 00 00DRB5Y 67 24 0O GO 00 G0

DB &7 67 24 00 00 75 30 00 G0 00 00 00 00 00 00

GO 0100 G0 01 00 00 00 00 00 G0 00 00 00 00 00
U0 01 00 00 00 00 Q0 00 00 00 G0 00 00U 00 00 00
00 01 00 Q0 00 00 G0 00 00 00 00 00 00 G0 00 00

40 G0 G0 00 00 00 00 00 00 00 G0 00 00 00 00 GO
00 00 G0 00 00 00 00 00 00 00 G0 60 00 00 00 03

QU OO OTFY 747261680000 005LC 740686864
GO GO 00 O1DRB G767 24 DB 57 67 24 00 00 00 U7
G0 00 00 00 00 00 00 00 00 00 G0 GO 00 00 00 00
GO 00 00 04 00 00 00 60 00 01 G0 0L 00 00 LO G0
G0 00 00 00 00 00 00 00 00 01 00 00 00 00 00 00
G0 00 00 Q0 00 00 00 00 40 00 00 G0 05 00 00 00
U2 DU G0 00 00 00 019360064 69 6100 00 00 20
60 6406864 0LU0CU0000DBLY 67 240B57 67 24
U0 00 75 30 00 00 U0 00 55 C4 U0 00 00 00 U0 2D
63 6460 72 00 00 0000 0000 L 00 76 6L 64 65
00 00 00 G0 00 00 0000 0000 G000 56 68 64 65
oF 48 1o 040065720000 00 0132060068 0E

66 00 00 00 14 766D 68 64 00 0000 0100 0000 |

U0 00 00 00 00 00 00 00 24 64 68 6k 66 00 G0 U0
10 04 72 6566 0000 00 0G0 00 0000 0100 0000
QU 75726C 20000000 0100 O000FE 73 74 62

US 11,765,316 B2

>a moov..xmvhd |

Wl E K NN XK FE LXK KN A E R NN
ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

WM ¥R F AN ERENREE T

|

|

|

. Firak.. Mkhd {
|

|

|

|

|

H % & A ¥ a4 W eE KPP " 3 WERENK

HHHHHHHHHHHHHHHH

....mdia, .
dhd.. UWgiUWg$

hdlr........vide E

ww—‘—gwmmwwwwwwwmwmw

»
1
0
~
-
)
3
i
=
=3

&f
£
=

1o

lllllllllll

0 T

gy Y.
L

"ﬁ

6C 00 00 00 A2 73 74 73 64 00 0000 00 0000 00 !
U1 G000 00 82 617663 3100 GO0O0 00 0O L0 00
01 00 00 G0 00 00 GG 00 Q0 00 QOO0 00 0000 GO
GO 056 00 021000 48 00U 00 00 48 00 00 G0 U0 GO
U0 00 010A 4156 43 23 43 6F 64 68 62 67 00 G0

00000104
JOO001E4
QOO00TH4
0000204
00000214

s
<
5
e

Ayl iyl

llllllllllllllll

&
ke
T

0000224
Q0000234
V0000244
00000254
00000264
O000UZ74
00000284
Q0000284
QOOUOZA4S
UUO00Z84
00000204
00000204
JO0002E4
GOU002F4
00000304
0000314

00 00 00 0000 0000 0000 0000 0000 0000 00
QU OO OO 008 FFFFO0 000030 8176 63 45 1
4D OCIFFFE10024 274D 00 1F 95 A0 14 01 24
COB0 2000000300 2000000780D05003C 44
QOO0 FT10F/BDRFO 7O 67 0CAB U100 00 28k
308000000000 107374 74 73 00 00 00 00 J0
GO O0CO0000 001073747363 0000000000
QO 000000000014 7374 737A 00000000 00
QOO0 Q0 Q000 0L CLODAL 0010 7374 63 6k U0
QUOO OO 0000 00000RAB000107374 7373 00
QUOC0OC0O00L0000AD0TREET4 72 6168 U0

JUOO L0 74686864 0U 00 00 010857 67 2408

67 67 24 00 00 00 02 00 00 G0 00 00 00 00 G0 00
U 00 G0 00 00 00 00 00 G0 00 GO 01 00 00 00 GO
U1 00 00 0 G0 00 00 00 00 00 00 00 00 G0 0U 00
1 00 00 00 00 00 00 00 00 00 00 00 80 00 00 40

FIG. 5

HHHHHHHHHHHHHHHH

il i L] oigieimjeiugi' bl iy L o el sl syl iyl ol il L
p *
F |
. . . ﬂ '
‘ .
F

38
oy 4
X

Atkhd. . OWg$0
WgS........ |

E N T T PR FEYE YAD T ENTACR [
} E LR E ZF 2 LKL XA J J %8 5 %A t
qqqqqqqqqqqqqqq (@r

it iubiah il

U.S. Patent

00000054
Q000064
OUO0U74
0000084
00000084
QUOUO0A4
OUO000B4
00000004
QOO0000L4
JOO000E4
QL0GL0H4
Q0000104
00000114
00000124
Q0000134
Q0000144
u0000154
00000164
Q0000174
00000184
Q0000184
QUOUOTAS
00000184
U00001C4
00000104
JOO001E4
QOO00TH4
0000204
00000214
0000224
Q0000234
V0000244
00000254
00000264
O000UZ74
00000284
Q0000284
QOOUOZA4S
UUO00Z84
00000204
00000204
JO0002E4
GOU002F4
00000304
0000314

Sep. 19, 2023 Sheet 6 of 8

U0 01020304 05060708 08 0A0BOCLDO0OECOF

0135846064 6174 0000 00 7880 76 68 64
U1 0000 00 00 GO 00 00DRB5Y 67 24 0O GO 00 G0

DB &7 67 24 00 00 75 30 00 G0 00 00 00 00 00 00

GO 0100 G0 01 00 00 00 00 00 G0 00 00 00 00 00
U0 01 00 00 00 00 Q0 00 00 00 G0 00 00U 00 00 00
00 01 00 Q0 00 00 G0 00 00 00 00 00 00 G0 00 00

40 G0 G0 00 00 00 00 00 00 00 G0 00 00 00 00 GO
00 00 G0 00 00 00 00 00 00 00 G0 60 00 00 00 03

QU OO OTFY 747261680000 005LC 740686864
GO GO 00 O1DRB G767 24 DB 57 67 24 00 00 00 U7
G0 00 00 00 00 00 00 00 00 00 G0 GO 00 00 00 00
OO 00 00 00 00 00 00 00 G0 01 40 00 00 00 00 00
G0 00 00 00 00 00 G0 00 00 01 00 60 00 00 00 40
G0 00 GO 00 00 00 00 00 40 00 00 G0 05 00 00 00
U2 DU G0 00 00 00 019360064 69 6100 00 00 20

60 6406864 0LU0CU0000DBLY 67 240B57 67 24

U0 00 75 30 00 00 00 00 B5C4 U0 00 00 00 U0 2D
63 6460 72 00 00 0000 0000 L 00 76 6L 64 65
00 00 00 G0 00 00 0000 0000 G000 56 68 64 65
6F 483 61460 65 72 00 00 00 01 326068 bE
66 00 00 00 14 76668 64 00 G000 0100 0000
U0 00 00 00 00 00 00 00 24 64 69 6k 66 00 U000
1C 64 72 65 66 00 00 00 00 00 (000 0100 G000

QC 75 726C 20000000 0100 O000FE 73 74 62
oC BOUUQDAZ73 74 73 64 00 0000 00 QOO0 00

0100000042 06170663 3100 G000 00 0000 00
1 00 00 00 GO 00 00 00 00 00 GO G0 G0 0000 GO
GO 056 00 021000 48 00U 00 00 48 00 00 G000 00
U0 00 010A 4156 43 23 43 6F 64 68 62 67 00 QU
00 00 00 0000 0000 0000 0000 0000 0000 00
QU OO OO 008 FFFFO0 000030 8176 63 43 01

4DOCIFFFE10024 274D 00 1F 95 A0 14 01 24

COB0 2000000300 2000000780D05003C 44
QOO0 FT10F/BDFO7E 67 0CAB U100 00 28EE
308000000000 10737474 73 00 00 00 00 U0
GO 00000000 001073747363 C000G 00 00 00
QO 000000000014 7374 737A 0000 00 00 00
QOO0 Q0 Q000 0L CLODAL 0010 7374 63 6k U0
QUOC OO 0000 00000RAB00010737473 73 00
QOO0 000000 O0L0000AD0TREET4 72 6168 00
JUOO L0 74686664 000000 01085767 24008
57 67 £4 00 00 00 02 00 40 00 00 G0 00 G0 00 00
U 00 G0 00 00 00 00 00 G0 00 GO 01 00 G0 00 GO
U1 00 00 0 G0 00 00 00 00 00 00 00 00 G0 00 00
1 00 G0 00 00 00 0 00 00 00 00 00 G0 00 00 40

FIG. 6

US 11,765,316 B2

W OE K AR XK F K LXK RN AR E N R

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

% WM O "N " ¥ MR PERE T

”;-Hrak: AMkhd
LCUWoSUWGS. .

IIIIIIIIIIIIIIII
H4 F X A ¥ A U EE R B3 WERENK

!!!!!!!!!!!!!!!!

dhd....OWgUwg
hdir........vide E

Ay BRIV AR iR TERERTTTRE WEEVREY TR e TR W e

riniugi el il Sttt el il ety pulesiagel el lyieingipelind] -gw i e nhiipulipul - piein] gt pining L eyl g iy ey Fipmielnp gl ety . el gyl ety e eyl il el Ayl akiel Tl iyl g

;:,ﬁ
<
3
vt

Suqi'npy iyt i

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

&
ke
=

!!!!!!!!!!!!!!!!

EEEEE

N
';I !
o ;
I, 8‘ p :
n
<5
k=

3
ny 5
X

Akhd.. . OWg$0
WS |

E ¥ T TR FRE YALN X EN YR [
} E LR E Z i L L XA 5 32 % 5 %A !
--------------- (@r

it iubiah il

U.S. Patent Sep. 19, 2023 Sheet 7 of 8 US 11,765,316 B2

700 e

Start capturing audiofvisual datain | _— U<
M4 ile

Generate and assign initial moov atom | _— 704
o FMP4 file

706

:"‘l""""'l'“'lII

Generate and assign fragment headers |
to FMP4 file

|
i
|
|
:
|
|

716 . 708

! ++
n
"
+
]

1

|

o MM
~" application ™
. Closed before

~.gconversion?.”

Caplunng

. stopped? " No

§ Yes Yes

Store EMP4 file , Convert FMP4 file to MP4 format |
|)
714 710

FIG. 7

U.S. Patent Sep. 19, 2023 Sheet 8 of 8 US 11,765,316 B2

300 —__

Create final moov atom for FMP4 file — 802

Change header of moov(i) atom from | _— 804
"moov” to "'mdat”

store FMP4 with changed moov(i) atom

as an MP4 file

FIG. 8

US 11,765,316 B2

1

FAST IN-PLACE FMP4 TO MP4
CONVERSION

BACKGROUND

The Moving Picture Experts Group (MPEG) has defined
a number of multimedia standards, including the widely
popular MPEG-4 Part 14 standard (commonly referred to as
simply “MP4”). MP4 1s a digital multimedia container
format used to store audio-visual files, and as more and more
users come online, the MP4 standard has become the go-to
standard for storing multimedia files. Numerous multimedia
applications allow users to play and record audio-visual files
as MP4 files that are easily shareable. Most users today have
no or little idea how these applications create MP4 files

To record content as an MP4 file, a user typically hits a
record button that begins capturing audio and video (audio/
video) data. When done, the user stops the recording,
triggering the multimedia application to perform several
complex operations to finalize the MP4 file. One operation
that 1s performed during the finalization stage 1s the creation
of a “moov” atom (commonly referred to as a “movie”
atom). These moov atoms 1nclude a header with various data
that 1s used by a multimedia player. In traditional MP4
recordings, the audio/video 1s rendered unplayable if the
application crashes before the moov atom 1s written. Yet, the
average user creating an MP4 file has no 1dea that there still
1s some additional processing that must occur after recording
stops. Consequently, users will close the recording applica-
tion before the moov atom has been written—and finaliza-
tion 1s completed.

This becomes even more problematic for longer record-
ings that require more complex moov atoms, often resulting
in header writing being timed out before the moov atom 1s
completed. The recording may be lost 11 the moov atom 1s
not created before the application 1s closed, it writing of the
moov atom times out, or if there 1s not enough disk space to
store the finalized MP4 recording. Obviously, losing a
recording may be catastrophic to the user experience, espe-
cially if the recording 1s important.

A relatively newer vanation of the MP4 format is the
fragmented MP4 (FMP4) format. Instead of one single
moov atom written after a recording 1s created, FMP4
generates several fragment headers (called “moof” atoms)
for different fragments of a multimedia file. These moof
atoms are interspersed throughout the recording. Yet, FMP4
has not been widely adopted, and so FMP4 files must be
converted back to traditional MP4 files before being usetul
in multimedia players—otherwise, various player functions
(e.g., playback, seek, etc.) do not work properly. This
conversion process—FMP4 to MP4—is very tedious and
resource 1ntensive. The audio/video data must be copied
from the FMP4 file to a newly created MP4 file, creating two
instances of the data. Two copies of the same audio/video
data creates a strain on processing and memory resources,
or, even worse, 1f the adequate memory 1s not available for
both copies of the audio/video data, the conversion may fail
and the audio/video data may be lost.

SUMMARY

The disclosed examples are described 1n detail below with
reference to the accompanying drawing figures listed below.
The following summary i1s provided to illustrate some
examples disclosed herein. It 1s not meant, however, to limait
all examples to any particular configuration or sequence of
operations.

10

15

20

25

30

35

40

45

50

55

60

65

2

Examples disclosed herein are directed to techniques and
devices configured to perform in-place conversion of an
FMP4 file into MP4 format without having to create separate
files. To do so, audio/visual data 1s recorded or otherwise
accessed by a multimedia application. The recorded audio/
visual data 1s stored 1n an FMP4 file, and an initial moov
atom (referenced herein as “moov(1)” atom) 1s assigned
thereto. Also, fragment headers (moofl) are assigned to
portions of the audio/video data. This way, 11 the multimedia
application 1s closed before the FMP4 file 1s converted, or 1f
a system failure occurs, at least the FMP4 file with the
fragment headers 1s stored. But if the recording 1s completed
(e.g., user stops recording), the FMP4 file 1s converted to an
MP4 file. Such conversion 1s performed through generating
and attaching a final moov atom (referenced herein as
“moov(l)” atom) to the FMP4 file and also changing the
header designation of the mitial moov(1) atom from a
“moov”” designation to an “mdat” designation. Changing the
header designation to mdat makes the 1nitial moov(1) atom
and fragment headers opaque to the multimedia player,
cllectively turning the FMP4 file into an MP4 file, without
having to make multiple copies of the audio/video data.

BRIEF DESCRIPTION OF THE DRAWINGS

The disclosed implementations and examples are
described 1n detail below with reference to the accompany-
ing drawing figures listed below:

FIG. 1 illustrates a block diagram of a client computing
device configured to perform in-place conversion ol an
FMP4 file to MP4 format, according to some of the dis-
closed implementations;

FIG. 2 1llustrates a block diagram of an FMP4 version of
an audio/visual file being recorded for conversion to MP4
format, according to some of the disclosed implementations;

FIG. 3 1llustrates a block diagram of an FMP4 version of
an audio/visual file after recording, according to some of the
disclosed implementations;

FIG. 4 1llustrates a block diagram of an FMP4 version of
an audio/visual file after in-place conversion to MP4 format,
according to some of the disclosed implementations;

FIG. 5 1llustrates a data file of an example FMP4 audio/
visual file being converted to MP4 format using the dis-
closed in-place conversion, according to some of the dis-
closed implementations;

FIG. 6 1llustrates a data file of an example FMP4 audio/
visual file that has been modified into MP4 format, accord-
ing to some of the disclosed implementations;

FIG. 7 illustrates a flowchart diagram of a worktlow for
performing in-place conversion of an FMP4 file into an MP4
file, according to some of the disclosed implementations;
and

FIG. 8 1llustrates a flowchart diagram of a worktlow for
converting an FMP4 file into an MP4 file, according to some
of the disclosed implementations.

DETAILED DESCRIPTION

The various implementations will be described 1n detail
with reference to the accompanying drawings. Wherever
possible, the same reference numbers will be used through-
out the drawings to refer to the same or like parts. Refer-
ences made throughout this disclosure relating to specific
examples and implementations are provided solely for 1llus-
trative purposes but, unless indicated to the contrary, are not
meant to limit all examples.

US 11,765,316 B2

3

The implementations and examples disclosed herein pro-
vide systems, methods, and computer-storage memory with
instructions to perform in-place conversion of an FMP4 file
to an MP4 file. As referenced herein, “in-place” conversion
refers to moditying an existing FMP4 file to change 1t into
MP4 format. In some implementations, in-place conversion
1s done by writing a new moov atom based on fragment
headers of the FMP4 file and then changing the header
information of an initial moov atom from “moov” to “mdat”
to make the 1imitial moov atom opaque to multimedia players.
Using the disclosed techniques and devices, only one file—
the FMP4 file—i1s necessary to generate the MP4 file.
Whereas, conventional techniques for converting FMP4 to
MP4 ﬁles requires creation of a new MP4 file and copying
the audio/visual data of the FMP4 file to the new MP4 file,
which creates two copies of the audio/visual data that
doubles the memory and processing requirements. Record-
ing a multimedia file as an FMP4 file first and then con-
verting that FMP4 file into MP4 through the disclosed
in-place conversion saves the recording—or, at least a
majority of the recording—1irom being lost before the MP4
finalization stage. It also requires only a nominal amount of
additional memory beyond the FMP4 file for conversion,
cutting down on conventional processing and memory
demands for FMP4-to-MP4 conversion.

FMP4 files include numerous fragment headers (moof
atoms) that are interspersed and assigned to diflerent por-
tions (or fragments) of the recorded audio/visual data. For
example, the FMP4 recording may include a first moof atom
assigned to a first block of audio/visual data, a second moof
atom assigned to a second block of audio/visual data, and so
on. I a multimedia application recording audio/visual data
(e.g., through a recording) 1s closed, fails, or some other
issue stops the FMP4 file from being finalized, at least a
portion of the audio/visual data has been stored with corre-
sponding fragment mool atoms. Because FMP4 files gen-
erate and store fragment mooi atoms with portions of the
audio/visual data being recorded, those portions are eflec-
tively finalized, for the sake of the FMP4 file, once the moof
atoms are assigned. So 1f an error occurs before the FMP4
1s finalized, at least the audio/visual data of all but the last
fragment has been saved. In other words, for a recording
with N fragments, at least N-1 fragments have been saved
because fragment mool atoms are assigned as the audio/
visual data 1s being recorded. So using FMP4 format ensures
that an entire recording 1s not lost just because finalization
fails to complete properly—at most, just the last fragment

may be lost.

Additionally, only a minimal number of resources are
necessary to perform the in-place conversion of the FMP4
file to MP4 format using the disclosed implementations as
examples. Once recording has stopped, a finalization
sequence 1s performed. In some examples, the finalization
sequence 1nvolves generating and attaching an MP4 moov
atom to the recoded FMP4 file with information from the
fragment moot atoms as well as an 1nitial moov atom of the
FMP4 file. It should be noted that this generated MP4 moov
atom 1s attached to the FMP4 file to facilitate the in-place
conversion, instead of to a new {ile generated from the
FMP4 file data. Once the MP4 moov atom 1s attached to the
FMP4 file, some implementations change the header of the
initial moov atom of the FMP4 file, and optionally also the
fragment moof headers, from “moof” designations to an
“mdat” designation. The mdat designation marks the atoms
as audio/visual data, imnstead of moov or moof atoms. Chang-
ing the header of the initial moov atom and the fragment
mool headers from moof to mdat designations changes the

10

15

20

25

30

35

40

45

50

55

60

65

4

initial moov atom and the fragment moof headers of the
FMP4 file to opaque mdat atoms that are not seen or
processed by a multimedia application. While this obfusca-
tion of the initial moov and moof atoms may add some
unnecessary bytes of data to the converted FMP4 file, the
resource cost 1s far less than 11 the FMP4 audio/visual data
was copied over to a new MP4 file.

In some 1implementations, the new MP4 moov atom that
1s added to the FMP4 file includes appropriate chunk offsets.
Chunk oflsets are numeric values that describe the timing
olilsets of audio data, video data, media data, frames, and/or
samples of an MP4 file. In an MP4 file, the audio, video, and
media data are written 1n what are known as “blurbs” or
“chunks.” For example, frames of video may be written;
then frames of audio; then metadata; and then additional
audio, video, or media data. Such an interleaving pattern
creates chunks of data of each media type. The disclosed

FMP4 and MP4 files may include chunk off:;

set tables that

describe the offsets of each chunk of data for a given media
track.

Once the MP4 moov atom 1s attached and the initial
FMP4 moov atom 1s changed to mdat, the FMP4 file has
cllectively been converted to a usable MP4 file. The new
MP4 file may then be stored and transmitted, played, or
otherwise used by various multimedia applications. Using
these disclosed techniques, the FMP4 file 1s quickly con-
verted to MP4 without having to perform costly copying and
processing. Additionally, the newly created MP4 file 1s
compatible with legacy players, and the MP4 file may be
converted back to FMP4 anytime by changing the initial
moov atom back to a moov atom through overwriting the
modified mdat header.

Having generally provided an overview of some of the
disclosed examples, attention 1s drawn to the accompanying
drawings to further illustrate some additional details. The
illustrated configurations and operational sequences are pro-
vided for to aid the reader 1n understanding some aspects of
the disclosed examples. The accompanying figures are not
meant to limit all examples, and thus some examples may
include different components, devices, or sequences of
operations while not departing from the scope of the dis-
closed examples discussed herein. In other words, some
examples may be embodied or may function 1n different
ways than those shown.

FIG. 1 1s a block diagram of a client computing device
100 configured to perform in-place conversion of an FMP4
file to MP4 format, according to some of the disclosed
implementations. Client computing device 100 includes one
or more processors 102, mput/output (I/O) ports 104, a
communications interface 106, computer-storage memory
(memory) 108, I/O components 110, and a communications
path 112. The client computing device 100 1s able to
communicate over a network 114 with other devices or
cloud computing resources.

The client computing device 100 may be any of a number
of types of computing device, such as, for example but
without limitation, a laptop, smartphone, tablet, virtual real-
ity (VR) or augmented reality (AR) headset, smart watch,
wearable, electronic kiosk, smart automobile, or the like.
While the client computing device 100 1s depicted as a single
device, multiple client computing devices 100 may work
together and share the depicted device resources. For
instance, various processors 102 and memory 108 may be
housed and distributed across multiple client computing
devices 100. The client computing device 100 1s but one
example of a suitable computing environment and 1s not

US 11,765,316 B2

S

intended to suggest any limitation as to the scope of use or
functionality of the mvention.

The processor 102 includes any number of microproces-
sors, microcontrollers, analog circuitry, or the like for that
are programmed to execute computer-executable instruc-
tions for implementing aspects of this disclosure. In some
examples, the processor 102 1s programmed to execute
instructions such as those illustrated in the other drawings
discussed herein. In some implementations, the processor
102 1s programmed with instructions to function for the
specialized purpose of performing the in-place conversion of
an FMP4 file to MP4 format, as disclosed herein.

The I/O ports 104 connect various hardware I/O compo-
nents 110 to the client computing device 100. Example I/O
components 110 include, for example but without limitation,
one or more microphones 110a, cameras 1105, and speakers
110¢ that operate to capture and present audio/visual con-
tent. The client computing device 100 may additionally or
alternatively be equipped with other hardware I/O compo-
nents 110, such as, for example but without limitation,
displays, touch screens, AR and VR headsets, peripheral
devices, joysticks, scanner, printers, etc. Such components
are well known to those 1n the art and need not be discussed
at length herein.

The communications interface 106 allows software and
data to be transferred between the client computer device
100 and external devices over the network 114. The com-
munications intertace 106 may include a modem, a network
interface (such as an Ethernet card), a communications port,
a Personal Computer Memory Card International Associa-
tion (PCMCIA) slot and card, a wireless adapter, etc. Soft-
ware and data transferred via the communications interface
106 are in the form of signals that may be electronic,
clectromagnetic, optical, or other signals capable of being
received by communications interface 106. Such signals are
provided to the communications 1nterface 106 via the com-
munications path (e.g., channel) 112. The communications
path 112 carries the signals and may be implemented using,
a wired, wireless, fiber optic, telephone, cellular, radio
frequency (RF), or other communications channel.

The network 114 may include any computer network or
combination thereol. Examples of computer networks con-
figurable to operate as network 114 include, without limi-
tation, a wireless network; landline; cable line; digital sub-
scriber line (DSL): fiber-optic line; cellular network (e.g.,
3G, 4G, 5@, etc.); local area network (LAN); wide area
network (WAN): metropolitan area network (MAN); or the
like. The network 114 1s not limited, however, to connec-
tions coupling separate computer units. Rather, the network
114 may also comprise subsystems that transier data
between servers or computing devices. For example, the
network 114 may also include a point-to-point connection,
the Internet, an Ethernet, an electrical bus, a neural network,
or other internal system. Such networking architectures are
well known and need not be discussed at depth herein.

The computer-storage memory 108 includes any quantity
of memory devices associated with or accessible by the
client computing device 100. The computer-storage memory
108 may take the form of the computer-storage media
referenced below and operatively provides storage of com-
puter-readable code, data structures, program modules, and
other code for the client computing device 100 to store and
access 1nstructions configured to carry out the various opera-
tions disclosed herein. The computer-storage memory 108
may include memory devices 1n the form of volatile and/or
nonvolatile memory, removable or non-removable memory,
data disks 1n virtual environments, or a combination thereof.

10

15

20

25

30

35

40

45

50

55

60

65

6

Examples of client computing device 100 include, without
limitation, random access memory (RAM); read only
memory (ROM); electronically erasable programmable read
only memory (EEPROM); tflash memory or other memory
technologies; CDROM, digital versatile disks (DVDs) or
other optical or holographic media; magnetic cassettes,
magnetic tape, magnetic disk storage or other magnetic
storage devices; memory wired into an analog computing
device; or any other computer memory.

The computer-storage memory 108 may be internal to the
client computing device 100 (as shown 1n FIG. 1), external
to the client computing device 100 (not shown), or both (not
shown). Additionally or alternatively, the computer-storage
memory 108 may be distributed across multiple client
computing devices 100 and/or servers, e.g., 1n a virtualized
environment providing distributed processing. For the pur-
poses of this disclosure, “computer storage media,” “com-
puter-storage memory,” ™

memory,” and “memory devices”
are synonymous terms for the computer-storage media 108,
and none of these terms 1nclude carrier waves or propagating
signaling.

In some examples, the computer-storage memory 108
stores executable computer instructions for an operating
system (OS) 116 and various soitware applications 118. The
OS 116 may be any OS designed to the control the func-
tionality of the client computing device 100, including, for
example but without limitation: WINDOWS® developed by
the MICROSOFT CORPORATION® of Redmond, Wash.,
MAC OS® developed by APPLE, INC.® of Cupertino,
Calif.,, ANDROID™ developed by GOOGLE, INC.® of
Mountain View, Calif., open-source LINUX®, and the like.

Among other programs, the applications 118 include a
multimedia application 120 that 1s configured to play and
capture (e.g., record) audio and/or video captured by the
microphone 110a and the camera 1105, respectively, of the
I/O components 110. The multimedia application 120 may
be a video or audio player, a video or audio recorder, a
videoconiferencing application (e.g., MICROSOFT
TEAMS® or the like), a video-sharing application (e.g.,
YOUTUBE®), or any other audio/video player. In some
implementations, the multimedia application 120 provides
recording functionality allowing users to capture audio
and/or video being captured by the I/O components 110.
Additionally or alternatively, the multimedia application 120
may also provide playback functionality for playing audio
and/or video. The multimedia application 120 may comprise
one or separate applications for recording audio/video data
(e.g., a multimedia recorder) and one for playing back
audio/video data (e.g., a multimedia player). For the sake of
clanty, implementations and examples are discussed herein
as capturing both audio and video (audio/video), but the
same 1mplementations may be used to perform in-place
conversion of only audio or only video FMP4 files.

In operation, the multimedia application 120 records
FMP4 files that contain various fragment (moot) headers are
generated during recording and interspersed throughout the
FMP4 files. As mentioned above, recording files in FMP4
format with fragment headers ensures that, 1f a failure occurs
betore MP4 finalization, there 1s at least an FMP4 file of the
recording, or at least most (e.g., N-1 fragments) of the
recording. For example, 1f a captured FMP4 file recording 1s
60 minutes long, with 10 separate 6 minute fragments, and
only 5 of the segments have had enough time to generate and
assign fragment (moof) headers before a system crash or the
multimedia application 120 1s closed, the resultant FMP4
file 1s saved belore the crash or closure with at least the 5
fragments and respective 5 fragment headers. Thus, the user

US 11,765,316 B2

7

has an FMP4 file with at least 50 of the 60 total minutes,
which 1s far better than losing the entire file because an MP4
moov atom could not be written before the failure/closure.

In some 1implementations, the multimedia application 120
includes an in-place converter 122 for converting FMP4 files
to MP4 using the techniques disclosed herein. The in-place
converter 122 comprises executable code instructions or
firmware that performs in-place conversion of an audio/
visual file 124 from FMP4 to MP4 format, without having,
to create a new MP4 file. For clanty, the same audio/visual
file 124 1s shown at two different times: before finalization
(time A) and after finalization (time A'). In other words, only
one audio/visual file 124 1s generated, even though two
instances are shown at diflerent times A and A'. The audio/
visual file 124 1s not copied or recreated. Instead, the
audio/visual file 124 1s recorded originally in FMP4 format,
and the FMP4 version of the audio/visual file 124 1s modi-
fied using the techniques herein for conversion to an MP4
file. Again, though two instances of the audio/visual file are
shown 1n FIG. 1, only one file 1s used.

As mentioned above, the audio/visual file 120 1s captured
in FMP4 format once the user begins recording, as depicted
at time A. The FMP4 version of the audio/visual file 124,
shown on the left at time A, originally includes audio/video
data marked with an mdat designation (shown as mdat
section 130), an 1mitial FMP4 moov atom 126, and one or
more fragment headers 128a-» that are assigned to different
portions of the audio/visual data. Again, recording the
audio/visual data and assigning the fragment headers 128a-#
ensures that at least a portion (e.g., N-1 fragments) of the
FMP4 survives a crash or failure.

When the recording 1s stopped, the in-place converter 122
modifies (either automatically or upon user prompting) the

FMP4 version of the audio/visual file 124 to create the MP4
version shown at time A'. Such modification 1nvolves writ-
ing and attaching a finalized MP4 moov atom (referred to
herein as “moov(1)”’) 132 to the FMP4 version of the
audio/visual file 124 (e.g., appended at the end). In some
implementations, the MP4 moov(1) atom 132 1s generated, at
least partially, from the mitial FMP4 moov(1) atom 126 and
the fragment headers 128a-n. After the MP4 moov(l) atom
132 1s generated, the in-place converter 122 hides the FMP4
moov(1) atom 126 and the fragment headers 128a-n by
changing their “moov” and “mool” headings to “mdat”
headings. This may be done by searching for the moov and
mool headings and changing them both—or at least the
moov designation of the moov(i) atom 126—to an mdat
designation.

Marking the FMP4 moov(i1) atom 126 and the fragment
headers 128a-» as mdat—instead of moov and moof, respec-
tively—makes these atoms 126 and 128a-r opaque to the
multimedia application 120. Put another way, the FMP4
moov(1) atom 126 and the fragment headers 128a-» are used
to create the FMP4 recording of the audio/visual file 124, but
then the headers for these atoms 126 and 128a-» are changed
once the final MP4 moov(1) 132 1s written. This effectively
converts the FMP4 version of the audio/visual file 124 to
MP4 format, albeit with the added atoms 126 and 128a-#
that were changed to mdat headings, which are of minimal
s1ize and require far less processing and memory resources
than 11 the audio/visual data needed to be written into a new
file.

FIGS. 2-4 illustrate block diagrams showing the in-place
conversion of the FMP4 version of the audio/visual file 124
to MP4 format performed by the in-place converter 122.
These figures show the audio/visual file 124 at different
times, progressing from recording as an FMP4 to converting,

10

15

20

25

30

35

40

45

50

55

60

65

8

to an MP4. Specifically, FIG. 2 shows the FMP4 version of
the audio/visual file 124 during recording. FIG. 3 shows the
FMP4 version of the audio/visual file 124 once the recording

has stopped. FIG. 4 shows the MP4 version of the audio/
visual file 124 created from modifying the FMP4 version.

Looking imitially at FIG. 2, the audio/visual file 124 1s

shown being captured as an FMP4 file. A user or application
118 may have started recording audio and/or visual data. For
example, the user may have selected a record option during
a video conierence, a video feet from a security camera at a
house may have automatically started recording once a
doorbell was pushed or a motion was detected, or the
recording may have been started in myriad other ways.
During recording, the audio/visual file 124 1s mtially

recorded as an FMP4 file, and the imitial FMP4 moov(i)

atom 126 1s generated and assigned thereto. Additionally,
because the recording 1s bemng captured in FMP4, the
various Iragment headers 128a-n are generated during the
recording and assigned to different audio/visual data in the
mdat 130 payload. As recording continues, additional frag-
ment headers 128 are generated and added to the audio/
visual data.

FIG. 3 shows the FMP4 version of the audio/visual file
124 once recording has stopped. When the recording stops,
the mn-place converter 122 begins finalization by creating the
final moov(1) atom 132 from the mitial moov(1) atom 126
and the fragment moot atoms 128a-7. Once the final moov
(1) 132 1s generated and attached to the FMP4 version of the
audio/visual file 124, the FMP4-to-MP4 conversion 1s com-
pleted by obfuscating the imitial moov(i1) atom 126 and the
fragment headers 128a-r, as shown in FIG. 4. To do so,
some 1mplementations change the headers of the initial
moov(1) atom 126 and the fragment headers 128a-n from
“moov”” and “mool” to “mdat.” By overwriting these head-
ers to mdat, the mitial moov(1) atom 126 and the fragment
headers 128a-» are made opaque to multimedia application
120 and not processed during playback. This effectively
turns the FMP4 version of the audio/visual file 124 into an
MP4, without having to create a new file. Also, by changing
just the header of the mnitial moov(1) atom 126, the 1nitial
moov(1) atom 126 and the fragment headers 128a-» of the
FMP4 are concealed. In other words, some implementations
only change bytes 1n the 1nitial moov(1) atom 126 to conceal
both 1t and the fragment headers 128a-n.

Additionally, the newly created MP4 may also be con-
verted back to FMP4 format by reversing the change of the
initial moov(1) atom 126. In other words, the newly created
MP4 file may be changed back to FMP4 by changing the
initial moov(1) atom 126 back to a moov header designation
from an mdat designation. Because the MP4 file includes all
of the data for the mnitial moov(1) atom 126 and the fragment
headers 128a-n, this designation change—from mdat to
moov—makes the initial moov(1) atom 126 and the fragment
headers 128a-» visible to the multimedia application 120.

FIGS. § and 6 1llustrate the modification of an FMP4 data
file 500 of the audio/visual file 124 for in-place conversion
to MP4 format, according to some of the disclosed imple-
mentations. As shown 1n FIG. 5, the data file 500 includes
an 1nitial moov(1) atom 126, depicted within the dotted box.
The mitial moov(i1) atom 126 includes a moov header 502
that specifies atom 126 1s a moov atom. In some 1mplemen-
tations, this mitial moov(i) atom 126 1s originally created
and the moov header 502 assigned while the audio/visual file
124 1s being recorded. Stoppage of the recording triggers the
in-place converter 122 to perform the disclosed in-place
conversion of the FMP4 data file 500 to MP4 format.

US 11,765,316 B2

9

In-place conversion of the FMP4 data file 500 to MP4
format 1s performed, in some 1implementations, by changing
the moov header 502 of the data file 500 from a “moov”
designation to an “mdat” designation. This change 1s shown
in FIG. 6. As depicted, the previous moov header 502 of the
initial moov(1) atom 126 has been changed to an mdat header
604 by changing “moov” to “mdat.” Changing the moov
header 502 to the mdat header 604 obifuscates the initial
moov(1) atom 126 from the multimedia application 120. As
a result, the FMP4 data file 500 1s eflectively converted to
an MP4 file, without having to create or copy data to an
entirely new file.

FIG. 7 illustrates a flowchart diagram of a workilow 700
for performing in-place conversion of an FMP4 file into an
MP4 file, according to some of the disclosed implementa-
tions. Initially, a command 1s received to start capturing
audio/visual data, as shown at 702. This may be given by a
user activating a recording feature 1n the multimedia appli-
cation, such as 1n a videoconierencing application. Alterna-
tively, audio/visual data may be captured by accessing
streaming audio/video content online, recording audio/vi-
sual content using microphones and/or cameras of a client
computing device 100; accessing audio/video content over
the Internet; or any other way.

The audio/visual data i1s mnitially stored as an FMP4 file
that 1s later converted to an MP4 file, as also indicated 1n
702, for eventual conversion to MP4 format using the
disclosed 1n-place conversion techmiques. During audio/
visual data capturing, an initial moov(1) atom 1s generated
and assigned to the FMP4 file, as shown at 704. Fragment
headers are generated and assigned to different portions of
the FMP4 file, as shown at 706. For example, a first moof
header may be assigned to 10 minutes of audio/video data,
a second mool header may be assigned to the next 10
minutes of audio/video data, and so on. Additional fragment
headers are assigned to the captured audio/video data until
the audio/video data stops being captured (e.g., recorded), as
shown at decision box 708. When the capturing 1s stopped,
the created FMP4 file 1s converted into MP4 format, as
shown at 710, using the operations illustrated i FIG. 8 and
referenced below, as indicated by branch connector A.

As shown at 712, 1f a system failure of the client com-
puting device occurs 1s closed before during capture of the
audio/visual data, and before the in-place conversion to MP4
format, the FMP4 file 1s stored as-1s, as shown at 714.
Similarly, as shown at 716, 11 the multimedia application
capturing or accessing the audio/visual data 1s closed before
conversion, the FMP4 file 1s stored as-1s, as shown at 714.
These two paths ensure that at least a portion of the
audio/video data 1s saved and recoverable for later conver-
S1011.

FIG. 8 1llustrates a flowchart diagram of a worktlow 800
for converting an FMP4 file into an MP4 file, according to
some of the disclosed implementations. As previously dis-
cussed, in-place conversion of the FPM4 may begin upon
stoppage of the audio/video data capturing (e.g., recording).
After stoppage, a final a final moov (1) atom for the FMP4 file
of the audio/visual data 1s created, as shown at 802. This
final moov(1) atom may be generated, 1n part, {rom the nitial
moov(1) atom and the fragment headers of the FMP4 file. In
some 1mplementations, the final moov(1) atom 1s appended
to otherwise attached to the FMP4.

Once attached, the m-place conversion 1s completed by
changing the header of the initial moov(i) to an mdat
designation, as shown at 804 To do so, 1n some 1implemen-
tations, the in-place converter searches for the moov(i)

header in the FMP4 file and changes 1t to mdat. Some

10

15

20

25

30

35

40

45

50

55

60

65

10

implementations also change the fragment headers to an
mdat designation as well. Once at least the moov(1) header
has been changed, the FMP4—file with attached final moov
(1) atom and changed 1nitial moov(1) atom—may be stored
as an MP4 file, as indicated by 806.

The examples and implementations disclosed herein may
be described in the general context of computer code or
machine-useable 1instructions, including computer-execut-
able 1nstructions such as program components, being
executed by a computer or other machine, such as a personal
data assistant or other handheld device. Generally, program
components including routines, programs, objects, compo-
nents, data structures, and the like, refer to code that
performs particular tasks, or implement particular abstract
data types. The discloses examples may be practiced 1n a
variety ol system configurations, including personal com-
puters, laptops, smart phones, mobile tablets, hand-held
devices, consumer electronics, specialty computing devices,
ctc. The disclosed examples may also be practiced 1n dis-
tributed computing environments where tasks are performed
by remote-processing devices that are linked through a
communications network.

Examples of the disclosure may be described in the
general context of computer-executable istructions, such as
program modules, executed by one or more computers or
other devices 1n software, firmware, hardware, or a combi-
nation thereof. The computer-executable instructions may
be organized into one or more computer-executable com-
ponents or modules. Generally, program modules 1nclude,
but are not limited to, routines, programs, objects, compo-
nents, and data structures that perform particular tasks or
implement particular abstract data types. Aspects of the
disclosure may be implemented with any number and orga-
nization of such components or modules. For example,
aspects ol the disclosure are not limited to the specific
computer-executable instructions or the specific components
or modules illustrated 1n the figures and described herein.
Other examples of the disclosure may include different
computer-executable 1nstructions or components having
more or less functionality than illustrated and described
herein. In examples involving a general-purpose computer,
aspects of the disclosure transform the general-purpose
computer into a special-purpose computing device config-
ured to perform in-place conversion of FMP4 files to MP4
format when configured to execute the instructions
described herein.

By way of example and not limitation, computer readable
media comprise computer storage media devices and com-
munication media. Computer storage media devices include
volatile and nonvolatile, removable and non-removable
memory 1mplemented 1 any method or technology for
storage ol mformation such as computer readable instruc-
tions, data structures, program modules, or the like. Com-
puter storage media devices are tangible and mutually
exclusive to communication media. Computer storage media
devices are implemented in hardware and exclude carrier
waves and propagated signals. Computer storage media
devices for purposes of this disclosure are not signals per se.
Example computer storage media devices include hard
disks, flash drives, solid-state memory, phase change ran-
dom-access memory (PRAM), static random-access
memory (SRAM), dynamic random-access memory
(DRAM), other types of random-access memory (RAM),
read-only memory (ROM), electrically erasable program-
mable read-only memory (EEPROM), flash memory or
other memory technology, compact disk read-only memory
(CD-ROM), digital versatile disks (DVD) or other optical

US 11,765,316 B2

11

storage, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices, or any other

non-transmission medium that can be used to store infor-
mation for access by a computing device. In contrast,
communication media typically embody computer readable
instructions, data structures, program modules, or the like 1n
a modulated data signal such as a carrier wave or other
transport mechanism and include any information delivery
media.

ADDITIONAL EXAMPLES

Some examples are directed to a method for performing
in-place conversion of a fragmented MP4 (FMP4) file mnto
an MP4 file (worktlow 700). The method comprises: cap-
turing audio and visual data for the FMP4 file (702); during
said capturing, generating an initial moov atom for the
FMP4 file (704), the initial moov atom comprising a header
with a moov designation; detecting stoppage of said captur-
ing ol the audio and visual data (708); and incident to
stoppage, converting the FMP4 file into the MP4 file through
changing the header of the initial moov atom to an mdat
designation (71 0). Directly converting the FMP4 file into an
MP4 file using the disclosed 1n-place conversion dramati-
cally reduces the amount of memory and processing
resources needed for such conversion, while, at the same,
time capturing the audio/visual data 1n a format that waill
survive should a system failure or crash occur.

Some 1mplementations also include storing the FMP4 file
with the mdat designation as the MP4 file (806). As such,

only the FMP4 file 1s needed for creation of the MP4 file,
using in-place conversion.

Some examples also include assigning at least one frag-
ment header to a portion of the audio and visual data and
creating a final moov atom for the MP4 file from the mnitial
moov atom and the at least one fragment header (706). The
interspersed fragment headers provide safety 1f conversion
to MP4 1s not completed before a crash or system failure,
ensuring that at least N-1 fragments are saved for the user.

Some examples also include changing the at least one
fragment header to the mdat designation (FIG. 4, 128a-»r).
Thus, only the FMP4 file 1s needed for the conversion. No
additional files must be created, nor does the audio/video
data need to be copied.

Some examples also include creating a final moov atom
from the initial moov atom and attaching the final moov
atom to the FMP4 file, which also includes the 1nitial moov
atom (802). Appending the final moov atom to the FMP4 file
provides a way to use the FMP4 file as the MP4 file, instead
of copying the entire audio/video data to a new file.

In some examples, the header of the initial moov atom 1s
changed after the final moov atom 1s attached to the FMP4
file (804). Waiting for the final moov atom to be attached
ensures that the MP4 file 1s written correctly.

In some examples, conversion of the FMP4 file into the
MP4 file 1s done without having to create or copy data to a
new file beyond the FMP4 file (124). This saves consider-
able processing and memory resources for FMP4-to-MP4
conversion.

Some examples also include: assigning at least one frag-
ment header to a portion of the audio and visual data (706);
detecting closure of a multimedia application capturing the
audio and visual data (716); storing the FMP4 file with the
at least one fragment header (714); receiving an instruction
to open the stored FMP4 file (122); and imtiating the
conversion ol the FMP4 file into the MP4 file incident to
opening the FMP4 file (710). As previously discussed, the

10

15

20

25

30

35

40

45

50

55

60

65

12

fragment headers are useful in saving the FMP4 file if a
crash, system failure, or application closure occurs before
in-place conversion 1s completed.

Some examples also include initiating playback of the
MP4 file with the 1mitial moov atom changed to the mdat
designation (120); and disregarding the initial moov atom
and one or more fragment headers of the FMP4 file, due to
the mdat designation, during said playback (120). Hiding the
initial moov atom and fragments headers finalizes the con-
version process and, while adding some additional bytes of
data to the MP4 file, conversion takes far less processing and
memory resources than traditional conversion.

In some examples, the MP4 file comprises the FMP4 file
with the header of the initial moov atom changed to the mdat
designation (124). Obfuscation of the imitial moov atom
allows, 1n part, the MP4 file to be created from the FMP4
without having to create a new f{ile.

In some examples, capturing of the audio and visual data
comprises recording the audio and visual data (110). The
examples discussed herein ensure that such recordings, or at
least the bulk thereof, are always captured regardless of
system failures, application closings, or other interruptions
betore files are converted to MP4 format.

In some examples, the recording 1s performed 1n at least
one of a videoconferencing application, a teleconferencing
application, or a video-sharing application (110). Adding the
in-place conversion discussed herein to such applications
enhances the user experience by saving files 1n the event of
system failures, application closings, or other interruptions.

In some examples, the FMP4 file 1s converted mto the
MP4 file on a client computing device (100), providing a
client-side application that protects user recordings and also
saves valuable processing and memory resources.

Other examples are directed to a system for performing
in-place conversion of a fragmented MP4 (FMP4) file into
an MP4 file (100). The system comprises: memory embod-
ied with a multimedia application configured to convert the
FMP4 to the MP4 file (108); and one or more processors

programmed to (102): capture audio and visual data for the
FMP4 file (702); during said capturing, generate an initial

moov atom for the FMP4 file (704), the initial moov atom
comprising a header with a moov designation (124); detect
stoppage of said capturing of the audio and visual data (708);
and 1ncident to stoppage, convert the FMP4 file into the MP4
file through changing the header of the initial moov atom to
an mdat designation (710). This system for performing
in-place conversion dramatically reduces the amount of
memory and processing resources needed for such conver-
s1on, while, at the same, time capturing the audio/visual data
in a format that will survive should a system failure or crash
OCCUL.

In some examples, changing the header of the initial moov
atom to the mdat designation 1s automatically performed by
a multimedia application without user intervention (122).
Users likely do not care about the conversion of their files,
so making in-place conversion automatic only enhances the
user experience—or, perhaps, does not hinder the experi-
ence.

In some examples, the one or more processors pro-
grammed to assign at least one fragment header to a portion
of the audio and wvisual data (706); detect closure of a
multimedia application capturing the audio and visual data
(716); store the FMP4 file with the at least one fragment
header (714); and change a second header for the at least one
fragment header to the mdat designation (804). Thus, only

US 11,765,316 B2

13

the FMP4 file 1s needed for the conversion. No additional
files must be created, nor does the audio/video data need to
be copied.

In some examples, capturing of the audio and visual data
comprises recording the audio and visual data (110). Adding
the disclosed 1n-place conversion to multimedia applications

enhances the user experience by saving audio/video data 1n
FMP4 files and automatically converting the FMP4 files to
player-friendly MP4 files.

In some examples, capturing 1s performed through a
recording feature of at least one of a videoconierencing
application, a teleconierencing application, or a video-shar-
ing application (110). Such applications may be equipped
with the disclosed in-place converter to save processing and

memory resources by performing the disclosed in-place
conversion of FMP4 files to MP4 files.

Still other examples are directed to one or more computer-
storage memory embodied with computer-executable
instructions that are executable by at least one processor
(102) to perform 1n-place conversion of a fragmented MP4
(FMP4) file into an MP4 file (108). The memory 1s embod-
ied with mstructions comprising: a multimedia application
(120), executable by the at least one processor (102), con-
figured to capture audio and visual data of the FMP4 file and
assign an initial moov atom to the FMP4 file (110); and an
in-place converter, executable by the at least one processor,
configured to convert the FMP4 file into the MP4 file
through changing a header of the initial moov atom from a
moov designation to an mdat designation (122). By con-
verting the FMP4 to an MP4 file, without having to create
a new lile and copy data, substantial memory and processing
resources are saved.

In some examples, changing of the header of the nitial
moov atom 1s performed incident to stoppage of said cap-
turing ol the audio and wvisual data (708), making the
in-place conversion automatic and thereby reducing inevi-
table errors 1s user intervention were required.

While the aspects of the disclosure have been described in
terms ol various examples with their associated operations,
a person skilled i the art would appreciate that a combi-
nation of operations from any number of different examples
1s also within scope of the aspects of the disclosure.

The order of execution or performance of the operations
in examples ol the disclosure illustrated and described
herein 1s not essential and may be performed in different
sequential manners 1n various examples. For example, it 1s
contemplated that executing or performing a particular
operation before, contemporancously with, or after another
operation 1s within the scope of aspects of the disclosure.

When introducing elements of aspects of the disclosure or
the examples thereot, the articles “a,” “an,” “the,” and “said”
are intended to mean that there are one or more of the
clements. The terms “comprising,” “including,” and *“hav-
ing”” are intended to be inclusive and mean that there may be
additional elements other than the listed elements. The term
“exemplary” 1s intended to mean “an example of.” The
phrase “one or more of the following: A, B, and C” means
“at least one of A and/or at least one of B and/or at least one
of C.”

Having described aspects of the disclosure in detail, it waill
be apparent that modifications and variations are possible
without departing from the scope of aspects of the disclosure
as defined 1n the appended claims. As various changes could
be made 1n the above constructions, products, and methods
without departing from the scope of aspects of the disclo-
sure, 1t 1s intended that all matter contained in the above

5

10

15

20

25

30

35

40

45

50

55

60

65

14

description and shown in the accompanying drawings shall
be interpreted as 1llustrative and not in a limiting sense.

What 15 claimed 1s:

1. A method for performing in-place conversion of a
fragmented MP4 (FMP4) file into an MP4 file, comprising:

recording audio and visual data for the FMP4 file;

generating a moov atom for the FMP4 file while recording
the audio and visual data, the moov atom comprising a
header with a moov designation;

detecting stoppage of the recording of the audio and

visual data; and

converting the FMP4 file into the MP4 file, including

changing the moov designation 1in the header of the
moov atom to an mdat designation.

2. The method of claim 1, further comprising storing the
FMP4 file with the mdat designation as the MP4 file.

3. The method of claim 1, wherein the moov atom 1s a first
moov atom, and wherein the method further comprises:

assigning a fragment header to a portion of the audio and

visual data; and

creating a second moov atom for the MP4 file from the

first moov atom and the fragment header.

4. The method of claim 3, further comprising changing the
fragment header to the mdat designation.

5. The method of claim 1, wherein the moov atom 1s a first
moov atom, and wherein the method further comprises:

creating a second moov atom from the first moov atom:;

and

attaching the second moov atom to the FMP4 file.

6. The method of claim 5, wherein the header of the first
moov atom 1s changed aiter the second moov atom 1s
attached to the FMP4 file.

7. The method of claim 1, wherein conversion of the
FMP4 file into the MP4 file 1s done without having to create
or copy data to a new file beyond the FMP4 file.

8. The method of claim 1, further comprising:

assigning a fragment header to a portion of the audio and

visual data;

detecting closure of a multimedia application recording

the audio and visual data;

storing the FMP4 file with the fragment header;

receiving an instruction to open the stored FMP4 file; and

incident to opening the FMP4 file, initiating the convert-
ing of the FMP4 file into the MP4 file.

9. The method of claim 1, further comprising:

imitiating playback of the MP4 file with the moov atom

changed to the mdat designation.

10. The method of claim 1, wherein the MP4 file com-
prises the FMP4 file with the header of the moov atom
changed to the mdat designation.

11. The method of claim 1, further comprising:

converting the MP4 file to the FMP4 file, including

changing the moov atom from the mdat designation to
the moov designation.

12. The method of claim 1, wherein the recording 1s
performed 1n at least one of a videoconierencing application,
a teleconferencing application, or a video-sharing applica-
tion.

13. The method of claim 1, wherein the FMP4 file 1is
converted mto the MP4 file on a client computing device.

14. A system for performing in-place conversion of a
fragmented MP4 (FMP4) file into an MP4 file, comprising:

memory embodied with a multimedia application config-

ured to convert the FMP4 to the MP4 file; and

a processor programmed to:

record audio and visual data for the FMP4 file,

US 11,765,316 B2

15

generate a moov atom for the FMP4 file while record-
ing the audio and visual data, the moov atom com-
prising a header with a moov designation,

detect stoppage of the recording of the audio and visual
data, and

convert the FMP4 file into the MP4 file, including
changing the moov designation 1n the header of the
moov atom to an mdat designation.

15. The system of claim 14, wherein the changing the
moov designation in the header of the moov atom to the
mdat designation 1s performed by the multimedia applica-
tion without user intervention.

16. The system of claim 14, wherein the processor is
programmed to:

10

assign a fragment header to a portion of the audio and 15

visual data;

detect closure of a multimedia application recording the
audio and visual data;

store the FMP4 file with the fragment header; and

change a second header for the fragment header to the
mdat designation.

17. The system of claam 14, wherein the processor 1s

programmed to convert the MP4 file to the FMP4 file,

20

16

including changing the moov atom from the mdat designa-
tion to the moov designation.

18. The system of claim 14, wherein the recording 1s
performed with a recording feature of at least one of a
videoconferencing application, a teleconierencing applica-
tion, or a video-sharing application.

19. A computer-storage memory device embodied with
computer-executable instructions that are executable by a
processor to perform in-place conversion of a fragmented
MP4 (FMP4) file into an MP4 file, comprising:

a multimedia application, executable by the processor,

configured to record audio and visual data of the FMP4

file and assign a moov atom to the FMP4 file; and

an 1n-place converter, executable by the processor, con-
figured to convert the FMP4 file imnto the MP4 file,
including changing a header of the moov atom from a
moov designation to an mdat designation.

20. The computer-storage memory device of claim 19,
wherein the changing of the header of the moov atom 1s
performed 1ncident to stoppage of the recording of the audio
and visual data.

	Front Page
	Drawings
	Specification
	Claims

