US011748459B2

a2 United States Patent (10) Patent No.: US 11,748.459 B2

Fontana et al. 45) Date of Patent: Sep. 5, 2023
(54) REDUCING SOFTWARE RELEASE DATE (358) Field of Classification Search
TAMPERING BY INCORPORATING None
SOFTWARE RELEASE DATE See application file for complete search history.
INFORMATION INTO A KEY EXCHANGE _
PROTOCOL. (56) References Cited

U.S. PATENT DOCUMENTS

(71) Applicant: PACE Anti-Piracy, Inc., San Jose, CA

(US) 6.683.954 Bl 1/2004 Searle
6,871,192 B2* 3/2005 Fontana GO6F 21/121
(72) Inventors: Joseph Fontana, San Jose, CA (US); 705/51
Paul Allen Cronce, San Jose, CA (US) 7,124,445 B2* 10/2006 Cronce GO6F 21/14
717/136
(73) Assignee: PACE Anti-Piracy, Inc., San Jose, CA 7,934,104 B2 472011 Jones
(US) (Continued)
(*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS
patent 1s extended or adjusted under 35 AU 008200148 Al * 2/2008 . GOGE 2/20
U.S.C. 154(b) by 114 days. WO WO-2005003935 Al * 1/2005 ..ooo... GO6F 21/121

(21) Appl. No.: 16/903,230 OTHER PUBLICATIONS

(22) Filed: Jun. 16, 2020 Whitmore, J. et al., “Threat analysis in the software development

lifecycle”, IBM J. RES & DEV. vol. 58 No. 1 Paper 6, Jan./Feb.

(65) Prior Publication Data 2014. (Year: 2014).*

US 2020/0311228 Al Oct. 1, 2020
w0 Primary Examiner — Neha Patel

Assistant Examiner — Clay C Lee

Related U.S. Application Data (74) Attorney, Agent, or Firm — Schwabe, Williamson &
(63) Continuation-in-part of application No. 15/668,567, Wyatt, PC
filed on Aug. 3, 20177, now abandoned. (57) ABSTRACT
(51) Int. Cl. Exemplary embodiments prevent tampering of a software
GO6F 21/12 (2013.01) release date associated with a software application by incor-
HO4L 9/08 (2006.01) porating the software release date mto a key exchange with
(52) U.S. Cl a security domain. If the software release date 1s tampered
CPC ' GO6F 21/125 (2013.01); HO4L 9/0822 with, then the key exchange results in the wrong key

(2013.01); HO4L 9/0877 (2013.01); HO4L exchange key. Without the correct key exchange key, the
9/)80 1. (20513 01); HO4L 9/089 7' (20’13 01): software application will fail its check of the license, and the

GOG6F 2221/0753 (2013.01); GOGF 2221/0755 soltware application will no longer continue to run.

(2013.01); HO4L 2209/16 (2013.01) 23 Claims, 6 Drawing Sheets
License Kay Software Release
10 Date 12 Software
Software FUTEEPEF
Proteciion .
Piatform
8 oh — 4, APt 17
Communication Security Key
Key 18 18 L inense
| Period 15
e i Software| Tool 21
Relaase Date é‘\t Software
Range 19 E neryp Application
-”/\ 14
b
Secwrty Domain 22 Protected Sofiware Application 20
License Key | | Software Release Cammunication
10 Date 12 T T Key 18

\G/ | i Sofware Release
i i] Date 12
[1 | { Decrypt
T) | 30
Communication Security Key |

Key 16 18 | ;

Dacpted
Secuwrity Key

- ; ‘ 32
E) Encrypted
| Decrypt Y, | Software
. : : 34 Code

Encrypted . | 36
Security Key 28) Decrypted

Key Software Code
I”Exchanga: 38

Amprmp .

23

a‘l Ll L LLEJ Lol o L]

) T

Execute
40

US 11,748,459 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2003/0120605 Al1* 6/2003 Fontana GO6F 21/10
705/59
2005/0044359 Al1* 2/2005 Ernksson GO6F 21/125
713/165
2005/0289072 A1 12/2005 Sabharwal
2007/0265973 Al* 11/2007 Kahn GO6F 21/10
705/57
2012/0174090 Al1* 7/2012 Carollocoel GO6F 8/65
717/173

2012/0185695 Al
2019/0044709 Al

7/2012 Shah
2/2019 Fontana

* cited by examiner

U.S. Patent Sep. 5, 2023 Sheet 1 of 6 US 11,748,459 B2

License Key

Software Rejegse E
Date 12 '

Software
Publisher

Software
Frofection :
Fiatform I
8 , + ‘ -

S S — ~ S AR 1Y

- Communication Sacurity Key -
Key 16 18

13

L icense
Period 15

F]
]
z » bbb PR - - e b -
]
3
iiiiiiiiiiiiiiiiiiii ‘ oftware! Too
¥
)
i i L .

) .

)
.) t i‘-+ *
L 1
]
¥
)

Range 19

Software
1 Application

_____ N
- Security Domain 22 ' - Protected Software Application 20 |
) | :

License Key S{}ftwara Release b T Communication |
10 Diate 12 ; "

3
3

X

3

E 16 |

3

3

3

W RE W P P TR P T P O P

3

3

3

3

X

L

3

: éafwére ée?ease
: ate 1

[RELE FIE

+++++

Securty Key
18

Communication

l Key 1o

| Dé{:rypt@a ,..
- Security Key ;
32

gy gy

M“Emf.;ryg:)ted |

Software
{o00s
3G

norypted
Security Key 28

el bk ok bl A TR TR TR TR TR T R S U ey

L Decrypted
| Software Code
L o8

Key
EXenange
23

/" Execute
| 40

U.S. Patent Sep. 5, 2023 Sheet 2 of 6 US 11,748,459 B2

20
- B 1 Extenal |
L Security Device ; i White Box ; E Security ;
E 22a | 22b 1 Server
a a - a
S R T R
Security Domain 22 222

License ‘ --------- 220

[Teensed
oo ke {4 1S

* Release Date Range |

Key Exchange 223

————— /O Ports 212 |

FProcessor . Frotected Software
204 Us Application

27

208 ' /O +
Routines | ||__License D

216

Memory System 206

Computer 202

FlG. 2

U.S. Patent Sep. 5, 2023 Sheet 3 of 6 US 11,748,459 B2

aa

Use the license key assignad 1o the software application and the
sofiware release daie 1o generatle a first encryption key and a second
encryplion key

304
Protection Use the first encryption key to encrypt the software application o create
Phase a protectea software application, and bundie the second encryption key
300 with the protected software application
' 306

+++++++++ =4 + 4+t A A Ad A A A b SAA A S A AR AAF A AL A I ALt AA A A A A FAAAF A A AdA SR AA A A AR A A A A A At AP A DA d AR A EAA SRS

+
L]
4

--

otore license information associaled with the software appiication,
including ihe license Key and the soflware release dale range, in a
security domain

\ 308
;’f When the protected software application 18 invoked on the computer,
;" pass a hcense i and the sofiware release date from the protecteo
| software application to the security domain
310

Responsive 10 the securtty domain containing the license information
identitied by the license 1D, determine whelher the software release gate
1S within a release date range associated with the license information,
and if 8o, use the icense kKey stored in the securnity domamn andg he
software reiease dale {o generale the first encryplion key and the second

Authorization encryption key
Phase | 312
302 5

Lise ihe second encryplion kKey 1o encrypt the first encryplion Key o
create a protected first encryption key, and pass it {o the computer
314

Lise the second encryplion key bundled with the protected software
E application o decrypt the protected first encryption key, and use the
i decrypled first encryplion 1o decrypt the protecied software application
| for execution
316

FIG. 3

U.S. Patent Sep. 5, 2023 Sheet 4 of 6 US 11,748,459 B2

Software Protection
~Developer Fnase
g 300
|
— __ . FiG. 4
Software [| License Key . Software License 1D
Application 10 || Reiease 220
4 o T ; Jate 12 “““““““““
| Nonreversiple |
Mathematical Software Tool
Operation 21
400

| Nonraeversible

rarvrvnrl

Linmod fied

. | Mathematical
| Security Key — .
| 400 ! Operation
E 40
- Unmodfied
Miatnematical Communication
Uperation Key
408 408
ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ Software L Mathematical
Release Operation
| Date 12 410
‘ ! Communication |
o Key
| 16
[Protected Soft T
“rotected Saftware . .
| s .
Application 218 securty Domain 22 Py,
‘ License Check [License — 220
Code 220 S | _
T V. 18 License o - 10
License 1 ‘ ,, - ' g P 1G
~~~~~ — License Key T -
Lommun. Key 12  Release Date Range '
Software Release | = Range |
Lale

La TR, Ll ) il



U.S. Patent Sep. 5, 2023 Sheet 5 of 6 US 11,748,459 B2

 Security Domain f -
22 -«

License 1D 220 Software Release | | Random Number 500

SRR R B L LRk ko ko h k] ol b bk b bbb bbb bk b

ADort or sabolage key
- exchange if license is not found, or if the
software daie is not within the licensing date
range specified by license
5086

“Find License
504

Ll oL ol L o L

ddddddddddddddddddddddddd R 4 Qi _.,
. >% Seciyity Key 18’ i
3510 Y Ay 10

License | ~Generate Sofiware Release |7~
Key10 | \_ 508 / | Dae12 [~ yModf

512 s

‘Unmodified Communication Key 406 | 1

Ff‘;eéu;’ity Key 18 IS

Communication |
Key 16

[ Rar‘}dém N:_Jm e SDQ: -~

T R T TR TR TR T TR T TR T THF T TR T TR TR T TN TR T TR T T TR LA T TR T TAR TN TR T TR TR Ty

| [Communication key 167
XOR e S-urity Koy 516 T Encrypi™ Encrypted XQORed Security
. 518 Key 520

~~~~~~~ 522
~rolected ; Communication E%;y 16 |
| Software f— (embedded in software)
Application
- 20 | Encrypted XORed Security

Key 520

el e e PR T A U WA S A S A W T W TR T DU S W W [DS W W W N S B [W W W TA [T S SO W S TU T W U SO SAJA S W SO S N

L T

n
+
r
+

TR TR TR Y]

Protected Software Code e ~ Fi}ecrypt@d Software Code i

Ll al s ol e

F Authorization #hase

~Executé™
FIG. 5 530~

US 11,748,459 B2

Sheet 6 of 6

Sep. 5, 2023

U.S. Patent

(SIO1BLIBIE0SUSOHIILLIOSES|S) SIS]SLLIBIR 05 USOITHIUEICSEDION
‘Dissusocl Buins

oSS 8y J0) 2SN 0] SONBA JU| SIBp aseaial Jo Jed B SaUls(l | SUBIB 49SUSd T WISSED|D)
DBIJPOW 8Q 0] 8SUSDI| BU] S8I)ILBD H8sua]
5590040 USHEINUSUINE aUl UBNnoIyU] DBURICO (1] UOiSses & saumnbad [jeo pouylsw AsA| DJUOISSSS
Uonduoss(SUBN
GADISLUBIT

PlUCISSES DULIS) sisistleiedasusdljwileses|ayes

309
Hed iy

US 11,748,459 B2

1

REDUCING SOFTWARE RELEASE DATE
TAMPERING BY INCORPORATING
SOFTWARE RELEASE DATE

INFORMATION INTO A KEY EXCHANGE
PROTOCOL

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation-in-part of U.S. appli-
cation Ser. No. 15/668,567, filed Aug. 3, 2017, the entire
disclosure of which is incorporated herein by reference.

BACKGROUND

The problem of software piracy 1s well known 1n the
computer industry. This problem results 1n substantial losses
for software developers. Many methods have been used to
try to prevent unauthorized use of over the years, with
limited success. Typically, the eflort put out to break pro-
tection schemes 1s proportional to the value of the protected
software. Thus, 1f a software program has high demand, such
as a computer game, or has a high cost per unit, such as a
proiessional tool sold to a small market, 1t 1s likely to be
attacked by software hackers for the purpose of creating an
unprotected version of the product. This unprotected version
1s then made available to others at low cost or free via the
internet or other means.

One software-licensing scheme 1s a time-limited license,
where the solftware publisher grants the user a license that
allows the user to run the software for limited time, such as
a year. Once the year 1s over, the user needs to buy a new
time-limited license to keep running the software. This 1s a
subscription model, which allows the software publisher to
make reoccurring revenue when the user renews the license.
This revenue can be allocated towards creating new versions
of the software. In this case, all versions of the software
typically work with all of the licenses. The problem with this
model 1s that the user 1s frustrated after the time limit 1s up,
because the user cannot run any version of the software
without paying an additional fee.

A second model requires a new license (not typically
time-limited) for each version of the software. The software
publisher makes revenue when they sell new licenses for the
new version of the software. The problem with this 1s that 1T
a user buys just before a software release, the user 1is
frustrated because the user has a license for the older
version. However, the user does have a perpetual license for
that older version of the software. So user’s find this less
frustrating that the first model.

A third model, which 1s a paid maintenance, allows users
to buy a year’s worth (or some other time period worth) of
software updates. The user gets to run perpetually the
current version and any version of the software that is
released 1n the next year. At the end of the year, the user can
opt to extend maintenance by paying for another year of
updates, and so on. This model solves the user frustration
mentioned 1n the description of the two previous models,
while allowing the software publisher to get reoccurring
revenue from software updates.

The dificulty waith this third model 1s licensing. Keeping
track of and issuing new or updated licenses for every
soltware release can be diflicult, but there are other ways of
licensing that fits this third model. One way 1n which this
licensing 1s i1mplemented 1s by incorporating soltware
release date information into the software itself. During
runtime, an authorization tool 1n the software determines

10

15

20

25

30

35

40

45

50

55

60

65

2

whether the software release date 1s within the user’s soft-
ware release date range. If the software release date does not
tall within this range, then the software will not function.
The problem with licensing this way 1s that hackers can
casily tamper with the software release date of a version of
soltware. Even 1i the software release date 1s encrypted, the
encrypted soltware release date of one version of the soft-
ware could be hacked into another copy of the software.
Accordingly, what 1s needed to prevent hackers from
tampering with the software release date 1n order to prevent

hackers from unlocking versions of the software that are not
supposed to run.

BRIEF SUMMARY

The exemplary embodiment provides methods and sys-
tems for reducing tampering with the software release date.
Aspects of the exemplary embodiment may include during
a software application protection phase, using a license key
assigned to the software application and the software release
date of the software application to generate a first encryption
key and a second encryption key; using the first encryption
key to encrypt the software application to create a protected
soltware application, and bundling the second encryption
key with the protected software application; storing license
information associated with the software application, includ-
ing the license key, i a security domain to protect the
licensing key from discovery; when the protected software
application 1s invoked on the computer, passing a license 1D
and the software release date from the protected software
application to the security domain; responsive to the security
domain contaiming the license information identified by the
license ID, determiming whether the software release date 1s
within a release date range associated with the license
information, and 1f so, using the license key stored 1n the
security domain and the software release date to generate the
first encryption key and the second encryption key; encrypt-
ing first encryption key with the second encryption key to
create a protected first encryption key, and passing the
protected first encryption key to the computer; and using the
second encryption key bundled with the protected software
application to decrypt the protected first encryption key
resulting 1 a decrypted first encryption key, and using the
first encryption key to decrypt the protected software appli-
cation for execution.

According to the method and system disclosed herein, the
exemplary embodiment prevents tampering with the soft-
ware release date as doing so will negatively affect the key
exchange with the security domain and the software appli-
cation will be unable to run.

BRIEF DESCRIPTION OF SEVERAL VIEWS OF
THE DRAWINGS

FIG. 1 1s a block diagram graphically illustrating a
process for incorporating a software release date into a key
exchange protocol to prevent software tampering.

FIG. 2 1s a diagram illustrating one embodiment of a
system for reducing software release date tampering by
incorporating a software release date into a key exchange
protocol, where like components from FIG. 1 have like
reference numerals.

FIG. 3 1s a flow diagram illustrating one embodiment of
a process for reducing soitware release date tampering.

FIG. 4 15 a block diagram illustrating further details of a
key generation process performed during the protection
phase by the security software tool.

US 11,748,459 B2

3

FIG. 5 1s a block graphically 1llustrating the authorization
phase 1n further detail according to a further embodiment.
FIG. 6 1s a diagram 1llustrating an example API call.

DETAILED DESCRIPTION

The exemplary embodiment relates to reducing tampering,
of the software release date by incorporating software
release date information into a key exchange protocol. The
tollowing description 1s presented to enable one of ordinary
skill in the art to make and use the invention and 1s provided
in the context of a patent application and 1ts requirements.
Various modifications to the exemplary embodiments and
the generic principles and features described herein will be
readily apparent. The exemplary embodiments are mainly
described 1n terms of particular methods and systems pro-
vided 1n particular implementations. However, the methods
and systems will operate effectively in other implementa-

tions. Phrases such as “exemplary embodiment”, “one

embodiment” and “another embodiment” may refer to the
same or different embodiments. The embodiments will be
described with respect to systems and/or devices having
certain components. However, the systems and/or devices
may include more or less components than those shown, and
variations 1n the arrangement and type of the components
may be made without departing from the scope of the
invention. The exemplary embodiments will also be
described in the context of particular methods having certain
steps. However, the method and system operate effectively
for other methods having different and/or additional steps
and steps 1n diflerent orders that are not inconsistent with the
exemplary embodiments. Thus, the present invention 1s not
intended to be limited to the embodiments shown, but 1s to
be accorded the widest scope consistent with the principles
and features described herein.

A software license typically comprises a license period,
which includes a license start and a license end date, for
which the license 1s valid. Under the software license, a user
or customer can run the protected software covered by the
software license only within that license period.

The term “software release date” refers to the date a
software publisher releases an original, upgraded or new
version ol a software application to the customer. The
soltware release date may be expressed as a single date. The
term “software release date range” refers to a time period
that encompasses software releases. The soltware release
date range may be expressed as, a single date along with a
length of time, a start date only, an end date only, or both a
start date and an end date. In this type of licensing, the
software license may allow the end-user to run any version
of the software as long as the software release date of that
version of software 1s within the software release date range
of the license. For example, the end-user may be permitted
to run any released version of the software that has a release
date within a paid maintenance period.

As stated above, the software release date 1s often embed-
ded 1n a software application so that during runtime, an
authorization tool 1n the software can determine if that
version of the software 1s authorized by determining whether
the software release date 1s within the customer’s software
release date range. The problem with embedding the soft-
ware release date 1nto a software application 1s that hackers
can change this information. Even 1f the software release
date 1s encrypted, the encrypted software release date from
one release or version of a software application can be
substituted with the encrypted software release date of

10

15

20

25

30

35

40

45

50

55

60

65

4

another release of the software application, therefore ille-
gally extending use of the software.

In a first aspect, the disclosed embodiments reduce or
prevent tampering ol the soltware release date associated
with a version of software 1n order to prevent unauthorized
versions from being unlocked. This 1s accomplished by
incorporating the software release date into a key exchange
with a security domain. IT the solftware release date 1s
tampered with, then the key exchange results 1n the wrong
key exchange key. Without the correct key exchange key, the
soltware application will fail its check of the license, and the
software application will no longer continue to run.

In a second aspect, the disclosed embodiments provide a
mechanism for the software publisher 13 to implement a
release date license (RDL) that allows the publisher to
decide arbitrarily which future software versions a user can
use based on the software release date.

FIG. 1 1s a block diagram graphically illustrating a
process for incorporating a software release date into a key
exchange protocol to prevent software tampering. In one
embodiment, a software application 14 1s protected from
tampering by a software protection platform 8. In one
embodiment, the software protection platform 8 provides the
software security licensing management services to organi-
zations, such as a software publisher 13, through the devel-
opment life cycle of the software application 14. In one
embodiment, the software protection platform 8 may sup-
port several diflerent software license types to cover varying,
business needs. These may include perpetual, network-
based, subscription, trial, timed, and release date licenses.
These license types may also be combined. For example, a
license that 1s timed with a license period 135 to limit how
long a license may be used may be combined with a software
release date range 19 to limit which versions of software
may be used.

The software protection platform 8 protects the software
application 14 from tampering through the use of encryption
keys generated from a license key 10 associated with a
license for the software application 14. One of the encryp-
tion keys 1s used to encrypt the software application 14
resulting 1n the protected software application 20. One of the
encryption keys 1s then bundled with the protected software
application 20, and another one of the encryption keys 1is
stored 1n a security domain 22. During runtime of the
protected soltware application 20, a cryptographic check
performs a key exchange 23 between the protected software
application 20 and the security domain 22 so that hackers
cannot easily influence the key exchange itself. If the key
exchange 23 results 1n the correct key exchange key, then a
cryptographic check of the license will allow the software
application to continue to run.

According to the exemplary embodiments, the software
release date 12 1s prevented from being tampered with by
incorporating the soiftware release date 12 into the key
exchange 23 by modilying the cryptographic keys with the
soltware release date 12.

In further detail, and according one aspect of the exem-
plary embodiment, a license key 10 and the software release
date 12 are used key to create first and second keys, which
are referred to herein as a communication key 16 and a
security key 18. The security key 18 1s used by a security
software tool 21 to encrypt the software application 14 prior
to sale to create a protected software application 20. The
license key 10 1s then stored in the security domain 22 to
keep the license key 10 hidden from discovery. The com-
munication key 16 i1s bundled with the protected software
application 20, and 1s used to implement the key exchange

US 11,748,459 B2

S

23 between the protected soitware application 20 and the
security domain 22. The security key 18 1s not bundled with
the protected software application 20, but 1s 1mstead gener-
ated within the secure environment of the security domain
22 and passed to the protected software application 20
during the key exchange 23 to unlock the software.

When the protected software 1s invoked on the computer,
the protected software application 20 passes the software
release date 12 information to the security domain 22. In one
embodiment, the software release date range 19 associated
with software release date 12 1s also passed to the security
domain 22 from the software protection platform 8. Once the
software release date 12 1s verified to be within the software
release date range 19, as described below, the security
domain 22 uses the license key 10 and the software release
date 12 to generate the communication key 16 and the
security key 18 within the security domain 22. The security
domain 22 then encrypts 26 the security key 18 with the
communication key 16 and transters the resulting encrypted
security key 28 to the computer. The communication key 16
bundled with the protected software application 20 1s used to
decrypt 30 the encrypted security key 28. The resulting
decrypted security key 32 1s then used to decrypt 34 the
encrypted software code 36. The resulting decrypted soft-
ware code 38 may then be executed 40.

According to the present invention, the protected software
application 20 only contains part of the information needed
for decrypting the protected software application (e.g., the
soltware release date 12 and the communication key 16),
and must receive the remaining information (e.g., the
encrypted security key 28) from the security domain 22
before the software can be used. Similarly, the security
domain 22 cannot generate the security key 18 without
receiving the correct software release date 12 information
from the protected software application 20. In addition,
since the soltware release date 12 1s used to generate the
communication key 16 and the security key 18, any attempt
to substitute or modily the software release date 12 or
modily the two keys, will cause a failed key exchange 23
and the software will not run.

For additional security, the security domain 22 scrambles
or encrypts the security key 18 prior to transiferring 1t to the
protected software application 20, thus providing a secure
key exchange transaction between the security domain 22
and the protected software application 20. In a further aspect
of exemplary embodiment, the protected software applica-
tion 20 may be required to contain additional information to
descramble the encrypted security key 28 before the security
key can be used to decrypt the encrypted soitware code 36.
The additional information may be temporary, and may be
forgotten once the protected software application 1s enabled.
Thus, for each invocation of the protected software, the
appropriate secure transaction must take place successtully.

In a second aspect of the disclosed embodiments, a
mechanism 1s provided for the software publisher 13 to
implement a release date license (RDL) that allows the
publisher to decide arbitrarily which future software ver-
s10ns a user can use based on the software release date. For
example, assume that a user has a license under a subscrip-
tion model and pays monthly. In this case, once the user
stops paying the monthly subscription fee, the user can
continue to use the current version of the software, but 1s
unable to run new versions of the software. Assume that six
months later, the user wishes to license the newest version
of the software from the publisher. Under conventional

10

15

20

25

30

35

40

45

50

55

60

65

6

licensing schemes, the user would pay a license fee for the
newest version ol software and the publisher would need to
1ssue a new license to user.

According to the second aspect of the disclosed embodi-
ments, the software protection platform 8 that protects the
soltware application 14 provides the software publisher 13
with an application programming interface (API) 17. The
API 17 allows the software protection platform 8 to receive
an API notification from the software publisher 13 that the
license period 15 of a user’s existing or expired license
needs to be replaced with the solftware release date and
software release date range based on a commercial agree-
ment (e.g., a maintenance plan) between the publisher 13
and the customer. The software protection platform 8 then
stores the software release date into the protected software
application 20 and stores the software release date range 1n
the security domain 22 to enable the security domain 22 to
validate use of the protected software application once
invoked. Under this scheme, the publisher 13 can easily
authorize use of new versions of the software application 14
to the user by simply replacing the original license period 15
of an existing or expired license with a new software release
date and software release date range, rather than having to
1ssue a new license.

FIG. 2 1s a diagram 1illustrating one embodiment of a
system for reducing soiftware release date tampering by
incorporating a software release date mnto a key exchange
protocol, where like components from FIG. 1 have like
reference numerals. In one embodiment, the system 200
comprises a computer 202 to execute the protected software
application 20, which 1s 1n communication with at least one
security domain 22 to implement the key exchange 23 and
authorize use of the protected soitware application 20. The
computer 202 includes at least one processor 204, a memory
system 206, and input/output (I/O) hardware 208 coupled
together via a system bus. The computer 202 may exist in
various forms, including a server, a personal computer (PC)
(e.g., desktop, notebook, tablet), a workstation, a mobile
phone, a set-top box, a game system, an Internet of things
(I0T) device, a wearable device, and the like. The I/O
hardware 208 may include input devices (not shown) such as
a keyboard and a mouse, and output devices, such as a
display device. The computer 202 may further include
computer-readable media, including the memory system 206
and read/write nonvolatile storage devices 210, such as flash
memory, hard drive, optical disk drive, magnetic disk drive,
and the like, containing data and computer instructions that
implement the embodiments described herein. The computer
202 may also include I/0 ports 212, such as a senal port, a
USB port, an IR port, and/or a wireless port, to connect
various external devices, and 1in some embodiments, to
enable communication between software executing on the
computer 202 and the security domain 22.

The memory system 206 of computer 202 may include an
operating system 214, I/O routines 216, and a protected
soltware application 20. The I/O routines 216 are required
for communicating over the I/O ports 212. The I/O routines
216 may be part of the operating system 214, or may be
loaded as part of the protected software application 20 1n
some cases. The protected software application 20 1s pro-
tected through encryption to thwart unauthorized use
according to the exemplary embodiments, and may be
loaded and 1nstalled over a network from a software pub-
lisher or online store, for example, or loaded from storage
devices 210.

The protected software application 20 1s executed by
processor 204 of the computer 202 at runtime and 1s first

US 11,748,459 B2

7

authorized for use according to the exemplary embodiments
described below. According to one embodiment, the pro-
tected software application 24 may be bundled with license
check code 218, a license ID 220, the communication key
16, the software release date 12.

The license check code 218 performs cryptographic
checks of the license 222 during runtime on a computer. In
one embodiment, the license check code 218 may be
injected in once in the protected software application 20. In
another embodiment, the license check code 218 may be
injected in many places throughout the protected software
application 20 so that the cryptographic checks of the license
cannot be easily removed. The license check code 218
establishes communications with the security domain 22 and
uses the license ID 220, the communication key 16 and the
soltware release date 12 and implements the key exchange
23 with the security domain 22.

The license 1D 220, the software release date 12, and the
soltware release date range 19 may be associated with a
license 222 for the protected soitware application 20. The
license 1D 220 may be any type of identifier used to 1dentily
the license 222. The software release date 12 may represent
a single date that the version of the software application was
publically released. The release date range 19 may include
a start date and an end date to define the time period. In
another embodiment, the software release date range 19 may
include a start or end date and a length of time the license
1s valid e.g., 1 yr. or 24 mo., and the like) to define the time
period.

In one embodiment, the security domain 22 communi-
cates with the computer 202 on which the protected software
application 20 1s installed to aid in protecting the protected
software application 20 from tampering and to provide
secure execution. In one embodiment, the security domain
22 may store or access information regarding the license 222
associated with the protected solftware application 20,
including the license ID 220", the license key 10, and the
software release date range 19. According to one embodi-
ment, after each new version of the software application 1s
released to the customer, the software release date range 19
1s replaced with a new one. In one embodiment, the license
key 10 may also function as a product key for the protected
software application 20. Each software product from a
publisher would typically have diflerent license keys
because the license key would be different for each software
product. Each version of a software product would also have
different license keys because the software release date 12 1s
different for each version. However, 1n another embodiment,
different versions of the soltware may have a same license
key 10.

In one embodiment, the security domain 22 may be
implemented as a portable external security device 22qa that
plugs into the computer 202 on which the protected software
application 20 1s to be run; a white box 2254 in the memory
system 206; or an external security server 22c.

The secunity device 22a embodiment may be imple-
mented as a dongle, which 1s a small form-factor hardware
device that connects to the computer 202 via USB, and may
include components (not shown) such as a processor, a
memory, mput/output circuitry, and I/0 port. Typically, the
pProcessor may comprise a security processor containing,
necessary circuitry to enable data to be stored 1n the memory
in encrypted form and thus not usable except by the pro-
cessor 1tself. The memory 1s used to store security informa-
tion, such as encryption keys and authentication informa-
tion. Other facilities of the processor enable it to establish a
secure communications path with the processor 204 on the

10

15

20

25

30

35

40

45

50

55

60

65

8

host computer 202. This technology 1s well known to those
with ordinary skill 1n the art, and thus will not be described
in detail herein. Alternate embodiments 1include the replace-
ment of the processor with custom logic to perform the same
function 1n hardware rather than software.

The white box 225 may refer to white-box cryptography,
which mmplements a cryptographic algorithm in software
that keeps cryptographic assets (e.g., a secret key) secure
even when subject to attacks. Typically, the security relies on
the confidentiality of the secret key and random data. In one
embodiment, the white box 2256 may run in the memory
system 206 of the computer 202, or even a coprocessor (not
shown) for additional security.

The security server 22¢ may refer to a Web server that
guarantees secure transactions and may use the Secure
Sockets Layer (SSL) protocol for data encryption and
decryption to protect data from unauthorized interception.

The license check code 218 may communicate with the
security domain 22 either with internal routines or via
standard 1/O routines 216 provided with the operating sys-
tem 214. If the security domain 22 1s implemented as the
external security device 22a or the external security server
22¢, then communication with the license check code 218
may occur through the I/0 ports 212. If the security domain
22 1s implemented as the white box 225, then communica-
tion with the license check code 218 may occur through
software calls.

FIG. 3 1s a flow diagram illustrating one embodiment of
a process for reducing solftware release date tampering. The
process 1includes a software application protection phase 300
where the software application 14 1s protected prior to
distribution and sale, and an authorization phase 302 where
the protected software application 20 has been installed on
the computer 202 1s imvoked for use.

During the software application protection phase 300, the
license key 10 assigned to the software application 14 and
the software release date 12 of the software application 14
are used to generate a first encryption key and a second
encryption key (block 304). In one embodiment, information
about the license 222, including the license key 10, the
soltware release date 12, the software release date range 19,
and the software application 14 may be received by the
soltware protection platiorm 8 from the software publisher
13, preferably through API 17.

In one embodiment, the first encryption key may com-
prise the security key 18 and the second encryption key may
comprise of the communication key 16. In one embodiment,
the license key 10 may comprise values from various
sources and may be at least 16 or 32 bytes in length (256
bits). In one embodiment, the security key 18 and the
communication key 16 may be in the form of a number at
least 16 bytes 1n length. This 1s 128 bit encryption, and 1s
considered suthciently diflicult to break. In the future, both
the license key 10 and the security key 18 and the commu-
nication key 16 may need to be larger, as computational
power available for breaking encryption increases.

The first encryption key 1s used to encrypt the software
application 14 to create a protected software application, and
the second encryption key 1s bundled with the protected
software application (block 306). This process creates the

protected software application 20. The information about
license 222 associated with the software application 14,
including the license key 16, 1s stored in the security domain
22 to protect the license key 10 from discovery (block 308).

US 11,748,459 B2

9

When the protected software application 1s invoked on the
computer, the license ID 220 and the software release date
12 from the software application are passed to the security
domain (block 310).

Responsive to the security domain 22 contaiming the
license 222 1dentified by the license 1D 220, it 1s determined
whether the software release date 12 1s within the software
release date range 19 associated with the license informa-
tion, and if so, the license key 10 stored in the security
domain 22 and the software release date 12 are used to
generate the first encryption key and the second encryption
key, preferably within the security domain 22 (block 312).

The second encryption key 1s used to encrypt the first
encryption key to create a protected first encryption key,
which 1s then passed from the security domain 22 to the
computer 202 (block 314).

The second encryption key bundled with the protected
software application 20 1s used to decrypt the protected first
encryption key resulting in a decrypted first encryption key,
and the decrypted first encryption 1s used to decrypt the
protected software application 20 for execution (block 316).

FIG. 4 1s a block diagram illustrating further details of a
key generation process performed during the protection
phase by the security software tool 21. The process may
begin by recewving the software application 14 to be pro-
tected from the software developer, and receiving associated
license information including the license key 10, the soft-
ware release date 12 and the license ID 220 from the
soltware developer or another source. The license key 10 1s
the underlying primary key assigned to the particular soft-
ware application 14 to be protected, and typically does not
change between copies of the same software application 14.
In one embodiment, the license key 10 may be assigned by
a key authorty.

The license key 10 1s first used to generate an unmodified
security key 402 and an unmodified communication key 406
for each portion of the software application 14 to be pro-
tected. The unmodified security key 402 may be calculated
by performing a first nonreversible mathematical operation
400 on the license key 10. Once the unmodified security key
402 1s derived, the unmodified communications key 406
may be calculated by performing a second nonreversible
mathematical operation 404 on the unmodified security key
402.

According to the exemplary embodiment, the unmodified
security key 402 1s modified by the software release date 12
through a mathematical operation 408 to generate the actual
security key 18. Similarly, the unmodified communication
key 406 1s modified by the software release date 12 to
generate the actual communication key 16. The process just
described will also be used within the security domain 22 to
generate the security key 18 and the communication key 16
the during software authorization.

By generating the security key 18 and the communication
key 16 from a non-reversible operation, 1t 1s diflicult or
impossible to determine the hidden license key 10. In the
preferred embodiment, the nonreversible mathematical
operation 404 may have a higher level of security than the
non-reversible mathematical operation 400, and therefore
uses a more complex algorithm. This 1s because 1t 1s easiest
to discover the communications key 16, since it 1s embedded
within the protected software application 20. The security
key 18 does not appear outside of the security device 22
except 1n a randomized, encrypted format, and temporarily
in an unencrypted format during the decryption of the
protected software 20. It 1s immediately discarded after use.
Thus, the security key 18 1s much more difficult to determine

10

15

20

25

30

35

40

45

50

55

60

65

10

clectronically. By making it impossible to compute the
security key 18 from the communications key 16, this
protective wall 1s maintained, and the protected software 20
remains protected.

The non-reversible mathematical operations 400 and 404
can be fairly simple to very complex. In the embodiment,
where the security domain 22 1s implemented as a security
device 22a, a fairly limited processor may be available so a
simpler algorithm may be preferred. In one embodiment, the
non-reversible mathematical operations 400 and 404 could
be a MD3 message digest algorithm. As semiconductor
technology improves, and more memory and processing
power becomes available 1n low-cost and low-power secu-
rity processors, the algorithms can be more and more
complex. Of course as algorithms become more complex,
they also become more secure. Thus, the most complex
algorithm practical within the limitations of the available
technology 1s selected for a given implementation.

Referring still to FIG. 4, once the communication key 16
and security key 18 are generated, the software tool 21
embeds the license ID 220 and the software release date 12
in the software application 14. The software tool 21 may
then encrypt the software application 14 with the security
key 18 to create the protected software application 20. At
this time, the communication key 16 may be embedded in
the protected software application 20, and the license check
code 218 1s also added 1n order to perform the key exchange
23 with the security domain 22. In one embodiment, the
license check code 218 1s added 1n various locations 1n the
protected soltware application 20 so that it will be very
difficult for hackers to find all the protected portions. Once
the software application has been protected, the license
information 222, including the license 1D 220", the license
key 10 and the software release date range 19, are stored in
the security domain. In another embodiment, the protected
solftware application 20, the communication key 16, a
license check code 218, the license ID 220 and the software
release date range 224 may be simply combined together to
form a software package, depending on the hardware con-
figuration of the intended computer.

In order to adequately maintain secrecy, it 1s important
that the communications key 16 be embedded into the
protected software application 20 1n an obscure manner. One
embodiment includes reading hardware values from regis-
ters 1naccessible from the computer’s system bus as part of
the data to compute the communications key 16. There are
many additional methods for obscuring the communications
key 16, which are known to one of ordinary skill 1n the art,
and thus will not be described herein.

After the protection phase, the protected software appli-
cation 20 1s ready for distribution and sale. In the embodi-
ment where the security domain 22 1s implemented as the
security device 22a or the external security server 22¢, the
security domain 22 may be made available for sale, either as
part of the software, or as a separate purchase. In one
embodiment, the security domain 22 may contain multiple
licenses 222 for multiple software applications.

FIG. 5 1s a block graphically 1llustrating the authorization
phase 1n further detail according to a further embodiment.
When the protected software application 20 1s mvoked on
the computer 202, the security domain 22 receives from the
computer 202 the license ID 220, the software release date
12, and 1n addition, a random number 300 (step 502). The
security domain 22 uses the license 1D 220 to find a license
within security domain 22 matching the license 1D 220 (step
504). The security domain 22 aborts or sabotages the key
exchange 23 if the corresponding license 1s not found, or 1f

US 11,748,459 B2

11

the license 222 1s found, if the software release date 12 1s not
within the licensing date range 224 specified by license 222
(step 506).

Similar to the protection phase, the license key 10 1s then
used to generate the unmodified security key 402 and the
unmodified communication key 406 (step 508). The security
domain 22 modifies, as in the protection phase, the unmodi-
fied security key 402 and/or the unmodified communication
key 406 using the software release date 12 to derive copies
of the actual security key 18' and actual communication key
16' (steps 510 and 512).

The security domain 22 may alter the security key 18 in
an reversible way, such as performing an exclusive-OR
operation (XOR) of the secunity key 18 with the random
number 500, to obtain an XORed security key 516 (step
514). The present invention uses the random number 500 to
provide another level of security 1n hiding the security key
18 generated by the security domain 22. The security
domain 22 then encrypts the XORed security key 516 with
the communication key 16' to create an encrypted XORed
security key 520 (block 518). Finally, the security domain 22
sends a response containing the encrypted XORed security
key 520 back to license check code 218 (block 522).
Because the security key 18 1s randomized using the random
number 500, the response 1s diflerent each time, and thus the
security domain 22 cannot be replaced by a simple circuit
that generates the same response each time.

Once the encrypted XORed security key 520 1s received
by the license check code 218, the license check code 218
decrypts the encrypted XORed security key 520 using the
communication key 16 embedded in the protected software
application 20 to obtain the XORed security key 516 (step
524). License check code 218 reverses the eflects of the
random number by performing an exclusive-OR operation
(XOR) of the XORed security key 516 with the random
number 300 to obtain a copy of the security key 18 (step
526). The security key 18 1s then used to decrypt the
protected soitware code 36 (step 528) to allow the decrypted
software code 38 to execute correctly (step 530). In an
alternative embodiment, the security key 18 could be used
instead 1n computations critical to running the decrypted
software code 38.

According to the exemplary embodiments, the security
key 18 1s never stored with the protected software applica-
tion 20. Rather security key 18 1s generated dynamically
from the security domain response, used (in step 528) and
discarded. Thus, the security key 18 1s not available for
discovery by memory dumps or expansion bus transaction
analyzers.

And because the securnity key 18 1s modified by the
soltware release date 12, any attempt by hackers to modily
the software release date 12 will result 1n a failed key
exchange, and the software application will not run. Thus,
the exemplary embodiments prevent or reduce tampering of
the software release date associated with a software license.

FIG. 6 1s a diagram 1llustrating an example API call using
the API 17 shown in FIG. 1. Typically, the API call would
be invoked 1n response to a commercial transaction between
the software publisher 13 and a customer for future use of
the software application 14/20. The API call 600 may be
invoked by the software publisher 13 to change the release
date or range limits to new dates of an existing license. The
main intent of the API call 600 may also allow software
publisher 13 to change the license type of the existing
license.

In one embodiment, the API call 600 can be used to add
release date limits to an existing license. In one example

10

15

20

25

30

35

40

45

50

55

60

65

12

embodiment, the API call 600 may be referred to a “setRe-
leaseLimitLicenseParameters() call, which 1s invoked to
change the limits on a license, and basically transforming the
license 1nto a release limited license.

The setReleaseLimitLicenseParameters call may include
at a minimum a sessionlD, a licenselD and a Releasel.Lim-
itL.icenseParameters argument, which includes release date
limits parameters. The sessionld 1s the session ID or session
token or other piece of data used 1n network communica-
tions (oiten over HI'TP) to identify a session or series of
message exchanges obtained through the login authentica-
tion process. In one embodiment, the licenselD corresponds
to the license ID 220 and 1s an 1dentifier of the license 222
to be modified.

The ReleaseLimitLicenseParameters argument defines
date limit values to use for the license using the Release-
limitlicenseParameters. The releaselimitlicenseParameters
allows the publisher to define the new software release date
range limits. In one embodiment, the releaselimitlicensePa-
rameters defines a pair of date limit values that match the
release date information placed in the publisher’s executable
version ol the protected software application 20 (i.e., the
protected binary). The pair of date limit values may be
implemented as a release start date field and a release end
date field. The release start date defines the earliest dated
binary that the license will authorize, while the release end
date defines a latest dated binary that the license will
authorize.

When depositing a new license or adding limits to an
existing license, at least one of the date strings must specity
a valid date, and if both limits are specified, then the release
start date must not be after the release end date. When
moditying the existing limits on the license, 11 either string
1s empty, the corresponding limit from the license 1is
removed. If both limits are specified, then the release start
date must not be aiter the release end date. The publisher 13
may remove any current release limits by providing the
releasedatelimitParameters with empty date strings. That 1s,
if both strings are empty, both limits are removed from the
license. In one embodiment, specitying these limit dates 1s
not equivalent to depositing a time to license that expires on
a fixed date.

At runtime of the protected software 20, the security
domain 22 may compare the software release date 12
embedded 1n the protected software application 20 to the
values defined 1 the release start date field and the release
end date field at runtime. In another embodiment, these date
limits may be enforced by comparing the date limits to the
solftware release date 12 within the protected software
application 20 1tsellf.

A method and system for reducing tampering with a
software release day has been disclosed by incorporating the
software release date into a key exchange protocol. The
present invention has been described 1n accordance with the
embodiments shown, and there could be variations to the
embodiments, and any variations would be within the spirit
and scope of the present invention. For example, the exem-
plary embodiment can be implemented using hardware,
soltware, a computer readable medium containing program
instructions, or a combination thereol. Accordingly, many
modifications may be made by one of ordinary skill in the art

without departing from the spirit and scope of the appended
claims.

We claim:

1. A computer-implemented method for reducing tamper-
ing ol a software release date associated with a version of a
software application, comprising:

US 11,748,459 B2

13

using a license key associated with a license for the

version of the software application and the software
release date of the version of the software application
to generate a first encryption key and a second encryp-
tion key, wherein the software release date for the
version of the software application 1s a single date
indicating when the version of the software application
was released by a software publisher to the public,
wherein versions of the software application are dif-
ferent from each other, and wherein the versions of the
soltware application have different software release
dates;

embedding a license 1D and the software release date in

the version of the soitware application;

using the first encryption key to encrypt the version of the

soltware application to create a protected software
application, and bundling the second encryption key
with the protected soitware application; and

storing, 1n a security domain, information associated with

the version of the software application to protect the
license information from discovery, the information
including the license ID, the license key, and a date
range that refers to a time period that encompasses the
soltware application release, wherein the security
domain 1ncludes a first computer having a memory and
a processor, the memory containing program instruc-
tions, which when executed by the processor, the
program 1instructions are configured to reduce tamper-
ing of a software release date associated with a sofit-
ware application; and

upon 1nvocation of the protected software application on

a second computer, implementing an encryption key

exchange between the protected software application

and the security domain by:

passing the license ID and the software release date
from the protected software application to the secu-
rity domain;

responsive to the security domain containing the
license information identified by the license ID,
determiming whether the soltware release date
passed from the protected soiftware application 1s
within the date range stored 1n the security domain;

aborting the encryption key exchange 1f the license
information 1s not found 1n the security domain or 1t
the software release date passed from the protected
software application 1s not within the date range
stored 1n the security domain;

if the software release date passed from the protected
software 1f the software release date passed from the
protected solftware application 1s within the date
range stored in the security domain, using the license
key stored 1n the security domain and the software
release date passed to the security domain to gener-
ate the first encryption key and the second encryption
key;

encrypting the first encryption key with the second
encryption key to create a protected first encryption
key, and passing the protected first encryption key to
the second computer;

using the second encryption key bundled with the
protected soltware application to decrypt the pro-
tected first encryption key resulting 1in a decrypted
first encryption key; and

using the first encryption key to decrypt the protected
software application for execution, such that
attempted modification of the software release date

10

15

20

25

30

35

40

45

50

55

60

65

14

passed to the security domain results in failed
decryption of the protected software application.

2. The computer-implemented method of claim 1, further
comprising: representing the date range as at least one: 1) a
start date and an end date when use of the software ends, and
11) a single date and a length of time.

3. The computer-implemented method of claim 1,
wherein the security domain comprises a soltware protection
platform, the method further comprising:

recerving, by the software protection platiform, the date

range from the publisher of the software application
through an application programming interface (API) to
allow the publisher to replace or add the date range of
a license, wherein the date range comprises a start date
and an end date or a date and a length of time; and
storing, by the soiftware protection platform, the date
range 1n the security domain to enable the security
domain to validate use of the protected software appli-
cation once the security domain receives the software
release date from the protected software application.
4. The computer-implemented method of claim 1,
wherein the first encryption key comprises a security key
and the second encryption key comprises a communication
key.
5. The computer-implemented method of claim 4,
wherein using the license key to generate the security key
and the communication key further comprises:
using the license key to generate an unmodified security
key and an unmodified communication key for each
portion of the software application to be protected;

moditying the unmodified security key with the software
release date through a first mathematical operation to
generate the security key; and

moditying the unmodified communication key with the

soltware release date through a second mathematical
operation to generate the communication key.

6. The computer-implemented method of claim 5, further
comprising;

calculating the unmodified security key by performing a

first nonreversible mathematical operation on the
license key; and

calculating the unmodified communication key by per-

forming a second nonreversible mathematical opera-
tion on the unmodified security key.

7. The computer-implemented method of claim 3, further
comprising;

once the security key and the communication key are

generated,
encrypting the software application with the security key
to create the protected software application;

embedding the communication key within the protected
soltware application and adding license check code to
perform the encryption key exchange with the security
domain; and

storing the license information, including the license 1D,

the license key and the date range, in the security
domain.

8. The computer-implemented method of claim 1,
wherein upon invocation of the software application on the
second computer, passing a license ID and the software
release date from the software application to the security
domain, further comprises:

using the license 1D, by the security domain, to find a

license within the security domain matching the license
ID.

9. The computer-implemented method of claim 8,

wherein using the license key stored 1n the security domain

US 11,748,459 B2

15

and the software release date to generate the first encryption
key and the second encryption key, further comprises:
using the license key to generate an unmodified security
key and an unmodified communication key for each
portion of the software application to be protected;
modilying the unmodified security key with the software
release date through a first mathematical operation to
generate the security key; and
modifying the unmodified commumication key with the
soltware release date through a second mathematical
operation to generate the communication key.

10. The computer-implemented method of claim 8, fur-
ther comprising:

altering the security key by performing an exclusive-OR

operation (XOR) of the security key with a random
number recerved from the software application to
obtain an XORed security key;

encrypting the XORed security key with the communi-

cation key to create an encrypted XORed secunity key;
and

sending a response containing the encrypted XORed

security key back to the software application.

11. The computer-implemented method of claim 10, fur-
ther comprising:

receiving the encrypted XORed security key by the soft-

ware application, and decrypting the encrypted XORed
security key using the communication key embedded in
the software application to obtain the XORed security
key:

reversing eflects of the random number by performing an

exclusive-OR operation of the XORed security key
with the random number to obtain a copy of the security
key; and

using the security key to decrypt protected software code

to allow the decrypted software code to execute cor-
rectly.

12. A non-transitory computer-readable medium contain-
ing program instructions, which when executed by a pro-
cessor the program instructions are configured for reducing
tampering of a software release date associated with a
version of a software application, comprising:

using a license key associated with a license for the

version of the software application and the software
release date of the version of the software application
to generate a first encryption key and a second encryp-
tion key, wherein the software release date for the
version of the software application i1s a single date
indicating when the version of the software application
was released by a software publisher to the public,
wherein versions of the software application are dif-
ferent from each other, and wherein the versions of the
soltware application have different software release
dates:

embedding a license ID and the software release date in

the version of the software application;

using the first encryption key to encrypt the version of the

soltware application to create a protected soiftware
application, and bundling the second encryption key
with the protected software application;

storing, 1 a security domain, license mformation associ-

ated with the version of the soiftware application, to
protect the license information from discovery, the
license information including the license 1D, the license
key, and a date range that refers to a time period that
encompasses the soltware application release, wherein
the security domain includes a first computer having a
memory and a processor, the memory containing pro-

10

15

20

25

30

35

40

45

50

55

60

65

16

gram 1nstructions, which when executed by the proces-
sor, the program 1nstructions are configured to reduce
tampering of a software release date associated with a
software application; and

upon 1nvocation of the software application on a second

computer, implementing an encryption key exchange

between the protected software application and the

security domain by:

passing the license ID and the software release date
from the protected software application to the secu-
rity domain;

responsive to the security domain containing the
license information i1dentified by the license 1D,
determining whether the software release date
passed from the protected soiftware application 1s
within the date range stored in the security domain;

aborting the encryption key exchange if the license
information 1s not found 1n the security domain or 1t
the software release date passed from the protected
soltware application 1s not within the date range
stored 1n the security domain;

if the software release date passed from the protected
soltware application 1s within the date range stored
in the security domain, using the license key stored
in the security domain and the soitware release date
passed to the security domain to generate the {first
encryption key and the second encryption key;

encrypting the first encryption key with the second
encryption key to create a protected first encryption
key, and passing the protected first encryption key to
the second computer;

using the second encryption key bundled with the
protected soltware application to decrypt the pro-
tected first encryption key resulting 1n a decrypted
first encryption key; and

using the first encryption key to decrypt the protected
solftware application for execution, such that
attempted modification of the software release date
passed to the security domain results in failed
decryption of the protected software application.

13. The non-transitory computer-readable medium of
claam 12, further comprising: representing the software
release date as at least one of: 1) a start date and an end date,
and 11) a single date and a length of time.

14. The non-transitory computer-readable medium of
claim 13, wherein the security domain comprises a software
protection platform; and further comprising:

recerving, by the software protection platiform, the date

range from the publisher of the software application
through an application programming interface (API) to
allow the publisher to replace or add the date range,
wherein the date range comprises a start date and an
end date or a date and a length of time; and

storing, by the soiftware protection platform, the date

range 1n the security domain to enable the security
domain to validate use of the protected software appli-
cation once the security domain receives the software
release date from the protected software application.

15. The non-transitory computer-readable medium of
claam 12, wheremn the first encryption key comprises a
security key and the second encryption key comprises a
communication key.

16. The non-transitory computer-readable medium of
claam 15, wherein using the license key to generate the
security key and the communication key further comprises:

US 11,748,459 B2

17

using the license key to generate an unmodified security
key and an unmodified communication key for each
portion of the soiftware application to be protected;

moditying the unmodified security key with the software
release date through a first mathematical operation to
generate the security key; and

modilying the unmodified commumication key with the

soltware release date through a second mathematical
operation to generate the communication key.

17. The non-transitory computer-readable medium of
claim 16, further comprising:

calculating the unmodified security key by performing a

first nonreversible mathematical operation on the
license key; and

calculating the unmodified communication key by per-

forming a second nonreversible mathematical opera-
tion on the unmodified security key.

18. The non-transitory computer-readable medium of
claim 16, further comprising:

once the security key and the communication key are

generated;

encrypting the version of the software application with the

security key to create the protected software applica-
tion;
embedding the communication key within the protected
software application and adding license check code to
perform a key exchange with the security domain; and

storing the license information, including the license 1D,
the license key and the date range, in the security
domain.

19. The non-transitory computer-readable medium of
claim 12, wherein upon invocation of the software applica-
tion on the second computer, passing a license ID and the
soltware release date from the software application to the
security domain, further comprises:

using the license ID, by the security domain, to find a

license within the security domain matching the license
ID.
20. The non-transitory computer-readable medium of
claim 19, wherein using the license key stored 1n the security
domain and the software release date to generate the first
encryption key and the second encryption key, further com-
Prises:
using the license key to generate an unmodified security
key and an unmodified communication key for each
portion of the software application to be protected;

modilying the unmodified security key with the software
release date through a first mathematical operation to
generate the security key; and

modilying the unmodified commumication key with the

soltware release date through a second mathematical
operation to generate the communication key.

21. The non-transitory computer-readable medium of
claim 19, further comprising:

altering the security key by performing an exclusive-OR

operation (XOR) of the security key with a random
number recerved from the software application to
obtain an XORed security key;

encrypting the XORed security key with the communi-

cation key to create an encrypted XORed secunity key;
and

sending a response containing the encrypted XORed

security key back to the software application.

22. The non-transitory computer-readable medium of
claim 21, further comprising:

receiving the encrypted XORed security key by the soft-

ware application, and decrypting the encrypted XORed

5

10

15

20

25

30

35

40

45

50

55

60

65

18

security key using the communication key embedded in
the software application to obtain the XORed security
key:
reversing eflfects of the random number by performing an
exclusive-OR operation of the XORed security key
with the random number to obtain a copy of the security
key; and
using the security key to decrypt protected soiftware code
to allow the decrypted software code to execute cor-
rectly.
23. A security domain, comprising;
a first computer having a memory and a processor, the
memory containing program instructions, which when
executed by the processor the program instructions are
configured to reduce tampering of a software release
date associated with a software application, by:
recerving and storing information associated with the
soltware application to protect the information from
discovery, the mnformation including a license ID, a
license key, and a date range that refers to a time period
that encompasses the software application release,
wherein the software program 1s remotely protected by:
using a license key associated with a license for the
soltware application and the software release date of
the software application to generate a first encryption
key and a second encryption key, wherein the soft-
ware release date for the software application 1s a
single date indicating when the software application
was released by a software publisher to the public;

embedding a license ID and the software release date 1n
the software application; and

using the first encryption key to encrypt the software
application to create a protected soltware applica-
tion, and bundling the second encryption key with
the protected software application;
upon invocation of the protected software application on
a second computer, recerving the license ID and the
soltware release date from the protected software appli-
cation during the encryption key exchange between the
protected software application and the security domain;
and
completing, by the security domain, the encryption key
exchange by:
responsive to the security domain containing the
license information i1dentified by the license ID,
determining whether the software release date
passed from the protected solftware application 1is
within the date range stored 1n the security domain;

aborting the encryption key exchange if the license
information 1s not found 1n the security domain or 1t
the software release date passed from the protected
software application 1s not within the date range
stored 1n the security domain;

if the software release date passed from the protected
soltware application 1s 1f the software release date
passed from the protected soiftware application 1s
within the date range stored 1n the security domain,
using the license key stored 1n the security domain
and the software release date passed to the security
domain to generate the first encryption key and the
second encryption key; and

encrypting the first encryption key with the second
encryption key to create a protected first encryption
key, and passing the protected first encryption key to
the second computer, such that on the second com-
puter the second encryption key bundled with the
protected software application 1s used to decrypt the

US 11,748,459 B2
19 20

protected first encryption key resulting in a
decrypted first encryption key, and the first encryp-
tion key 1s used to decrypt the protected software
application for execution, such that attempted modi-
fication of the software release date passed to the 5

security domain results 1n failed decryption of the
protected software application.

¥ ¥ e ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

