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REAL-TIME DETECTION OF NETWORK
ATTACKS

FIELD OF THE INVENTION

The present mvention relates generally to network com-
munications, and particularly to detection of network attacks
in communication networks.

BACKGROUND OF THE INVENTION

Systems for detecting cyberattacks on network commu-
nications infrastructure have been previously proposed in
the patent literature. For example, U.S. Pat. No. 10,771,500
describes systems and methods for detecting distributed
denial-of-service (DDoS) attack. An exemplary method
includes receiving one or more requests from a first user for
a service executing on a server, and generating a first vector
associated with the first user comprised of a plurality of
characteristics indicative of the first user accessing the
service; calculating a comparison between the first vector
and a reference vector, wherein the reference vector com-
prises an averaged distribution of characteristics for a plu-
rality of users accessing the service, and determining that the
service 1s under a demial-of-service attack based on the
comparison between the first vector and the reference vector.
System modules may be implemented as actual devices,
systems, components, a group ol components realized with
the use of hardware, such as a microprocessor system and a
set of software instructions, as well as neuromorphic chips.

SUMMARY OF THE INVENTION

An embodiment of the present invention that 1s described
herein after provides an apparatus including multiple ports,
packet communication processing circuitry coupled to the
ports, and a processor that 1s configured to receive, from the
packet commumnication processing circuitry, metadata that 1s
indicative of a temporal pattern of control messages com-
municated via one or more of the ports, and to i1dentity a
network attack by applying anomaly detection to the tem-
poral pattern of the control messages.

In some embodiments, the packet communication pro-
cessing circuitry 1s configured to distinguish between the
control messages and data packets, and to generate the
metadata based on the control messages and not of the data
packets.

In some embodiments, the metadata includes counts of
the control messages. In other embodiments, each of the
counts corresponds to a respective time window and a
respective port.

In an embodiment, wherein the network attack includes a
port scanning attack. In another embodiment, the processor
1s configured to apply the anomaly detection by applying an
artificial neural network (ANN).

In yet another embodiment, the processor includes a
neuromorphic processor that 1s configured to use the ANN in
an inference-only mode to detect an anomaly 1n the temporal
pattern of the control messages. In a further embodiment, the
processor includes one of a tensor-processing-unit (TPU)
and a graphical-processing-unit (GPU), and wherein the
ANN 1s trained to detect an anomaly 1n the temporal pattern
of the control messages.

In some embodiments, the control messages include
transmission control protocol (TCP) messages.

In some embodiments, the control messages 1include user
datagram protocol (UDP) messages.
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2

In other embodiments, the control messages include inter-
net control message Protocol (ICMP) messages.

In an embodiment, the processor 1s configured to indicate
an occurrence of the network attack in real-time. In another
embodiment, the packet communication processing circuitry
includes a multi-port switch fabric.

In some embodiments, the ports, the packet communica-
tion processing circuitry and the processor are integrated in
a network device.

In some embodiments, the packet communication pro-
cessing circuitry and the processor are integrated 1n a single
integrated circuit (IC).

There 1s additionally provided, in accordance with
another embodiment of the present invention, a method,
including, using packet communication processing circuitry
that 1s coupled to multiple ports, generating metadata that 1s
indicative of a temporal pattern of control messages com-
municated via one or more of the ports. Using a processor,
the metadata 1s received from the packet communication
processing circuitry, and a network attack 1s identified by
applying anomaly detection to the temporal pattern of the
control messages.

The present invention will be more fully understood from
the following detailed description of the embodiments
thereol, taken together with the drawings 1n which:

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a schematic, pictorial block diagram of a system
on chip (SoC) mside a network switch, which 1s configured
to detect a reconnaissance attack (RA) in real time, in
accordance with an embodiment of the present invention;

FIG. 2 1s a schematic, pictorial diagram of an ingress and
egress control traflic assignment scheme of the SoC of FIG.
1, 1n accordance with an embodiment of the present inven-
tion; and

FIG. 3 1s a flow chart schematically describing a method
for detecting an RA 1n real time using the SoC of FIG. 1, 1n
accordance with an embodiment of the present invention.

DETAILED DESCRIPTION OF EMBODIMENTS

Overview

A common way to prepare a cyberattack on communica-
tion 1infrastructure, such as distributed denial-of-service
(DDoS), 1s to first perform a reconnaissance attack (RA) on

the 1nirastructure, e.g., to collect probe responses and thus
discover available services.

An RA 1s typically a carefully engineered stealth attack
that does not raise an alarm at the target site. An RA usually
involves sending synthetic control traflic that generates
random probes 1n an eflort to collect the atorementioned
probe responses, and thus discover available services. In
other words, an RA typically sends adversarial control
packets 1n order to characterize the infrastructure to be
attacked. The very low ftraflic volume and rate of the
adversarial control packets, as compared to data traflic
volume/rate, makes 1t practically impossible to detect the
RA 1n real time using existing techniques.

RAs can be implemented with various algorithms. For
example, in the case of transport control protocol (TCP)
communications, a possible approach i1s to leverage TCP
control messages for connection establishment and tear
down, while tricking the remote server into sending
responses that reveal whether a port 1s open or closed and

what service it provides. In case of user datagram protocol
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(UDP) communications, probes may be sent to known
service ports with known service requests 1n anticipation of
receiving a response.

Typically, therefore, during an RA a small number of
seemingly trustworthy control packets, such as TCP packets,
UDP packets, or internet control message protocol (ICMP)
packets, are sent to a particular point, such as to an N-port
switch. Trying to hide in normal (data) trailic, the adversary
network protocol traflic during RA 1s usually very slow and
hence spans a relatively long-time window (e.g., 0.1 mulli-
seconds) 1n order not to trigger high-traflic anomaly alarms
that can be easily captured with simpler observation of
statistics. Without an advance warning, the subsequently
cyberattacked infrastructure may be damaged with the pos-
sibility of severe consequences.

Embodiments of the present invention that are described
hereinafter provide systems and methods to detect a network
attack such as an RA. The disclosed technique relies on the
alorementioned observation that an RA causes an ephemeral
traflic pattern anomaly, and that such transient patterns can
be detected using models such as artificial intelligence (Al).
For example, an RA attack can be detected by an appropri-
ately trained machine learming algorithm run by dedicated
hardware.

The disclosed detection technique performs real-time
monitoring of igress and egress trailic of control message
packets. In the disclosed technique, a processor analyzes, in
real time, metadata that 1s indicative of a temporal pattern of
control messages communicated, e.g., via one or more ports
ol a network device. The processor 1dentifies an RA on the
network device by applying an Al-based anomaly detection
algorithm to the temporal pattern of the control message
traflic only.

The rationale 1s that when a port scan (e.g., a TCP port
scan) 1s 1n progress, the igress tratlic control messages and
egress traflic control messages (e.g., TCP messages) that are
exchanged 1 a given time window exhibit a detectable
pattern anomaly as compared to normal control message
traflic. For example, port scans may probe many dead ports
which results i diflerent flows of control message responses
from hosts that affect the normal control message traflic
pattern as it evolves 1n time.

Some embodiments of the invention mtroduce data mod-
clling of metadata, comprising network protocol control
messages and related preprocessing, that make 1t amenable
for processing by machine learning (ML) algorithms or
other Al tools. For example, an ML algorithm that 1s suitable
for neuromorphic processing can be used, as described
below. On the hardware side, the technique provides a
system-level design that includes coupling a processor opti-
mized for Al, such as a neuromorphic coprocessor, to a
backplane pipeline of a modern high-end switch.

Some embodiments allow 1ntegration of a novel real-time
carly detection module along with standard offline traflic
analysis. To this end, the disclosed hardware includes pro-
cessing circuitry that preprocesses and transforms specific
switch telemetry data 1n real time, e.g., for direct feed to an
Al processor, such as a neuromorphic coprocessor, which 1s
configured to instantly detect RAs which happen within a
small time-frame of a few milliseconds over an entire set of
ports of a network device. Therefore, a security scan of
several tens of ports, e.g., of a switch, to detect an RA would
take a few milliseconds, making it possible for the disclosed
system to monitor hundreds of ports 1n real time (e.g., at a
rate of 100 Hz).

Timely detection of RAs, such as port scans, allows taking
proactive measures to mitigate an imminent cyberattack
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(e.g., DDOS problems), like to establish slowing down of
port connection and filtering of malicious IPs, and thereby to

protect against severe socioeconomical consequences of
such cyberattacks.

System Description

FIG. 1 1s a schematic, pictorial block diagram of a system
on chip (SoC) 100 inside a network switch 10, which 1s
configured to detect a network attack, e.g., a reconnaissance
attack (RA), in real time, 1n accordance with an embodiment
of the present invention. Switch 10 has N ports 102, N
typically ranging between 16-128, over which SoC 100
monitors communication. SoC 100 counts control trathic on
all ports 102 1n parallel, periodically, with a monitoring
period 1n the order of 1 mSec. Control traflic 1s counted with
a temporal resolution (time window) of up to 100 micro-
seconds, and therefore SoC 100 provides a scan rate on the
order of 1 KHz with suflicient temporal resolution to detect
an RA.

In the present context, the terms “control trailic” and
“control messages” are used interchangeably and refer to the
process of managing, controlling or reducing the network
tratlic using dedicated messages. Non-limiting examples of
control messages comprise TCP, UDP and ICMP types of
messages. Note that 1n counting control messages, SoC 100
typically distinguishes between control messages and data
messages, and considers only the control messages.

For a large number of scanned ports, a smaller time
window 1s suflicient, due to improved statistics on a larger
sample of ports. For example, assuming a 5 microsecond
time window of scan per port, SoC 100 may monitor a
switch, with up to 100 ports, against RA at a scan rate of at
least 1 KHz.

To perform its tasks, SoC 100 comprises a telemetry
counter 104, which counts the number of 1ngress and egress
control messages communicated over ports 102 at each time
window. The multiple ingress and egress counts are con-
verted, using a tensor generator 106, mto a mathematical
format (e.g., a tensor), suitable as an 1nput to an Al proces-
sor. In the shown embodiment, the Al processor 1s a neu-
romorphic coprocessor 110 which interfaces using a serial-
1ze¢ feeder 108.

I1 another type of coprocessor 1s used (e.g., a TPU), other
components may be used for interface with telemetry coun-
ter 104. Generally, any suitable processor, not necessarily a
neuromorphic coprocessor, can be used as processor 110.

Service discovery 1s comprised of control traflic “probe
requests” and “probe responses,” so the system updates
counters to monitor the response traflic as well. Telemetry
counter 104 1s therefore already a component of modemn
high-end switches. The solution leverages existing switch-
ing backplane capabilities to update, 1n real time, a specific
collection of counters that monitors control traflic.

Every time window (or epoch), and all of the respective
counters (collectively “telemetry counter 104”), are read and
fed to an artificial intelligence pipeline (which can be a
neuromorphic coprocessor, a TPU or any other device that
leverages ML/AI approaches). The intent 1s to observe
control trafic pattern variations that hint at adversarial RA
(e.g. a port scan).

The next module, tensor generator 106, receives configu-
rations to generate proper tensors from available counter
data. It periodically generates a different tensor set for each
ingress and egress path of each switch port and feeds 1t to the
next stage, which serializes the received tensors by mapping
them to integers of appropriate resolution and feeds them to
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the neuromorphic processor. Moreover, this module bridges
the timing domains as 1t 1s expected that the neuromorphic

processors operates at an N times faster frequency where N
1s the number of available switch ports and frequency 1s the
selected time window.

The output of processor 110, such as real-time indication
of an RA, 1s communicated to a user interface, shown as a
display 112.

SoC 100 can be dynamically configured to update coun-
ters for diflerent types of control traflic (such as TCP, UDP
or application-level custom control traffic). The intent 1s to
monitor all control traflic that might be used as a “probe” for
service discovery.

In an embodiment, the disclosed solution 1s a switching-
device-level solution that 1s mtegrated 1n the switch back-
plane. The switch backplane implements the forwarding of
traflic between all available ports and therefore it has access
to all packets entering and exiting the device.

Control traflic discussed in this disclosure comprises
packets that do not carry data but rather control information
for tasks such as, but not limited to, the following:

Connection establishment and teardown

Subscription to services

Flow control

Retransmission

The solution can be a system with a coprocessor located
outside a network device, directly coupled, e.g., by a local
area link, or a network device that includes the processor,
even to a level where the processor and the packet process-
ing circuitry are integrated on the same IC, with the latter
option shown 1n FIG. 1. In other embodiments, the solution
can be a system with a coprocessor located in a remote
device.

In particular, Soc 100, or another solution, runs a dedi-
cated algorithm as disclosed herein, including in FIG. 3, that
ecnables Soc 100, or another solution, to perform the dis-
closed steps, as further described below.

By appropriately taking advantage of the neuromorphic
coprocessor strengths, the invention significantly improves
the response time of RA detection while reducing the overall
power consumption and cost of ownership.

In various embodiments, the different elements of SoC
100 shown in FIG. 1 may be implemented using suitable
hardware, such as using one or more discrete components,
one or more Application-Specific Integrated Circuits
(ASICs) and/or one or more Field-Programmable Gate
Arrays (FPGAs), or in any other suitable way. Some of the
functions of the system may be implemented in a general-
purpose processor which 1s programmed 1n software to carry
out the functions described herein. The software may be
downloaded to the processor 1n electronic form, over a
network or from a host, for example, or 1t may, alternatively
or additionally, be provided and/or stored on non-transitory
tangible media, such as magnetic, optical, or electronic
memory.

Real-Time Detection of Network Reconnaissance
Attacks by Monitoring Network Protocol Tratlic

As noted above, RAs 1n the form of port scan attacks
leverage network protocol control message sequences to
determine open ports and services behind them. To 1dentily
a single port-scan sequence, specific packets of ingress and
egress traflic should typically be detected and correlated 1n
a time window of at least 0.1 mSec.

Determining network protocol port-scan sequences by
observing ingress/egress packets does not scale well 1n terms
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of performance. For example, in the context of a datacenter
switch with 100 Gbit/sec ethernet ports, determining port
scan sequences by correlating control message packets 1s
intractable. Each 100 G switch port processes, on average,
100 million packets per second (combined ingress/egress
tratlic of average-sized packets). For example, a 48-port 100
Gbit/sec switch configuration would require detection of
port scans 1n a volume of ~5 billion packets per second.

If the datacenter infrastructure i1s dedicated to a single
organization for 1ts operations, RA detection support could
be distributed among various servers that host critical ser-
vices. Port-scan detection, for example, also implies coun-
ter-measures, such as banning source IP subnets as close to
the mnternet edge as possible, which 1s viable 1f one organi-
zation owns the whole infrastructure.

In the context of a datacenter inirastructure that serves a
public cloud, the RA detection should be pervasive. Each
cloud application might have 1ts own attack counter-mea-
sures, especially for services operating in a VPN where
switched traflic 1s encrypted. However, since the infrastruc-
ture 1s shared among many applications, infrastructure-level
protection 1s required as well.

It 1s therefore evident that 1t would be beneficial 1f
network switches could provide an early warning of an RA.
Notably, switches have already been considered as the
ultimate real traflic analysis engines for triaging large net-
work deployment problems and distributed application per-
formance. More specifically, high-end switch fabrics (e.g.,
Mellanox Spectrum?3) feature a wealth of telemetry counters
which are updated by corresponding packet classifier hard-
ware that operates at line rate. These software-defined
classifiers can be configured to match different packet fields.
Subsequently, counter values are periodically aggregated by
appropriate switch agents to a central database for offline
analysis.

At rates of ~5 billion packets per second, successiul
identification of control message patterns 1n telemetry-di-
gested data 1s currently the only possible method to detect
port scan RA activity. Unfortunately, such ofiline detection
causes a crtical delay to taking defensive measures.
Embodiments of the present invention, and the disclosed
Al-based RA momitoring technique, overcomes the above
limitations.

FIG. 2 1s a schematic, pictorial diagram of an ingress and
egress control traflic assignment scheme of SoC 100 of FIG.
1, 1n accordance with an embodiment of the present inven-
tion. FIG. 2 shows how a port scan anomaly appears 1n a
traflic pattern of control messages and how control message
traflic 1s modeled 1n real time in the disclosed protected
network protocol.

In the shown example, port ingress and egress depiction
200 comprises three types of control messages that are
assumed to be of interest: CtrlMsgl, CtrlMsg2, and
CtrlMsg3. For a TCP protocol, these could be SYN, FIN and
RST control messages. These three control messages are
mapped, purely for 1llustration purposes, to gray scale values
of white (CtrlMsgl), dark gray (CtrlMsg2), and light gray
(CtrlMsg3).

Port ingress and egress depiction 200 provides an
example monitoring period 202, sliced into {fixed-size
smaller time windows 222 which are approprately shaded
according to the mix of control messages observed therein.
Port ingress and egress depiction 200 1s an example of the
protected control message modelling for port-scan anomaly
detection by mapping the three example CtriMsgs to gray-
scale values.
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Different fixed window representations are used for
ingress and egress trailic as the invention mandates inde-
pendent counting of the activity of each direction. According
to the gray-scale mapping, 1 TotalMsgs seen were all
CtriMsgl type, then the respective time window would be
white and, using the same pattern, CtrIMsg2 would be dark
gray and CtrlMsg3 would be light gray.

It 1s observed, also based on experimental data, that
control message traflic patterns normally change type gradu-
ally as legal traflic changes during the course of a day,
whereas abrupt and more concentrated discolorations imply
anomalies, such as port scans. What 1s even more important
1s that the type change in control message counts 1s also,
normally, as seen 1n graph 212, symmetric between ingress
and egress ports (possibly within a few time windows
oflset), which verifies that a type of “probing” (1.e. request/
response) 1s 1 progress.

In some embodiments, a data preparation and modelling
approach 1s amenable to neuromorphic acceleration, and
with an appropriate neural network design, an anomaly such
as the one designated 1n port ingress and egress depiction
200 can be mstantly detected.

Assuming a neuromorphic processor with 2M-1nput reso-
lution, the invention assigns the ingress control message
counts tensor to the upper (M) 1mnputs and the egress control
message count tensor to the lower (M) inputs. Subsequently,
cach tensor value 1s mapped to (M) bit integer, by appro-
priate hardware, following a simple one-to-one mapping that
1s mandated by the neuromorphic coprocessor mput resolu-
tion.

The tensor data are then delivered (232) to neuromorphic
processor 110 multiplexed 1n time, one value at a time.
Notably, ingress and egress values that are at the same tensor
position are delivered concurrently. The neuromorphic pro-
cessor mternal design that detects RAs 1s out of the scope of
this invention, but the standard design approach 1s expected
to be suflicient: mitial volume of legal traflic pattern should
be provided for training which will 1n turn provide initial
welght adjustment of the neural network. Subsequently, the
neural network should be designed to trigger the output on
observation of abrupt pattern violations such as the ones
induced by an RA, whereas 1t should employ the inherent
incremental learning functions to adapt to the legal traflic
pattern variations as they slowly evolve 1n time.

As RA probes for active services fail most of the time, this
introduces an “anomaly”, seen 1 graph 214, in the probe
traflic pattern 1n two dimensions: 1) subtle probe traflic-rise
216, and 11) abnormal variance 218 in the response time
delta, as seen 1n graph 214.

Detection Algorithm Description

Assume N counters under Counter 104 for N distinct
control message types: Countl, . . ., CountN, with TotalMsg
being the total number of control messages. The algorithm
defines a tensor with normalized inputs (with a value
between O and 1) as follows:

[Countl/TotalMsgs, . . . , CountN/TotalMsgs]

This 1s the formulated mput that represents the tratlic
pattern and can be fed to an artificial intelligence pipeline.
Such input 1s obtained for every timeslot (or epoch) 222
which needs to be very fine grained (e.g., every counter
update).

SoC 100 assembles diflerent tensors for the ngress (in-
coming) and for the egress (outgoing) traflic.

With normal operation, services are known and control
sequences typically succeed. That slightly delays the
responses as servers do housekeeping tasks before sending
back a response. Typically, there 1s a symmetry 1n the normal
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control message sequences, the ingress traflic pattern being
similar to the egress traflic pattern with a shift in time.

With the attack control message sequence, most probes
fail. In such cases (when a service 1s not available) the
response comes back faster and can be captured by tighter
shifts 1 time, slightly more volume and also greater vari-
ance.

From one perspective, 1f the depicted shift 1s fixed, or at
least falls within a pre-defined range, then only a simple

algorithm 1s needed to detect 1t.

The Al algorithm 1s configured to determine what should
be considered as a legal or permissible shift or alteration in
the tratlic pattern for each given time slot, since very specific
shift value boundarnies change over time depending on the
traflic, thus cannot be precisely defined.

The underlining concept 1s as follows:

When probing for a service that 1s not there, an attacker
application receives a negative response faster than
when the service 1s up, as the attacked network device
needs to perform connection initialization steps that
takes “more” time.

The success/fail response “time difference” depends on
what the service needs to do and how flooded the
network 1s. Different services and different network
loads result 1n significant variations.

Since RA probes for active services Tail most of the time,
this introduces an “anomaly” 1n the probe traflic pattern
in two dimensions: 1) subtle probe tratlic rise, and 11) an
abnormal variance 1n the response time delta.

The disclosed approach 1s to construct, with an Al algo-
rithm (be it neuromorphic-based or TPU-based neural net-
works) a fitting function for the normal probe trathic that
continuously adapts to the legal request/response volume
and temporal variations, and therefore can instantly detect
respective anomalies. Note that, with neuromorphic com-
puting, there 1s no training step, just an inference step;
training 1s pervasive, continuously updated as data 1s infer-
enced, a process called approach incremental learning.

i

Iraining Step for Design of Al Pipeline
The tramming step 1volves the discovery of a fitting
function that captures normal operation. If a traflic pattern
does not {it, then this 1s signaled as an attack.

Such a fitting function can be hardcoded 1nside a neuro-
morphic chip or a neural network for TPU offloading fol-
lowing the disclosure integration approach.

Disclosed system configurations are configured for real-
time detection of network protocol control message trathic
pattern anomalies, such as port scans, as depicted in FIG. 1.

The control trailic assignment scheme shown 1n FIG. 2 1s
brought by way of example. In practice, for example,

hundreds of ports may be scanned in parallel.

Method of Real-Time Detection of Network Ra

FIG. 3 1s a flow chart schematically describing a method
for detecting an RA 1n real time using SoC 100 of FIG. 1, 1n
accordance with an embodiment of the present invention.
The algorithm according to the presented embodiment car-
rics out a process that begins with CPU 12 mitializing
counting per new window of time 202, at a counting
initialization step 301.

Next, assuming that there are K time windows 222 1n
period of counting 202, counter 104 of SoC 100 counts over
K successive time windows 222, ingress and egress control
message packet traflic through multiple ports during each
monitoring period 222, at a counting step 302.



US 11,765,188 B2

9

Next, at a tensor generation step 303, tensor generator 106
generates tensor mput from the K counts.

At a tensor mput feeding step 304, serialize feeder 108
feeds the tensor mput to neuromorphic processor 110.

At a control traih

ic analysis step, neuromorphic processor
110 applies a neuromorphic-inference algorithm, such as
described 1n FIG. 2, to the counts to 1dentily an anomaly 1n
the real-time trafiic.

If, at a checking step 303, neuromorphic processor 110
does not 1dentily an anomaly, the process goes back to step
301 to start another real-time monitoring session.

If neuromorphic processor 110 identifies an anomaly, the
processor 1indicates, 1n real time, an occurrence of an RA, at
an RA indication step. In an alerting step 312, processor 110
uses an alert, such as an audiovisual alert.

The process then goes back to step 301 to continue the
real-time monitoring.

The example flow chart shown 1n FIG. 3 1s chosen purely
for the sake of conceptual clarnty. For example, another ML
processor type (e.g., TPU) and another ML algorithm may
be used for the analysis.

Although the embodiments described herein mainly
address network communications, the methods and systems
described herein can also be used in other applications, such
as 1n domains in which events occur at a very high rate at
some central entity, and there 1s a need to quickly classily
them 1nto groups and observe their distribution 1n a wider
time window.

It will thus be appreciated that the embodiments described
above are cited by way of example, and that the present
invention 1s not limited to what has been particularly shown
and described hereinabove. Rather, the scope of the present
invention includes both combinations and sub-combinations
of the various features described hereinabove, as well as
variations and modifications thereof which would occur to
persons skilled in the art upon reading the foregoing descrip-
tion and which are not disclosed 1n the prior art. Documents
incorporated by reference in the present patent application
are to be considered an integral part of the application except
that to the extent any terms are defined in these incorporated
documents 1n a manner that contlicts with the definitions
made explicitly or implicitly in the present specification,
only the defimitions in the present specification should be
considered.

The invention claimed 1s:

1. An apparatus, comprising:

multiple ports;

packet communication processing circuitry coupled to the

ports and configured to:

process tratlic communicated via one or more of the
ports;

distinguish, 1n the tratlic, between (1) data packets that
transier data, and (1) control messages that solicit
responses and that are separate from the data pack-
ets; and

generate metadata that 1s indicative of a temporal
pattern of the control messages; and

a processor, configured to receive the metadata from the

packet communication processing circuitry, and to
identily a network attack by applying anomaly detec-
tion to the temporal pattern of the control messages.

2. The apparatus according to claim 1, wherein the packet
communication processing circuitry is configured to gener-
ate the metadata based on the control messages and not on
the data packets.

3. The apparatus according to claim 1, wherein the
metadata comprises counts of the control messages.
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4. The apparatus according to claim 3, wherein each of the
counts corresponds to a respective time window and a
respective port.

5. The apparatus according to claim 1, wherein the
network attack comprises a port scanning attack.

6. The apparatus according to claim 1, wheremn the
processor 1s configured to apply the anomaly detection by
applying an artificial neural network (ANN).

7. The apparatus according to claim 6, wherein the
processor comprises a neuromorphic processor that 1s con-
figured to use the ANN 1n an inference-only mode to detect
an anomaly 1n the temporal pattern of the control messages.

8. The apparatus according to claim 6, wherein the
processor comprises one of a tensor-processing-unit (TPU)
and a graphical-processing-unit (GPU), and wherein the
ANN 1s trained to detect an anomaly 1n the temporal pattern
of the control messages.

9. The apparatus according to claim 1, wherein the control
messages comprise transmission control protocol (TCP)
messages.

10. The apparatus according to claim 1, wherein the
control messages comprise user datagram protocol (UDP)
messages.

11. The apparatus according to claim 1, wherein the
control messages comprise internet control message Proto-
col (ICMP) messages.

12. The apparatus according to claim 1, wherein the

processor 1s configured to indicate an occurrence of the
network attack in real-time.

13. The apparatus according to claim 1, wherein the
packet communication processing circuilry comprises a
multi-port switch fabric.

14. The apparatus according to claim 1, wherein the ports,
the packet communication processing circuitry and the pro-
cessor are mntegrated 1n a network device.

15. The apparatus according to claim 1, wherein the
packet communication processing circuitry and the proces-
sor are integrated 1n a single integrated circuit (IC).

16. A method, comprising:

using packet communication processing circuitry that 1s

coupled to multiple ports:

processing traflic communicated via one or more of the
ports;

distinguishing, in the traflic, between (1) data packets
that transfer data, and (11) control messages that
solicit responses and that are separate from the data
packets; and

generating metadata that 1s indicative of a temporal
pattern of the control messages; and

using a processor, receiving the metadata from the packet

communication processing circuitry, and identifying a
network attack by applying anomaly detection to the
temporal pattern of the control messages.

17. The method according to claim 16, wherein generat-
ing the metadata 1s based on the control messages and not on
the data packets.

18. The method according to claim 16, wherein the
metadata comprises counts of the control messages.

19. The method according to claim 18, wherein each of
the counts corresponds to a respective time window and a
respective port.

20. The method according to claim 16, wherein the
network attack comprises a port scanning attack.

21. The method according to claim 16, wherein applying
the anomaly detection comprises applying an artificial neu-

ral network (ANN).
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22. The method according to claim 21, wherein the
processor comprises a neuromorphic processor, and wherein
applying the ANN comprises applying the ANN 1 an
inference-only mode to detect an anomaly 1n the temporal
pattern of the control messages.

23. The method according to claim 21, wherein the
processor comprises one of a tensor-processing-unit (TPU)
and a graphical-processing-unit (GPU), and wherein apply-
ing the ANN comprises applying an ANN that 1s trained to
detect an anomaly in the temporal pattern of the control
messages.

24. The method according to claim 16, wherein the
control messages comprise transmission control protocol
(TCP) messages.

25. The method according to claim 16, wherein the
control messages comprise user datagram protocol (UDP)
messages.

26. The method according to claim 16, wherein the
control messages comprise internet control message Proto-
col (ICMP) messages.

277. The method according to claim 16, wherein indicating,
the occurrence of the network attack comprises indicating,
the occurrence of the network attack 1n real-time.

28. The method according to claim 16, wherein the packet
communications processing circuitry comprises a multi-port
switch fabric.

29. The method according to claim 16, wherein the ports,
the packet communication processing circuitry and the pro-
cessor are integrated 1n a network device.

30. The method according to claim 16, wherein the packet
communication processing circuitry and the processor are
integrated 1n a single ntegrated circuit (I1C).
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