12 United States Patent
Cully

USO011762672B2

(10) Patent No.: US 11,762,672 B2
45) Date of Patent: Sep. 19, 2023

(54) DYNAMIC LINKER FOR LOADING AND
RUNNING AN APPLICATION OVER A
PLURALITY OF NODES

(71) Applicant: VMware, Inc., Palo Alto, CA (US)

(72) Inventor: Aidan Cully, St. Augustine, FLL (US)

(73) Assignee: VMware, Inc., Palo Alto, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 192 days.

(21) Appl. No.: 17/493,781
(22) Filed: Oct. 4, 2021

(65) Prior Publication Data
US 2022/0308898 Al Sep. 29, 2022

Related U.S. Application Data
(60) Provisional application No. 63/164,933, filed on Mar.

23, 2021.
(51) Int. CL
GOGF 9/44 (2018.01)
GOGF 9/445 (2018.01)
GOGF 9/455 (2018.01)
GOGF 9/50 (2006.01)
GO6F 9/54 (2006.01)
GO6F 9/52 (2006.01)
(52) U.S. CL
CPC ... GOG6F 9/44521 (2013.01); GO6F 9/44505

(2013.01); GO6F 9/45558 (2013.01); GO6F
9/5016 (2013.01); GO6F 9/5038 (2013.01);
GO6I' 9/5061 (2013.01); GO6F 9/5088
(2013.01); GO6F 9/52 (2013.01); GO6F 9/54

virtualized

£ "32-\ Conneciion

(2013.01); GO6F 9/546 (2013.01); GO6F
9/547 (2013.01); GOGF 2009/45591 (2013.01)

(38) Field of Classification Search

CPC e, GO6F 9/44521

USPC e e 719/331

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

10,261,847 B2 4/2019 Memon et al.
10,534,659 B2 1/2020 Memon et al.
10,802,871 B1 10/2020 Memon et al.
10,810,117 B2 10/2020 Memon et al.
10,949,211 B2 3/2021 Memon et al.

2013/0086550 Al* 4/2013 Epsteinc.cc...., GOO6F 9/455
717/110
2014/0059573 Al* 2/2014 Jawa ... GO6F 21/602
719/331
2019/0369975 Al* 12/2019 Maor GO6F 11/3624

2021/0011666 Al 1/2021 Cully et al.

OTHER PUBLICATTONS

Abadi, M. et al. “TensorFlow: Large-Scale Machine Learning on
Heterogeneous Distributed Systems,” Preliminary White Paper,
Nov. 9, 2015, pp. 1-19.

(Continued)

Primary Examiner — Timothy A Mudrick
(74) Attorney, Agent, or Firm — Kim & Stewart LLP

(57) ABSTRACT

A method for a dynamic linker to load and run an application
that 1s executed over a plurality of nodes, includes relocating
a primary binary of the application from an 1mtial location
to an executable location, loading library dependencies,
altering a system call table used during execution of the
application for the dynamic linker to catch all system calls
made by the application, and executing the relocated pri-
mary binary from the executable location.

20 Claims, 17 Drawing Sheets

Nehwork

Node with banks

Lisers cluster of

102 nosts

of heterogensous

aeeaierators
215

MNOGe with Danks
Of helerogensous

accaelgraiors
Ehls

Mode with banks
of heterogensous

accaigrators
pai.

US 11,762,672 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Anonymous Author(s), “vSphere Bitfusion: Flexible Virtualization
for Al Accelerators,” Radio’20, Jun. 15-18, 2020, San Francisco,
CA, USA, pp. 1-6.

Anonymous Author(s), “Bitfusion UVM: Distributed Shared Memory
for Heterogeneous Computing,” Radio’20, Jun. 15-18, 2020, San
Francisco, CA, USA, pp. 1-6.

Anonymous Author(s), “Code Generation Toolchain for API Virtualiza-
tion and Remoting,” Radio’20, Jun. 15-18, 2020, San Francisco,
CA, USA, pp. 1-6.

Anonymous Author(s), “Advanced Tracer: Performance Tooling for
Distributed Systems,” Radio’21, Jun. 15-18, 2021, San Francisco,
CA, USA, pp. 1-5.

Anonymous Author(s), “Project Valence: Dynamic Partial Compu-
tation Remoting,” Radio’21, Jun. 15-18, 2021, San Francisco, CA,
USA, pp. 1-7.

Bailey, S. and T. Talpey et al. “The Architecture of Direct Data
Placement (DDP) and Remote Direct Memory Access (RDMA) on
Internet Protocols,” RFC—Informational (RFC 4296), Dec. 2005,
pp. 1-22.

Devlin, J. et al. “BERT: Pre-training of Deep Bidirectional Trans-
formers for Language Understanding,” arXiv:1810.04805v2, May
24, 2019, 16 pages.

Ike-Nwosu, O. “Inside The Python Virtual Machine,” Lean Pub-
lishing, Aug. 7, 2020, 125 pages.

Intel Corporation “Intel Infrastructure Processing Units (Intel IPU)
and SmartNICs,” Product Webpage, 2021, 8 pages, Retrieved from
the internet Sep. 16, 2021, URL: https://www.intel.com/content/
www/us/en/products/network-10/smartnic. html.

Kirk, D. and W. Hwu: “Chapter 2: Cuda Programming Model
[Dratt],” 2006-2008, pp. 1-11.

Kulshrestha, R. “Keeping up with the BERTs,” Towards Data
Science, Oct. 26, 2020, 17 pages, URL: https://towardsdatascience.
com/keeping-up-with-the-berts-5b7beb92766.

Paszke, A. et al. “PyTorch: An Imperative Style, High-Performance
Deep Learning Library,” 33rd Conference on Neural Information
Processing Systems (NeurlPS 2019), Vancouver, Canada, 2019, pp.
1-12.

Pinkerton, J. et al. “Direct Data Placement Protocol (DDP)/ Remote
Direct Memory Access Protocol (RDMAP) Security,” RFC—
Standards Track (RFC 5042), Oct. 2007, pp. 1-52.

Recio, R. et al. “A Remote Direct Memory Access Protocol Speci-

fication,” RFC—Standards Track (RFC 5040), Oct. 2007, pp. 1-66.
Vaswani, A. et al. ““Attention Is All You Need,” 31st Conference on
Neural Information Processing Systems (NIPS 2017), Long Beach,
CA, USA, pp. 1-15.

Learning tensorflow eBook, RIP Tutorial, Sep. 16, 2021, 81 pages,
URL: https://riptutorial.com/ebook/tensortlow.

“Distributed shared memory,” Wikipedia, Mar. 14, 2021, 7 pages,
Retrieved from the internet Jun. 23, 2021, URL: https://en.wikipedia.
org/wiki/Distributed shared memory.

* cited by examiner

US 11,762,672 B2

Sheet 1 of 17

Sep. 19, 2023

U.S. Patent

(WY JOU)

L Ol

oLt

SMd45
1O SMURY

LIM BRON

201

SMd45
1O SMURY

LN DPON

01
SdD
1 SHUEC

UM SPON

LOH0SULD T
MIOAMISN

Cht

Pl
S1S0L
10 J2ISN0

POZIENIA

oL
SIESN

¢ 9Ol

US 11,762,672 B2

Sheet 2 of 17

Sep. 19, 2023

U.S. Patent

L
SICiRIRR00e

snosusboisiay Io

SHLIRG UliM SPON

207
SiCiRIRR00e

snosusboieiay Io
SYLIRG UM SPON

Q02
3 I01RIB|800R

snosusiBoieisy o

SHUE LM BPON

UCHOBULOD
IO MION

bl

D
S130U

10 I8N

DBZHBNUIA

ool
SIasS

‘. .

o0 £ 9Ol

S

0 907 AN UOI}08UUOT) HIOMISN

m A%

- siojess|eooe | (S)DIN| E ($)1d slojels|ende
snosusboJssiay | snosusbols)auy

Z 0 SjUEq 96E “bGE ~TGE

L weishg Bunesadp | gac welshs ajid

GE

8ve

sabed apon . sabed Bleq ——-
ve spealy | ———

9]

Sheet 3 of 17

Sep. 19, 2023

Jojuo day

SC sWNUNY 80¢

J2UIelu0))
$S0004

Ve uoneoiddy

U.S. Patent

sobed Beie(

(S)OIN | E
c 0SS “8Z¢

oo CE

Foc WaisAs a|i4

2

sabed apoD

ce
speaJy|

Bt

3TE Jojuo

ol swnunyg

V1< uoneonddy

ddy

c0g

JoUIe]u])
$Sa00Ud

U.S. Patent Sep. 19, 2023 Sheet 4 of 17 US 11,762,672 B2

initigtor Startup

407
404
message o esiablish monitor and runtime on
acceplor nods
406
_____ Vv /
L.oad application FiG, 40
408
. toadlibray
412
Create migrat N { stack and -
reate migratory coherent stack an FIC. 4D

thread for application

FIG. 4A

Acceptor Startup

_ 4200
Heceived{'message (o esiablish momtor ~

andg runtime’ from intliator)

422
eceived(library’ from initiator)
' ' 424
HRecaived{memory space’ from wutiator)
426
HReceived! 'stack addres space from nitiator)
428

Heceived('rorm{shadow thread’, execution thready

from tiator)

=na FIG. 4B

U.S. Patent Sep. 19, 2023 Sheet 5 of 17 US 11,762,672 B2

Load application

432
S
synchronize address space
434
S/

-stablish a virtuahization poundary

Load the application binary and ELF interpreter
pinary into address space inside the virtualization
coundary

Foputate an inial stack for the ELF interprater Dinary
nsige the virtualization poundary

Start executing the ELF interpreter binary on its own
stack inside the virtualization boundary

=ng

FIG. 4C

U.S. Patent Sep. 19, 2023 Sheet 6 of 17 US 11,762,672 B2

(reate threads for application using
Start _ o
stack in nifiator and acceptor nodes
482

S/
start coherent thread using stack for execution code "y
S/

Send('Form{duat thread) {0 accepior)

480
S/

Hetum thread information

NG

FIG. 4D

U.S. Patent Sep. 19, 2023 Sheet 7 of 17 US 11,762,672 B2

intiator run

Opt. pre-provision accepior node memaory

opt. pre-provision bbrary functions on acceptor

siate of initiator tihread = running

axecute application using thread on intiator

j‘t &
status of thread

NG = reed Library
axecution”

Yes 549

S

Send{'migrate thread control {0 acceptor)

514

S

state of thread = parkeg

210

Received{ migrale thread control’ o initiator)

FIG. 5A

U.S. Patent Sep. 19, 2023 Sheet 8 of 17 US 11,762,672 B2

accepior run

State of thread = parked

o4
=

Sl Vi

Receiveda({ migrate (o acceptor) 556
_ _ __ _ module
------- - State of thread = running fault
558
state of thread = parkec stack
26U fault
Reguest and receive Horary code page from mitiator
F"g F
State of thread = running code ex

cgefauit

564
State of thread = parked
I ___ . 60

Reguest and raceive stack page rom talor

568

State of thread = running
570
state thf@ad = parkes '

Sand{{migrate control’ to inttiator)

State of thread = current state

5/

siale =

NO ﬁ
fermmated”

Yes 578
Send{'stack’ {o initiator)

FIG. 5B

U.S. Patent Sep. 19, 2023 Sheet 9 of 17 US 11,762,672 B2

iocal node syscall

S107u

S

hread makes sysiem cail

G4

/

Monitor receives system call
SIBS
_/
.detect Eeca;i TG B0
(argumenis)’

NO 608

S

— hread s parked

Yes 510

S

Vionitor sends system call {o remole monitor

612

S

Vionitor awaits and receives results of system call

014

S/

thread receives results of system call
and 1S made active again

816

S

System call handied on local node
=N

FIG. 6A

U.S. Patent Sep. 19, 2023 Sheet 10 of 17

remole syscall

032
/

Monitor receives sysiem call

State of thread set (o running

Handie system call

Retumn resulis to thread

Thread provides resuils o monior

State of thread set back 1o parked

Monitor sendgs resulls (o iocal node

e

o34
/
536
S/
©.38
/
B4
/
a4z
/

D44
S/

US 11,762,672 B2

FIG. 6B

U.S. Patent Sep. 19, 2023 Sheet 11 of 17 US 11,762,672 B2

ietect logal

S1e YA
S
et syscall arguments
file access other sysiem calls
055 _ 654

Sysgall arguments
interact with remote
cinned resourca’
{(Fi(s. 9)

SYsCall arguments
nteract with remots
OIS resourca’?

Falae

frue True

- alse
656
S/

return 'No' (e, not locab

Slole

return 'Yes (1.e., iocai)

il

FIG. 6C

US 11,762,672 B2

Sheet 12 of 17

Sep. 19, 2023

U.S. Patent

L Ol

wielboud uoieoidde sus
10 Akl AJRLUIG LNy

el Heo WssAs
IBUE DUR saibuspuadap
Adeign wisibodd pro

wiesBoud ucheoijdae
Ul JO AlBuig Ase g

DUB "I(] B1R0018)

RISREEr .

ARPUNGG
LONEZHBNLIA
SPISLE DBpesT

9L

PLl

Gl

Uls

30 UelS

SUIBLL YDBIS
30 ABUIG
Ade g
LSO

ieaid e
Duisn 473
LG AJBUig
Adeuiid 185 804

= =3
HOBLS [P
sjedald 90/

FEEYIE e RN
47141 4o} Uied 188 pue
oy weiboid 47179 peo AV

O¥E JONUOW

US 11,762,672 B2

Sheet 13 of 17

Sep. 19, 2023

U.S. Patent

V8 Ol

2Z8

UC

SSHOOIAA

OI8Oy

GE8
delis1noy

LN

SOBUS JBSM

dBIISIONH

703
SLLNLN

1
SSBD0IAA

HOLHIE

0BG J88

US 11,762,672 B2

Sheet 14 of 17

Sep. 19, 2023

U.S. Patent

d8

Ol

¢

JOII800Y

IR
de iS008 ‘8oBdasIpDy
sii g elele
RS
JIXFdA)eIes0

AN

{S0BASIDDE OB

UONBZILOIUOUAS §08ds-SS8ID0E [RINIUI

90z

SLULNS

ORI

US 11,762,672 B2

Sheet 15 of 17

Sep. 19, 2023

U.S. Patent

o8 Ol

¢

OI8Oy

b e I B L I I I I I

SSBO0IAN

1008 SS2D0JAA BIUT-81 Mo | -058

052
aye o

deisio
HSIOOE ARIAL SS8ID0Y SIBDON

iy v il Wil wimin wileer e Tl el e Wi e Pebeie' W meewer Al wieieiel W Wi dmininr Tl Weiwiee Wi Wil il Weeee wiviniee e Wil e diemir AR S b e Wil oebeietE AR el Wi Aeeeeie Al e W i e e R L L L T I L

DSZHEMLIA
2R $HSN 33VCILAA

IBLL S80IN058 Y JOAB] T
SSTI0IAA Bl SPIsIno
SSEOOIAA DaEesio
S1B8ID S SS80044A
R
| Jdensiooy
UOHESNO0E [JUSIBUGD 81880 (ixadaeisals

74 B

SIBUOD

ds mu_n_ I8 aoeds 888008

oUR AJGLUsU 8u
BEBO0IAA BUY IO

SBUWILN PBIBSID Apuaisyos| _
Lo saey Joydsooy SOMUHUUD SSS00IdA |
_ SSEO0IAA

US 11,762,672 B2

puUE 1013 . ey
. . X300
| SIS
— ARIISI0060
= SSBO0IAA SN
&
. 7OE ~ xada s
Qs
= SLULIN SLITUNTS
S .
708 (eBed Yooy ‘WxIdAeIsu A (ixzdp)siesso
098 _ m
€ d8iISIo0 _ deisioog |
m et (aBed woou 'swniuny deisiony ” !
) (aBed Hoou e
=3
Qs
N

PXTIAA

oo _moﬁ@uo% L
(afed ooy el ixada | JAL SDUSISLIOD

Usiqess
gl pue mm:ﬁmc“

SESDTIANA SEY
MO JOTBIILE

Qe 0180y

G SO

U.S. Patent

U.S. Patent Sep. 19, 2023 Sheet 17 of 17 US 11,762,672 B2

detect interaction of sys call

Start argumenis with resources based on

fiie descriptor
S 800
/

Test file descriptor against criterion

90
i

NG

& 4

20
____________ __ ./

Ye
initiamrm}d@ Fas ﬁi@
G0
/
accaptor node has fiis
S

8

saiect acceplor node using 1d —_—
910 012

&

node =
accapior?

nogde =
inttiaior?

G914 Yes

316
/

return ‘Faise’ {resource is iocai)

N

FIG. 9

US 11,762,672 B2

1

DYNAMIC LINKER FOR LOADING AND
RUNNING AN APPLICATION OVER A
PLURALITY OF NODES

CROSS-REFERENCE TO RELATED
APPLICATION(s)

This application claims the benefit of U.S. Provisional

Application No. 63/164,955, filed on Mar. 23, 2021, which
1s mcorporated by reference herein.

BACKGROUND

Data volume 1s increasing due to artificial intelligence
(Al) and deep learning applications. This increase 1n data
volume requires a commensurate increase 1n compute
power. However, microprocessors cannot supply the needed
compute power. Consequently, specialized architectures,
such as accelerators and coprocessors, are taking over many
of the compute tasks. These specialized architectures need to
share access to large portions of system memory to achieve
significant performance improvement.

Using specialized architectures creates new problems to
be solved. Virtualizing specialized architectures 1s difficult,
requiring high 1nvestment and strong vendor support
because the architectures are usually proprietary.

One solution 1s intercepting the programming interfaces
tor the architecture, 1.e., the application programming inter-
taces (APIs). In this solution, the intercepted APIs are sent
to a node, on which a particular specialized architecture
(such as graphics processing units (GPUs) of a particular
vendor) 1s 1nstalled and executed on that node. The execu-
tion relies on distributed shared memory (DSM) between
central processing units (CPUs) and the GPUs. When tight
memory coherence 1s needed between the CPUs and GPUE s,
remote procedure calls (RPCs) are used, which requires high
traflic between nodes and highly detailed knowledge of the
API semantics and the GPUs.

A better solution 1s needed, 1.e., one that can handle
specialized architectures of not just one but many different
vendors on the same node without requiring specialized
knowledge of the specialized architecture.

SUMMARY

One embodiment provides a method for a dynamic linker
to load and run an application over a plurality of nodes. The
method includes relocating a primary binary of the applica-
tion from an 1nitial location to an executable location,
loading library dependencies, altering a system call table
used during execution of the application for the dynamic
linker to catch all system calls made by the application, and
executing the relocated primary binary from the executable
location.

Further embodiments include a device configured to carry
out one or more aspects of the above method and a computer
system configured to carry out one or more aspects of the
above method.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 depicts an arrangement for accessing banks of
GPUs 1n the prior art.

FIG. 2 depicts an arrangement for accessing banks of
accelerators, according to an embodiment.

FIG. 3 depicts a representative system 1n which embodi-
ments may operate.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 4A depicts a flow of operations for an 1nitiator node
setup, according to an embodiment.

FIG. 4B depicts a flow of operations for an acceptor node
setup, according to an embodiment.

FIG. 4C depicts a tlow of operations for loading an
application, according to an embodiment.

FIG. 4D depicts a tlow of operations for creating threads
for an application, according to an embodiment.

FIG. SA depicts a tlow of operations for running the
initiator node, according to an embodiment.

FIG. 5B depicts a flow of operations for running an
acceptor node, according to an embodiment.

FIG. 6 A depicts a flow of operations for implementing a
system call on the mitiator node, according to an embodi-
ment.

FIG. 6B depicts a flow of operations for implementing a
system call on the acceptor node, according to an embodi-
ment.

FIG. 6C depicts a tlow of operations for implementing a
Detect Local function, according to an embodiment.

FIG. 7 depicts a tlow of operations for loading a program
file and a dynamic linker, according to an embodiment.

FIG. 8A depicts components 1n an initiator node and an
acceptor node involved 1n setting up the mitiator and accep-
tor nodes, according to an embodiment.

FIG. 8B depicts a flow of operations between 1nitiator and
acceptor nodes during address space synchronization,
according to an embodiment.

FIG. 8C depicts a flow of operation between an initiator
and acceptor nodes during the creation of a coherent appli-
cation, according to an embodiment.

FIG. 8D depicts a flow of operations between an initiator
and acceptor nodes during the establishment of runtimes,
according to an embodiment.

FIG. 9 depicts a flow of operations for accessing a {ile,
according to an embodiment.

DETAILED DESCRIPTION

In the embodiments, an application 1s co-executed among,
a plurality of nodes, where each node has installed thereon
a plurality of specialized architecture coprocessors, includ-
ing those for artificial intelligence (Al) and machine learning
(ML) workloads. Such applications have their own runtimes,
and these runtimes ofler a way of capturing these workloads
by virtualizing the runtimes. New architectures are easier to
handle because of the virtualized runtime, and coherence
among nodes 1s improved because the code for a specialized
architecture runs locally to the specialized architecture. An
application monitor 1s established on each of the nodes on
which the application 1s co-executed. The application moni-
tors maintain the needed coherence among the nodes to
virtualize the runtime and engages semantic-aware hooks to
reduce unnecessary synchronization in the maintenance of
the coherence.

FIG. 1 depicts an arrangement for accessing banks of
GPUs 1n the prior art. In the arrangement depicted, users 102
interact through a virtualized cluster of hosts 104, which 1s
connected via a network 112 to nodes 106, 108, 110,
containing a bank of GPUs of a particular vendor. Fach node
106, 108, and 110 1s a server with a hardware platform and
an operating system. Each node 1s configured with the GPUs
of the particular vendor. Compute nodes in virtualized
cluster of hosts 104 send APIs, which are specific to the
GPUs, to nodes 106, 108, 110 for execution on the GPUs.

FIG. 2 depicts an arrangement for accessing banks of
accelerators, according to an embodiment. In the arrange-

US 11,762,672 B2

3

ment depicted, users 102 interact through a virtualized
cluster of hosts 104, which 1s connected via a network 112
to nodes 206, 208, 210, where each node 1s a server-type
architecture having a hardware platform, operating system,
and possibly a virtualization layer. The hardware platform
includes CPUs, RAM, network interface controllers, and
storage controllers. The operating system may be a Linux®
operating system or Windows® operating system. A virtu-
alization layer may be present, and the above-operating
systems may operate above the virtualization layer. In addi-
tion, 1n the figure, each node contains banks of heteroge-
neous accelerators. That 1s, each node 206, 208, 210 can
contain many different types of accelerators, including ones
from different vendors. Compute nodes in virtualized cluster
of hosts 104 send requests to nodes 206, 208, 210 to run
portions of applications installed 1n the computer nodes, on
a runtime 1nstalled on nodes 206, 208, 210.

In an alternative embodiment, nodes 206, 208, 210 are
nodes with large amounts of memory, and portions of a large
database or other application are 1nstalled on the nodes 206,
208, 210 to run thereon, taking advantage of the node with
the large amounts of memory. Portions of the application are
targeted for execution on nodes having large amounts of
memory instead of specific accelerators.

Languages often used for programming the specialized
architectures or accelerators include Python®. In the Python
language, the source code 1s parsed and compiled to byte
code, which 1s encapsulated 1n Python code objects. The
code objects are then executed by a Python virtual machine
that interprets the code objects. The Python virtual machine
1s a stack-oriented machine whose 1nstructions are executed
by a number of co-operating threads. The Python language
1s olten supplemented with platforms or interfaces that
provide a set of tools, libraries, and resources for easing the
programming task. One such platform i1s TensorFlow®, in
which the basic unit of computation 1s a computation graph.
The computation graph includes nodes and edges, where
cach node represents an operation, and each edge describes
a tensor that gets transferred between the nodes. The com-
putation graph in TensorFlow 1s a static graph that can be
optimized. Another such platiorm 1s PyTorch®, which 1s an
open-source machine-learning library. PyTorch also
employs computational graphs, but the graphs are dynamic
instead of static. Because computation graphs provide a
standardized representation of computation, they can
become modules deployable for computation over a plural-
ity ol nodes.

In the embodiments, an application 1s co-executed among,
a plurality of nodes. To enable such co-execution, runtime
and application monitors are established 1n each of the
nodes. The runtimes are virtual machines that run a com-
piled version of the code of the application, and the appli-
cation monitors co-ordinate the activity of the runtimes on
cach of the nodes.

FIG. 3 depicts a representative system 1n which embodi-
ments may operate. The system includes two nodes, an
initiator node 206 that starts up the system and thereafter
operates as a peer node and one or more acceptor nodes 208
(only one of which 1s depicted). Initiator node 206 and
acceptor node 208 each include a process container 302, 308
contaiming an application 314, a runtime 316, 338, an
application monitor 318, 340, one or more threads of execu-
tion 320, 346, data pages 324, 348, and code pages 322, 350
tor the threads. Process container 302, 308 runs 1n userspace.
In one embodiment, process containers 302, 308 are
Docker® containers, runtimes 316, 338 are Python virtual
machines, application 314 i1s a Python program, with librar-

5

10

15

20

25

30

35

40

45

50

55

60

65

4

ies such as TensorFlow or PyTorch, and threads 320, 346
correspond to the threads of the Python virtual machine.
Application monitor 340 on initiator node 206 includes a
dynamic linker (DL) 344 and a configuration file 342 for
configuring the participating nodes. In general, a dynamic
linker 1s a part of an OS that loads and links libraries and
other modules as needed by an executable code while the
code 1s being executed. Alternatively, the imitiator node sets
up an acceptor node to have an application monitor with a
DL and configuration file, and the application program 1is
loaded onto the acceptor node.

Each node 206, 208 further includes an operating system
304, 310, and a hardware platform 306, 312. Operating
system 304, 310, such as the Linux® operating system or
Windows® operating system, provides the services to run
process containers 302, 308. In some embodiments, operat-
ing system 304, 310 runs on hardware platform 306, 312. In
other embodiments, operating system 304, 310 1s a guest
operating system running on a virtual hardware platform of
a virtual machine that 1s provisioned by a hypervisor from
hardware platform 306, 312. In addition, operating system
304, 310 provides a file system 364, 366, which contains
files and associated file descriptors, each of which 1s an
integer 1dentifying a file.

Hardware platform 306, 312 on the nodes respectively
includes one or more CPUs 326, 352, system memory, €.g.,
random access memory (RAM) 328, 354, one or more
network 1interface controllers (NICs) 330, 356, a storage
controller 332, 358, and a bank of heterogeneous accelera-
tors 334, 360. The nodes are interconnected by network 112,
such as Ethernet®, Infim1B and, or Fibre Channel.

Before running an application over a plurality of nodes,
the nodes are set up. Setup of the mitiator node 206 and
acceptor node 208 includes establishing the application
monitor and runtimes on each of the nodes on which
libraries or other deployable modules are to run, the coherent
memory spaces in which the application, libraries or other
deployable modules are located, and the mnitial thread of
execution of each runtime. With the setup complete, the
application monitors and runtimes in each node co-operate
to execute the application among the plurality of nodes.

FIGS. 4A-4D depict a flow of operations for an initiator
node 206 setup and an acceptor node 208 setup, according
to an embodiment. Specifically, FIG. 4A depicts a flow of
operations for an mmtiator node setup, according to an
embodiment. FIG. 4B depicts a flow of operations for an
acceptor node setup, according to an embodiment. FIG. 4C
depicts a flow of operations for loading an application,
according to an embodiment. FIG. 4D depicts a flow of
operations for creating threads for an application, according
to an embodiment.

Referring to FIG. 4A, on start-up, mitiator node 206
establishes a connection to acceptor node 208 1n step 402. In
step 404, mitiator node 206 establishes an application moni-
tor and a runtime on 1nitiator node 206 and sends a message
requesting that acceptor node 208 establish an application
monitor and runtime thereon. Initiator node 206 then per-
forms a coherent load of an application binary (step 406,
turther described with reference to FIG. 4C). In step 408,
initiator node 206 may load a library 1f needed. In step 412,
further described with reference to FIG. 4D, a thread 1s
started using this stack, with an entry point being the
application’s ‘main’ function.

Referring to FIG. 4B, on start-up, acceptor node 208
receives a message to establish application monitor 318 and
runtime 316 1n step 420. In step 422, acceptor node 208
receives the library or other deployable module from initia-

US 11,762,672 B2

S

tor node 206, and 1n response, loads the received code for the
library or other deployable module. In step 424, acceptor
node 208 receives the request to create memory space from
initiator node 206 and, in response, creates the memory
space at the specified location. In step 426, acceptor node
208 recerves a request to create the stack address space from
initiator node 206 and, in response, creates and locates the
requested stack address space. Acceptor node 208 then
receives, 1n step 428, a command from 1nitiator node 206 to
form a dual (shadow) thread based on the execution thread
in 1nitiator node 206 and, in response, establishes the
requested dual thread.

Referring to FIG. 4C, in step 432, initiator node 206
synchronizes address spaces. In step 434, initiator node 206
establishes a wvirtualization boundary. Establishing the
boundary includes creating a sub-process (called VProcess
below) that shares an address space with 1ts parent process
and can have 1ts system calls traced by the parent. The parent
process detects the sub-process interactions with the oper-
ating system and ensures that these interactions are made
coherently with the other node or nodes. In step 436, initiator
node 206 loads the application binary and an ELF (Execut-
able and Linkable Format) interpreter binary into the address
space 1nside the virtualization boundary. The parent process
detects this address space manipulation through tracing and
keeps the acceptor node coherent with changes made by the
sub-process. In step 438, mitiator node 206 populates an
initial stack for the ELF interpreter binary mside the virtu-
alization boundary, and 1n step 440, initiator node 206 starts
executing the ELF interpreter binary on 1ts own stack nside
the virtualization boundary. Execution inside the virtualiza-
tion boundary assures that address spaces and execution
policies are coherent between the initiator and acceptor
nodes and that any changes made by the runtime are
intercepted so that consistency of the loaded application 1s
maintained.

Executing the ELF interpreter binary inside the virtual-
1zation boundary may entail loading a library on the itiator
or acceptor node and possibly establishing a migration
policy regarding the library (e.g., pinning the library to a
node, e.g., the acceptor node). Additionally, the ELF inter-
preter binary may establish additional coherent memory
spaces, mcluding stack spaces needed by the application.

In an alternative embodiment, instead of loading the
application binary on mitiator 206 1n step 434, initiator 206
sends to acceptor 208 a command which contains instruc-
tions about how to load the application binary, and acceptor
208 processes these instructions to load the application
binary on itself.

Referring to FIG. 4D, coherent execution threads are
established by starting an execution thread using the just
created stack in step 408. In step 484, a command to form
a dual execution thread corresponding to an execution thread
on the local node 1s sent to acceptor node 208. In step 486,
the thread information 1s returned. The dual thread 1s paused
or parked, awaiting a control transfer request from the local
node. When execution moves from one node to another, the
register state of the local thread 1s recorded and sent to the
other node as the local thread 1s parked. The other node
receives the register state and uses 1t to resume the parked
dual thread. In this way, the previously active thread
becomes the 1nactive thread, and the inactive thread
becomes the currently active thread. The movement of the
active thread 1s further described with respect to FIGS. 6A
and 6B.

An MSI-coherence protocol applied to pages maintains
coherence between memory spaces on the nodes so that the

10

15

20

25

30

35

40

45

50

55

60

65

6

threads of the runtime are operable on any of the nodes. A
modified (state ‘M’) memory page 1n one node 1s considered
invalid (state ‘I’) 1n another. A shared (state °S’) memory
page 1s considered read-only 1n both nodes. A code or data
access to a memory page that 1s pinned to acceptor node 208
causes execution migration of the thread to acceptor node
208 followed by migration of the page; a data access to a
memory page that 1s migratory triggers a migration of that
memory page in a similar manner. In an alternate embodi-
ment, upon a fault caused by an 1nstruction accessing a code
or data page on acceptor node 208, only the instruction is
executed on the node having the code or data page, and the
results of the 1nstruction are transterred over the network to
the acceptor node.

FIGS. 5A-5B describes iteractions of running the appli-
cation on the initiator and acceptor nodes after the setup
according to FIGS. 4A-4D 1s completed. These interactions
include, 1n the course of executing the application on the
initiator node, executing a library or other deployable mod-
ule on the acceptor node. Executing the library or other
deployable module involves “faulting in’ the code pagers for
the library or other deployable module, the data pages of the
stack or other memory space, and moving execution back to
the mitiator node.

FIG. SA depicts a tlow of operations for running the
iitiator node, according to an embodiment. In step 502,
acceptor node 208 1s optionally pre-provisioned with stack
or memory pages anticipated for executing threads on accep-
tor node 208 as described below. In step 504, acceptor node
208 1s optionally pre-provisioned with functions of the
library or other deployable module anticipated for the code.
In step 506, the state of the thread 1s set to running. In step
508, the imitiator code executes application 314 using the
now running thread on initiator node 206. In step 510, the
thread determines whether the execution of a function of a
library or other deployable module 1s needed. If not, then the
thread continues execution of 1ts workload. I execution of
a library or module function i1s needed, then 1n step 512, a
message 1s sent to acceptor node 208 to migrate the work-
load of the thread to acceptor node 208. In step 514, the state
of the local thread is set to a parked state, which means that
the thread 1s paused but runnable on behalf of a dual thread
on acceptor node 208. In step 516, initiator node 206 awaits
and receives a message to migrate the workload of the thread
back to initiator node 206 after acceptor node 208 has
fimished executing the function of the library or other
deployable module.

Pre-provisioning of the memory pages or stack pages 1s
performed by a DWARF-type (debugging with attributed
record formats) debugger data. When initiator node 206
takes a fault on entry to the acceptor-pinned function, 1t
analyzes the DWARF data for the target function, deter-
mines that 1t takes a pointer argument, sends the memory
starting at the pointer to acceptor node 208, and sends the
current page of the stack to acceptor node 208. The DWARF
debugger data contains the address and sizes of all functions
that can be reached from this point 1n the call graph,
allowing the code pages to be sent to acceptor node 208 prior
to being brought 1n by demand-paging. In this way, acceptor
node 208 can pre-provision the memory 1t needs to perform
its function prior to resuming execution.

FIG. 5B depicts a flow of operations for runmng an
acceptor node, according to an embodiment. In step 552, the
state of the local thread 1s initially set to parked. In step 354,
one of five events occurs on acceptor node 208. The events
are ‘migrate to acceptor’, ‘module fault’, ‘stack fault’,
‘application code execution’, or ‘default’. The module fault

US 11,762,672 B2

7

and stack fault, though specifically described, are examples
of a memory fault which may include other types of memory
faults, such as a heap fault and code fault, not described. The
different types of memory faults are handled in a similar
mannet.

If the event 1s ‘migrate to acceptor’, then the state of the
local thread 1s set to running in step 556. Flow continues to
step 574, which maintains the thread’s current state, and to
step 576, where acceptor node 208 determines whether the
thread 1s terminated. If not, control continues to step 554 to
await the next event, such as a ‘library fault’, a ‘stack fault’,
‘execution of the application’.

If the event 1s a ‘module fault’, e.g., a library fault, then
the state of the thread is set to parked 1n step 558, and 1n step
560, acceptor node 208 requests and receives a code page of
the library or other deployable module not yet paged 1n from
mitiator node 206. In step 562, acceptor node 208 sets the
state of the local thread to running, and the flow continues
with the local thread runming through steps 574, 576, 554 to
await the next event 1f the thread 1s not terminated.

I the event 1s a ‘stack fault’, then the thread’s state 1s set
to parked in step 564, and the initiator node 206 sends a
request to receive a stack page not yet paged in from 1nitiator
206. In step 568, the thread’s state 1s set to running, and the
flow continues through steps 574, 576, and 554 to await the
next event assuming no thread termination.

If the event 1s ‘application code execution’, then the state
ol the local thread 1s set to parked in step 570, and acceptor
node 208 sends a ‘migrate control’ message to 1nitiator node
206 1n step 572. Flow continues through steps 574, 576, and
554 to await the next event.

If the event 1s ‘default’ (1.e., any other event), then the
thread’s state 1s maintained 1n step 574, and flow continues
through steps 576 and 554 to await the next event.

If the thread terminates as determined in step 376, the
stack 1s sent back to mitiator node 206 1n step 578, and tlow
continues at step 554, awaiting the next event. If no event
occurs, then ‘default’ occurs, which loops via steps 5374 and
554 to maintain the thread’s current state.

Often 1n the course of execution of the application,
operating system services are needed. The application, via
the runtime on a particular node, makes system calls to the
operating system to obtain these services. However, the
particular node making the system call may not have the
resources for executing the system call. In these cases, the
execution of the system call 1s moved to a node having the
resources. FIGS. 6 A-6C depict the flow of operations to
execute and possible move execution of a system call.
Specifically, FIG. 6 A depicts a flow of operations for imple-
menting a system call on the mitiator node, according to an
embodiment. FIG. 6B depicts a tlow of operations for
implementing a system call on the acceptor node, according
to an embodiment. FIG. 6C depicts a tlow of operations for
implementing a Detect Local function, according to an
embodiment.

Referring to FIG. 6 A, 1n step 602, a thread running 1n the
local node makes a system call. In step 604, the application
monitor on the local node receives the system call via a
program that i1s responsible for manipulating interactions
with the virtualization boundary (called VpExit below). In
step 606, the application monitor determines whether the
arguments imvolve local or remote resources. In step 608, 1
the system call mvolves remote resources (‘No’ branch)
then the running thread i1s parked, and in step 610, the
application monitor sends the system call and 1ts arguments
to the application momitor on the remote node that 1s to
handle the system call. In step 612, the application monitor

5

10

15

20

25

30

35

40

45

50

55

60

65

8

on the local node awaits completion and results of the
system call, and 1n step 614, the running thread receives the
results of the system call (via VpExit) and 1s made active
again. In step 608, 1f the system call involves only local
resources (‘Yes’) branch, then the local node handles the
system call 1n step 616.

Referring now to FIG. 6B, in step 632, the application
monitor on the remote node receives the system call and its
arguments. In step 634, the state of the parked thread 1s set
to active (1.e., running) and the remote node handles the
system call in step 636. In step 638, the results of the system
call are returned to the thread that made the call, which
provides 1n step 640 the results to the application monitor,
alter which 1n step 642, the state of the thread 1s set back to
the parked state. In step 644, the application monitor sends
the completion and results back to the local node.

Referring now to FIG. 6C, the flow of operations depicted
in the figure occurs in response to executing step 606. In step
652, the function gets all of the system call arguments and
in step 6354 determines for system calls, other than a file
access, whether the arguments interact with a resource
pinned on another node, which 1s either a different acceptor
node or the initiator node. If so, then the function returns
“True’ 1n step 656. Otherwise, the function returns ‘False’ in
step 658. If the system call 1s a file access, then the flow
executes step 655, which 1s further described with reference
to FIG. 9.

FIG. 7 depicts a tflow of operations for loading a program
file and a dynamic linker, according to an embodiment. The
flow of operations of FIG. 7 describes in more detail the step
of loading the application according to step 432 of FIG. 4C,
where the loading 1s performed by the operating system, the
application monitor, and the dynamic linker.

In step 702, application monitor 340 loads the ELF
program {ile and gets a file system path for the ELF
interpreter binary. In step 706, application monitor 340
prepares an imtial stack frame for a binary of application
program 314 (hereinafter referred to as “primary binary™). In
step 708, application monitor 340 acquires the primary
binary using the ELF interpreter and informs the binary of
the mitial stack frame. In step 708, application monitor 340
starts DL 344, which was loaded by operating system 310.
In step 710, DL 344 runs, and 1n step 712, DL 344 relocates
the primary binary and DL 344 to executable locations,
which are locations 1 system memory from which code
execution 1s allowed by the OS. In step 714, DL 344 loads
the program dependencies (of the library or other deployable
module) and alters the system call table to intercept all
system calls made by the primary binary. Some system calls
are allowed through unchanged, while others are altered
when DL 344 interacts with operating system 310. In step
716, DL 344 causes the relocated primary binary of appli-
cation program 314 to run at the executable location. As a
result, both application program 314 and DL 344 run in
userspace. Running in user space allows loading of the
library or other deployable to be within the virtualization
boundary.

DL 344 can replace certain function calls that go through
the library or other deployable modules with customized
versions to add functional augmentation based on known
semantics. In allocating address space using ‘mmap’ or
‘sbreak’, DL 344 assures, via the application monitor, that
threads see a consistent view of the address space, so
execution of threads may migrate over the nodes. In addi-
tion, a ‘ptrace’ system call 1s used to track the execution of
DL 344 to find how it interacts with operating system 310.
Interactions are then rewritten so that they run coherently

.L

US 11,762,672 B2

9

between initiator node 206 and acceptor node 208. Ulti-
mately, all interactions with operating system 310 go

through symbols defined by DL 344 or resolved through DL
344.

FIGS. 8A-8D describe the components and operations in
more detaill during the setup of the mitiator node and
acceptor node corresponding to steps 404, 442, 446, 450,
464, 466 of FIGS. 4A-4D. Specifically, FIG. 8A depicts
components 1 an imtiator node and an acceptor node
involved 1n setting up the mitiator and acceptor nodes,
according to an embodiment. FIG. 8B depicts a flow of
operations between inmitiator and acceptor nodes during
address space synchronization, according to an embodiment.
FIG. 8C depicts a tlow of operation between an 1nitiator and
acceptor nodes during the creation of a coherent application,
according to an embodiment. FIG. 8D depicts a flow of
operations between an mitiator and acceptor nodes during
the establishment of runtimes, according to an embodiment.

Referring to FIG. 8A, imtiator node 206 includes a
VProcess 802, a Runtime module 804, a Bootstrap module
806, and a VpExit module 808. Acceptor node 208 includes
similar components 822, 824, 826, 828 as on 1nitiator node
206, along with an Imit module 830. VpExit modules 808
and 828 are responsible for manipulating VProcess 802 and
822 interactions across their respective virtualization bound-
aries.

Referring now to FIG. 8B, in step 832, the acceptor Init
module 830 receives a ‘hello function” designating the
address space from imtiator Runtime 804. In step 834,
acceptor Init module 830 sends a ‘create VpExit’ message to
acceptor Bootstrap module 826. In step 836, acceptor Init
module 830 sends an acknowledgment regarding the address
space message back to mitiator node 206. At this point, a
synchronized address space 1s established between the 1ni-
tiator 207 and acceptor 208.

Referring to FI1G. 8C, 1n step 838, initiator node 206 sends
a ‘create VpExit’ message to imitiator Bootstrap module 806.
In step 840, mitiator node 206 sends a ‘create’ message to
VProcess 802 of initiator node 206, which receives a ‘load
VpExit’ message 1n step 842 from 1mitiator 206. At this point,
VProcess 802 1s created outside of the Remote Procedure
Call (RPC) layer, and the resources that VProcess 802 uses
are virtualized. In step 844, VProcess 802 sends a ‘Mmap’
message to VpExit module 808 of mitiator node 206, which
sends a ‘mmap’ message 1n step 843 to imtiator 206 and an
‘“update the address map’ message 1n step 846 to Bootstrap
module 826 of acceptor node 208. In step 848, Bootstrap
module 826 of acceptor node 208 sends an acknowledgment
(‘ok”) back to mitiator node 206, which relays the message
in step 850 to VpExit module 808, which relays the message
to VProcess 802 1n step 852. At this point, the address map
of the application on the mnitiator 1s made coherent with the
acceptor node.

Referring to FIG. 8D, 1n step 854, imitiator VProcess 802
sends a ‘VpExit(Enter, hook_page)” message to VpExit
module 808. In step 856, VpExit module 808 sends an
‘Enter(hook_page)” message to initiator Bootstrap module
806. In step 858, imitiator Bootstrap module 806 sends a
‘create(VpExit)” message to mitiator Runtime 804. In step
860, initiator Bootstrap module 806 sends a ‘bootstrap
(Runtime, hook_page)’ message to acceptor Bootstrap mod-
ule 826, which sends 1 step 862 an ‘install(VpExit,
hook_page)” message to acceptor Runtime module 824. In
step 864, acceptor Runtime module 824 sends an ‘install
(VpExit)” message to acceptor VProcess 822. In step 866,
acceptor Bootstrap module 826 sends a ‘Runtime’ message
to 1itiator Bootstrap module 806, which returns in step 868

10

15

20

25

30

35

40

45

50

55

60

65

10

to VpExit module 808, which returns in step 870 to VPro-
cess 802. At this point, inmitiator node 206 and acceptor node
208 have both created runtimes for VProcess 802, VProcess
822, and the memory and address space for VProcess 802
and 822 are coherent.

During bootstrap, initiator node 206, 1n one embodiment,
uses the system ‘ptrace’ facility to intercept system calls
generated by the virtual process. The application monitor
runs in the same address space as the virtual process, which
means that the application monitor 1s in the same physical
process as the virtual process. In one embodiment, Linux’s
clone(2) system call allows the virtual process to be traced.
The virtual process 1ssues SIGSTOP to 1tself, which pauses
execution of the virtual process before allocating any virtual
process resources. The application monitor attaches to the
virtual process via ‘ptrace’, which allows i1t to continue
execution (using SIGCONT) from the point at which the
virtual process entered SIGSTOP. Using ‘ptrace’, the appli-
cation monitor can intercept and manipulate any system
calls 1ssued by the virtual process to preserve the virtual-
ization boundary. After bootstrap, VProcess interactions
with the operating system are detected by the syscall inter-
cept library.

FIG. 9 depicts a flow of operations for accessing a {ile,
according to an embodiment. As mentioned above, a file
system resides on each of the nodes. Access to one or more
files 1n the file systems may be requested by the application
during execution by making a system call. It the requested
file resides on a node making the system call, the file 1s
available locally. However, 1t the file resides on a different
node (another acceptor node or the mmitiator node), the
system call 1s remotely executed according to FIGS. 6 A-6C.
According to step 655 of FIG. 6C, the system call deter-
mines whether the arguments of the system call interact with
a remote pinned resource, which 1s a file that 1s not local to
the node recerving the system call. The steps of FIG. 9 depict
the use of the file descriptor, which was returned during a
previous system call 1n which the file was opened to deter-
mine which node on which the system call 1s to be executed.

Retferring to FIG. 9, 1n step 900, the flow tests the file
descriptor against a criterion. In one embodiment, the cri-
terion 1s whether the file descriptor obtained 1n step 654 of
FIG. 6C (during an open(filename) or other system call
which returns the file descriptor 1d) 1s even or not. If the file
descriptor 1s an even integer, as determined 1n step 902,
initiator node 206 1s determined to have the file 1n step 904
because only files with even 1ds can be stored on the
initiator. If the current node 1s 1nitiator node 206, as deter-
mined 1n step 910, then a ‘False’ value 1s returned 1n step
916. The ‘False’ value indicates that the system call argu-
ments do not interact with a remote pinned resource, and the
system call 1s handled locally. If the current node 1s acceptor
node 208 as determined 1n step 912, then a ‘True’ value 1s
returned 1n step 914. The “True’ value indicates that the
system call arguments do interact with a remote pinned
resource, and the system call 1s to be handled remotely.

If the file descriptor 1s an odd 1nteger, then acceptor node
208 1s determined to have the file 1n step 906 because only
files with an odd 1ds can be stored on the acceptor node, and
in step 916, a ‘False’ value 1s returned, where an odd 1d 1s
one that 1s odd modulo the number of acceptor nodes (i.e.,
odd=Id mod #acceptors). Otherwise, a ‘True’ value 1is
returned 1 step 914, where ‘False’ indicates the needed
resource 1s local and a ‘“lTrue’ indicates that the needed
resource 1s remote.

In an alternative embodiment, the criterion 1s whether the
file descriptor 1s less than a specified integer, say 512. If so,

US 11,762,672 B2

11

as determined 1n step 902, initiator node 206 1s determined
to have the file 1n step 904 because only files with 1ds less
than 512 are stored on the mnitiator. If the current node 1s
initiator node 206, as determined 1n step 910, then a ‘False’
value 1s returned 1n step 916. The ‘False’ value indicates that
the system call arguments do not interact with a remote
pinned resource, and the system call 1s handled locally. If the
current node 1s acceptor node 208 as determined 1n step 912,
then a “True’ value 1s returned 1n step 914. The “True’ value
indicates that the system call arguments do interact with a
remote pined resource, and the system call 1s to be handled
remotely.

If the file descriptor 1s greater than 512, then acceptor
node 208 1s determined to have the file 1n step 906 because
only files with Ids greater than 512 are stored on the acceptor
node, and 1n step 916, a ‘False’ value 1s returned. Otherwise,
a ‘True’ value 1s returned 1n step 914.

Certain embodiments as described above involve a hard-
ware abstraction layer on top of a host computer. The
hardware abstraction layer allows multiple contexts to share
the hardware resource. These contexts are 1solated from each
other in one embodiment, each having at least a user
application program running therein. The hardware abstrac-
tion layer thus provides benefits of resource i1solation and
allocation among the contexts. In the foregoing embodi-
ments, virtual machines are used as an example for the
contexts and hypervisors as an example for the hardware
abstraction layer. As described above, each virtual machine
includes a guest operating system in which at least one
application program runs. It should be noted that these
embodiments may also apply to other examples of contexts,
such as containers not including a guest operating system,
referred to herein as “OS-less containers” (see, e.g.,
www.docker.com). OS-less containers implement operating,
system-level virtualization, wherein an abstraction layer 1s
provided on top of the kernel of an operating system on a
host computer. The abstraction layer supports multiple OS-
less containers, each including an application program and
its dependencies. Each OS-less container runs as an 1solated
process 1n userspace on the host operating system and shares
the kernel with other containers. The OS-less container
relies on the kernel’s functionality to make use of resource
isolation (CPU, memory, block 1/0, network, etc.) and
separate namespaces and to completely 1solate the applica-
tion program’s view ol the operating environments. By
using OS-less containers, resources can be 1solated, services
restricted, and processes provisioned to have a private view
of the operating system with their own process ID space, file
system structure, and network interfaces. Multiple contain-
ers can share the same kernel, but each container can be
constrained only to use a defined amount of resources such
as CPU, memory, and I/O.

Certain embodiments may be implemented in a host
computer without a hardware abstraction layer or an OS-less
container. For example, certain embodiments may be imple-
mented 1n a host computer running a Linux® or Windows®
operating system.

The various embodiments described herein may be prac-
ticed with other computer system configurations, including
hand-held devices, microprocessor systems, miCroproces-
sor-based or programmable consumer electronics, minicom-
puters, mainirame computers, and the like.

One or more embodiments of the present invention may
be implemented as one or more computer programs or as one
or more computer program modules embodied 1n one or
more computer-readable media. The term computer-read-
able medium refers to any data storage device that can store

10

15

20

25

30

35

40

45

50

55

60

65

12

data which can thereafter be 1nput to a computer system.
Computer-readable media may be based on any existing or
subsequently developed technology for embodying com-
puter programs in a manner that enables them to be read by
a computer. Examples of a computer-readable medium
include a hard drive, network-attached storage (NAS), read-

only memory, random-access memory (e.g., a flash memory
device), a CD (Compact Discs)—CD-ROM, a CDR, or a

CD-RW, a DVD (Dagital Versatile Disc), a magnetic tape,

and other optical and non-optical data storage devices. The
computer-readable medium can also be distributed over a
network-coupled computer system so that the computer-
readable code 1s stored and executed 1n a distributed fashion.
Although one or more embodiments of the present inven-
tion have been described in some detail for clarity of
understanding, 1t will be apparent that certain changes and
modifications may be made within the scope of the claims.
Accordingly, the described embodiments are to be consid-
ered as 1llustrative and not restrictive, and the scope of the
claims 1s not to be limited to details given herein but may be
modified within the scope and equivalents of the claims. In
the claims, elements and/or steps do not imply any particular
order of operation unless explicitly stated in the claims.
Plural mstances may be provided for components, opera-
tions, or structures described herein as a single instance.
Finally, boundaries between various components, opera-
tions, and data stores are somewhat arbitrary, and particular
operations are 1llustrated 1n the context of specific 1llustra-
tive configurations. Other allocations of functionality are
envisioned and may fall within the scope of the invention(s).
In general, structures and functionality presented as separate
components 1n exemplary configurations may be 1mple-
mented as a combined structure or component. Similarly,
structures and functionality presented as a single component
may be implemented as separate components. These and
other varniations, modifications, additions, and i1mprove-
ments may fall within the scope of the appended claim(s).

What 1s claimed 1s:

1. A method for a dynamic linker to load and run an
application that 1s executed over a plurality of nodes, the
method comprising:

relocating a primary binary of the application from an

initial location to an executable location;

loading library dependencies;

altering a system call table used during execution of the

application for the dynamic linker to catch all system
calls made by the application; and

executing the relocated primary binary from the execut-

able location.

2. The method of claim 1, wherein the primary binary for
the application program 1s obtained from an ELF program
file.

3. The method of claim 2, wherein the ELF program file
1s loaded by a monitor using an ELF interpreter.

4. The method of claim 2, wherein the monitor obtains the
ELF interpreter using a file path obtained from the ELF
program file.

5. The method of claim 1, wherein the primary binary uses
a stack frame which 1s prepared by a monitor prior to starting
the dynamic linker.

6. The method of claim 1, wherein one or more system
calls made by the application are altered to allow portions of
the application to run on a remote node.

7. The method of claim 1, wherein the dynamic linker
runs in userspace inside a virtualization boundary.

US 11,762,672 B2

13

8. A system for a dynamic linker to load and run an
application program that 1s executed over a plurality of
nodes including a remote node, the system comprising:

one or more CPUs; and

a memory into which 1s loaded a monitor, wherein the

monitor 1s configured to load an ELF program file, and
the dynamic interpreter 1s configured to:

relocate the primary binary of the application program

from an 1nitial location to an executable location;
load library dependencies;

alter a system call table used during execution of the

application to catch all system calls made by the
application; and

execute the relocated primary binary from the executable

location.

9. The system of claim 8, wherein the primary binary for
the application program is obtained from an ELF program
file.

10. The system of claim 9, wherein the ELF program file
1s loaded by a monitor using an ELF interpreter.

11. The system of claim 9, wherein a monitor obtains the
ELF mterpreter using a file path obtained from the ELF
program file.

12. The system of claim 8, wherein the primary binary
uses a stack frame which 1s prepared by a monitor prior to
starting the dynamic linker.

13. The system of claim 8, wherein one or more system
calls made by the application are altered to allow portions of
the application to run on the remote node.

14. The system of claim 8, wherein the dynamic linker
runs in userspace inside a virtualization boundary.

5

10

15

20

25

14

15. A non-transitory computer-readable medium compris-
ing instructions to be executed, wherein the instructions,
when executed 1n the device, cause the device to carry out
a method for a dynamic linker to load and run an application
program that 1s executed over a plurality of nodes, the
method comprising:

relocating a primary binary of the application from an

initial location to an executable location;

loading library dependencies;

altering a system call table used during execution of the

application for the dynamic linker to catch all system
calls made by the application; and

executing the relocated primary binary from the execut-

able location.

16. The non-transitory computer-readable medium of
claam 15, wherein the primary binary for the application
program 1s obtained from an ELF program file.

17. The non-transitory computer-readable medium of
claam 16, wherein the ELF program file 1s loaded by a
monitor using an ELF interpreter.

18. The non-transitory computer-readable medium of
claim 16, wherein the momitor obtains the ELF interpreter
using a file path obtained from the ELF program f{ile.

19. The non-transitory computer-readable medium of
claim 15, 1n the primary binary uses a stack frame that 1s
prepared by a monitor prior to starting the dynamic linker.

20. The non-transitory computer-readable medium of
claiam 15, wherein the dynamic linker runs in userspace
inside a virtualization boundary.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

