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NONVOLATILE MEMORY DEVICE
INCLUDING ARTIFICIAL NEURAL
NETWORK, MEMORY SYSTEM INCLUDING
SAME, AND OPERATING METHOD OF
NONVOLATILE MEMORY DEVICE

INCLUDING ARTIFICIAL NEURAL
NETWORK

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims priority under 35 U.S.C. § 119 to
Korean Patent Application No. 10-2021-0008917 filed on
Jan. 21, 2021 1n the Korean Intellectual Property Oflice, the
subject matter of which 1s hereby incorporated by reference.

BACKGROUND

The 1nventive concept relates generally to memory
evices, and more particularly, to nonvolatile memory
evices, memory systems including nonvolatile memory
evice(s), and operating methods for nonvolatile memory
evices.

Contemporary and emerging memory devices must high
data storage capacity with ever-more dense integration in
order to meet consumer demands for expanded functionality
and lower costs. The so-called “vertical NAND” (or
“V-NAND”) type flash memory device 1s one response to
demands for higher data storage capacity and increased
integration density. A chip-to-chup (C2C) structure for the
V-NAND structure may be provided, wherein memory cell
circuitry and peripheral circuitry are separately manufac-
tured on different wafers and then later connected. This
approach stands 1n contrast with approaches used to manu-
tacture cell over periphery (COP) structures, wherein both
the memory cell circuitry and the peripheral circuitry are
manufactured on a single wafer.

Unfortunately, as the number of word lines vertically
stacked 1n a V-NAND increases, the size of a corresponding
channel hole for each word line may vary. This outcome
together with other factors may result 1n a range of output
voltages, even when a constant voltage 1s applied to the
respective word lines.

C
C
C
C

SUMMARY

Embodiments of the imnventive concept provide nonvola-
tile memory devices incorporating an artificial neural net-
work model configured to infer an optimum voltage for a
word line. Embodiments of the inventive concept also
provide operating methods for nonvolatile memory devices
having this feature, as well as memory systems including
such nonvolatile memory device(s).

According to an aspect of the mventive concept, there 1s
provided a nonvolatile memory device including; a memory
cell array including a meta data region storing chip-level
information, control logic configured to receive a command
and 1dentify a target cell indicated by the command, machine
learning (ML) logic configured to infer an optimum param-
cter based on the chip-level mnformation and physical infor-
mation associated with the target cell applied as inputs to an
artificial neural network model, and a bufler memory con-
figured to store weight parameters of the artificial neural
network model.

According to an aspect of the inventive concept, there 1s
provided an operating method of a nonvolatile memory
device, wherein the nonvolatile memory device includes a
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2

memory cell array implemented 1n a first chip manufactured
on a first waler and including a meta region storing chip-
level information, and a peripheral region implemented on a
second chip manufactured on a second water different from
the first water and including a bufler memory and machine
learning (ML) logic, wherein the first chip and the second
chip are bonded using a chip-to-chip (C2C) bonding
method. The operating method includes; 1dentifying a target
cell in the memory cell array in response to received
command, loading the chip-level information from the
memory cell array to the bufler memory, loading physical
information associated with the target cell to the buller
memory, and inferring an optimum parameter, using the ML
logic, based on the chip-level information and the physical
information applied as inputs to an artificial neural network
model.

According to an aspect of the mnventive concept, there 1s
provided a memory system including; a host device config-
ured to communicate a command, and a nonvolatile memory
device. The nonvolatile memory device includes; a memory
cell array including a meta data region storing chip-level
information, control logic configured to receive the com-
mand and identify a target cell in response to the command,
machine learning (ML) logic configured to infer an optimum
parameter based on the chip-level information and physical
information associated with the target cell applied as mputs
to an artificial neural network model, and a buffer memory
configured to store weight parameters of the artificial neural
network model, wherein the ML logic 1s further configured
to perform a tramning operation on the artificial neural
network model.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the mmventive concept may be more
clearly understood upon consideration of the following
detailed description together with the accompanying draw-
ings in which:

FIG. 1 1s a block diagram illustrating a nonvolatile
memory device 10 according to embodiments of the iven-

tive concept;

FIG. 2 1s a block diagram further illustrating the nonvola-
tile memory device 10 of FIG. 1;

FIG. 3 1s a perspective view 1illustrating a memory block
BLKO that may be incorporated within the nonvolatile
memory device 10 of FIG. 1;

FIG. 4 15 a conceptual diagram 1llustrating one approach
to a neural network and a calculation process using the
neural network according to embodiments of the mventive
concept;

FIG. 5 1s a block diagram 1illustrating machine learning
(ML) logic according to embodiments of the inventive
concept;

FIG. 6 1s a conceptual diagram illustrating a comparative
example 1 which different program voltages are respec-
tively applied to different word lines;

FIG. 7 1s a conceptual diagram illustrating an artificial
neural network model according to an embodiments of the
iventive concept;

FIGS. 8 and 9 are respective flowcharts 1llustrating oper-
ating method(s) for a nonvolatile memory device according
to embodiments of the inventive concept;

FIG. 10 1s a cross-sectional diagram 1llustrating a non-
volatile memory device according to embodiments of the
inventive concept; and
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FIG. 11 1s a block diagram illustrating a nonvolatile
memory device implemented as a solid state drive (SSD)
system according to embodiments of the mnventive concept.

DETAILED DESCRIPTION

Throughout the written description and drawings, like
reference numbers and labels are used to denote like or
similar elements and/or features.

Figure (FIG. 1 1s a block diagram 1illustrating a nonvolatile
memory device 10 according to embodiments of the inven-
tive concept.

Referring to FIG. 1, the nonvolatile memory device 10
may generally include a memory cell array 100 and a
peripheral circuit 200. Here, the peripheral circuit 200 may
include a page bufler circuit 210, a control logic 220, a
voltage generator 230, a row decoder 240, a counting circuit
260, a bufler memory 270, and a machine learning (ML)
logic 280. Here, the ML logic 280 may be variously imple-
mented 1n hardware, firmware and/or software and may be
broadly referred as a “machine learning (ML) inference
processor.” Although not specifically illustrated n FIG. 1,
the peripheral circuit 200 may further include various data
input and output (I/O) circuit(s), as well as various I/O
interface(s).

In some embodiments, the memory cell array 100 may be
connected to the page butler circuit 210 through bit lines BLL
and to the row decoder 240 through word lines WL, string
selection lines SSL, and/or ground selection lines GSL. The
memory cell array 100 may 1include memory cells of one or
more types (e.g., flash memory cells). Heremaiter, embodi-
ments of the inventive concept will be described 1n the
context of (or under the assumption that) the memory cells
of the memory cell array 100 are NAND flash memory cells.
However, the scope of the mventive concept 1s not limited
thereto, and the memory cells of the memory cell array 100
may additionally or alternately include resistive memory
cells (e.g., resistive random-access memory (ReRAM)
memory cells), phase change random-access memory
(PRAM) memory cells, and/or magnetic random-access
memory (MRAM) memory cells.

In some embodiments, the memory cell array 100 may
include a three-dimensional (3D) memory cell array includ-
ing NAND strings including memory cells respectively
connected to word lines vertically stacked on a substrate. In
this regard, the collective subject matter of U.S. Pat. Nos.
7,679,133, 8,553,466, 8,654,587; and 8,559,235, as well as
published U.S. Patent Application No. 2011/0233648 1s
hereby incorporated by reference. These documents disclose
several configurations 1n which a 3D memory array 1s
formed at multiple levels sharing word lines and/or bit lines.
However, 1n some embodiments, the memory cell array 100
may include a two-dimensional (2D) memory cell array.

In some embodiments, the memory cell array 100 may
turther include a meta region 110 corresponding to at least
a region ol the memory cell array 100. The meta region 110
may be used to store certain data describing chip level
information, such as wafer location information, wafer reli-
ability information, program/erase (P/E) cycle information,
etc.

In this regard, “wafer location information” may include
information indicating a chip location on a wafer at which
the nonvolatile memory device 10 1s realized. Water location
information 1s valuable because certain variable processing
outcomes may result in different chips at different locations
on a water exhibiting different performance characteristics.
For example, a chip located at a first location on a wafer
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4

(c.g., an edge portion of the waler) may exhibit a high
deterioration speed or an increased error probability when
compared with a chip located at a second location on the
waler (e.g. a central portion of the water). Accordingly, the
meta region 110 of the memory cell array 100 may include
the water location information—which may be wholly or
selectively communicated with (e.g., transmitted to and/or
received from) the ML logic 280.

“Walter reliability information” may include various pro-
cessing reliability information associated with the wafer on
which a chip including the nonvolatile memory device 10 1s
realized. For example, even when waters are manufactured
by the same manufacturer, certain quality characteristics for
the wafers may be various from one wafer to another water.
Hence, chips manufactured on a first water having relatively
high quality may have a lesser deterioration speed than chips
manufactured on a second waler having a relatively low
quality. Accordingly, the meta region 110 of the memory cell
array 100 may include the water reliability information (e.g.,
quality information for diflerent water(s))—which may be
wholly or selectively commumnicated with the ML logic 280.

“P/E cycle information” indicates a number of P/E cycles
that have previously been performed with respect to respec-
tive memory cells (or respective groups of memory cells) in
the memory cell array 10. In this regard, P/E cycle infor-
mation may be understood as describing the durability of the
memory cell array 100.

In some embodiments, the control logic 220 may be used
to provide various control signals that control the program-
ming of data in the memory cell array 100, the reading of
data from the memory cell array 100, and/or the erasing of
data stored in the memory cell array 100. Such control
signals may be variously defined, but usually 1include com-
mand(s) CMD, address(es) ADDR, and/or control signal(s)
CTRL. Exemplary control signals may include a voltage
control signal CTRL_vol, a row address X-ADDR, and a
column address Y-ADDR. In this manner, the control logic
220 may generally control the execution of various opera-
tions by the nonvolatile memory device 10.

In some embodiments, the voltage generator 230 may
generate voltage(s) selectively applied to the memory cell
array 100 during program, read, and/or erase operations 1n
response to (e.g.,) the voltage control signal CTRL_vol.
That 1s, the voltage generator 230 may generate a word line
voltage VWL (e.g., a program voltage, a read voltage, a pass
voltage, an erase verily voltage, or a program verily volt-
age). The voltage generator 230 may also generate a string
selection line voltage and/or a ground selection line voltage.

In some embodiments, the row decoder 240 may select
one or more memory blocks from among a plurality of
memory blocks in the memory cell array 100. The row
decoder 240 may also one or more words lines WL and/or
one or more string selection lines SSL 1n response to (e.g.,)
the row address X-ADDR.

In some embodiments, the page buller circuit 210 may
select one or more bit lines BL 1n response to (e.g.,) the
column address Y-ADDR. In this regard, the page buller
circuit 210 may operate as a write driver during program (or
write) operations or as a sense amplifier during read opera-
tions. Here, 1n some embodiments, the page bufler circuit
210 may include a plurality of page buflers PB respectively
connected to the bit lines BL. As a result, the page bullers
PB may be arranged as a matrix including columns and
rows. In some embodiments, the page bullers PB may be
variously arranged 1in multi-stage structures.

In some embodiments, the counting circuit 260 may be
used to count a number of memory cells (a “counted value™)
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as the result of a sensing operation performed by the page
builers PB. Based on the counted value, the counting circuit
260 may additionally count a number of ON-cells and/or a
number of OFF-cells when a verity voltage 1s applied to the
memory cell array 100. The counting circuit 260 may
provide certain counted value(s) to the control logic 220
and/or the bufler memory 270.

In some embodiments, the ML logic 280 may be used to
derive (or “infer’”) an “optimum parameter”, €.g., a word line
voltage associated with a target memory cell using an
artificial neural network model. In this regard, the operation
of the ML logic 280 may be based not only on the artificial
neural network model, but also on various ML models
including at least one of a decision tree, a linear regression
model, a support vector machine, etc.

In some embodiments, the artificial neural network model
may include one or more models, such as a convolution
neural network (CNN) (e.g., GoogleNet, AlexNet, VGG
Network, etc.). The artificial neural network model may
alternately or additionally include a region with a CNN
(R-CNN), a region proposal network (RPN), a recurrent
neural network (RNN), a stacking-based deep neural net-
work (S-DNN), a state-space dynamic neural network
(S-SDNN), a deconvolution network, a deep belief network
(DBN), a restricted Boltzmann machine (RBM), a fully
convolutional network, a long short-term memory (LSTM)
network, a classification network, etc. However, the artificial
neural network model 1s not limited to only the foregoing
examples.

In some embodiments, the buller memory 270 may be
used to load the artificial neural network model to the ML
logic 280. The bufler memory 270 may also be used to store
a parameter, an intermediate output, a result value, etc.,
derived during a “inferring process” performed by the
artificial neural network. Here, the ML logic 280 may
include additional IP blocks configured to process the large
number of calculations usually associated with the operation
of a artificial neural network model. For example, the
additional IP blocks may include a graphical processing unit
(GPU) or an accelerator configured to quickly performing
one or more calculations.

FIG. 2 1s a block diagram turther illustrating the nonvola-
tile memory device 10 of FIG. 1.

Here, 1t 1s assumed that the nonvolatile memory device 10
1s manufactured with a C2C structure (e.g., a structure 1n
which an upper chip including a cell region CELL 1s
manufactured on a first wafer, and a lower chip including a
peripheral circuit region PERI 1s manufactured on a second
waler, wherein the upper chip and the lower chip are
alterward connected to one another using a bonding
method). In this regard, the cell region CELL may corre-
spond to the memory cell array 100 of FIG. 1, and the
peripheral circuit region PERI may correspond to the periph-
eral circuit 200 of FIG. 1. Those skilled i the art will
appreciate that one of various well-understood bonding
methods may be used to electrically connect a bonding metal
layer formed on an uppermost metal layer of the upper chip
with a bonding metal formed on an uppermost metal layer of
the lower chip, for example. In this regard, when the
bonding metals may include Cu 1n certain Cu—Cu bonding
methods. However, the bonding metals may also include Al
or W.

Inherent 1n the use of a C2C structure 1s the possibility
that the first water and the second waler may be diflerent
walers, and/or the possibility that the upper chip and the
lower chip have been manufactured using different process-
ing conditions. For example, relatively more sophisticated
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processing operations may be used during the manufacturing
of the peripheral circuit region PERI, as compared with the
cell region CELL. In some embodiment, the control logic
220 may be used to perform most calculations. However,
when a logic process using the ML logic 280 and the buller
memory 270 1n the peripheral circuit region PERI 1s avail-
able, a memory may directly perform the complex calcula-
tions required to control the nonvolatile memory device 10,
without intervention by a memory controller and without the
corresponding signal exchanges with the memory controller.
This approach results in improved overall performance, such
as reduction in delay times associated with computational
operations, etc.

FIG. 3 1s a perspective diagram 1llustrating a memory

block BLKa that may be associated with the memory cell

array 100 of FIG. 1.

Referring to FIG. 3, the memory block BLKa may be
formed 1n direction vertical to a substrate SUB. A common
source line CSL extending 1n a second horizontal direction
HD2 (1.e., a Y direction) may be provided on the substrate
SUB. Between two adjacent common source lines CSL on
the substrate SUB, msulating layers IL extending in the
second horizontal direction HD2 may be sequentially pro-
vided 1n a vertical direction VD (1.e., a Z direction), wherein
the msulating layers IL may be apart from each other in the
vertical direction VD by a predetermined distance. Between
two adjacent common source lines CSL on the substrate
SUB, pillars P sequentially arranged in a first horizontal
direction HD1 (1.e., an X direction) and penetrating the
insulating layers IL 1n the vertical direction VD may be
provided. A surface layer S of each pillar P may include a
silicon material having a first type and may function as a
channel region. An inner layer I of each pillar P may include
an insulating material such as silicon oxide or an air gap.

Between two adjacent common source lines CSL, a
charge storage layer CS may be provided along exposed
surfaces of the msulating layers IL, the pillars P, and the
substrate SUB. For example, the charge storage layer CS
may have an oxide-nitride-oxide (ONO) structure. Also,
between two adjacent common source lines CSL, a gate
electrode GE, such as selection lines GSL. and SSL and word
lines WL0 through WL7, may be provided on an exposed
surface of the charge storage layer CS. Drains DR may be
provided on the pillars P, respectively. Bit lines BL1 through
BL3 extending in the first horizontal direction HD1 may be
provided on the drains DR.

FIG. 4 1s a conceptual diagram illustrating a neural
network NN and an exemplary calculation process using the
neural network NN according to embodiments of the inven-
tive concept.

Referring to FIG. 4, the neural network NN may include
a multiplicity layers (e.g., layers L1 through Ln). Each of the
layers L1 through LLn may be a linear layer or a non-linear
layer. In some embodiments, at least one linear layer and at
least one non-linear layer may be combined and referred to
as a layer. In this regard, the linear layer may include a
convolution layer and a fully connected layer, whereas the
non-linear layer may include a sampling layer, a pooling
layer, and an activation layer.

Relative to the illustrated example of FIG. 4, a first layer
L1 may be a convolution layer, and a second layer L2 may
be a sampling layer. The neural network NN may further
include an activation layer, as well as other layers perform-
ing other types of calculations.

Each of the layers may receive an input feature map
generated from 1mage data either received from an external
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source or generated by a previous layer. Upon receiving the
input feature map, a layer may calculate an output feature
map.

Thus, 1n FIG. 4, the first layer L1 may form a convolution
of a first feature map FM1 with a weight map WM to
generate a second feature map FM2. The weight map WM
may filter the first feature map FM1 and may be referred to
as a filter or a kernel. For example, a depth of the weight map
WM (e.g., a number of channels), may be the same as a
depth of the first feature map FMI1, such that the same
channels of the weight map WM and the first feature map
FM1 may be formed as a convolution. The weight map WM
may be shifted via a crossing method using the first feature
map FM1 as a sliding window. The amount of shifting may
be referred to as a “length of a stride” or a *“stride.” During
cach shift, each of weights included in the weight map WM
may be multiplied and added by all feature values 1n a region
overlapping the first feature map FM1. As a convolution of
the first feature map FM1 with the weight map WM 1s
formed, one channel of the second feature map FM2 may be
generated.

The 1llustrated example of FIG. 4 assumes the use of one
weight map WM. However, actual implementations, mul-
tiple weight maps may form a convolution with the first
teature map FM1 to generate channels of the second feature
map FM2. That 1s, the number of channels of the second
feature map FM2 may correspond to the number of weight
maps.

The second layer L2 may generate a third feature map
FM3 by changing a spatial size of the second feature map
FM2. For example, the second layer .2 may be a sampling
layer. The second layer L2 may perform up-sampling or
down-sampling, and the second layer .2 may select part of
data included 1n the second feature map FM2. For example,
a 2D window WD may be shifted on the second feature map
FM2 in units of a size of the window WD (e.g., a 4%4
matrix), and a value of a predetermined location (e.g., a first
row, a first column) 1n a region overlapping the window WD
may be selected. The second layer L2 may output the
selected data as data of the third feature map FM3. As
another example, the second layer L2 may be a pooling
layer. In this case, the second layer L2 may select, from the
second feature map FM2, a maximum value (max pooling)
or an average value (average pooling) of feature values 1n
the region overlapping the window WD.

Accordingly, the third feature map FM3 may be generated
by changing the spatial size of the second feature map FM2.
The number of channels of the third feature map FM3 may
be the same as the number of channels of the second feature
map FM2. Thus, 1n some embodiments, a calculation speed
of the sampling layer may be greater than a calculation speed
of the pooling layer, and the sampling layer may improve the
quality of an output image (e.g., 1n terms of a peak signal to
noise ratio (PSNR)). Here, for example, the calculation by
the pooling layer may include calculating a maximum value
or an average value, and thus, may require a greater calcu-
lation time than the calculation by the sampling layer.

In some embodiments, the second layer L2 1s not limited
to the sampling layer or the pooling layer. That 1s, the second
layer .2 may be a convolution layer similar to the first layer
1. The second layer .2 may generate the third feature map
FM3 by forming a convolution of the second feature map
FM2 with a weight map. In this case, the weight map on
which the second layer L2 performs the convolution calcu-
lation may be different from the weight map WM on which
the first layer L1 performs the convolution calculation.

10

15

20

25

30

35

40

45

50

55

60

65

8

An N7 feature map may be generated by an N” layer
through layers including the first layer L1 and the second
layer 1.2. The N” feature map may be input to a reconstruc-
tion layer located at a back end of the neural network NN
from which output data 1s provided. The reconstruction layer
may generate an output image based on the N” feature map.
Also, the reconstruction layer may receirve feature maps
including the first feature map FM1 and the second feature
map FM2, rather than just the N feature map, and may
generate an output image based on the feature maps. A third
layer L3 may generate an output signal REC by combining
teatures of the third feature map FM3. For example, the
output signal REC may include at least one of an optimum
program voltage value with respect to a target word line
(e.g., an optimum read voltage value, an incremental step
pulse program (ISPP), an optimum erase voltage value, an
incremental step pulse erase (ISPE), a program voltage pulse
width, a program loop control, an erase voltage pulse width,
an erase loop control value, etc.).

FIG. 5 15 a block diagram further illustrating the ML logic
280 of FIG. 1 according to embodiments of the mventive
concept.

Referring to FIG. 5, the ML logic 280 may include an
inference module 282, a training module 284, and a trigger
module 286.

In some embodiments, the inference module 282 may be
used to generate an output corresponding to an nput based
on weight parameters of an artificial neural network model
that has completed learning (or training). In this regard, the
inference module 282 may receive at least one of chip-level
information, physical information, and operation mforma-
tion as the 1nput.

“Operation mformation” may include values obtained
during the execution of one or more program, read, and/or
erase operations. For example, operation information may
include memory cell speed information, count information
indicating a number of ON-cells and/or a number of OFF-
cells 1 response to a verily voltage, a number of verily pass
loops, information associated with a distribution shape,
information associated with a degree of retention deteriora-
tion, information associated with a write pattern for adjacent
cells, temperature information, etc. Operation information
may also be alternately be referred to as monitoring infor-
mation, cell state information, real time information, etc.

“Physical information” may include information with
respect to program, read, and/or erase target cell(s), block
information for the program, read, or erase target cell, word
line information for the target cell, string selection informa-
tion for the target cell, etc.

In some embodiments, the training module 284 may be
used to perform training on the artificial neural network
model. The training module 284 may update optimum
welght parameters by training the artificial neural network
model based on the chip-level information, the physical
information, and the operation mformation. For example,
the training module 284 may load, from the builer memory
270, count information about the number of ON-cells and/or
OFF-cells 1n response to a verily voltage, memory cell speed
information, such as a number of loops performed to com-
plete programming or erasing, and a degree of deterioration
for data stored in a memory cell due to retention of the data.
The count information, cell speed information, and cell
retention information may have different values than those
associated with a time at which the artificial neural network
model was previously tramned. Thus, the training module 284
may train the artificial neural network model based on the
updated count information, updated memory cell speed
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information, and updated memory cell retention 1nforma-
tion. Hence, the re-trained artificial neural network model
may have weight parameters that are diflerent from the
welght parameters of the previously-trained neural network
model.

In some embodiments, the ML logic 280 may include
only the inference module 282. In this case, the ML logic
280 may perform only the inference operation based on the
welght parameters of the pre-trained artificial neural net-
work model. Thus, new training based on updated cell speed
information, updated count information, and updated
memory cell retention information may not be performed.

In other embodiments, the ML logic 280 may include the
inference module 282, the training module 284, and the
trigger module 286. Here, the trigger module 286 may
correspond to a module configured to determine whether or
not to activate the training module 284. For example, the
trigger module 286 may activate the traiming module 284
based on a standby time, a result of a comparison between
the count information and a threshold value, or a result of a
comparison between the memory cell speed information and
a threshold value.

In some embodiments, the trigger module 286 may 1den-
tify whether or not a standby time since a performing a
particular program, read, and/or erase operation has been
performed. Upon determining that the standby time exceeds
a predetermined first threshold value, the trigger module 286
activate the training module 284. In order to make this
identification, the trigger module 286 may include a timer
circuit (not shown). When the standby time exceeds the first
threshold value, the trigger module 286 may activate the
training module 284 and may put the memory cell speed
information and the count information stored in the bufler
memory 270 to the training module 284. That 1s, the trigger
module 286 may initiate traiming of the artificial neural
network module during the standby time during which
programming, reading, and erasing are not performed in
order to infer an optimum program voltage, an optimum read
voltage, and/or an optimum erase voltage. Alternatively, in
some embodiments, the trigger module 286 may receive a
request of a memory controller and may activate the training,
module 284 1n response to the request. When a program
command or a read command 1s not received from a host
during a predetermined time period, the memory controller
may determine to train the artificial neural network model
and may transmit an additional command instructing the
training of the artificial neural network to the trigger module
286.

In some embodiments, the trigger module 286 may acti-
vate the training module 284 1n response to a comparison
between the memory cell speed information and a threshold
value, or 1n response to a comparison between the count
information and a threshold value. In this regard, the per-
formance of the memory cell array 100 may deteriorate over
time, as program and erase operations are repeatedly per-
formed.

The threshold value may correspond to a reference value
for determining that a desired performance improvement has
not been achueved by the voltage derived (or inferred) by the
pre-trained artificial neural network. For example, when a
memory cell speed 1s detected that 1s less than a predeter-
mined reference speed, the trigger module 286 may activate
the traimning module 284. As another example, when a
number of OFF-cells exceeds a pre-defined reference num-
ber, the trigger module 286 may activate the training module
284 to reflect the degree of performance deterioration for the
memory cell array 100.
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In some embodiments, the trigger module 286 may not
only trigger the training module 284, but may also trigger a
backup of data stored in the bufler memory 270 to a meta
region of the memory cell array 100. For example, assuming
that bufler memory 270 1s a volatile memory, the trigger
module 286 may identily whether or not a pre-defined
standby time has passed after a changed weight parameter 1s
stored 1n the buller memory 270, or may periodically receive
from the memory controller a command requesting a backup
of the bufler memory 270. When the pre-defined standby
time has passed, or when the command requesting the
backup 1s recerved, the trigger module 286 may trigger the
control logic 220 to write a changed weight parameter of the
buffer memory 270, an inferred optimum word line voltage
value, data of an intermediate output, etc., to the meta region
of the memory cell array 100.

FIG. 6 1s a conceptual diagram 1illustrating a comparative
example 1n which program voltages vary according to word
line.

Referring to FIG. 6, as the number of stacked word lines
increases, variations among memory cells may also increase.
That 1s, the control logic 220 may group word lines into one
or more groups and may apply an optimum voltage to each
of the groups during an optimization period. Referring to
FIG. 6, as the size (e.g., a width) of a channel hole varies
across a range of diflerent vertical levels respectively asso-
ciated with different word lines, a voltage (e.g., a program
voltage, a read voltage, an erase voltage, a pulse apply time,
etc.) applied to each of the word lines will also vary.

For example, 1n order to perform a program operation on
cach word line according to the same distribution, the
control logic 220 may apply a first program voltage VPGM1
when a twelith word line WL12 1s programmed, and a sixth
program voltage VPGM6 when a cell located 1n a first word
line WL1 1s programmed, wherein the first program voltage
VPGMI1 and the sixth program voltage VPGMS6 are difler-
ent. Hence, word lines having similar characteristics may be
grouped, and an optimum program voltage and an optimum
program time for each of the groups may be managed using
(e.g.,) a mapping table. However, as the number of stacked
layers increases so too does the resulting size of the mapping
table, and optimization may become diflicult. In contrast, by
managing word lines having similar characteristics using an
artificial neural network model and the ML logic 280,
relatively more sophisticated optimization may be per-
formed even as the number of stacked layers increases.

FIG. 7 1s a conceptual diagram illustrating an artificial
neural network model according to embodiments of the
inventive concept.

Referring to FIG. 7, the artificial neural network model
may be used to infer an optimum program voltage V. an
optimum erase voltage V

L., Al optimum program voltage
pulse width PW __ . etc., in relation to inputs, such as
physical 1nifi

ormation 1ncluding block imnformation for a pro-
gram target cell, word line information, and string selection
line information; chip-level information including wafer
location mformation, water reliability information, and P/E
cycle information, operation information including a num-
ber of read counts, count information for OFF-cells and/or
ON-cells 1n response to a verily voltage, etc.

Hence, the artificial neural network model may include
input nodes 11, 12 and I3 provided in one or more 1put
layer(s), hidden nodes included in at least one hidden layer,
and output nodes vl, v2 and v3 included 1n one or more
output layer(s). Weight parameters stored in the buller

memory 270 may be values for determining a proceeding
direction when an operation proceeds from a node to a next
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node, and intrinsic values for all proceeding directions
which are possible for each node may be determined via
training.

The 1llustrated example of FIG. 7 assumes only a single
hidden layer, but the inventive concept 1s not limited thereto.
In some embodiments, 1n correspondence to an error per-
mission range with respect to an optimum program voltage,
an optimum read voltage, and an optimum erase voltage, and
the performance of the nonvolatile memory device 10, the
number of hidden nodes and the number and the structure of
hidden layers may vary.

FIG. 8 1s a flowchart 1llustrating, at least 1n part, a program
operation performed by the nonvolatile memory device 10
of FIG. 1 according to embodiments of the inventive con-
cept.

Referring to FIG. 8, the control logic 220 may receive a
program command CMD (5110). Accordingly, the control
logic 220 may identily a program target cell through an
address provided with the program command CMD.

The ML logic 280 may then load chip-level information
stored 1n the meta region 110 (8120). The chip-level infor-
mation may include water location information, water reli-
ability information, etc. The ML logic 280 may load the
chip-level information to the buller memory 270. In some
embodiments, the ML logic 280 may load the chip-level
information to the bufler memory 270 before the ML logic
280 receives a control signal from the control logic 220. For
example, upon power-up of the nonvolatile memory device
10, the ML logic 280 may pre-load the chip-level informa-
tion to the bufler memory 270.

The ML logic 280 may load physical information of the
program target cell (S130). The control logic 220 may obtain
location information associated with the program target cell
by decoding the program command CMD. The control logic
220 may communicate as inputs to the ML logic 280 block
information of the program target cell, word line informa-
tion, and string selection mformation, for example.

Then, the ML logic 280 may infer an optimum program
voltage based on the loaded operation information, chip-
level information, and physical information (S140). The ML
logic 280 may output the optimum program voltage value
according to the wafer location information and the wafer
reliability information of the chip-level information and the
address of the program target cell.

The control logic 220 may then apply the inferred opti-
mum program voltage (5150). For example, the control
logic 220 may receive the optimum program voltage value
inferred by the ML logic 280 and may transmuit the received
program voltage value to the voltage generator 230 to
perform a program operation.

The control logic 220 may store the operation information
obtained by performing the program operation 1n the bufler
memory 270 (5160). Here, the operation information may be
changed (or updated) whenever a program, read, erase
operations 1s performed, and the changed operation infor-
mation may be used for the subsequent inference operations,
as well as training of the artificial neural network model.
Thus, when the program operation 1s completed, the control
logic 220 may control the bufler memory 270 to store
updated memory cell speed mmformation, number of ON-
cells and OFF-cells, number of loops required for verily
pass, information about a distribution shape, information
about a degree of retention deterioration, eftc.

The 1llustrated example of FIG. 8, assumes the execution
of a programming operation executed by nonvolatile
memory device 10. However, the mventive concept 1s not
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limited thereto, and similar methods steps may be performed
in relation to read operations and/or erase operations.

FI1G. 9 15 a flowchart 1llustrating, at least in part, operation
ol the nonvolatile memory device 10 of FIG. 1 according to
embodiments of the mventive concept.

Referring to FIG. 9, the ML logic 280 may generate
welght parameters according to a first training phase (5210).
Here, the first traiming phase may be performed using only
chip-level information prior to shipping of a product.

The ML logic 280 may infer a first optimum program
voltage using an artificial neural network model (5220). In
this regard, method step S220 may include operations S110
through S150 of FIG. 8. The first optimum program voltage
may refer to a value output from the inference module 282
following training during the first training phase.

The ML logic 280 may activate the training module 284
by using the trigger module 286 (S230). Here, the trigger
module 286 may activate the training module 284 by detect-
ing a pre-defined event. In some embodiments, when the
trigger module 286 does not receive a program command
and an erase command after a pre-defined standby time has
passed, the trigger module 286 may activate the traiming
module 284. In other embodiments, the trigger module 286
may count a certain type of memory cell (e.g., memory cell
having speeds less than a predetermined speed, etc.) in order
to activate the training module 284. In still other embodi-
ments, the trigger module 286 may apply a post program
verily voltage or a post erase verily voltage and count a
number ol OFF-cells. Should the number of OFF-cells
exceed a pre-defined number, the trigger module 286 may
activate the training module 284. In yet other embodiments,
the trigger module 286 may receive a command 1nstructing
a training operation of the artificial neural network model
from a memory controller and may activate the training
module 284 1n response to the command.

The ML logic 280 may perform a second training phase
on the artificial neural network model by loading the opera-
tion information, physical information, and chip-level infor-
mation (S240). The training module 284 of the ML logic 280
may perform the training in relation to the location infor-
mation of a program target cell, a location of the target cell,
wafer location information, count information about the
number of OFF-cells and ON-cells 1in response to a post
program or post erase verily voltage, etc.

According to the second training phase, the weight
parameters generated in the first training phase may be
changed (or updated). The weight parameters updated
through the second training phase may further retlect infor-
mation associated with memory cells that deteriorate after
repeatedly performing program and erase operations after
the first training phase, and thus, may be used to infer a
second optimum program voltage 1n the changed state of the
memory cell array 100.

The ML logic 280 may verily appropriateness of the
weight parameters of the artificial neural network model
(S245). In this regard, the ML logic 280 may pre-set a
permissible range with respect to the weight parameters.
This may prevent a situation i which an arfificial neural
network model 1s trained (or biased) in response to a random
or errant 1mput, such that an out-of-bounds optimum pro-
gram voltage value, an optimum read voltage value, or an
optimum erase voltage value 1s not generated.

In some embodiments, the ML logic 280 may determine
whether the weight parameters included in the artificial
neural network model deviate from the permissible range,
whenever the traiming 1s completed. When weight param-
cters that deviate from the permissible range are i1dentified,
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the ML logic 280 may re-set values of the 1dentified weight
parameters as values within the permissible range.

In some embodiments, the ML logic 280 may adjust a
hyper parameter. The hyper parameter may be a parameter
allecting the training operation of the artificial neural net-
work model, rather than the weight parameters between
nodes of the artificial neural network model. For example,
the hyper parameter may include at least one of; a number
of hidden layers, a learning rate, a number of training
iterations, a batch size, a regularization strength, etc. For
example, when weight parameters deviating from the per-
missible range are 1dentified, the ML logic 280 may perform
weilght initialization, and then, divide a training data set into
a first data set for veritying the hyper parameter and a second
data set for training. The ML logic 280 may change the
hyper parameter of the artificial neural network model of the
first data set and compare the changed hyper parameter with
a result of the second data set to obtain an optimum hyper
parameter.

The ML logic 280 may then update the weight parameters
of the artificial neural network model (S250). While per-
forming the second training phase, the ML logic 280 may
store values of the changed weight parameters 1n the butler
memory 270. For example, when the changed weight param-
cters are stored 1n the buller memory 270 and a pre-defined
time has passed, the trigger module 286 may trigger the
control logic 220 to store the changed weight parameters of
the butler memory 222 1n the meta region of the memory cell
array 100, 1n order to prevent a loss of the changed weight
parameters due to a sudden power ofl (SPO) phenomenon.

In foregoing embodiments, the ML logic 280 has been
described by focusing on 1ts operation of inferring an
optimum program voltage. However, the ML logic 280 1s not
limited thereto. In some embodiments, the ML logic 280
may include at least one of an optimum read voltage value,
an ISPP, an optimum erase voltage value, an ISPE, a pulse
width of a program voltage, a program loop control, a pulse
width of an erase voltage, and an erase loop control value.
For example, the ML logic 280 may change a start voltage
level of the ISPP, a verily voltage level, a number of ISPP
voltage pulses, a voltage rise interval for the ISPP voltage
pulses, etc., to be optimized for a changed state of the
memory cell array 100.

It should be noted here that the ML logic 280 may be
based on any one of a decision tree, a neural network model,
and linear regression. However, the ML logic 280 1s not
limited thereto. In some embodiments, the ML logic 280
may infer the optimum program voltage based on a combi-
nation of at least two of the decision tree, the neural network
model, and the linear regression. For example, the ML logic
280 may infer the optimum program voltage based on the
decision tree for meta information, based on the neural
network model for the physical information, and based on
the linear regression for the operation information.

FIG. 10 1s a cross-sectional diagram 1llustrating a memory
device 900 according to embodiments of the nventive
concept.

Referring to FIG. 10, the memory device 900 may have a
C2C structure consistent with the description above. The
embodiments 1llustrated i FIGS. 1 through 9 may be
implemented 1n the memory device 900. For example, the
ML logic 280 described with reference to FIGS. 1 through
9 may be implemented in the peripheral circuit region PERI.

Each of the peripheral circuit region PERI and the cell
region CELL of the memory device 900 may include an
external pad bonding area PA, a word line bonding area

WLBA, and a bit line bonding area BLBA. The peripheral
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circuit region PERI may include a first substrate 710, an
interlayer insulating layer 715, circuit devices 720a, 72005,
and 720c¢ formed on the first substrate 710, first metal layers
730a, 73056, and 730c¢ respectively connected to the circuit
devices 720a, 7200, and 720c, and second metal layers
740a, 7405, and 740c¢ respectively formed on the first metal
layers 730a, 73056, and 730c¢. In some embodiments, the first
metal layers 730a, 73056, and 730c may include W that has
a relatively high resistance, and the second metal layers
740a, 7400, and 740c may include Cu that has a relatively
low resistance.

In the illustrated example of FIG. 10, only the first metal
layers 730a, 7306, and 730c¢ and the second metal layers
740q, 7405, and 740¢ are shown and described. However,
the inventive concept 1s not limited thereto, and one or more
metal layers may further be formed on the second metal
layers 740a, 74056, and 740c¢. At least one of the one or more
metal layers formed on the second metal layers 740a, 7405,
and 740c may include Al, etc. that have a lower resistance
than Cu included in the second metal layers 740a, 74056, and
740c. The interlayer insulating layer 715 may be arranged on
the first substrate 710 to cover the circuit devices 720a,
7200, and 720c, the first metal layers 730a, 7305, and 730c,
and the second metal layers 740a, 7405, and 740¢, and may
include an msulating material, such as silicon oxide, silicon
nitride, etc.

Lower bonding metals 7715 and 772b may be formed on
the second metal layer 7405 1n the word line bonding area
WLBA. That 1s, in the word line bonding area WLBA, the
lower bonding metals 7715 and 7726 of the peripheral
circuit region PERI may be electrically connected to upper
bonding metals 8715 and 8725 of the cell region CELL by
a bonding manner. Also, the lower bonding metals 7715 and
772b and the upper bonding metals 8715 and 8725 may
include Al, Cu, W, or the like. The upper bonding metals
871b and 872b of the cell region CELL may be referred to
as 1irst metal pads, and the lower bonding metals 7715 and
772b of the peripheral circuit region PERI may be referred
to as second metal pads.

The cell region CELL may provide at least one memory
block. The cell region CELL may include a second substrate
810 and a common source line 820. Word lines 830 (e.g.,
word lines 831 through 838) may be stacked on the second
substrate 810 1n a vertical direction VD to an upper surface
of the second substrate 810. String selection lines and a
ground selection line may be respectively arranged above
and below the word lines 830, and the word lines 830 may
be arranged between the string selection lines and the
ground selection line.

In the bit line bonding area BLBA, a channel structure CH
may extend 1n the vertical direction VD to the upper surface
of the second substrate 810 and may penetrate the word lines
830, the string selection lines, and the ground selection line.
The channel structure CH may include a data storage laver,
a channel layer, a buried insulating layer, etc., and the
channel layer may be electrically connected to a first metal
layer 850¢ and a second metal layer 860c¢. For example, the
first metal layer 850¢c may be a bit line contact, and the
second metal layer 860c¢ may be a bit line. According to an
embodiment, the bit line 860¢ may extend 1n a {first hori-
zontal direction HD1 parallel to the upper surface of the
second substrate 810.

In an embodiment 1llustrated in FI1G. 10, a region 1n which
the channel structure CH and the bit line 860c¢ are arranged
may be defined as the bit line bonding area BLBA. In the bit
line bonding area BLBA, the bit line 860c may be electri-
cally connected to the circuit devices 720¢ providing a page
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bufler 893 in the peripheral circuit region PERI. For
example, the bit line 860c may be connected to upper
bonding metals 871¢ and 872¢ in the pernipheral circuit
region PERI, and the upper bonding metals 871¢ and 872¢
may be connected to lower bonding metals 771¢ and 772c¢
connected to the circuit devices 720c¢ of the page buller 893.

In the word line bonding area WLBA, the word lines 830
may extend in a second horizontal direction HD2 that 1s
parallel to the upper surface of the second substrate 810 and
may be connected to cell contact plugs 840 (e.g., cell contact
plugs 841 through 847). The word lines 830 and the cell
contact plugs 840 may be connected to each other via pads
provided by one or more of the word lines 830, the one or
more of the word lines 830 extending in the second hori-
zontal direction HD2 1n different lengths. A first metal layer
85006 and a second metal layer 86056 may be sequentially
connected above the cell contact plugs 840 connected to the
word lines 830. In the word line bonding area WLBA, the
cell contact plugs 840 may be connected to the peripheral
circuit region PERI through the upper bonding metals 8715
and 8726 of the cell region CELL and the lower bonding
metals 7715 and 7725 of the peripheral circuit region PERI.

The cell contact plugs 840 may be electrically connected
to the circuit devices 7205 providing a row decoder 894 in
the peripheral circuit region PERI. In some embodiments, an
operation voltage of the circuit devices 72056 providing the
row decoder 894 may be different from an operation voltage
of the circuit devices 720c¢ providing the page buller 893.
For example, the operation voltage of the circuit devices
720¢ providing the page builer 893 may be greater than the
operation voltage of the circuit devices 72056 providing the
row decoder 894.

A common source line contact plug 880 may be arranged
in the external pad bonding area PA. The common source
line contact plug 880 may include a conductive matenal,
such as metal, a metal compound, polysilicon, or the like,
and may be electrically connected to the common source
line 820. A first metal layer 850a and a second metal layer
860a may be sequentially stacked above the common source
line contact plug 880 and connected to upper metal pattern
872a by upper bonding metal 871a. For example, a region
in which the common source line contact plug 880, the first
metal layer 850aq, and the second metal layer 860a are
arranged may be defined as the external pad bonding area
PA.

A first input and output pad 705 and a second mput and
output pad 805 may be arranged 1n the external pad bonding
area PA. Referring to FIG. 10, a lower insulating layer 701
covering a lower surface of the first substrate 710 may be
tormed below the first substrate 710, and the first input and
output pad 705 may be formed on the lower insulating layer
701. The first input and output pad 705 may be connected to
at least one of the circuit devices 720q, 72054, and 720c¢
arranged 1n the peripheral circuit region PERI through a first
input and output contact plug 703 and may be msulated from
the first substrate 710 through the lower insulating layer 701.
Also, a side surface insulating layer may be arranged
between the first input and output contact plug 703 and the
first substrate 710 to electrically separate the first input and
output contact plug 703 from the first substrate 710.

Referring to FIG. 10, an upper insulating layer 801
covering the upper surface of the second substrate 810 may
be formed above the second substrate 810, and the second
input and output pad 805 may be arranged on the upper
insulating layer 801. The second mnput and output pad 805
may be connected to at least one of the circuit devices 720a,
7200, and 720c arranged in the peripheral circuit region
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PERI through a second mput and output contact plug 803
and the lower bonding metals 771a and 772a.

In some embodiments, 1n the region in which the second
input and output contact plug 803 1s arranged, the second
substrate 810, the common source line 820, etc. may not be
arranged. Also, the second 1nput and output pad 805 may not
overlap the word lines 830 1n the vertical direction VD.

In some embodiments, the second mnput and output con-
tact plug 803 may be separated from the second substrate
810 1n a direction parallel to the upper surface of the second
substrate 810 and may be connected to the second mput and

output pad 805 by penetrating the interlayer insulating layer
815 of the cell region CELL.

In some embodiments, the first input and output pad 705
and the second mput and output pad 805 may be selectively
formed. For example, the memory device 800 may include
only the first mnput and output pad 705 arranged above the
first substrate 710 or may include only the second input and
output pad 805 arranged above the second substrate 810.
Alternately, the memory device 800 may include both the
first mput and output pad 705 and the second input and
output pad 805.

A metal pattern of an uppermost metal layer may be
present as a dummy pattern 1mn each of the external pad
bonding area PA and the bit line bonding areca BLBA
included 1n each of the cell region CELL and the peripheral
circuit region PERI, or the uppermost metal layer may be
empty.

In the memory device 800, 1n the external pad bonding
area PA, a lower metal pattern 773a having the same shape
as an upper metal pattern 872q of the cell region CELL may
be formed on an uppermost metal layer of the peripheral
circuit region PERI to correspond to the upper metal pattern
872a formed on an uppermost metal layer of the cell region
CELL. The lower metal pattern 773a formed on the upper-
most metal layer of the peripheral circuit region PERI may
not be connected to an additional contact 1n the peripheral
circuit region PERI. Similarly, in the external pad bonding
arca PA, the upper metal pattern 872a having the same shape
as the lower metal pattern 773a of the peripheral circuit
region PERI may be formed on the uppermost metal layer of
the cell region CELL to correspond to the lower metal
pattern formed on the uppermost metal layer of the periph-
eral circuit region PERI.

The lower bonding metals 7715 and 7725 may be formed
on the second metal layer 7405 of the word line bonding area
WLBA. In the word line bonding arca WLBA, the lower
bonding metals 7715 and 7725 of the peripheral circuit area
PERI may be electrically connected to the upper bonding
metals 8715 and 872b of the cell region CELL by a bonding
manner. In the bit line bonding area BLBA, an upper metal
pattern 892 having the same shape as a lower metal pattern
752 of the peripheral circuit region PERI may be formed on
the uppermost metal layer of the cell region CELL to
correspond to the lower metal pattern 752 formed on the
uppermost metal layer of the peripheral circuit region PERI.
A contact may not be formed on the upper metal pattern 892
formed on the uppermost metal layer of the cell region
CELL. The lower metal pattern 752 may be connected to
circuit device 720¢ by lower bonding metal 751.

FIG. 11 1s a block diagram illustrating a nonvolatile
memory device implemented as a solid state drive (SSD)
system 1000 according to embodiments of the mmventive

concept.
Referring to FIG. 11, the SSD system 1000 may include

a host 1100 and an SSD 1200. The SSD 1200 may include
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an SSD controller 1210, an auxiliary power device 1220,
and memory devices 1230, 1240, and 1250.

The memory devices 1230, 1240, and 1250 may be
vertically stacked NAND flash memory devices. Here, the
SSD 1200 may be implemented by using the embodiments
described above with reference to FIGS. 1 through 10.

While the inventive concept has been particularly shown
and described with reference to embodiments thereot, 1t will
be understood that various changes in form and details may
be made therein without departing from the spirit and scope
of the following claims.

What 1s claimed 1s:

1. A nonvolatile memory device comprising;:

a memory cell array 1including a meta data region storing,

chip-level information;
control logic configured to identity a target cell of the
memory cell array 1n response to a recetved command;

machine learning (ML) logic configured to infer an opti-
mum parameter based on the chip-level information
and physical information associated with the target cell
applied as mputs to an artificial neural network model;
and

a buller memory configured to store weight parameters of

the artificial neural network model,

wherein the ML logic comprises

a training module configured to perform a training
operation on the artificial neural network model
based on the chip-level information and the physical
information, and

a trigger module configured to compare a number of
OFF-cells of the memory cell array with a pre-
defined threshold value after one of a post program
verily voltage and a post erase verily voltage 1is
applied to memory cells of the memory cell array to
generate a comparison result, and trigger activation
of the training module 1n response to the comparison
result.

2. The nonvolatile memory device of claim 1, wherein the
artificial neural network model 1s based on at least one of a
decision tree, a neural network, and linear regression.

3. The nonvolatile memory device of claim 1, wherein the
memory cell array 1s implemented 1n a first chip manufac-
tured on a first wafer,

the ML logic and the bufler memory are implemented on

a second chip manufactured on a second water different

from the first wafer, and

the first chip and the second chip are bonded using a

chip-to-chip (C2C) bonding method.

4. The nonvolatile memory device of claim 1, wherein the
ML logic further comprises an inference module configured
to perform an inference operation based on the weight
parameters stored in the bufler memory.

5. The nonvolatile memory device of claim 4, wherein the
chip-level mnformation includes water location information,
waler reliability information, and program/erase (P/E) cycle
information.

6. The nonvolatile memory device of claim 4, wherein the
physical information includes word line information of the
target cell, block information of the target cell, and string
selection line information of the target cell.

7. The nonvolatile memory device of claim 4, wherein the
training module 1s Turther configured to perform the training,
operation based on operation information,

wherein the operation information includes at least one of

memory cell speed information, count information for

a number of ON-cells of the memory cell array and the

number of OFF-cells 1n response to the one of the post
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program verily voltage and the post erase verily volt-
age, a number of program verily pass loops, informa-
tion associated with a distribution shape, information
indicating a retention deterioration degree, information
associated with a write pattern for a cell of the memory
cell array adjacent the target cell, and temperature
information associated with the target cell.

8. The nonvolatile memory device of claim 7, wherein the
training module 1s further configured to receirve the chip-
level information, the physical information and the opera-
tion 1nformation 1n response to activation by the trigger
module, and update the weight parameters.

9. The nonvolatile memory device of claim 1, wherein the
optimum parameter 1s at least one of a program voltage
value, a read voltage value, a pulse width of a program
voltage, a program loop control, a number of pulses and a
voltage rise mterval of an incremental step pulse program
(ISPP), an erase voltage value, a pulse width of an erase
voltage, an erase loop control, and a number of pulses and
a voltage rise iterval of an incremental step pulse erase
(ISPE).

10. An operating method of a nonvolatile memory device,
wherein the nonvolatile memory device includes a memory
cell array implemented 1n a first chip manufactured on a first
waler and including a meta region storing chip-level infor-
mation, and a peripheral region implemented on a second
chip manufactured on a second wafer different from the first
waler and including a bufler memory and machine learning
(ML) logic, wherein the first chip and the second chip are
bonded using a chip-to-chip (C2C) bonding method, the
operating method comprising:

identifying a target cell in the memory cell array in
response to a recerved command;

loading the chip-level information from the memory cell
array to the buller memory;

loading physical information associated with the target
cell to the buller memory; and

inferring an optimum parameter, using the ML logic,
based on the chip-level information and the physical
information applied as inputs to an artificial neural
network model,

wherein the chip-level information includes watfer loca-
tion information indicative of a chip location of the first
chip on the first waler.

11. The operating method of claim 10, wherein the ML

logic comprises:

an inference module performing an inference operation
based on weight parameters stored in the buller
memory;

a training module performing a training operation on the
artificial neural network model based on the chip-level
information, the physical information, and operation
information; and

a trigger module activating the training module.

12. The operating method of claim 11, wherein the
operation information includes at least one of memory cell
speed information, count information for a number of ON-
cells and OFF-cells of the memory cell array 1n response to
a post program verily voltage, a number of program verity
pass loops, information associated with a distribution shape,
information indicating a retention deterioration degree,
information associated with a write pattern for a cell of the
memory cell array adjacent the target cell, and temperature
information associated with the target cell.

13. The operating method of claim 10, wherein the
chip-level information further includes water reliability
information and program/erase (P/E) cycle information.
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14. The operating method of claim 10, wherein the
physical imnformation includes word line information of the
target cell, block information of the target cell, and string
selection line information of the target cell.

15. The operating method of claim 10, further comprising:

comparing a number of OFF-cells of the memory cell

array with a pre-defined threshold value after one of a
post program verily voltage and a post erase verily
voltage 1s applied to memory cells of the memory cell
array to generate a comparison result;

performing a traiming operation on the artificial neural

network model 1n response to the comparison result;
and

updating weight parameters stored in the buller memory

alter performing the training operation.

16. The operating method of claim 15, wherein the
training operation 1s performed in response to the chip-level
information, the physical information and operation infor-
mation.

17. The operating method of claim 10, wherein the
optimum parameter 1s at least one of a program voltage
value, a read voltage value, a pulse width of a program
voltage, a program loop control, a number of pulses and a
voltage rise mterval of an incremental step pulse program
(ISPP), an erase voltage value, a pulse width of an erase
voltage, an erase loop control, and a number of pulses and

a voltage rise interval of an incremental step pulse erase
(ISPE).

10

15

20

25

20

18. The operating method of claim 10, further comprising;:
performing a training operation on the artificial neural
network model based on the chip-level information and
the physical information; and
storing updated weight parameters in the bufler memory
following the performing of the training operation.
19. A memory system comprising:
a host device configured to communicate a command; and
a nonvolatile memory device comprising
a memory cell array including a meta data region
storing chip-level information,
control logic configured to receive the command and
identify a target cell 1n response to the command,
machine learning (ML) logic configured to infer an
optimum parameter based on the chip-level informa-
tion and physical information associated with the
target cell applied as mputs to an artificial neural
network model; and
a buller memory configured to store weight parameters
of the artificial neural network model,

wherein the ML logic 1s further configured to perform a
training operation on the artificial neural network
model, and

the chip-level information includes location information
of the nonvolatile memory device on a wafer.
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