12 United States Patent

Cooper et al.

US011748309B2

(10) Patent No.: US 11,748,309 B2
45) Date of Patent: *Sep. 5, 2023

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(65)

(63)

SYSTEM AND METHOD FOR
ERROR-RESILIENT DATA REDUCTION

Applicant: AtomBeam Technologies Inc., Moraga,
CA (US)

Inventors: Joshua Cooper, Columbia, SC (US);
Aliasghar Riahi, Orinda, CA (US);
Mojgan Haddad, Orinda, CA (US);
Ryan Kourosh Riahi, Orinda, CA
(US); Razmin Riahi, Orinda, CA (US);
Charles Yeomans, Orinda, CA (US)

Assignee: ATOMBEAM TECHNOLOGIES
INC., Moraga, CA (US)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent 1s subject to a terminal dis-
claimer.

Appl. No.: 18/078,907

Filed: Dec. 9, 2022

Prior Publication Data

US 2023/0177013 Al Jun. 8, 2023

Related U.S. Application Data

Continuation of application No. 17/233,813, filed on
Apr. 19, 2021, now Pat. No. 11,550,756, which 1s a
continuation-in-part ol application No. 17/180,439,
filed on Feb. 19, 2021, now Pat. No. 11,366,790,
which 1s a continuation-in-part of application No.
16/923,039, filed on Jul. 7, 2020, now Pat. No.
11,232,076, which 1s a continuation-in-part of
application No. 16/716,098, filed on Dec. 16, 2019,

now Pat. No. 10,706,018, said application No.
16/716,098 1s a continuation of application No.

(Continued)
(51) Int. CIL
GO6F 16/174 (2019.01)
GO6L 3/06 (2006.01)
(52) U.S. CL
CPC GO6I' 16/1752 (2019.01); GO6F 3/067

(2013.01); GO6F 3/0608 (2013.01); GO6F
3/0641 (2013.01)

(358) Field of Classification Search
None

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,850,482 A 12/1998 Meany et al.
8,453,040 B2 5/2013 Henderson, Jr. et al.

(Continued)
Primary Examiner — Michael Alsip

(74) Attorney, Agent, or Firm — Galvin Patent Law LLC;
Brian R. Galvin

(57) ABSTRACT

A system and method for error-resilient data reduction,
utilizing a phase detector, a data requestor, a multi-phase
trainer, a reconstruction engine, a deconstruction engine, and
one or more reference codebooks. A multi-phase trainer may
be used to train the reconstruction and deconstruction
engines on various phase sourceblocks in order recover
quickly from corrupted data files that cause the phase
alignment of the sourceblocks to become out of phase. A
phase detector may determine when the sourceblocks get out
of phase and when the return to in-phase by checking if a
predetermined threshold probability of correct encoding 1s
met. Data requestor may request for retransmission only the
data that was received out of phase.

8 Claims, 39 Drawing Sheets

- data
107 L retrieval 108
request 5
o TTTBas ST
—.fncoming__, | Deconstruction Warplet Reconstruction Le....OU90Ng_
101 2V i F- T e
reference
102 thunkdets | E;i';’g:e 06 rodes Chunklets
ri _____ e e e o e e e e t____L_

Chunklet

Library
Lookup
Table

Library Manager

Chunkiet

Library
Storage

105

US 11,748,309 B2
Page 2

Related U.S. Application Data

16/455,655, filed on Jun. 27, 2019, now Pat. No.
10,509,771, which 1s a continuation-in-part of appli-
cation No. 16/200,466, filed on Nov. 26, 2018, now

Pat. No. 10,476,519, which i1s a continuation-in-part
of application No. 15/975,741, filed on May 9, 2018,
now Pat. No. 10,303,391.

(60) Provisional application No. 63/140,111, filed on Jan.
21, 2021, provisional application No. 63/027,166,
filed on May 19, 2020, provisional application No.
62/926,723, filed on Oct. 28, 2019, provisional
application No. 62/578,824, filed on Oct. 30, 2017.

(56) References Cited
U.S. PATENT DOCUMENTS

9,397,706 Bl 7/2016 Stemner et al.
10,255,315 B2 4/2019 Kalevo et al.
11,003,533 B2 5/2021 Zhang et al.

2019/0220356 Al 7/2019 Zhang et al.

0 B
2 GOL |
™ N\
L
< a|ge| 001
= obe.0]1g
- Aeiqin anXooT] /NS
% SpB{UNUN Aeiqr]
- 19 IPoPuUNYyD
€01l

? SRS 2SS AU [N
- _ |
r _ |

“ labeue Aeiqi |“

S oy S [
m . _,ﬂm_xc:co 8oUBIB18) 90UR.0]9) sPpunyd 5.
v . 1 ¥ __ L 01
3 SN T T by] _ _ oV,
A e1ep _ Ibu3 | obeio1s auibu3 _ Blep

“~ Buiobino | UORONASUODSY 1810/ uononisuodaq |+ bulwosur~
L o e e e . — — -

S — H |
1Sonbal
801
lenslilol
o HBF

U.S. Patent

US 11,748,309 B2

Sheet 2 of 39

Sep. 5, 2023

U.S. Patent

obe.ols _
01 10 lojealn
sljo|diem | jo|diem

Olc

_ 80¢ 0c
N\ /NS
l9ziwido
Jabeuew
oZIS
Aleiql| woJ) ul .
19|4oNY2D

SBpP0D 89UsI8)o.

(leuondo)
ayoen

1opunyd

woJ) Indul

90¢

G0c

£0c¢

auIbu3 uoI19NJ1SU029(] ele(

s

Jebeuew
AJeiqi| o}
1NO S19[HuUNyd

lo)ealn

19uUNYD

lozAeuy
eleq

L0¢

AR

¢c0¢

VoV,

elep
Puiwooul

US 11,748,309 B2

Sheet 3 of 39

Sep. 5, 2023

U.S. Patent

60¢

‘_O%

<«—— 0]]1N0O
BlEp

/08 90¢ ¢ ‘014
A ﬁ A
Jlobeuew
"N labeuew Aieiqi|
BIqI| WO}
0] 1IN0 S8P0D 92uUaId)al
Ul S19Munys
10€E
I R | /NS
80¢ vOE | GOt
| oV
_
Ja|quIasSsy JONOUIOK _ abe.ols
Ble(Sid/em _ WoJ) Ul
i | s)o|diem
_
€0 |
_
_
JONIDO0Y _
1sonbay eleq |
| 00€
“ N\
auIbu3 uoI110NJISU0D3Y Ble(_
¢0¢€
}senbas s
1ETEINEY
Blep

@\
- _ L LY i "bi-
Glv |

s e el v W | -
¥ Areiq }JouUNyd puB 40)oNJISU0ISP M
<4 WO} Ul m_N__wm__ 51981 dn%oO| B1ep 0] 1O AJeiqj| 0} N0 S}EPIUNYD o
- s1epunyd - WwoheEep . 80V
2 e e A I TR MRS — ——— — - l._m\ \/\\
- , ©lge)

! Olv 10lEJBUDY) | dny)oo)

" | spog douadPeY | ' o1ino

“ paziwdQo “ SOp0D
oA ey 90U}l
m “ m hov/\ 1SIXO J0U " ‘

_ _
M “ IEYEIEY ouIbU3 SO |
= ' 1OpIUNYS dn)007 8p0D _
e _ 90US.9JoYH GOV _ 14017

“ Y, A
e “ m%_._mm ; S1SIXS _ o|ge]
S d | 0] 9)"[o]o]
S ! 1eIuNyo _ 190)
P °POJ LUIOJ} Ul
: _ 90UdJoJoH |
g
WD |

“ jobeuey Aeigq -

8lLY bl 210)7
N /NS A~ N
m ‘_o“os.:mcoom/‘_x J0}ONJISU0d3) 10]9N41SU028D -/
1 JO}ONJISUOD3P

)= Blep 0} INO eiep wolj ul W04} Ul S}IOUNYD
v 510104 0} 1N0 S9P03 007
- sjopjunyo SOP09 99UBI9) oUBIo: O
% _ «
-

0LS 605

°ldel

US 11,748,309 B2

abe.ol1s dnyoo]
ey | | jopunys

A

s LV __ SN

Te _ \

3 | _

— _

7. | |
_ labeue AeiqiT |“

~

~

«

< L LG R A Y

L ere U\/\ _ auIbu3

“—BuioBno—— UOI1ONJISUODSBY

- _. Bleg

— S e

P

~

<

~F

S” Z UoI1eo0T

-

oG b0G G b4

°|deL

abe.0]g dnx o0
1I9{UnynH lopjunyn

labeue Aeiqi R
¢0S
|||||||| /N 10S
suilbug | eep /N
uononiisuodaq ™ gujwoour ™
__ERd_
00S
N\
| UOIJBD0T]

U.S. Patent Sep. 5, 2023 Sheet 6 of 39 US 11,748,309 B2

I
Firmware

| |
| |
|
: Standardized Deconstruction/ |
| Chunklet Reconstruction |
| Library Algorithms :
|
| |
| |

<——|nputs Processor Outputs—
\ % I
606 605 607

|

|

|

|

|

On-chip Memory :
|

_I

FIg. 6 600

US 11,748,309 B2

Sheet 7 of 39

Sep. 5, 2023

U.S. Patent

0L

O0OO0LOF FL 00 1O

POLISAUOY) SE Ble(]

0/

1000 0000 0000 0001}
0000 0000 [100 0000
0010 0000 0000 0000

L1
Ol
10
00

300|g eleq 9po) "Joy

$)00|g ejeq 0 Aleigin

0L

/DI

10.

0010 0000 0000 0000
1000 0000 0000 000}
1000 0000 0000 000}
0000 0000 LLEE 0000

0010 0000 0000 0000
0000 0000 I100 0000

DOAISOSY SE Ble(]

U.S. Patent Sep. 5, 2023 Sheet 8 of 39 US 11,748,309 B2

Storing Data

802 Deconstruct data into chunklets
3073 Pass chunklets to library management module

Receive reference codes from library

804 management module

805
806 Store warplets

Fig. 8 80§

U.S. Patent Sep. 5, 2023 Sheet 9 of 39 US 11,748,309 B2

Retrieving Data

901 Receive request for data

902 Retrieve warplets

Pass reference codes to library
903 management module

/2/ Receive chunklets from library
904 management module

905/2/ Assemble chunklets into original data

906 Send data out to requestor

Fig.9 90§

U.S. Patent Sep. 5, 2023 Sheet 10 of 39 US 11,748,309 B2

Encoding Data
Recelve chunklets from
1001 deconstruction engine

Check library 10
existing
chunklets

1002

Chunklet does
not exist

Create new reference code for Chu.nklet
1 003 Chunk'et eX|StS
1002 | | store chunklet and reference code

100@ Return referepce coqe to
deconstruction engine

-

Fig. 10 100

U.S. Patent Sep. 5, 2023 Sheet 11 of 39 US 11,748,309 B2

Decoding Data

Recelve reference code from
110 reconstruction engine

1102 Obtain chunklet from library

Return chunklet to reconstruction

1103 .
engine

Fig. 11 1100

US 11,748,309 B2

Sheet 12 of 39

Sep. 5, 2023

U.S. Patent

TUOS . aq EE— DoNwISTE)

__ wﬁﬁm 138 mﬁ
AT PN IO POIOIS

3.7 ARIIIIIIIIINNTIVVEIIIIIIIIIIIY - -3

++

r .
+++

I07RIoUDS

ATeq

$19S BJep

o PR RN NI NI,

Jurure.y,

..

US 11,748,309 B2

Sheet 13 of 39

Sep. 5, 2023

U.S. Patent

+++

................................

+++++++++++++++++++++++++++++++++++++

01 md EO

e] "8

++

Mﬁwﬁ_&.ﬁﬁ
IOYEALD

JIADOTUD] N———
w | .. s v3vd 3% 1LE%0% +t.,
S e v v W

Ocl

111

Nomﬁfx R G351

“d Asuenboiy

— Smﬂ
00€T
JOJeIdUdS ATeIqI PazIuoisn))

..........................

US 11,748,309 B2

Sheet 14 of 39

Sep. 5, 2023

U.S. Patent

AT

T

-
L]
r
1
L] .
. L]
- .
L

%
o
o

ryzvamddo |
TIOURIR] |

 aan

-
-r.

-

-

-r.

i

I..—- Il}-_ -
L+ .

- .

-)
o .-.1‘. .

-r PP

-F.

-r.

-r

-

o

COPT

1061 707 T

MWMWM:Q 3 |
54 Mfmm

. 00¥1
1ozrumdo Areiqry

¥1 81

1OV

d AIUATLL]

US 11,748,309 B2

Sheet 15 of 39

Sep. 5, 2023

U.S. Patent

+++++

+++

ﬁ

R ."r-"r-"r-"r-"r-"r-"r-_?"r-"r-"r-"r-‘?-"r-.

%Hmu&i

llllllllllllllllllllll

e '-.-:z-:a-:z-:z-:-.-:-.-:-j- j'-.-:s'-.-:-.-:-.-:v:-.-_' .

w&ﬁﬁhﬂ&

PUGAH

++

10 PaIo)s

O O o o o o ol

oot ~ 1061

I9POJ9P/I9POIUS UOISSTWISURIT,

poyIwIsue.)

9q 01 eyR(] |

U.S. Patent Sep. 5, 2023 Sheet 16 of 39 US 11,748,309 B2

|||

+++++

{omstract g ward hm Ty using Hulthman

.\"

codewords paired {o words from the
dataset received

L L L L L L L L L L "'H'u"'H'u"'L"u"'u"'H'u"'H'u'ﬂ'ﬁ'ﬂ'ﬂ"u"ﬂ"'H'u"'H'L"L"u"'u"'H'u"'H'u"'H'u"'H'u"'H'u'ﬂ'ﬁ'ﬂ'ﬂ"u"ﬂ"'H'u"'u"u"'u"u"u"ﬂHH"HHH‘H‘H‘H‘H"EH"EH‘H‘H‘H‘H‘H‘H"';

...

.,;..u-. ;

{w._{‘sm ware words in s .x._ui*:sf“ equent dataset to

a word Hbrary

: "'n."'n."'n."'n."'n."'n."'n."'n."'n."'n."'n."'n."'n."'n."'n."'n."'n."'n.""."'n."'n."'n."'n."'n."'n."'n."'n.""."'n."'n."'n."'n."'n."'n."'n."'n."'n."'n."'n."'n."'n."'n."h."'n."'n."'n."'n."'n."'n."'n."'n.""."'n."'n."'n."'n."'n."'n."'n."'n."'n.'ﬂ'ﬂ'ﬂ'ﬂ'ﬂ'ﬂ'ﬂ'ﬂ'ﬂ'\'\"ﬂ'ﬂ'ﬂ'ﬂ'ﬂ'ﬂ'ﬂ'ﬂ'ﬂ'ﬂ'ﬂ'ﬂ"ﬂ B o o o e

""I ransmitting or store e oded datastream

: '-:~:-.'~.'-:-.'-:-:-.'-:-:-.'-.'-:-:-:~:-.'-.'-:-.'-.'-:-.'-:-:-.'-.'-:-.'-:-:-.'-:-:-.'-.'-:-.'-:-:-.'-.'-:-.'-.'-:-.'-:-:-.'-.'-:-.'-:-:-.'-.'-:-.'-.'-:-.xxxxxxxxxxxxxxxxxxxxxxx i R NSRS S

| Compare codewords in a subsequent dataset
3w z*"d library

R N N N O O NN R R s

Transmitting or Siiffﬁr"mg unencoded datast I““i‘“‘iﬁi

"u."h

U.S. Patent Sep. 5, 2023 Sheet 17 of 39 US 11,748,309 B2

1701

""""" Create secondary Hulfman
.. bingry free

11

11

“Cre -ating key-value pairs of words and
KO0 ﬂ}}dﬁf‘? Huffman co s for war
§§ Eig a{fﬁ"%"

e s e e e e e e "5"5"5"!'.5!-E"!."‘Qﬁ"i"h"-:.'!."!.'!."-."'Q-..'E'-."'l."l."l."h"-?lh"-."l."'-."'-."'l."-."-."l."-."-."l."'l.."'l.."l.WH‘-H%"%""u."'w.."'\.""u.""u.""u.""u."'w.""u111‘%‘%‘%‘%1‘%‘%‘%‘%1‘%1‘%‘%1‘%‘%1‘%""u

03

: mmmmmxxmxxxxxxxxxxmm

.....................

"@iﬁ"ﬁ"ﬁ'ﬁ% T '-;-;-;-;-.'-. "'l."'-."'-."'l.'\"i‘i‘i‘!h"'-.."'-."'-.."'\"'\"'\H‘\\'\'ﬂ'ﬂ'ﬂ'ﬂ'\'\'ﬁ'\"i‘u‘iﬂ'ﬂ'ﬂ'\'ﬂ\ :

give mistnatched words from
fransmission encoder, that were not
encoded properly with fiest Hullan tree

L l_"'-."h."h."h.Hh."'-."h."h."h:h."h."'~."'~."'~."'~."'~."h."hh"h.‘h."h."h."h."ﬂ"*u"'-th‘h."h."h."h."'h."'h."'h.""n."'h."'~.‘*2'-."\."\"h."'ﬁ"u.‘h.‘h.w""H\'*h‘h"'H'm‘a‘a’*&ﬁ%‘ﬁ*ﬁ*&%‘a‘a‘ﬁ‘h‘a‘a‘a T T T b b :

\'ﬁ;}‘h\"'u""u"h.“'\""\.“'\.“h"ﬂ"ﬂ‘H‘\mﬂHHHHHHHHHHHHH‘%H&H&EEEE

R
M :
§‘~*~1‘ sing musmatched
"'-'“""'ﬁ'- 'Iu'-..*. m,:.. "‘h " ’3 P, W ‘-*H bty t T:;ii: .}*‘ .p-.:.l,l *}mﬂ.ii ”:
COVTeSRONEINE 0 new code

.

|||||||||||||||||||||||||||||||||||||||

\w, N
Return codewords to fransnission snecodet

..

'n'-.'-:-,x'm-,%.\\‘t:u.'n.xx'~:-,*-,*-:-:v-,'n.x'u.'n:u:n.'n.x'a.'a.*-.*mzm.h:n'~:~:~.*u.\.*n.*u.\.\.‘-:a..*u.*n.h:n.*n:u:n.a.a:n.a.m:a.xxxxxxxxxxxxxxxxxxxxxx\. xxxxx‘nmn.‘_

(o m&;‘mm S mis zziiiﬁm

A AR RSN A S R SN o

\rb .;.-_\; et
{a {..,. i

"-i-.‘4:4-:4.i&i&*&,ﬁ‘f&iﬁﬁﬁi&i&i&i&iﬁﬁﬁ' %:

*s §z $131

...................................

llllllllllllllllllll

Heturn word assoctated with mismatched
codeword to ransmission encoder 4

b b L b b b

..l‘

Fig. 17

US 11,748,309 B2

Sheet 18 of 39

Sep. 5, 2023

U.S. Patent

00 10 00

a

PI1I2AUON) SB BIB(]

0001 O IT 00 1O

G131

PI1IdAUON) SB BIR(]

I

01

OT T1 [0
00 10 00
SYO0T¢l BIR(] 2poN) JoY

G681
SOOI BIB(T JO AIRIQIT PUOIIQ

0000 0000 TTT1 0000 Il

1000 0000 0000 0001 01

0000 0000 1100 0000 10

0010 0000 0000 0000 00

SYO01q BIe(] PO ‘T
0131

SYO0T{ BIe(] JO AreIqry ISIL]

31 SL]

0001 01 1100 10

0681

POAIINY SB BIR(]

0010 0000 0000 0000
1000 0000 0000 0001
1000 0000 0000 0001
0000 0000 [T11 0000
0010 0000 0000 0000
0000 0000 1100 0000

G081

POATIOIY SB BIR(]

US 11,748,309 B2

Sheet 19 of 39

Sep. 5, 2023

U.S. Patent

801
QUISU'

UOTONIISUOIIY
Ble(]

[0}
IISRURIA ATeaqry

901
I8BI0IQ

191dIRAA

0661

103099(T (Soq) V16l

61 S

1030319(J

IOIAIIG JO Terud(]
pPaMqLISI(]

0061
Aemajen) AJLINdIsSIIgAN

601
QUILSU

UONONIISUOI(T BIB(]

Arewiouy

Blep
g TN
UIuIodu| 0]

US 11,748,309 B2

Sheet 20 of 39

Sep. 5, 2023

U.S. Patent

0906

BJEp PIPOoIIP
sINdINOo WI9)SAQ

0%06

JBIEP snofewoue Jo
JUNOWE J3Ie]

0606
BIEP 9POIIP
01 s1duIale WaISAQ

0606
Pop0o23p 2q 0}

JUds ST BIe(]

0106

SALIBIQI]
dpOO poure)
SBY WIISAQ

SOA

0G OL]

0606

Arewioue

SGRJ WIISAQ

US 11,748,309 B2

Sheet 21 of 39

Sep. 5, 2023

U.S. Patent

0916
BJEP PIPOIIP

sINAINO WAISAQ

OV 1¢G ¢Biep
1eadau jo

JUNOWE 93IeT

0E1¢ ¥Yep 2poo9p
0} s1dua)e WINSAQ

0G1¢
PIPOIIP 3q

O]} JUoa8s ST Ble(C

IPOO paure)

SBY UWIISAQ

[G "SI

0CTG6

SOA—> SOU(°[qrssod
SGRl WAISAQ

U.S. Patent Sep. 5, 2023 Sheet 22 of 39 US 11,748,309 B2

Data Analysis
Engine
2210

Warplet

Storage
106

Data Reconstruction
Engine
103

Data Deconstruction
Engine
102

Library Manager
105

Fig. 22

U.S. Patent Sep. 5, 2023 Sheet 23 of 39 US 11,748,309 B2

System has
trained code
libraries

2310

Data 1s designated
for analysis

2320

System decodes
data
2330

Decoded data 1s
searched

2540

Fig. 23

U.S. Patent

Server hosting
update

2410

1

Encoding-
decoding
system

2420

Fig. 24

Sep. 5, 2023

2460a

Network
2430

Target Device

Sheet 24 of 39

Target Device

2460b

Computer
receiving
update
2440

Encoding-
decoding
system

2450

US 11,748,309 B2

‘Target Device

2460n

U.S. Patent Sep. 5, 2023 Sheet 25 of 39 US 11,748,309 B2

Systems have
trained code
libraries

2210

Software update 1s
encoded

2020

Codebook 1s sent to
recipient

2030

Encoded update

sent to recipient

2940

data
2550

Software update

installed

20560

Fig. 25

U.S. Patent Sep. 5, 2023 Sheet 26 of 39 US 11,748,309 B2

Encoding- Encoding- Encoding-
decoding decoding decoding

system system o system

Target Device Target Device

2660b

Target Device

2060a 2660n

Encoding-
decoding
system

2020

. Computer
Server hosting p
- stallation Network receiving
2630 installation

2010

2040

Fig. 26

U.S. Patent Sep. 5, 2023 Sheet 27 of 39 US 11,748,309 B2

Systems have
trained code
libraries

2710

Installation 1s
encoded

2720

Codebook 1s sent to
recipient

2750

Encoded 1installation
sent to recipient

2740

Recipient decodes
data
2700

Software stalled

2760

Fig. 27

US 11,748,309 B2

Sheet 28 of 39

Sep. 5, 2023

U.S. Patent

8¢ SLI

g1

I9SRURTN ATRIqQr]

901
I5RI0IQ

19TdIBAA

801
QUISUT
UOT)ONLI)SUOINY
Ble(]

[01
Ble(]
uononnsuodd(J| Surwoouy

018¢

QORLIIU]

helg]

008¢

QUISUT] SSA0JY WOPURY]

US 11,748,309 B2

Sheet 29 of 39

Sep. 5, 2023

U.S. Patent

QUISUI UOT)INIISUOIAI O)
SITNSAT YOIBAS /PrAI

A|

A 4
195N 0] 0762,
<«——UOT|BULIJUOD QUISU
JILIM BIBP JILIA BIB(]

0066

g
(reuondo)

slip)-lg'

076¢C 0$66
QuLsUT] IJAINIY
JoIeag BIe(J mooﬁ_oﬁoO

-

A

_ L |N%m

0666

J0YRWInST

1

QULGUT] SS90y WOpuURy

0166

2[4EL
Aouanbaxg

>

JIAIIIDIY

A1an(y Bre(y

AI211(Y BIR(]

65 SLI

C10a1)

uJ JOOqapo)— Areiqry

C O

Ul [Blep JO
UOISIIA pojorduion)

U.S. Patent Sep. 5, 2023 Sheet 30 of 39 US 11,748,309 B2

2001 Receive a data search query containing a byte range or search string to be
read, the compacted file to be read from, and an optional location hint

Retrieve compacted file and the codebook corresponding to the compacted

300 fle

v

Estimate the location of the byte range/search string in the compacted
version using the location hint

300

Begin search of byte range/search string at esimated location by scanning
3004 the compacted version for the byte range/search string reference codes

!

Find byte range/search string reference codes and send reterence codes to

300 deconstruction engine to transform compacted data into original data
300c Return transtormed byte range to user as read data
2007 User verifies return data 1s correct. User may then begin a new search or

refine their previous search query if the returned data 1s incorrect

F1g. 30

U.S. Patent Sep. 5, 2023 Sheet 31 of 39 US 11,748,309 B2

2101 Recewve a data write query containming the data to write and the compacted
version of the original file that the data 1s to be inserted

310 Retrieve compacted file and the codebook corresponding to the compacted
' file

data size same

Ves as sourceblock? N
Y - 4
send data to | Generate an opcode, or use bit-wise
310 deconstruction | 310" encoding to create a secondary
enTne | “ encclding

Store encoding 1n the 5104 Store ci»pcc:de or secondary

codebook corresponding to the encodmg n the codebook
compacted data file 2106 corresponding to the compacted

data file

3 107/\4 Send status of data write to end user l

b1g. 31

US 11,748,309 B2

0000 0000 1100 0000
0000 0000 TT11T 0000
0000 0000 1100 0000

1000 0000 0000 0001

ndinQ) 3091100U]

1000 0000 0000 0001
0000 0000 TT1T 0000
0010 0000 0000 0000

0000 0000 1100 0000

mdinQ pajoadxy

0% GS

5S OL]

0066

ndino pajoadxa

~_ G6G%

C0GS

A 0$GS

= puyy 03 [[0I9s J1q

&

@ 10 111001

2 066 CZZ8
m PouIN}Y BIB(T SSAIY Wopuey

e \Cwﬁﬂzoﬂ PIOMIPOD

<)M pIUSIe JoU 017¢

o« 119 0} $S20J0' WopUe

=

P,

[

1000 0000 0000 0001 Ol
0000 0000 [T1T00 0000 10
0010 0000 0000 0000 00
Yoorq BIe(] pPIOMIPON)

00 0T O IT 00 IO

PILIDAUON) SE BIe(]

SYO0T(©IB(] JO JOOgapon)

C1GS

U.S. Patent

0010 0000 0000 0000
1000 0000 0000 0001
1000 0000 0000 0001
0000 0000 TTT1T 0000
0010 0000 0000 0000
0000 0000 1100 0000

PAATIDY SB BIR(]

U.S. Patent Sep. 5, 2023 Sheet 33 of 39 US 11,748,309 B2

ﬂﬂ

, o 3305 N
i s i
AtomBeamx o D] :
S W | I | -—>C1C2 :
. 3302 3303 3304 S - 2L
i 330 :
3300
. AtomBeamxy 3 s :
| | | - [—>» (G304 :
' — ey l
; S S S BeaS C4 2216 |
3311 3312 3313 =
i 3519 i
3310
. AtomBeamxyz D ;
S I | N | N -—»C5C6 :
. § 5 3 cam > C6 | —
3321 3322 3323 S 3326 .
: 3325 i

US 11,748,309 B2

Sheet 34 of 39

Sep. 5, 2023

U.S. Patent

€01

IJSRURTA ATeiqr]

GITe

10)sanbay
ere(q

0176

1010913(]

NEBYJ

80T
QULSUT
UOT)ONIISUOINY
Ble(]

901
A8BI0IQ

191dIBAA

GOTe ULEL],
aseyd-nmiN

¢01
QuLSU7
UONONIISUOII(]
ele(]

7S S

0076

101
ele(]
SUIIOdU]

U.S. Patent Sep. 5, 2023 Sheet 35 of 39 US 11,748,309 B2

3501 ‘ncoder and decoder engines trained on multi-phase sourceblocks

3902 ™~ Data 1s received and encoded

Data received by

3504
decoder
Decode received
35005 ~— data using

codebook

3507 exceed 3509
threshold? Ho
.
phase lock
59508
fransmission
complete? o
3510
yes
Fig. 35
3511

Automatically request retransmission of
corrupted data

US 11,748,309 B2

Sheet 36 of 39

Sep. 5, 2023

U.S. Patent

9¢ "SI

91

958I01Q OWNY

91
S9OBJINU]

¢l

SIO55900d]

11
258I0)Q TeJ0T]

-

N

Ol

\

q

US 11,748,309 B2

Sep. 5, 2023 Sheet 37 of 39

U.S. Patent

06

8¢
sinduy

LG
sindinQ

¥¢
STURTD)

9¢

g6

SIOTAIIQ

I3BI0IQ

%4
AIOWITN]

66
59§ ()

16

SIO553001

1€ 1

US 11,748,309 B2

Sheet 38 of 39

Sep. 5, 2023

U.S. Patent

(o

Suon) _

LS
SOAQ IXT

: Ve
saseqere(J

|“HHUL

8¢

25BI01Q 10WNY

1§53

(S)IOMIIN]

4°

SIIATIQ

8¢ "SI

0%

9¢
AJINIIQ

vy

T
siwor) |||

‘|

US 11,748,309 B2

Sheet 39 of 39

Sep. 5, 2023

U.S. Patent

¢ 7
INOY
|

9¢
NV'T SSO[IIM

[15d

G

_ SSITAITAA _

G
JIN

G

6S S1

67 LG

pPICOqAIY | eIowen)

Aerdsi(]

[1dO

WA

OF

US 11,748,309 B2

1

SYSTEM AND METHOD FOR
ERROR-RESILIENT DATA REDUCTION

CROSS-REFERENCE TO RELATED
APPLICATIONS

Priority 1s claimed in the application data sheet to the
following patents or patent applications, each of which 1s
expressly mcorporated herein by reference in 1ts entirety:

Ser. No. 17/233,813

Ser. No. 17/180,439

63/140,111

Ser. No. 16/923,039

63/027,166

Ser. No. 16/716,098

Ser. No. 16/455,655

Ser. No. 16/200,466

Ser. No. 15/975,741

62/578,824

62/926,723

BACKGROUND OF THE INVENTION

Field of the Invention

The present mvention 1s 1 the field of computer data
storage and transmission, and in particular to the field of
error self-correction of compacted data files.

Discussion of the State of the Art

As computers become an ever-greater part of our lives,
and especially in the past few years, data storage has become
a limiting factor worldwide. Prior to about 2010, the growth
ol data storage far exceeded the growth 1n storage demand.
In fact, it was commonly considered at that time that storage
was not an 1ssue, and perhaps never would be, again. In
2010, however, with the growth of social media, cloud data
centers, high tech and biotech industries, global digital data
storage accelerated exponentially, and demand hit the zetta-
byte (1 trillion gigabytes) level. Current estimates are that
data storage demand will reach 50 zettabytes by 2020. By
contrast, digital storage device manufacturers produced
roughly 1 zettabyte of physical storage capacity globally in
2016. We are producing data at a much faster rate than we
are producing the capacity to store i1t. In short, we are
running out of room to store data, and need a breakthrough
in data storage technology to keep up with demand.

The primary solutions available at the moment are the
addition of additional physical storage capacity and data
compression. As noted above, the addition of physical
storage will not solve the problem, as storage demand has
already outstripped global manufacturing capacity. Data
compression 1s also not a solution. A rough average com-
pression ratio for mixed data types 1s 2:1, representing a
doubling of storage capacity. However, as the mix of global
data storage trends toward multi-media data (audio, video,
and 1mages), the space savings yielded by compression
cither decreases substantially, as 1s the case with lossless
compression which allows for retention of all original data
in the set, or results in degradation of data, as 1s the case with
lossy compression which selectively discards data in order
to 1ncrease compression. Even assuming a doubling of
storage capacity, data compression cannot solve the global
data storage problem. The method disclosed herein, on the
other hand, works the same way with any type of data.

10

15

20

25

30

35

40

45

50

55

60

65

2

Transmission bandwidth 1s also increasingly becoming a
bottleneck. Large data sets require tremendous bandwidth,

and we are transmitting more and more data every year
between large data centers. On the small end of the scale, we
are adding billions of low bandwidth devices to the global
network, and data transmission limitations impose con-
straints on the development of networked computing appli-
cations, such as the “Internet of Things™.

Furthermore, as quantum computing becomes more and
more imminent, the security of data, both stored data and
data streaming from one point to another via networks,
becomes a critical concern as existing encryption technolo-
gies are placed at risk.

Additionally, a large plurality of our data travels over
communication channels which are very noisy and which
may therefore corrupt messages. Traditionally, error-correct-
ing codes have been used to deal with this problem, allowing
a certain amount of noise to be corrected (or at least
detected) when errors occur. However, this solution intro-
duces several problems: 1t costs time and energy to send the
extra bits needed to encode data this way, 1t costs time,
energy, and processing power to perform the encoding and
decoding used for error-correction, and data which cannot be
read until 1t 1s transmitted with 100% integrity, such as most
compressed file protocols/Tformats, must wait until all errors
are corrected for i1t to be useful, mtroducing potentially
enormous latencies or forcing the user to waste precious
storage and bandwidth by discarding and/or retransmitting
corrupted data.

What 1s needed 1s a system and method for providing
error-resilient data reduction, which allows for automatic
self-correction of corrupted data sent over a noisy commu-
nication channel.

SUMMARY OF THE INVENTION

A system and method for error-resilient data reduction,
utilizing a phase detector, a data requestor, a multi-phase
trainer, a reconstruction engine, a deconstruction engine, and
one or more reference codebooks. A multi-phase trainer may
be used to train the reconstruction and deconstruction
engines on various phase sourceblocks in order recover
quickly from corrupted data files that cause the phase
alignment of the sourceblocks to become out of phase. A
phase detector may determine when the sourceblocks get out
of phase and when the return to in-phase by checking if a
predetermined threshold probability of correct encoding 1s
met. Data requestor may request for retransmission only the
data that was received out of phase.

According to a preferred embodiment, a system for error-
resilient data reduction 1s disclosed, comprising: a comput-
ing device comprising a memory, a processor, and a non-
volatile data storage device; at least one reference codebook
comprising key-value pairs of data; a data deconstruction
engine comprising a first plurality of programming instruc-
tions stored in the memory of, and operating on a processor
of, the computing device, wherein the first plurality of
programming instructions, when operating on the processor,
cause the computing device to: train an encoding algorithm
on sourceblocks at multiple phases; receive data from a data
source; optimally deconstruct the mcoming data into a
plurality of chunklets; encode the data using the encoding
algorithm and the reference codebook; and send the encoded
data to a data reconstruction engine; and a data reconstruc-
tion engine comprising a second plurality of programming
instructions stored in the memory of, and operating on a
processor of, the computing device, wherein the second

US 11,748,309 B2

3

plurality of programming instructions, when operating on
the processor, cause the computing device to: receive
encoded data; decode the data using the key-value pairs
stored within the reference codebook; determine i1f the
decoded data has exceeded a predetermined threshold prob-
ability, wherein the decoded data 1s in-phase if the threshold
1s exceeded and the decoded data i1s out-of-phase 1f the
threshold 1s not exceeded; and request retransmission of
out-of-phase data.

According to another preferred embodiment, a method for
error-resilient data reduction 1s disclosed, comprising the
steps of: training an encoding algorithm on sourceblocks at
multiple phases; receiving data from a data source; opti-
mally deconstructing the mncoming data into a plurality of
chunklets; encoding the data using the encoding algorithm
and the reference codebook; sending the encoded data to a
data reconstruction engine; receiving encoded data; decod-
ing the data using the key-value pairs stored within the
reference codebook; determining 1if the decoded data has
exceeded a predetermined threshold probability, wherein the
decoded data 1s in-phase 1t the threshold 1s exceeded and the
decoded data 1s out-of-phase 1f the threshold i1s not
exceeded; and requesting retransmission of out-of-phase
data.

According to one aspect, wherein the threshold probabil-
ity 1s determined using logistic regression.

According to one aspect, wherein the multiple phases
refers to byte-phase sourceblocks with an offset.

According to one aspect, wherein the offset 1s an 1nteger
value 1n the inclusive range of 1 to 7.

BRIEF DESCRIPTION OF THE DRAWING
FIGURES

The accompanying drawings illustrate several aspects
and, together with the description, serve to explain the
principles of the invention according to the aspects. It will
be appreciated by one skilled 1n the art that the particular
arrangements 1illustrated 1n the drawings are merely exem-
plary, and are not to be considered as limiting of the scope
of the mvention or the claims herein 1n any way.

FIG. 1 1s a diagram showing an embodiment of the system
in which all components of the system are operated locally.

FI1G. 2 1s a diagram showing an embodiment of one aspect
of the system, the data deconstruction engine.

FI1G. 3 1s a diagram showing an embodiment of one aspect
of the system, the data reconstruction engine.

FI1G. 4 1s a diagram showing an embodiment of one aspect
of the system, the library management module.

FIG. 5 1s a diagram showing another embodiment of the
system 1n which data 1s transferred between remote loca-
tions.

FIG. 6 1s a diagram showing an embodiment 1n which a
standardized version of the chunklet library and associated
algorithms would be encoded as firmware on a dedicated
processing chip included as part of the hardware of a
plurality of devices.

FIG. 7 1s a diagram showing an example of how data
might be converted into reference codes using an aspect of
an embodiment.

FIG. 8 1s a method diagram showing the steps involved in
using an embodiment to store data.

FI1G. 9 1s a method diagram showing the steps involved in
using an embodiment to retrieve data.

FIG. 10 1s a method diagram showing the steps involved
in using an embodiment to encode data.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 11 1s a method diagram showing the steps involved
in using an embodiment to decode data.

FIG. 12 1s a diagram showing an exemplary system
architecture, according to a preferred embodiment of the
invention.

FIG. 13 15 a diagram showing a more detailed architecture
for a customized library generator.

FIG. 14 15 a diagram showing a more detailed architecture
for a library optimizer.

FIG. 15 15 a diagram showing a more detailed architecture
for a transmission and storage engine.

FIG. 16 1s a method diagram illustrating key system
functionality utilizing an encoder and decoder pair.

FIG. 17 1s a method diagram 1llustrating possible use of
a hybrnid encoder/decoder to improve the compression ratio.

FIG. 18 1s a flow diagram illustrating the use of a data
encoding system used to recursively encode data to further
reduce data size.

FIG. 19 1s an exemplary system architecture of a data
encoding system used for cyber security purposes.

FIG. 20 1s a flow diagram of an exemplary method used
to detect anomalies 1n received encoded data and producing
a warning.

FIG. 21 1s a flow diagram of a data encoding system used
for Distributed Denial of Service (DDoS) attack denial.

FIG. 22 1s an exemplary system architecture of a data
encoding system used for data mining and analysis pur-
poses.

FIG. 23 1s a flow diagram of an exemplary method used
to enable high-speed data mining of repetitive data.

FIG. 24 1s an exemplary system architecture of a data
encoding system used for remote soltware and firmware
updates.

FIG. 25 1s a flow diagram of an exemplary method used
to encode and transfer software and firmware updates to a
device for installation, for the purposes of reduced band-
width consumption.

FIG. 26 1s an exemplary system architecture of a data
encoding system used for large-scale software installation
such as operating systems.

FIG. 27 1s a flow diagram of an exemplary method used
to encode new software and operating system installations
for reduced bandwidth required for transference.

FIG. 28 1s an exemplary system architecture of a data
encoding system with random access capabilities.

FIG. 29 1s a diagram showing an embodiment of one
aspect of the system, the random access engine.

FIG. 30 1s a flow diagram of an exemplary method used
to search and read data from a compacted data file.

FIG. 31 1s a flow diagram of an exemplary method used
to write data to a compacted data file.

FIG. 32 1s a diagram showing an example of how data
might be converted nto reference codes, how the converted
data randomly accessed may result in 1incorrect output, and
how correct data may be located, according to an embodi-
ment.

FIG. 33 1s a diagram showing an exemplary process of
parsing a search string using multiple encodings, according
to an embodiment.

FIG. 34 1s a block diagram illustrating an exemplary
system architecture for an error-resilient data reduction,
according to an embodiment.

FIG. 35 1s a flow diagram illustrating an exemplary
method for error-resilient data reduction, according to an
embodiment.

FIG. 36 1s a block diagram illustrating an exemplary
hardware architecture of a computing device.

US 11,748,309 B2

S

FIG. 37 1s a block diagram illustrating an exemplary
logical architecture for a client device.
FIG. 38 1s a block diagram showing an exemplary archi-

tectural arrangement of clients, servers, and external ser-
vices.

FIG. 39 1s another block diagram illustrating an exem-
plary hardware architecture of a computing device.

DETAILED DESCRIPTION

A system and method for error-resilient data reduction,
utilizing a phase detector, a data requestor, a multi-phase
trainer, a reconstruction engine, a deconstruction engine, and
one or more reference codebooks. A multi-phase trainer may
be used to train the reconstruction and deconstruction
engines on various phase sourceblocks i1n order recover
quickly from corrupted data files that cause the phase
alignment of the sourceblocks to become out of phase. A
phase detector may determine when the sourceblocks get out
of phase and when the return to in-phase by checking if a
predetermined threshold probability of correct encoding 1s
met. Data requestor may request for retransmission only the
data that was received out of phase.

The disclosed data compaction system may automatically
self-correct after an error, with no additional latency, pro-
cessing power, or bandwidth use. After a system encoded
data stream encounters a bit-flip error, 1t 1s only a short while
before the decoding process, with no additional user inter-
vention, returns to a state of correctly decoding to the
original data until another such error 1s encountered. Only a
short burst of incorrect bits will be recorded by the user, and
can be corrected 11 necessary by requesting retransmission of
only this small amount of data, instead of an entire, poten-
tially massive file.

One or more different aspects may be described 1n the
present application. Further, for one or more of the aspects
described herein, numerous alternative arrangements may be
described; 1t should be appreciated that these are presented
for illustrative purposes only and are not limiting of the
aspects contained herein or the claims presented herein 1n
any way. One or more of the arrangements may be widely
applicable to numerous aspects, as may be readily apparent
from the disclosure. In general, arrangements are described
in suflicient detail to enable those skilled 1in the art to
practice one or more ol the aspects, and 1t should be
appreciated that other arrangements may be utilized and that
structural, logical, software, electrical and other changes
may be made without departing from the scope of the
particular aspects. Particular features of one or more of the
aspects described herein may be described with reference to
one or more particular aspects or figures that form a part of
the present disclosure, and in which are shown, by way of
illustration, specific arrangements of one or more of the
aspects. It should be appreciated, however, that such features
are not limited to usage in the one or more particular aspects
or figures with reference to which they are described. The
present disclosure i1s neither a literal description of all
arrangements of one or more of the aspects nor a listing of
features of one or more of the aspects that must be present
in all arrangements.

Headings of sections provided 1n this patent application
and the title of this patent application are for convenience
only and are not to be taken as limiting the disclosure 1n any
way.

Devices that are in communication with each other need
not be 1n continuous communication with each other, unless
expressly specified otherwise. In addition, devices that are 1n

10

15

20

25

30

35

40

45

50

55

60

65

6

communication with each other may communicate directly
or indirectly through one or more communication means or
intermediaries, logical or physical.

A description of an aspect with several components 1n
communication with each other does not imply that all such
components are required. To the contrary, a variety of
optional components may be described to 1llustrate a wide
variety ol possible aspects and in order to more fully
illustrate one or more aspects. Similarly, although process
steps, method steps, algorithms or the like may be described
in a sequential order, such processes, methods and algo-
rithms may generally be configured to work in alternate
orders, unless specifically stated to the contrary. In other
words, any sequence or order of steps that may be described
in this patent application does not, 1n and of itself, indicate
a requirement that the steps be performed 1n that order. The
steps of described processes may be performed 1n any order
practical. Further, some steps may be performed simultane-
ously despite being described or implied as occurring non-
simultaneously (e.g., because one step 1s described after the
other step). Moreover, the illustration of a process by its
depiction 1n a drawing does not imply that the 1llustrated
process 1s exclusive of other variations and modifications
thereto, does not 1imply that the illustrated process or any of
its steps are necessary to one or more ol the aspects, and
does not imply that the illustrated process 1s preferred. Also,
steps are generally described once per aspect, but this does
not mean they must occur once, or that they may only occur
once each time a process, method, or algorithm 1s carried out
or executed. Some steps may be omitted 1n some aspects or
some occurrences, or some steps may be executed more than
once 1n a given aspect or occurrence.

When a single device or article 1s described herein, 1t will
be readily apparent that more than one device or article may
be used 1n place of a single device or article. Similarly,
where more than one device or article 1s described herein, 1t
will be readily apparent that a single device or article may
be used 1n place of the more than one device or article.

The functionality or the features of a device may be
alternatively embodied by one or more other devices that are
not explicitly described as having such functionality or
teatures. Thus, other aspects need not include the device
itsellf.

Techniques and mechanisms described or referenced
herein will sometimes be described 1n singular form for
clarity. However, 1t should be appreciated that particular
aspects may include multiple iterations of a technique or
multiple mstantiations of a mechanism unless noted other-
wise. Process descriptions or blocks in figures should be

understood as representing modules, segments, or portions
ol code which 1nclude one or more executable instructions
for implementing specific logical functions or steps 1n the
process. Alternate implementations are included within the
scope of various aspects 1n which, for example, functions
may be executed out of order from that shown or discussed,
including substantially concurrently or in reverse order,
depending on the functionality mnvolved, as would be under-
stood by those having ordinary skill in the art.

Definitions

The term “bi1t” refers to the smallest unit of information
that can be stored or transmitted. It 1s in the form of a binary
digit (either O or 1). In terms of hardware, the bit 1is
represented as an electrical signal that 1s either ofl (repre-
senting 0) or on (representing 1).

US 11,748,309 B2

7

The term “byte” refers to a series of bits exactly eight bits
in length.

The terms “compression” and “deflation” as used herein
mean the representation of data 1n a more compact form than
the orniginal dataset. Compression and/or deflation may be
either “lossless”, in which the data can be reconstructed in
its original form without any loss of the orniginal data, or
“lossy” 1n which the data can be reconstructed 1n 1ts original
form, but with some loss of the original data.

The terms “compression factor” and “deflation factor” as
used herein mean the net reduction 1n size of the compressed
data relative to the original data (e.g., 11 the new data 1s 70%

of the size of the original, then the deflation/compression
tactor 1s 30% or 0.3.)

The terms “compression ratio” and “deflation ratio™, and
as used herein all mean the size of the original data relative
to the size of the compressed data (e.g., 1f the new data 1s
70% of the size of the original, then the deflation/compres-
sion ratio 1s 70% or 0.7.)

The term “data” means information in any computer-
readable form.

The term “chunklet” refers to a series of bits of a specified
length. The number of bits 1n a chunklet may be dynamically
optimized by the system during operation. In one aspect, a
chunklet may be of the same length as the block size used
by a particular file system, typically 512 bytes or 4,096
bytes.

A “database” or “data storage subsystem™ (these terms
may be considered substantially synonymous), as used
heremn, 1s a system adapted for the long-term storage,
indexing, and retrieval of data, the retrieval typically being
via some sort of querying interface or language. “Database”™
may be used to refer to relational database management
systems known in the art, but should not be considered to be
limited to such systems. Many alternative database or data
storage system technologies have been, and indeed are
being, introduced in the art, including but not limited to
distributed non-relational data storage systems such as
Hadoop, column-oriented databases, in-memory databases,
and the like. While various aspects may preferentially
employ one or another of the various data storage subsys-
tems available in the art (or available in the future), the
invention should not be construed to be so limited, as any
data storage architecture may be used according to the
aspects. Stmilarly, while 1n some cases one or more particu-
lar data storage needs are described as being satisfied by
separate components (for example, an expanded private
capital markets database and a configuration database), these
descriptions refer to functional uses of data storage systems
and do not refer to their physical architecture. For instance,
any group of data storage systems ol databases referred to
herein may be included together 1n a single database man-
agement system operating on a single machine, or they may
be included 1n a single database management system oper-
ating on a cluster of machines as 1s known 1n the art.
Similarly, any single database (such as an expanded private
capital markets database) may be implemented on a single
machine, on a set of machines using clustering technology,
on several machines connected by one or more messaging
systems known 1n the art, or 1n a master/slave arrangement
common 1n the art. These examples should make clear that
no particular architectural approaches to database manage-
ment 1s preferred according to the invention, and choice of
data storage technology 1s at the discretion of each imple-
menter, without departing from the scope of the invention as
claimed.

5

10

15

20

25

30

35

40

45

50

55

60

65

8

The term “effective compression’™ or “eflective compres-
s10n rat1o” refers to the additional amount data that can be
stored using the method herein described versus conven-
tional data storage methods. Although the method herein
described 1s not data compression, per se, expressing the
additional capacity 1 terms of compression 1s a useful
comparison.

The term “data set” refers to a grouping of data for a
particular purpose. One example of a data set might be a
word processing file containing text and formatting infor-
mation.

The term “library” refers to a database containing chunk-
lets each with a pattern of bits and reference code unique
within that library. The term “codebook™ 1s synonymous
with the term library.

The term “warplet” refers to a reference code form 1n
which data 1s stored or transmitted 1 an aspect of the
system. A warplet consists of a reference code or “code-
word” to a chunklet 1n the library plus an indication of that
chunklet’s location 1n a particular data set.

Conceptual Architecture

FIG. 1 1s a diagram showing an embodiment 100 of the
system 1n which all components of the system are operated
locally. As mncoming data 101 1s received by data decon-
struction engine 102. Data deconstruction engine 102 breaks
the mncoming data into chunklets, which are then sent to
library manager 103. Using the information contained 1in
chunklet library lookup table 104 and chunklet library
storage 105, library manager 103 returns reference codes to
data deconstruction engine 102 for processing into warplets,
which are stored in warplet storage 106. When a data
retrieval request 107 1s received, data reconstruction engine
108 obtains the warplets associated with the data from
warplet storage 106, and sends them to library manager 103.
Library manager 103 returns the appropriate chunklets to
data reconstruction engine 108, which assembles them into
the proper order and sends out the data 1n its original form
109.

FIG. 2 1s a diagram showing an embodiment of one aspect
200 of the system, specifically data deconstruction engine
201. Incoming data 202 1s received by data analyzer 203,
which optimally analyzes the data based on machine learn-
ing algorithms and mput 204 from a chunklet size optimizer,
which 1s disclosed below. Data analyzer may optionally have
access to a chunklet cache 205 of recently-processed chunk-
lets, which can increase the speed of the system by avoiding
processing 1n library manager 103. Based on information
from data analyzer 203, the data 1s broken into chunklets by
chunklet creator 206, which sends chunklets 207 to library
manager 203 for additional processing. Data deconstruction
engine 201 recerves reference codes 208 from library man-
ager 103, corresponding to the chunklets 1n the library that
match the chunklets sent by chunklet creator 206, and
warplet creator 209 processes the reference codes nto
warplets comprising a reference code to a chunklet and a
location of that chunklet within the data set. The original
data may be discarded, and the warplets representing the
data are sent out to storage 210.

FIG. 3 1s a diagram showing an embodiment of another
aspect of system 300, specifically data reconstruction engine
301. When a data retrieval request 302 i1s recerved by data
request receiver 303 (1n the form of a plurality of warplets
corresponding to a desired final data set), 1t passes the
information to data retriever 304, which obtains the
requested data 305 from storage. Data retriever 304 sends,
for each warplet received, a reference codes from the
warplet 306 to library manager 103 for retrieval of the

US 11,748,309 B2

9

specific chunklet associated with the reference code. Data
assembler 308 receives the chunklet 307 from library man-
ager 103 and, after receiving a plurality of chunklets corre-
sponding to a plurality of warplets, assembles them 1nto the
proper order based on the location information contained in
each warplet (recall each warplet comprises a chunklet
reference code and a location 1dentifier that specifies where
in the resulting data set the specific chunklet should be
restored to. The requested data 1s then sent to user 309 in its
original form.

FIG. 4 1s a diagram showing an embodiment of another
aspect of the system 400, specifically library manager 401.
One function of library manager 401 1s to generate reference
codes from chunklets received from data deconstruction
engine 301. As chunklets are received 402 from data decon-
struction engine 301, chunklet lookup engine 403 checks
chunklet library lookup table 404 to determine whether
those chunklets already exist in chunklet library storage 105.
If a particular chunklet exists 1n chunklet library storage 105,
reference code return engine 405 sends the approprate
reference code 406 to data deconstruction engine 301. If the
chunklet does not exist 1n chunklet library storage 105,
optimized reference code generator 407 generates a new,
optimized reference code based on machine learning algo-
rithms. Optimized reference code generator 407 then saves
the reference code 408 to chunklet library lookup table 104;
saves the associated chunklet 409 to chunklet library storage
105; and passes the reference code to reference code return
engine 405 for sending 406 to data deconstruction engine
301. Another function of library manager 401 1s to optimize
the size of chunklets 1n the system. Based on mmformation
411 contained 1n chunklet library lookup table 104, chunklet
s1ize optimizer 410 dynamically adjusts the size of chunklets
in the system based on machine learning algorithms and
outputs that information 412 to data analyzer 203. Another
function of library manager 401 1s to return chunklets
associated with reference codes received from data recon-
struction engine 301. As reference codes are received 414
from data reconstruction engine 301, reference code lookup
engine 413 checks chunklet library lookup table 415 to
1dentify the associated chunklets; passes that information to
chunklet retriever 416, which obtains the chunklets 417
from chunklet library storage 105; and passes them 418 to
data reconstruction engine 301.

FIG. 5 1s a diagram showing another embodiment of
system 500, in which data 1s transferred between remote
locations. As incoming data 501 1s received by data decon-
struction engine 502 at Location 1, data deconstruction
engine 301 breaks the incoming data into chunklets, which
are then sent to library manager 503 at Location 1. Using the
information contained in chunklet library lookup table 504
at Location 1 and chunklet library storage 505 at Location 1,
library manager 503 returns reference codes to data decon-
struction engine 301 for processing into warplets, which are
transmitted 506 to data reconstruction engine 507 at Loca-
tion 2. In the case where the reference codes contained 1n a
particular warplet have been newly generated by library
manager 303 at Location 1, the warplet 1s transmitted along
with a copy of the associated chunklet. As data reconstruc-
tion engine 507 at LLocation 2 receives the warplets, 1t passes
them to library manager module 508 at Location 2, which
looks up the chunklet 1n chunklet library lookup table 509 at
Location 2 and retrieves the associated from chunklet library
storage 510. Where a chunklet has been transmitted along
with a warplet, the chunklet 1s stored 1n chunklet library
storage 510 and chunklet hibrary lookup table 504 1s
updated. Library manager 503 returns the appropnate

10

15

20

25

30

35

40

45

50

35

60

65

10

chunklets to data reconstruction engine 507, which
assembles them into the proper order and sends the data 1n
its original form 511.

FIG. 6 1s a diagram showing an embodiment 600 1n which
a standardized version of a chunklet library 603 and asso-
ciated algorithms 604 would be encoded as firmware 602 on
a dedicated processing chip 601 included as part of the
hardware of a plurality of devices 600. Contained on dedi-
cated chip 601 would be a firmware area 602, on which
would be stored a copy of a standardized chunklet library
603 and deconstruction/reconstruction algorithms 604 for
processing the data. Processor 605 would have both mputs
606 and outputs 607 to other hardware on the device 600.
Processor 605 would store incoming data for processing on

on-chip memory 608, process the data using standardized
chunklet library 603 and deconstruction/reconstruction algo-
rithms 604, and send the processed data to other hardware on
device 600. Using this embodiment, the encoding and
decoding of data would be handled by dedicated chip 601,
keeping the burden of data processing off device’s 600
primary processors. Any device equipped with this embodi-
ment would be able to store and transmit data in a highly
optimized, bandwidth-efficient format with any other device
equipped with this embodiment.

FIG. 12 1s a diagram showing an exemplary system
architecture 1200, according to a preferred embodiment of
the mnvention. Incoming training data sets may be received
at a customized hibrary generator 1300 that processes train-
ing data to produce a customized word library 1201 com-
prising key-value pairs of data words (each comprising a
string of bits) and their corresponding calculated binary
Huffman codewords. The resultant word library 1201 may
then be processed by a library optimizer 1400 to reduce size
and 1mprove efficiency, for example by pruning low-occur-
rence data entries or calculating approximate codewords that
may be used to match more than one data word. A trans-
mission encoder/decoder 1500 may be used to receive
incoming data intended for storage or transmission, process
the data using a word hibrary 1201 to retrieve codewords for
the words 1n the incoming data, and then append the
codewords (rather than the original data) to an outbound
data stream. Each of these components 1s described in
greater detail below, illustrating the particulars of their
respective processing and other functions, referring to FIGS.
2-4.

System 1200 provides near-instantaneous source coding
that 1s dictionary-based and learned 1in advance from sample
training data, so that encoding and decoding may happen
concurrently with data transmission. This results 1n compu-
tational latency that 1s near zero but the data size reduction
1s comparable to classical compression. For example, 1f N
bits are to be transmitted from sender to receiver, the
compression ratio of classical compression 1s C the ratio
between the deflation factor of system 1200 and that of
multi-pass source coding 1s p, the classical compression
encoding rate 1s R~ bit/s and the decoding rate 1s R, bit/s,
and the transmission speed 1s S bit/s, the compress-send-
decompress time will be

, N N N
oid = = + ==+ ——
“T R- CS CRp

while the transmit-while-coding time for system 1200 will
be (assuming that encoding and decoding happen at least as
quickly as network latency):

US 11,748,309 B2

11

Np

Liow = —
Flens CS

so that the total data transit time 1mprovement factor is

CS S

which presents a savings whenever

GATEENY
— +—>p-1.
Rc Rp

This 1s a reasonable scenario given that typical values 1n
real-world practice are C=0.32, R=1.1-10"%, R, ,=4.2-10"",
giving

cs S
= = 20.053 ...,

Rc Rp

such that system 1200 will outperform the total transit time
of the best compression technology available as long as 1ts
deflation factor 1s no more than 3% worse than compression.
Such customized dictionary-based encoding will also some-
times exceed the deflation ratio of classical compression,
particularly when network speeds increase beyond 100 Gb/s.

The delay between data creation and 1ts readiness for use
at a receiving end will be equal to only the source word
length t (typically 5-13 bytes), divided by the deflation factor
C/p and the network speed S, 1.e.

ip
nvention 5

delay,

since encoding and decoding occur concurrently with data
transmission. On the other hand, the latency associated with
classical compression 1s

N N N
=— + ==+ =

del iy priarart R c 'S CRD

where N 1s the packet/file size. Even with the generous
values chosen above as well as N=512K, t=10, and p=1.03,
this results in delay, . =3.3-107'" while
delaypmmrﬁlﬁ-l()_?, a more than 400-fold reduction 1n
latency.

A key factor 1 the efficiency of Huffman coding used by
system 1200 1s that key-value pairs be chosen carefully to
minimize expected coding length, so that the average defla-
tion/compression ratio 1s minimized. It 1s possible to achieve
the best possible expected code length among all 1nstanta-
neous codes using Huffman codes 1f one has access to the
exact probability distribution of source words of a given
desired length from the random variable generating them. In
practice this 1s 1mpossible, as data 1s received 1n a wide
variety of formats and the random processes underlying the
source data are a mixture of human input, unpredictable
(though 1n principle, deterministic) physical events, and
noise. System 1200 addresses this by restriction of data

10

15

20

25

30

35

40

45

50

35

60

65

12

types and density estimation; training data 1s provided that
1s representative of the type of data anticipated 1n “real-
world” use of system 1200, which 1s then used to model the
distribution of binary strings in the data in order to build a
Huffman code word library 1200.

FIG. 13 1s a diagram showing a more detailed architecture
for a customized library generator 1300. When an incoming
training data set 1301 1s received, 1t may be analyzed using
a frequency creator 1302 to analyze for word frequency (that
1s, the frequency with which a given word occurs 1n the
training data set). Word frequency may be analyzed by
scanning all substrings of bits and directly calculating the
frequency of each substring by 1iterating over the data set to
produce an occurrence frequency, which may then be used
to estimate the rate of word occurrence 1n non-training data.
A first Huffman binary tree 1s created based on the frequency
of occurrences of each word in the first dataset, and a
Huffman codeword 1s assigned to each observed word 1n the
first dataset according to the first Huffman binary ftree.
Machine learning may be utilized to improve results by
processing a number of tramning data sets and using the
results of each training set to refine the frequency estima-
tions for non-training data, so that the estimation yield better
results when used with real-world data (rather than, for
example, being only based on a single training data set that
may not be very similar to a received non-training data set).
A second Huffman tree creator 1303 may be utilized to
1dentify words that do not match any existing entries 1n a
word hibrary 1201 and pass them to a hybrid encoder/
decoder 1304, that then calculates a binary Huffman code-
word for the mismatched word and adds the codeword and
original data to the word library 1201 as a new key-value
pair. In this manner, customized library generator 1300 may
be used both to establish an 1mitial word library 1201 from
a first tramning set, as well as expand the word library 1201
using additional training data to improve operation.

FIG. 14 1s a diagram showing a more detailed architecture
for a library optimizer 1400. A pruner 1401 may be used to
load a word library 1201 and reduce its size for efficient
operation, for example by sorting the word library 1201
based on the known occurrence probability of each key-
value pair and removing low-probability key-value pairs
based on a loaded threshold parameter. This prunes low-
value data from the word library to trim the size, eliminating
large quantities of very-low-frequency key-value pairs such
as single-occurrence words that are unlikely to be encoun-
tered again 1 a data set. Pruning eliminates the least-
probable entries from word library 1201 up to a given
threshold, which will have a negligible impact on the
deflation factor since the removed entries are only the
least-common ones, while the impact on word library size
will be larger because samples drawn from asymptotically
normal distributions (such as the log-probabilities of words
generated by a probabilistic finite state machine, a model
well-suited to a wide variety of real-world data) which occur
in tails of the distribution are disproportionately large 1n
counting measure. A delta encoder 1402 may be utilized to
apply delta encoding to a plurality of words to store an
approximate codeword as a value 1n the word library, for
which each of the plurality of source words 1s a vahd
corresponding key. This may be used to reduce library size
by replacing numerous key-value pairs with a single entry
for the approximate codeword and then represent actual
codewords using the approximate codeword plus a delta
value representing the difference between the approximate
codeword and the actual codeword. Approximate coding 1s
optimized for low-weight sources such as Golomb coding,

US 11,748,309 B2

13

run-length coding, and similar techniques. The approximate
source words may be chosen by locality-sensitive hashing,
so as to approximate Hamming distance without incurring
the intractability ol nearest-neighbor-search in Hamming
space. A parametric optimizer 1403 may load configuration
parameters for operation to optimize the use of the word
library 1201 during operation. Best-practice parameter/hy-
perparameter optimization strategies such as stochastic gra-
dient descent, quasi-random grid search, and evolutionary
search may be used to make optimal choices for all inter-
dependent settings playing a role in the functionality of
system 1200. In cases where lossless compression 1s not
required, the delta value may be discarded at the expense of
introducing some limited errors mto any decoded (recon-
structed) data.

FIG. 15 15 a diagram showing a more detailed architecture
for a transmission encoder/decoder 13500. According to
various arrangements, transmission encoder/decoder 1500
may be used to deconstruct data for storage or transmission,
or to reconstruct data that has been received, using a word
library 1201. A library comparator 1501 may be used to
receive data comprising words or codewords, and compare
against a word library 1201 by dividing the incoming stream
into substrings of length t and using a fast hash to check
word library 1201 for each substring. If a substring 1s found
in word library 1201, the corresponding key/value (that 1s,
the corresponding source word or codeword, according to
whether the substring used 1n comparison was 1tself a word
or codeword) 1s returned and appended to an output stream.
If a given substring 1s not found 1 word library 1201, a
mismatch handler 1502 and hybrid encoder/decoder 1503
may be used to handle the mismatch similarly to operation
during the construction or expansion of word library 1201.
A mismatch handler 1502 may be utilized to identily words
that do not match any existing entries in a word library 1201
and pass them to a hybrid encoder/decoder 1503, that then
calculates a binary Hullman codeword for the mismatched
word and adds the codeword and original data to the word
library 1201 as a new key-value pair. The newly-produced
codeword may then be appended to the output stream. In
arrangements where a mismatch indicator 1s included 1n a
received data stream, this may be used to preemptively
identify a substring that 1s not 1n word library 1201 (for
example, 11 1t was 1dentified as a mismatch on the transmis-
sion end), and handled accordingly without the need for a
library lookup.

FIG. 19 1s an exemplary system architecture of a data
encoding system used for cyber security purposes. Much
like 1 FIG. 1, incoming data 101 to be deconstructed 1s sent
to a data deconstruction engine 102, which may attempt to
deconstruct the data and turn 1t into a collection of warplets
using a library manager 103. Warplet storage 106 serves to
store umique warplets from this process and may be queried
by a data reconstruction engine 108 which may reconstruct
the original data from the warplets, using a library manager
103. However, a cybersecurity gateway 1900 1s present,
communicating in-between a library manager 103 and a
deconstruction engine 102, and containing an anomaly
detector 1910 and distributed demial of service (DDoS)
detector 1920. The anomaly detector examines imcoming
data to determine whether there 1s a disproportionate number
of mcoming reference codes that do not match reference
codes 1n the existing library. A disproportionate number of
non-matching reference codes may indicate that data 1s
being recerved from an unknown source, ol an unknown
type, or contains unexpected (possibly malicious) data. If the
disproportionate number of non-matching reference codes

10

15

20

25

30

35

40

45

50

55

60

65

14

exceeds an established threshold or persists for a certain
length of time, the anomaly detector 1910 raises a warning
to a system admuinistrator. Likewise, the DDoS detector 1920
examines incoming data to determine whether there 1s a
disproportionate amount of repetitive data. A disproportion-
ate amount of repetitive data may indicate that a DDoS
attack 1s 1n progress. If the disproportionate amount of
repetitive data exceeds an established threshold or persists
for a certain length of time, the DDoS detector 1910 raises
a warning to a system administrator. In this way, a data
encoding system may detect and warn users of, or help
mitigate, common cyber-attacks that result from a flow of
unexpected and potentially harmiful data, or attacks that
result from a flow of too much irrelevant data meant to slow
down a network or system, as 1n the case of a DDoS attack.

FIG. 22 1s an exemplary system architecture of a data
encoding system used for data mining and analysis pur-
poses. Much like in FIG. 1, incoming data 101 to be
deconstructed 1s sent to a data deconstruction engine 102,
which may attempt to deconstruct the data and turn 1t into a
collection of warplets using a library manager 103. Warplet
storage 106 serves to store unique warplets from this process
and may be queried by a data reconstruction engine 108
which may reconstruct the original data from the warplets,
using a library manager 103. A data analysis engine 2210,
typically operating while the system 1s otherwise 1dle, sends
requests for data to the data reconstruction engine 108,
which retrieves the warplets representing the requested data
from warplet storage 106, reconstructs them into the data
represented by the warplets, and send the reconstructed data
to the data analysis engine 2210 for analysis and extraction
of useful data (1.e., data mining). Because the speed of
reconstruction 1s significantly faster than decompression
using traditional compression technologies (1.e., signifi-
cantly less decompression latency), this approach makes
data mining feasible. Very oiten, data stored using tradi-
tional compression 1s not mined precisely because decom-
pression lag makes it unieasible, especially during shorter
periods of system 1dleness. Increasing the speed of data
reconstruction broadens the circumstances under which data
mining of stored data 1s feasible.

FIG. 24 1s an exemplary system architecture of a data
encoding system used for remote software and firmware
updates. Software and firmware updates typically require
smaller, but more frequent, file transfers. A server which
hosts a software or firmware update 2410 may host an
encoding-decoding system 2420, allowing for data to be
encoded into, and decoded from, chunklets or warplets, as
disclosed 1n previous figures. Such a server may possess a
soltware update, operating system update, firmware update,
device driver update, or any other form of soiftware update,
which 1n some cases may be minor changes to a file, but
nevertheless necessitate sending the new, completed file to
the recipient. Such a server 1s connected over a network
2430, which 1s further connected to a recipient computer
2440, which may be connected to a server 2410 for receiving
such an update to 1ts system. In this mstance, the recipient
device 2440 also hosts the encoding and decoding system
2450, along with a codebook or library of reference codes
that the hosting server 2410 also shares. The updates are
retrieved from storage at the hosting server 2410 1n the form
of warplets, transferred over the network 2430 in the form
of warplets, and reconstructed on the recerving computer
2440. In this way, a far smaller file size, and smaller total
update size, may be sent over a network. The receiving
computer 2440 may then install the updates on any number

US 11,748,309 B2

15

ol target computing devices 2460a-7, using a local network
or other high-bandwidth connection.

FIG. 26 1s an exemplary system architecture of a data
encoding system used for large-scale soiftware installation
such as operating systems. Large-scale software 1nstallations
typically require very large, but infrequent, file transfers. A
server which hosts an installable software 2610 may host an
encoding-decoding system 2620, allowing for data to be
encoded into, and decoded from, chunklets or warplets, as
disclosed 1n previous figures. The files for the large scale
software 1nstallation are hosted on the server 2610, which 1s
connected over a network 2630 to a recipient computer
2640. In this instance, the encoding and decoding system
2650a-n 15 stored on or connected to one or more target
devices 2660a-n, along with a codebook or library of
reference codes that the hosting server 2610 shares. The
soltware 1s retrieved from storage at the hosting server 2610
in the form of warplets, and transierred over the network
2630 1n the form of warplets to the recerving computer 2640.
However, instead of being reconstructed at the receiving
computer 2640, the warplets are transmitted to one or more
target computing devices, and reconstructed and installed
directly on the target devices 2660a-». In this way, a far
smaller file size, and smaller total update size, may be sent
over a network or transierred between computing devices,
even where the network 2630 between the receiving com-
puter 2640 and target devices 2660a-» 1s low bandwidth, or
where there are many target devices 2660a-n.

FIG. 28 1s an exemplary system architecture of a data
encoding system with random access capabilities. Much like
in FIG. 1, incoming data 101 to be deconstructed 1s sent to
a data deconstruction engine 102, which may attempt to
deconstruct the data and turn 1t into a collection of warplets
using a library manager 103. Warplet storage 106 serves to
store unique warplets from this process, and may be queried
by a data reconstruction engine 108 which may reconstruct
the original data from the warplets, using a library manager
103. However, a random-access engine 2800 exists that
receives a data query request from a user interface 2810 such
as a graphical user interface. The query request may com-
prise 1dentification of a compacted data file to search and a
search term, and optionally a location hint. Various possible
search term configurations may exist such as a byte range
(1.e. begin at byte N and return M number of bytes), a string
such as “volleyball” or a date such as “11/06/2020”, among
others. The random access engine 2800 may also query the
library manager 103 for retrieval of the reference codebook
corresponding to the i1dentified compacted data file. Addi-
tionally, the random access engine 2800 may query the
warplet storage 106 for retrieval of a plurality of warplets,
the plurality of warplets representing the compacted data file
to be searched and read from. When the search term has been
found, 1t may be sent to the data reconstruction engine 108
where 1t may be decoded to recover the original data, and the
original data may be sent to the user interface 2810. The user
may verily the search result 1s correct. If the result 1s
incorrect the user may refine and submit a new search
request.

FIG. 29 1s a diagram showing an embodiment of one
aspect of the system, the random access engine 2900. The
process begins when a data query request 1s made to the
application. A data read query may comprise 1dentification
of a compacted data file to access, a search term, and
optionally a location hint serving as an 1nitial guess as to the
location of the search term within the original data file. As
a simple example of a data read query, the user searches for
the string “cosmology” 1n a compacted data file “Y” to read

5

10

15

20

25

30

35

40

45

50

55

60

65

16

from, and a location hint of byte “N”’ to be used to estimate
where 1n “Y” the string “cosmology” may occur. Addition-
ally, the random access engine 2900 may receive a data write
query which may include the write term to be written and an
identified compacted data file in which to write the write
term. A data query receiver 2910 parses both data read and
data write queries and retrieves the identified compacted
data file in the form of a plurality of warplets from warplet
storage 106. The data query receiver 2910 then sends the
retrieved compacted data file and the search term to the data
search engine 2940. If the data search query includes a
location hint, then the query receiver 2910 may send the
location hint to an estimator 2920. A location hint may be
given that represents where 1n the original file the data to be
read may be located, and the estimator receives the location
hint and estimates that same location in the compacted
version of the data file. A location hint may comprise a byte
location N 1n the original file X, the estimator 2920 estimates
the location (bit number) N'1n Y (compacted version of data
file) corresponding to byte N 1n X. The estimator 2920 may
check if the estimated location N' 1s located at a codeword
boundary or in the middle of a codeword. If N' lies within
a codeword, then the estimator may use bit-scrolling back-
ward and forward to find the codeword boundary. Addition-
ally, the location hint may comprise a user command such as
“start at the 45% mark”. The estimator 2920 sends the
estimated location of the byte range to the data search engine
2940 for further processing.

A codebook retriever 2930 receives a signal form the data
query receiver 2910 that prompts the codebook retriever
2930 to request the codebook and frequency table associated
with the compacted data file from a word library 1201. The
frequency table 2950 shows the most frequently occurring
words or substrings within a data set and may be used by the
data search engine 2940 to refine the location estimate.

The data search engine 2940 receives a data read request
in the form of a search term such as a byte range, string, or
substring, and may recerve an 1nitial location estimate from
the estimator 2920 11 a location hint was included 1n the data
read query. The data search engine 2940 may use a 1ire-
quency table 2950 to refine location estimates and i1dentity
codeword boundaries 1n an automatic way. The estimated
location may be 1n the middle of a codeword. If this 1s the
case, then the search results will return output that does not
match the search query. For example, the search results
return a sequence of bytes, the frequency table 2950 may be
used to 1dentily whether the sequence of bytes are unlikely
to occur 1n the original data, or 1f the sequence was reason-
ably likely then a codeword boundary has probably been
found. When a codeword boundary 1s found, 1t allows the
whole compacted data file to be accessed 1n any order by
jumping from codeword to codeword, facilitating usetul
search results. If the data request 1s 1n a string format and a
location hint was provided, then the data search engine 2940
may automatically locate the search string via a binary
search from the estimated starting point or a found codeword
boundary. The data search engine 2940 may also parse a
search term string 1nto chunklets and create at least one or
more encodings for sub-search strings derived from the
original search string. An exemplary parsing process 1s
discussed 1n more detail 1n FIG. 33 contained within this
disclosure. Additionally, various search operators may be
integrated 1nto the search capabilities. A few examples of
search operators include “near”, “and”, “or”, and “not”.
These may be used to narrow the scope of the search. Once
the byte range or search string has been located, the code-
book may be used to decode the located reference codes

US 11,748,309 B2

17

belonging to the search string or byte range. In other
embodiments, the located reference codes may be sent to the
data reconstruction engine 108 which sends the decoded
byte range or search string to the user for verification.

A search cache 2960 may optionally be used to store
previous search terms and their locations within the com-
pacted data file. The data query receiver 2910 may look for
the requested data in the cache 2960 and 1f 1t 1s found 1n the
cache then 1ts location 1s sent to the data reconstruction
engine 108 where the compacted data may be reconstructed
and then sent to the user for review.

If the data query 1s a data write query, then the data query
receiver 2910 may send a signal to the codebook retriever
2930 to retrieve the codebook corresponding to the 1dent-
fied compacted version of the data file 1n which the write
term 1s to be written and send the write term to a data write
engine 2970. The codebook retriever 2930 sends the code-
book to the data write engine 2970. It the size of the data to
be written (write term) 1s exactly the length of the source-
block (chunklet), then the data write engine 2970 can simply
encode the data and insert it mto the received codebook.
More likely, the size of the data to be written does not
exactly match the sourceblock length, and simply encoding
and adding the codeword to the codebook would modity the
output of the codewords globally, basically changing every-
thing from that point on. In an embodiment, when some data
1s to be inserted into the original data file, the original file
may be entirely re-encoded. In another embodiment, instead
ol re-encoding the entire file, an opcode 1s created that tells
the decoder there 1s an offset that has to be accounted for
when reconstructing the compacted data. In yet another
embodiment, instead of using an opcode, there are extra
unused bits available 1 the codebook that can be used to
encode 1nformation about how many secondary bytes are
coming up. A secondary byte(s) represent the newly written
data that may be encoded and inserted in the codebook. In
this way when encoded bit 1s found, the data encoder can
switch to secondary encoding, encode one fewer byte, then
resume normal encoding. This allows for mserting data into
the original data file without having to re-encode the entire
file.

FIG. 34 1s a block diagram illustrating an exemplary
system architecture 3400 for error-resilient data reduction,
according to an embodiment. Much like 1n FIG. 1, incoming
data 101 to be deconstructed is sent to a data deconstruction
engine 102, which may attempt to deconstruct the data and
turn 1t 1nto a collection of warplets using a library manager
103. Warplet storage 106 serves to store unique warplets
from this process and may be queried by a data reconstruc-
tion engine 108 which may reconstruct the original data
from the warplets, using a library manager 103. However,
present 1n data deconstruction engine 102 1s a multi-phase
trainer 3405 which uses training data to train engines 102
and 108 on sourceblocks at every phase (i.e., phase sizes of
1 bit, 2 bits, 3 bits . . . , etc.). In systems without multi-phase
trainer 3405, generally only byte-phase sourceblocks (1.e.,
starting locations divisible by eight) may be used to train the
encoding and decoding engines. Chunklets may be com-
prised of one or more sourceblocks. In this way, when
system 3400 receives a codeword containing an error (€.g.,
one or more bit-flips, bit deletion or addition, etc.) 1t 1s able
to return to an “in phase” state 1n a shorter amount of time
compared to systems trained only on byte-phase source-
blocks. In this embodiment, data reconstruction engine 108
turther comprises a phase detector 3410 and a data requestor
3415. Phase detector 3410 may automatically detect whether
a “phase lock™ has been achieved by determining 11 a

10

15

20

25

30

35

40

45

50

55

60

65

18

predetermined threshold probability for encoding to be
correct 1s exceeded. The threshold probability may be esti-
mated by referring to the data model constructed during
model training. In some embodiments, the threshold prob-
ability may be determined using various statistical algo-
rithms known 1n the art, for example logistic regression may
be used. In this way, system 3400 may be able to detect when
sourceblocks get out of phase, and when they return to “in
phase”, then system 3400 may automatically request retrans-
mission of the blocks that were transmitted while the system
was out of phase using a data requestor 3415. This may be
done at the end of a data file’s (stream) transmission and the
slightly-corrupted but usable file that 1s available without
delay can be tweaked by replacing the small streams of
out-of-phase bits with the correct bits. This corrupted file
could be used in the meantime, 1f needed. For example, an
image may be transmitted that 1s slightly corrupted, but the
end user would still be able to view the image with 1ts slight
imperfections, and then the image would resolve to tull
resolution 1n a short time (after retransmission of small of
stream of bits).

DESCRIPTION OF METHOD ASPECTS

Since the library consists of re-usable building chunklets,
and the actual data 1s represented by reference codes to the
library, the total storage space of a single set of data would
be much smaller than conventional methods, wherein the
data 1s stored in its entirety. The more data sets that are
stored, the larger the library becomes, and the more data can
be stored 1n reference code form.

As an analogy, 1imagine each data set as a collection of
printed books that are only occasionally accessed. The
amount of physical shell space required to store many
collections would be quite large and 1s analogous to con-
ventional methods of storing every single bit of data 1n every
data set. Consider, however, storing all common elements
within and across books 1n a single library, and storing the
books as references codes to those common elements 1n that
library. As a single book 1s added to the library, it will
contain many repetitions of words and phrases. Instead of
storing the whole words and phrases, they are added to a
library, and given a reference code, and stored as reference
codes. At this scale, some space savings may be achieved,
but the reference codes will be on the order of the same size
as the words themselves. As more books are added to the
library, larger phrases, quotations, and other words patterns
will become common among the books. The larger the word
patterns, the smaller the reference codes will be 1n relation
to them as not all possible word patterns will be used. As
entire collections of books are added to the library, sen-
tences, paragraphs, pages, or even whole books will become
repetitive. There may be many duplicates of books within a
collection and across multiple collections, many references
and quotations from one book to another, and much common
phraseology within books on particular subjects. If each
unique page ol a book 1s stored only once in a common
library and given a reference code, then a book of 1,000
pages or more could be stored on a few printed pages as a
string of codes referencing the proper full-sized pages in the
common library. The physical space taken up by the books
would be dramatically reduced. The more collections that
are added, the greater the likelihood that phrases, para-
graphs, pages, or entire books will already be in the library,
and the more information in each collection of books can be
stored 1n reference form. Accessing entire collections of

US 11,748,309 B2

19

books 1s then limited not by physical shelf space, but by the
ability to reprint and recycle the books as needed for use.

The projected increase in storage capacity using the
method herein described 1s primarily dependent on two
factors: 1) the ratio of the number of bits 1n a block to the
number of bits 1n the reference code, and 2) the amount of
repetition 1 data being stored by the system.

With respect to the first factor, the number of bits used in
the reference codes to the chunklets must be smaller than the
number of bits 1n the chunklets themselves 1n order for any
additional data storage capacity to be obtained. As a simple
example, 16-bit chunklets would require 2'°, or 65536,
unique reference codes to represent all possible patterns of
bits. I all possible 65536 blocks patterns are utilized, then
the reference code 1tself would also need to contain sixteen
bits 1n order to refer to all possible 65,536 blocks patterns.
In such case, there would be no storage savings. However,
il only 16 of those block patterns are utilized, the reference
code can be reduced to 4 bits 1n size, representing an
cllective compression of 4 times (16 bits/4 bits=4) versus
conventional storage. Using a typical block size of 512
bytes, or 4,096 bits, the number of possible block patterns 1s
2+92% which for all practical purposes is unlimited. A typical
hard drive contains one terabyte (IB) of physical storage
capacity, which represents 1,953,125,000, or roughly 2°°,
512 byte blocks. Assuming that 1 TB of unique 512-byte
chunklets were contained 1n the library, and that the refer-
ence code would thus need to be 31 bits long, the effective
compression ratio for stored data would be on the order of
132 times (4,096/31=~132) that of conventional storage.

With respect to the second factor, 1n most cases it could
be assumed that there would be suflicient repetition within
a data set such that, when the data set 1s broken down 1nto
chunklets, its s1ze within the library would be smaller than
the original data. However, 1t 1s conceivable that the nitial
copy of a data set could require somewhat more storage
space than the data stored 1n a conventional manner, 11 all or
nearly all chunklets 1n that set were unique. For example,
assuming that the reference codes are 10" the size of a
tull-sized copy, the first copy stored as chunklets in the
library would need to be 1.1 megabytes (MB), (1 MB {for the
complete set of tull-sized chunklets in the library and 0.1
MB for the reference codes). However, since the chunklets
stored 1n the library are universal, the more duplicate copies
of something you save, the greater efliciency versus con-
ventional storage methods. Conventionally, storing 10 cop-
ies of the same data requires 10 times the storage space of
a single copy. For example, ten copies of a 1 MB file would
take up 10 MB of storage space. However, using the method
described herein, only a single full-sized copy 1s stored, and
subsequent copies are stored as reference codes. Each addi-
tional copy takes up only a fraction of the space of the
tull-sized copy. For examplej again assuming that the ret-
erence codes are Yi0” the size of the full-size copy, ten
copies of a 1 MB file would take up only 2 MB of space (1
MB {for the full-sized copy, and 0.1 MB each for ten sets of
reference codes). The larger the library, the more likely that
part or all of incoming data will duplicate chunklets already
existing 1n the library.

The size of the library could be reduced in a manner
similar to storage of data. Where chunklets difler from each
other only by a certain number of bits, 1nstead of storing a
new chunklet that 1s very similar to one already existing in
the library, the new chunklet could be represented as a
reference code to the existing chunklet, plus information
about which bits 1n the new block differ from the existing
block. For example, 1n the case where 512 byte chunklets are

5

10

15

20

25

30

35

40

45

50

55

60

65

20

being used, if the system receives a new chunklet that differs
by only one bit from a chunklet already existing in the
library, instead of storing a new 512 byte chunklet, the new
chunklet could be stored as a reference code to the existing
chunklet, plus a reference to the bit that differs. Storing the
new chunklet as a reference code plus changes would
require only a few bytes of physical storage space versus the
512 bytes that a full chunklet would require. The algorithm
could be optimized to store new chunklets 1n this reference
code plus changes form unless the changes portion 1s large
enough that i1t 1s more eflicient to store a new, full chunklet.

It will be understood by one skilled 1n the art that transfer
and synchronization of data would be increased to the same
extent as for storage. By ftransferring or synchronizing
reference codes instead of full-sized data, the bandwidth
requirements for both types of operations are dramatically
reduced.

In addition, the method described herein 1s inherently a
form of encryption. When the data 1s converted from its full
form to reference codes, none of the original data 1s con-
tained 1n the reference codes. Without access to the library
of chunklets, 1t would be i1mpossible to reconstruct any
portion of the data from the reference codes. This inherent
property of the method described herein could obviate the
need for traditional encryption algorithms, thereby oflsetting
most or all of the computational cost of conversion of data
back and forth to reference codes. In theory, the method
described herein should not utilize any additional computing
power beyond traditional storage using encryption algo-
rithms. Alternatively, the method described herein could be
in addition to other encryption algorithms to increase data
security even further.

In other embodiments, additional security features could
be added, such as: creating a proprietary library of chunklets
for proprietary networks, physical separation of the refer-
ence codes from the library of chunklets, storage of the
library of chunklets on a removable device to enable easy
physical separation of the library and reference codes from
any network, and incorporation of proprietary sequences of
how chunklets are read and the data reassembled.

FIG. 7 1s a diagram showing an example of how data
might be converted 1nto reference codes using an aspect of
an embodiment 700. As data 1s received 701, 1t 1s read by the
processor in chunklets of a size dynamically determined by
the previously disclosed chunklet size optimizer 410. In this
example, each chunklet 1s 16 bits 1n length, and the library
702 1mtially contains three chunklets with reference codes
00, 01, and 10. The entry for reference code 11 1s mitially
empty. As each 16 bit chunklet i1s received, 1t 1s compared
with the library. It that chunklet 1s already contained in the
library, 1t 1s assigned the corresponding reference code. So,
for example, as the first line of data (0000 0011 0000 0000)
1s recerved, 1t 1s assigned the reference code (01) associated
with that chunklet in the library. If that chunklet 1s not
already contained 1n the library, as 1s the case with the third
line of data (0000 1111 0000 0000) recerved 1n the example,
that chunklet 1s added to the library and assigned a reference
code, 1n this case 11. The data 1s thus converted 703 to a
series of reference codes to chunklets 1n the library. The data
1s stored as a collection of warplets, each of which contains
the reference code to a chunklet and information about the
location of the chunklets in the data set. Reconstructing the
data 1s performed by reversing the process. Each stored
reference code 1n a data collection 1s compared with the
reference codes 1n the library, the corresponding chunklet 1s
read from the library, and the data 1s reconstructed nto its
original form.

US 11,748,309 B2

21

FIG. 8 1s a method diagram showing the steps involved in
using an embodiment 800 to store data. As data 1s received
801, it would be deconstructed into chunklets 802, and
passed 803 to the library management module for process-
ing. Reference codes would be received back 804 from the
library management module and could be combined with
location information to create warplets 8035, which would
then be stored 806 as representations of the original data.

FI1G. 9 1s a method diagram showing the steps involved in
using an embodiment 900 to retrieve data. When a request
for data 1s recerved 901, the associated warplets would be
retrieved 902 from the library. The warplets would be passed
903 to the library management module, and the associated
chunklets would be received back 904. Upon receipt, the
chunklets would be assembled 905 into the original data
using the location data contained in the warplets, and the
reconstructed data would be sent out 906 to the requestor.

FIG. 10 1s a method diagram showing the steps involved
in using an embodiment 1000 to encode data. As chunklets
are received 1001 from the deconstruction engine, they
would be compared 1002 with the chunklets already con-
tained 1n the library. If that chunklet already exists in the
library, the associated reference code would be returned
1005 to the deconstruction engine. I the chunklet does not
already exist 1n the library, a new reference code would be
created 1003 for the chunklet. The new reference code and
its associated chunklet would be stored 1004 in the library,
and the reference code would be returned to the deconstruc-
tion engine.

FIG. 11 1s a method diagram showing the steps involved
in using an embodiment 1100 to decode data. As reference
codes are received 1101 from the reconstruction engine, the
associated chunklets are retrieved 1102 from the library, and
returned 1103 to the reconstruction engine.

FIG. 16 1s a method diagram illustrating key system
functionality utilizing an encoder and decoder pair, accord-
ing to a preferred embodiment. In a first step 1601, at least
one incoming data set may be received at a customized
library generator 1300 that then 1602 processes data to
produce a customized word library 1201 comprising key-
value pairs of data words (each comprising a strmg ol bits)
and their corresponding calculated binary Huflman code-
words. A subsequent dataset may be received and compared
to the word library 1603 to determine the proper codewords
to use 1n order to encode the dataset. Words 1n the dataset are
checked against the word library and appropriate encodings
are appended to a data stream 1604. If a word 1s mismatched
within the word library and the dataset, meaning that it 1s
present 1n the dataset but not the word library, then a
mismatched code 1s appended, followed by the unencoded
original word. If a word has a match within the word library,
then the appropriate codeword in the word library 1s
appended to the data stream. Such a data stream may then be
stored or transmitted 1605 to a destination as desired. For the
purposes of decoding, an already-encoded data stream may
be received and compared 1606, and un-encoded words may
be appended to a new data stream 1607 depending on word
matches found between the encoded data stream and the
word library that 1s present. A matching codeword that 1s
found 1n a word library 1s replaced with the matching word
and appended to a data stream, and a mismatch code found
in a data stream 1s deleted and the following unencoded
word 1s re-appended to a new data stream, the inverse of the
process of encoding described earlier. Such a data stream
may then be stored or transmitted 1608 as desired.

FIG. 17 1s a method diagram 1llustrating possible use of
a hybrid encoder/decoder to improve the compression ratio,

10

15

20

25

30

35

40

45

50

55

60

65

22

according to a preferred aspect. A second Hullman binary
tree may be created 1701, havmg a shorter maximum length
of codewords than a first Huflman binary tree 1602, allow-
ing a word library to be filled with every combination of
codeword possible in this shorter Huflman binary tree 1702.
A word library may be filled with these Hullman codewords
and words from a dataset 1702, such that a hybrid encoder/
decoder 1304, 1503 may receive any mismatched words
from a dataset for which encoding has been attempted with
a first Huflman binary tree 1703, 1604 and parse previously
mismatched words into new partial codewords (that 1s,
codewords that are each a substring of an original mis-
matched codeword) using the second Huillman binary tree
1704. In this way, an incomplete word library may be
supplemented by a second word library. New codewords
attained 1n this way may then be returned to a transmission
encoder 1705, 1500. In the event that an encoded dataset 1s
received for decoding, and there 1s a mismatch code indi-
cating that additional coding i1s needed, a mismatch code
may be removed and the unencoded word used to generate
a new codeword as before 1706, so that a transmission
encoder 1500 may have the word and newly generated
codeword added to its word library 1707, to prevent further
mismatching and errors in encoding and decoding.

It will be recognized by a person skilled 1n the art that the
methods described herein can be applied to data in any form.
For example, the method described herein could be used to
store genetic data, which has four data units: C, G, A, and T.
Those four data units can be represented as 2 bit sequences:
00, 01, 10, and 11, which can be processed and stored using
the method described herein.

It will be recognized by a person skilled in the art that
certain embodiments of the methods described herein may
have uses other than data storage. For example, because the
data 1s stored in reference code form, it cannot be recon-
structed without the availability of the library of chunklets.
This 1s eflectively a form of encryption, which could be used
for cyber security purposes. As another example, an embodi-
ment of the method described herein could be used to store
backup copies of data, provide for redundancy 1n the event
of server failure, or provide additional security against
cyberattacks by distributing multiple partial copies of the
library among computers are various locations, ensurmg that
at least two copies of each chunklet exist in different
locations within the network.

FIG. 18 1s a flow diagram illustrating the use of a data
encoding system used to recursively encode data to further
reduce data size. Data may be input 1805 into a data
deconstruction engine 102 to be deconstructed into code
references, using a library of code references based on the
mput 1810. Such example data 1s shown in a converted,
encoded format 1815, highly compressed, reducing the
example data from 96 bits of data, to 12 bits of data, before
sending this newly encoded data through the process again
1820, to be encoded by a second library 1825, reducing it
even further. The newly converted data 1830 1s shown as
only 6 bits 1n this example, thus a size of 6.25% of the
original data packet. With recursive encoding, then, it 1s
possible and implemented in the system to achieve increas-
ing compression ratios, using multi-layered encoding,
through recursively encoding data. Both initial encoding
libraries 1810 and subsequent libraries 1825 may be
achieved through machine learning techmiques to find opti-
mal encoding patterns to reduce size, with the libraries being
distributed to recipients prior to transfer of the actual
encoded data, such that only the compressed data 1830 must
be transierred or stored, allowing for smaller data footprints

US 11,748,309 B2

23

and bandwidth requirements. This process can be reversed to
reconstruct the data. While this example shows only two
levels of encoding, recursive encoding may be repeated any
number of times. The number of levels of recursive encod-
ing will depend on many factors, a non-exhaustive list of
which includes the type of data being encoded, the size of
the original data, the mntended usage of the data, the number
of instances of data being stored, and available storage space
for codebooks and libraries. Additionally, recursive encod-
ing can be applied not only to data to be stored or trans-
mitted, but also to the codebooks and/or libraries, them-
selves. For example, many installations of different libraries
could take up a substantial amount of storage space. Recur-
sively encoding those different libraries to a single, universal
library would dramatically reduce the amount of storage
space required, and each different library could be recon-
structed as necessary to reconstruct incoming streams of
data.

FIG. 20 1s a flow diagram of an exemplary method used
to detect anomalies 1n received encoded data and producing
a warning. A system may have trained encoding libraries
2010, betore data 1s received from some source such as a
network connected device or a locally connected device
including USB connected devices, to be decoded 2020.
Decoding 1n this context refers to the process of using the
encoding libraries to take the received data and attempt to
use encoded references to decode the data into 1ts original
source 2030, potentially more than once 11 recursive encod-
ing was used, but not necessarily more than once. An
anomaly detector 1910 may be configured to detect a large
amount of un-encoded data 2040 in the midst of encoded
data, by locating data or references that do not appear 1n the
encoding libraries, indicating at least an anomaly, and poten-
tially data tampering or faulty encoding libraries. A flag or
warning 1s set by the system 2050, allowing a user to be
warned at least of the presence of the anomaly and the
characteristics of the anomaly. However, 11 a large amount of
invalid references or unencoded data are not present in the
encoded data that 1s attempting to be decoded, the data may
be decoded and output as normal 2060, indicating no
anomaly has been detected.

FIG. 21 1s a flow diagram of a method used for Distributed
Demal of Service (DDoS) attack denial. A system may have
trained encoding libraries 2110, before data 1s received from
some source such as a network connected device or a locally
connected device including USB connected devices, to be
decoded 2120. Decoding in this context refers to the process
of using the encoding libraries to take the received data and
attempt to use encoded references to decode the data into 1ts
original source 2130, potentially more than once 11 recursive
encoding was used, but not necessarily more than once. A
DDoS detector 1920 may be configured to detect a large
amount of repeating data 2140 in the encoded data, by
locating data or references that repeat many times over (the
number of which can be configured by a user or adminis-
trator as need be), indicating a possible DDoS attack. A flag
or warning 1s set by the system 2150, allowing a user to be
warned at least of the presence of a possible DDoS attack,
including characteristics about the data and source that
mitiated the flag, allowing a user to then block mmcoming
data from that source. However, 1f a large amount of repeat
data 1n a short span of time 1s not detected, the data may be
decoded and output as normal 2160, indicating no DDoS
attack has been detected.

FIG. 23 15 a flow diagram of an exemplary method used
to enable high-speed data mining of repetitive data. A system
may have trained encoding libraries 2310, before data 1s

5

10

15

20

25

30

35

40

45

50

55

60

65

24

received from some source such as a network connected
device or a locally connected device including USB con-
nected devices, to be analyzed 2320 and decoded 2330.
When determining data for analysis, users may select spe-
cific data to designate for decoding 2330, before runming any
data miming or analytics functions or soltware on the
decoded data 2340. Rather than having traditional decryp-
tion and decompression operate over distributed drives, data
can be regenerated immediately using the encoding libraries
disclosed herein, as 1t 1s being searched. Using methods
described 1n FIG. 9 and FIG. 11, data can be stored,
retrieved, and decoded swiltly for searching, even across
multiple devices, because the encoding library may be on
cach device. For example, 1f a group of servers host warplets
relevant for data mining purposes, a single computer can
request these warplets, and the warplets can be sent to the
recipient swiltly over the bandwidth of their connection,
allowing the recipient to locally decode the data for imme-
diate evaluation and searching, rather than running slow,
traditional decompression algorithms on data stored across
multiple devices or transifer larger sums of data across
limited bandwidth.

FIG. 25 1s a flow diagram of an exemplary method used
to encode and transfer software and firmware updates to a
device for installation, for the purposes of reduced band-
width consumption. A first system may have trained code
libraries or “codebooks™ present 2510, allowing for a sofit-
ware update of some manner to be encoded 2520. Such a
soltware update may be a firmware update, operating system
update, security patch, application patch or upgrade, or any
other type of solftware update, patch, modification, or
upgrade, affecting any computer system. A codebook for the
patch must be distributed to a recipient 2530, which may be
done beforehand and either over a network or through a local
or physical connection, but must be accomplished at some
point 1n the process before the update may be installed on the
recipient device 2560. An update may then be distributed to
a recipient device 2540, allowing a recipient with a code-
book distributed to them 2530 to decode the update 25350
before installation 2560. In this way, an encoded and thus
heavily compressed update may be sent to a recipient far
quicker and with less bandwidth usage than traditional
lossless compression methods for data, or when sending data
in uncompressed formats. This especially may benefit large
distributions of software and soitware updates, as with
enterprises updating large numbers of devices at once.

FIG. 27 1s a flow diagram of an exemplary method used
to encode new software and operating system 1nstallations
for reduced bandwidth required for transference. A {irst
system may have trained code libraries or “codebooks”
present 2710, allowing for a software installation of some
manner to be encoded 2720. Such a software installation
may be a software update, operating system, security sys-
tem, application, or any other type of soitware installation,
execution, or acquisition, aflecting a computer system. An
encoding library or “codebook”™ for the installation must be
distributed to a recipient 2730, which may be done before-
hand and either over a network or through a local or physical
connection, but must be accomplished at some point 1n the
process before the installation can begin on the recipient
device 2760. An installation may then be distributed to a
recipient device 2740, allowing a recipient with a codebook
distributed to them 2730 to decode the installation 2750
before executing the installation 2760. In this way, an
encoded and thus heavily compressed software installation
may be sent to a recipient far quicker and with less band-
width usage than traditional lossless compression methods

US 11,748,309 B2

25

for data, or when sending data 1n uncompressed formats.
This especially may benefit large distributions of software
and software updates, as with enterprises updating large
numbers of devices at once.

FIG. 30 1s a flow diagram of an exemplary method used
to search and read data from a compacted data file. For the
purposes of this example drawing only, the original file 1s an
ASCII (text) file, however, 1t should be understood that this
method 1s applicable across a broad range of data types and
formats. A data search query comprising a byte range or
search string to be searched for and read, a compacted file
to be read from, and an optional location hint from which to
begin the search 3001 1s received by the system. The data
search query 1s parsed and both the compacted data file and
its corresponding codebook 1s retrieved 3002. If a location
hint was provided in the data read query, then an estimated
location within the compacted version i1s generated using the
location hint 3003. The location hint may include, but 1s not
limited to a single byte location, a guess such as “start at the
60% mark™, and a search operator such (e.g. “near”, “not”,
etc.). The next step begins to search for the byte range/search
word at the estimated location by scanning the compacted
version for the byte range/search string reference codes
3004. This step may find the starting bit location that
corresponds with the beginning of the search term (1.e. byte
range, search string) and retrieve a plurality of bits begin-
ning with the starting bit, the plurality of bits represent the
compacted version of the search term. The search may be
done via a binary search starting from the estimated location.
The search step may further involve 1n generating at least
one or more possible sets of encodings for the search string,
creating a search pair by concatenating encodings from the
same set, and then searching for the search pair within the
compacted data file. Once the byte range/search string has
been located, 1ts reference codes are sent to a deconstruction
engine to transform the compacted data into 1ts original form
3005. The transformed data 1s returned to the user as read
data 3006. The user may then verify that the returned data 1s
correct and can begin a new query process 3007.

FIG. 31 1s a flow diagram of an exemplary method used
to write data to a compacted data file. The process begins
when a data write query 1s received by the system, the data
write query may be comprised of a write term (data to write)
and an identified compacted data file that the write term 1s
to be inserted 1nto 3101. Then, the 1dentified compacted data
file and the codebook corresponding to the compacted data
file 1s retrieved 3102. Next, the length of the write term to
be mserted 1s checked and compared against the length of
the sourceblock. If the data i1s the same size as the source-
block then 1t can simply be encoded 3103 and stored within
the codebook corresponding to the compacted data file 3104.
It the data 1s not the same size as the sourceblock, then the
system may generate an opcode or use bit-wise encoding to
create a secondary encoding 3105. Writing a data file that 1s
larger than the sourceblock can modily the output of code-
words globally. To counter this, an opcode may be generated
that accounts for the newly inserted data. The opcode can
alert the decoder to apply an offset when decoding, thus
accounting for the mnsertion of data into the original data file.
In another embodiment, 1nstead of using an opcode, unused
bits 1n the codebook are used to indicate a secondary
encoding. A secondary encoding indicates that data was
inserted into a file, and that at the next location there are two
or more possible encodings. If such a bit 1s encountered 1t
means there 1s a secondary encoding coming up, and the
encoder can switch to secondary encoding, encode one
tewer byte, and then resume encoding as before. In this way

10

15

20

25

30

35

40

45

50

55

60

65

26

there 1s no need to apply an oflset, just use existing extra bits
to create secondary encodings which prevents having to
re-encode the entire original file including the inserted data.
The generated opcode or the encoded bits are stored within
the codebook corresponding to the compacted data file 3106.
A confirmation of a successiul data write process 1s sent to
the end user 3107.

FIG. 32 15 a diagram showing an example of how data
might be converted mto reference codes, how the converted
data randomly accessed may result 1n incorrect output, and
how correct data may be located, according to an embodi-
ment 3200. As data 1s received 32035, it 1s read by the
processor in chunklets of a size dynamically determined by
the previously disclosed chunklet size optimizer 410. In this
example, each chunklet 1s 16 bits 1n length, and the code-
book 3210 mitially contains three chunklets with codewords
00, 01, and 10. The entry for codeword 11 1s mitially empty.
As each 16 bit chunklet 1s received, 1t 1s compared with the
codebook. If that chunklet 1s already contained in the
codebook, 1t 1s assigned the corresponding codeword. So,
for example, as the first line of data (0000 0011 0000 0000)
1s recerved, 1t 1s assigned the codeword (01) associated with
that chunklet in the codebook. If that chunklet 1s not already
contained 1n the codebook, as 1s the case with the third line
of data (0000 1111 0000 0000) recerved 1n the example, that
chunklet 1s added to the codebook and assigned a codeword.,
in this case 11. The data 1s thus converted 3215 to a series
ol codewords to chunklets 1n the codebook. The data 1s
stored as a collection of warplets, each of which contains the
codeword to a chunklet and information about the location
of the chunklets 1n the data set. Reconstructing the data 1s
performed by reversing the process. Each stored codeword
in a data collection 1s compared with the codewords 1n the
codebook, the corresponding chunklet 1s read from the
codebook, and the data 1s reconstructed into 1its original
form.

A data search query specifying a search term to read from
the original data set. In this example, the selected search
term captures to the first four lines of the data as recerved
3205. The system estimates a bit location N' in the converted
data set that corresponds to byte N in the original data set.
The estimated location, bit N', may not be aligned with a
codeword boundary 3220. In this example, the first code-
word that should be accessed and returned 1s supposed to be
01, but the estimate N' location puts the pointer at the last bat
in the codeword 3220. When N' 1s not aligned with a
codeword boundary, the system will start decoding 1n the
middle of a codeword, resulting 1n returned data 3225 that
when decoded leads to incorrect output 3230. Due to the
boundary misalignment, the random access data returned 1s
10 01 11 01 3225, when the correct random access data
returned should have been 01 00 11 10. The user that submits
the data search query will receive the incorrect output and
recognize 1t as garbage output. The user can manually bit
scroll 3235 forward and backward from N' until a codeword
boundary 1s found and the expected output 3240 correspond-
ing to the search term is returned.

In another embodiment, mile markers are stored 1n a file
accompanying the compacted data set with a list of exact
locations N' 1n the compacted data set that correspond to
N=100, 200, 1000, etc. The mile marker file enables more
refined estimates of N' with less seeking necessary as now
the user may seek forwards and backwards in the compacted
data set 1n codeword increments and boundary alignment 1s
automatic. These mile markers (1.e. locations) might denote
which bit corresponds to the 10007 byte from the unencoded
data, which bit corresponds to the 2000” byte, etc. The use

US 11,748,309 B2

27

of mile markers prevents the possibility of starting the data
read process 1n the middle of codeword as any search may
begin at the nearest mile marker bit associated with byte N.

FIG. 33 1s a diagram showing an exemplary process of
parsing a search term using multiple encodings, according to
an embodiment. In this example, the search term 1s a search
string. The original data file was divided into chunklets, and
the size of these chunklets are referred to as the sourceblock
length. A search string may be reasonably long compared to
the sourceblock length, such as two or three times the
sourceblock length. There may be multiple possible encod-
ings of the search string that occur, because the sourceblock
might not be aligned to a boundary of the search string. For
example, the 11 the search string was “AtomBeam™ 3301 and
the sourceblock length 1s three bytes, there may be three
separate encodings 3300, 3310, 3320 of the search string.
The first encoding 3300 of the search string may be “Ato”
3302, “mBe™ 3303, and “amx” 3304 where “x”" 1s something
that 1s not relevant to the search string. The second encoding,
3310 may be “tom™ 3311, “Bea” 3312, and “mxy” 3313
where “x” and “y”” are not relevant to the search string. The
third 3320 encoding may be “omB” 3321, “eam™3322, and
“xyz” 3323 where “xyz” 1s not relevant to the search string.
The data search engine 2940 may generate the encoding for
cach search string using the codebook corresponding to the
compacted data file to assign a codeword to each source-
block.

The compacted data file may then be searched for occur-

rences of the assigned codeword(s). For example, the “Ato”™
3302 and “mBe” 3303 sourceblocks may each be encoded
with codewords C1 3305 and C2 3306 respectively. These
sourceblocks 3302, 3303 were selected because they both
contain only data that 1s part of the search string 3301 and
do not contain non relevant data (e.g. “x”, “xy” “xyz” from
preceding paragraph). The assigned codewords may be
concatenated to form a codeword double (pair) C1C2 3307
and then the search engine 2940 may perform a search for
codeword pair C1C2 3307 in the compacted data. This
process 1s done for each of the possible encodings 3300,
3310, 3320 of the search string 3301.

From encoding two 3310 sourceblocks containing “tom™
3311 and “Bea” 3312 are assigned a codeword such as C3
3314 and C4 3315. These codewords may be concatenated
to form a codeword pair C3C4 3316 and then the search
engine 2940 may perform a search for the codeword pair
C1C2 3316 in the compacted data file. Likewise, from
encoding three 3320 sourceblocks containing “omB” 3321
and “eam” 3322 are assigned a codeword such as C5 3324
and C6 3325. These codewords may be concatenated to form
a codeword pair C5C6 3326 and then the search engine 2940
may perform a search for the codeword pair C5C6 3326 in
the compacted data file. Each of the codeword pairs C1C2
3307, C3C4 3316, and C5C6 3326 form three new search
strings and the data search engine 2940 may scan through
the compacted data file looking for all three of them. If any
of them are found, then the codewords in the compacted data
file to the left and right of the found codeword pair may be
decoded to 1dentity 1f the correct letter (byte) 1s preceding or
following the codeword pair. In this example, two source
blocks were used to create a codeword pair, however, 1t
should be appreciated that number of sourceblocks concat-
enated 1s dependent upon the length of the search term and
the sourceblock length. There may be codeword triples,
codeword quadruples, etc., as any codeword n-tuple may be
possible due to the above mentioned dependencies.

For example, 11 the search results return “tomBea” that

means an occurrence of codeword pair C3C4 3316 was

5

10

15

20

25

30

35

40

45

50

55

60

65

28

found. The search engine 2940 may decode one letter to the
left side and check 1f it 1s “A” and one letter to the right to
check 11 1s “m”. If those are the letters found the search string
has been located, 11 not then 1t 1s not the correct string and
the scan continues through the compacted data file until
another occurrence of any one of the codeword pairs 3307,
3316, or 3326 1s found. The data search engine 2940
performs this process automatically until the search string
has been located or the entire compacted data file has been
scanned and searched.

FIG. 35 1s a flow diagram illustrating an exemplary
method for error-resilient data reduction, according to an
embodiment. The first step 1s to train the encoder and
decoder engines (located in the deconstruction and recon-
struction engines, respectively) on multi-phase sourceblocks
3501. When data 1s received by the system 1t may be
encoded 3502 in the manner described in FIG. 2 and
clsewhere within this disclosure. The encoded data may be
transmitted over a noisy communication channel 3503. The
noise on the channel may result 1n an error occurring to the
transmitted encoded data, such as a bit-flip error, a bit
deletion and/or addition, and burst type error. A bit-flip error
occurs when a bit’s value 1s tlipped to 1ts opposite. A bit
deletion refers to when a binary string being transmitted
loses a bit, and bit addition occurs when a binary string being
transmitted gains an extra bit. Burst type error refers to when
two or more bits in the data have changed from O to 1 or
vice-versa. Data 1s received by the decoder 3504 and
decoded using the codebook which contains all codewords
and their associated sourceblock data 3505. If a bit-tlip (or
any other type of error) occurs 1n a transmitted codeword
received by the decoder, the decoded data will translate 1t
back to an incorrect sourceblock. Because both codeword
lengths and the number of sourceblocks encoded in the
codeword are highly variable, the end of the incorrectly-
obtained codeword has only a small probability of being
located at the beginning of the next codeword (1.e., the next
codeword boundary). The system may check to see 1f the
threshold probability for encodings to be correct 1s exceeded
3506. If the threshold 1s exceeded, 1t 1s located at a codeword
boundary, a condition referred to as “in phase” 3507, the
decoding process will generate completely correct decod-
ings atter that point because “phase lock™ 3508 has occurred.
If the threshold has not been exceeded, the next detected
codeword will also be decoded to an 1ncorrect sourceblock
(1.e., one which disagrees with the original data). The end of
that next codeword also has variable length, and so only a
small probability of being “in phase” 3507. Again, 11 1t 1s “in
phase”, all subsequent decodings will be correct, barring
further errors in the communication channel, a condition
referred to as “phase lock™ 3508. I1 1t 1s “out of phase™ 3509,
then these steps are repeated until a codeword boundary
lands, by chance, in phase. Once this occurs, the transmis-
sion has achieved “phase lock™ 3508 and the stream 1s
thereafter decoded correctly. If the data has been tully
transmitted 3510, any incorrect data receirved due to channel
errors may be requested for retransmission 3511, otherwise
the system continues to receirve data 3504 and repeat the
steps until the transmission 1s complete.

While 1t 1s possible that phase lock 1s never achieved, this
1s very highly unlikely because the probability of a code-
word ending out of phase many times in a row 1s vanishingly
low. In particular, if the average codeword length 1s “M” and
the average sourceblock length 1s “N”°, each errant codeword
can be expected to have an approximately 1/M probability of
ending in phase. Thus, the average number of codewords
which are incorrectly decoded before the stream self-cor-

US 11,748,309 B2

29

rects 1s “M”, translating into an average of N*M errant bits
in the original data, or N** errant bits on average if the
compaction ratio (encoded bits divided by original data bits)
1s “H” (a quantity which will usually be close to the entropy
rate of the data). If a system user requires very rapid
recovery, a small sourceblock length “N” will ensure this. A
more error-tolerant user who wants the additional benefits of
long sourceblocks may choose “N” to be larger. Under the
previous assumption, the probability to return to phase lock
after “t” codewords will be approximately 1-(1-1/MY’, or
approximately 1-e”*. Said another way, the probability
that the decoder will not have returned to phase lock and
correct decoding after ““I” bits of source data will be
approximately e~ 7"#" N , a quantity converging to zero expo-
nentially fast in “I”.

The system 1s also robust against a noisy communication
channel deleting occasional bits, recovery will occur as
described above once eight such deletions occur. This quan-
tity (eight) may be changed to one 1f the deconstruction
engine 102 1s traimned on sourceblocks at every phase. For
example, instead of tramning the engine on byte-phase
sourceblocks, 1.e., starting locations divisible by eight, the
engine may be trained on byte-phase sourceblocks with the
starting locations divisible by eight with an offset such that
the mstead of the starting locations being located at 8, 16,
24, . .. etc., they may be located at 3, 11, 19, ..., or 3, 13,
21, . .. etc. This may allow the engine to quickly recover
from a bit deletion (and addition) because i1t has available
data for multiple phase alignments. In this way, the error-
resilient data reduction and transmission system 1s robust to
bit-flips and bit deletion and addition.

Even 11 errors 1n the channel are persistent, the system can
transmit most data faithfully as long as the channel noise 1s
not too severe. If a channel has an error rate of “P” (1.e., each
bit has probability “P” of being tlipped accidentally), then
the average distance between bit tlips 1s 1/P. If this quantity
1s significantly larger than the average number of encoded
bits until a return to phase lock, (i.e., N°/H), the amount of
encoded data which 1s correctly transmitted will be high. In
particular, the fraction of correct bits will be approximately
1-P*N*/H, where only a P*N*/H fraction of the data will be
corrupted despite persistent noise 1 the channel. For
example, with a sourceblock size of N=8, a compaction ratio
of 50% (H=0.5), and a bit-thip probability of 0.01%
(P=0.0001), approximately 98.72% of the decoded data waill
be correct. A system user could request, or 1n some embodi-
ments the system may automatically request, retransmission
of only this 1.28% of the data which was received incor-
rectly, whereas someone using standard compression would
have to request 100% retransmission.

In some embodiments, the system may further utilize
ellicient error-correction techniques known to those in the
art, which 1s resistant to burst-type errors on the original data
prior to the system encoding and decoding the data, so that
the recetved data 1s 100% correct, at the expense of having,
to use additional processing power and time to perform the
error-correction.

This seli-correcting system may be used in conjunction
with the random access engine described 1n detail above in
FIG. 29. In this case, 1f a user starts to read data at an
arbitrary point, the likelithood of choosing a codeword
boundary (and therefore correct decodings) 1s low without
additional support such as manual seeking, using the data
model to guess codeword boundary likelihoods, or mile-
markers.. However, applying self-correction means that a
user could decode forward in the encoded stream even 11 it
was chosen incorrectly, and very quickly, the reading pro-

5

10

15

20

25

30

35

40

45

50

55

60

65

30

cess will become phase-locked, after which decoding can be
run backwards 1n the stream to locate the codeword bound-
ary close to the original starting point. In this embodiment,
the random access engine 2900 may also contain a phase
detector 3410 to automatically detect when phase lock
OCCUrs.

Hardware Architecture

Generally, the techniques disclosed herein may be imple-
mented on hardware or a combination of software and
hardware. For example, they may be implemented 1in an
operating system kernel, in a separate user process, 1n a
library package bound into network applications, on a spe-
cially constructed machine, on an application-specific inte-
grated circuit (ASIC), or on a network interface card.

Software/hardware hybrid implementations of at least
some of the aspects disclosed herein may be implemented on
a programmable network-resident machine (which should
be understood to include intermittently connected network-
aware machines) selectively activated or reconfigured by a
computer program stored in memory. Such network devices
may have multiple network interfaces that may be config-
ured or designed to utilize different types of network com-
munication protocols. A general architecture for some of
these machines may be described herein in order to illustrate
one or more exemplary means by which a given unit of
functionality may be implemented. According to specific
aspects, at least some of the features or functionalities of the
various aspects disclosed herein may be implemented on one
or more general-purpose computers associated with one or
more networks, such as for example an end-user computer
system, a client computer, a network server or other server
system, a mobile computing device (e.g., tablet computing
device, mobile phone, smartphone, laptop, or other appro-
priate computing device), a consumer electronic device, a
music player, or any other suitable electronic device, router,
switch, or other suitable device, or any combination thereof.
In at least some aspects, at least some of the features or
functionalities of the various aspects disclosed herein may
be mmplemented in one or more virtualized computing
environments (e.g., network computing clouds, virtual
machines hosted on one or more physical computing
machines, or other appropriate virtual environments).

Retferring now to FIG. 36, there 1s shown a block diagram
depicting an exemplary computing device 10 suitable for
implementing at least a portion of the features or function-
alities disclosed herein. Computing device 10 may be, for
example, any one of the computing machines listed in the
previous paragraph, or indeed any other electronic device
capable of executing software- or hardware-based instruc-
tions according to one or more programs stored 1n memory.
Computing device 10 may be configured to communicate
with a plurality of other computing devices, such as clients
or servers, over communications networks such as a wide
arca network a metropolitan area network, a local area
network, a wireless network, the Internet, or any other
network, using known protocols for such communication,
whether wireless or wired.

In one aspect, computing device 10 includes one or more
central processing units (CPU) 12, one or more interfaces
15, and one or more busses 14 (such as a peripheral
component mterconnect (PCI) bus). When acting under the
control of appropriate software or firmware, CPU 12 may be
responsible for implementing specific functions associated
with the functions of a specifically configured computing
device or machine. For example, 1n at least one aspect, a
computing device 10 may be configured or designed to
function as a server system utilizing CPU 12, local memory

US 11,748,309 B2

31

11 and/or remote memory 16, and mterface(s) 15. In at least
one aspect, CPU 12 may be caused to perform one or more
of the different types of functions and/or operations under
the control of software modules or components, which for
example, may include an operating system and any appro-
priate applications software, drivers, and the like.

CPU 12 may include one or more processors 13 such as,
for example, a processor from one ol the Intel, ARM,
Qualcomm, and AMD families of microprocessors. In some
aspects, processors 13 may include specially designed hard-
ware such as application-specific 1integrated circuits
(ASICs), celectrically erasable programmable read-only
memories (EEPROMSs), field-programmable gate arrays
(FPGAs), and so forth, for controlling operations of com-
puting device 10. In a particular aspect, a local memory 11
(such as non-volatile random access memory (RAM) and/or
read-only memory (ROM), including for example one or
more levels of cached memory) may also form part of CPU
12. However, there are many diflerent ways in which
memory may be coupled to system 10. Memory 11 may be
used for a variety of purposes such as, for example, caching,
and/or storing data, programming instructions, and the like.
It should be further appreciated that CPU 12 may be one of
a variety of system-on-a-chip (SOC) type hardware that may

include additional hardware such as memory or graphics
processing chips, such as a QUALCOMM SNAP-

DRAGON™ or SAMSUNG EXYNOS™ (CPU as are
becoming increasingly common 1n the art, such as for use in
mobile devices or integrated devices.

As used herein, the term “processor’” 1s not limited merely
to those integrated circuits referred to 1 the art as a
processor, a mobile processor, or a microprocessor, but
broadly refers to a microcontroller, a microcomputer, a
programmable logic controller, an application-specific inte-
grated circuit, and any other programmable circuit.

In one aspect, mterfaces 15 are provided as network
interface cards (NICs). Generally, NICs control the sending
and receiving of data packets over a computer network;
other types of interfaces 15 may for example support other
peripherals used with computing device 10. Among the
interfaces that may be provided are Ethemet interfaces,
frame relay interfaces, cable interfaces, DSL interfaces,
token ring interfaces, graphics interfaces, and the like. In
addition, various types of interfaces may be provided such
as, for example, universal serial bus (USB), Serial, Ethernet,
FIREWIRE™, THUNDERBOLIT™, PCI, parallel, radio
frequency (RF), BLUETOOTH™, near-ficld communica-
tions (e.g., using near-field magnetics), 802.11 (Wi-Fi),
frame relay, TCP/IP, ISDN, fast Ethernet interfaces, Gigabit
Ethernet interfaces, Serial ATA (SATA) or external SATA
(ESATA) 1interfaces, high-definition multimedia interface
(HDMI), digital visual interface (DVI), analog or digital
audio 1nterfaces, asynchronous transter mode (ATM) 1nter-
taces, high-speed serial interface (HSSI) interfaces, Point of
Sale (POS) mtertaces, fiber data distributed interfaces (FD-
DlIs), and the like. Generally, such interfaces 15 may include
physical ports appropriate for communication with appro-
priate media. In some cases, they may also include an
independent processor (such as a dedicated audio or video
processor, as 1s common 1n the art for high-fidelity AN
hardware interfaces) and, 1n some instances, volatile and/or
non-volatile memory (e.g., RAM).

Although the system shown in FIG. 36 illustrates one
specific architecture for a computing device 10 for imple-
menting one or more of the aspects described herein, it 1s by
no means the only device architecture on which at least a
portion of the features and techniques described herein may

10

15

20

25

30

35

40

45

50

55

60

65

32

be implemented. For example, architectures having one or
any number of processors 13 may be used, and such pro-
cessors 13 may be present 1n a single device or distributed
among any number of devices. In one aspect, a single
processor 13 handles communications as well as routing
computations, while 1n other aspects a separate dedicated
communications processor may be provided. In various
aspects, diflerent types of features or functionalities may be
implemented 1 a system according to the aspect that
includes a client device (such as a tablet device or smart-
phone running client soitware) and server systems (such as
a server system described in more detail below).

Regardless of network device configuration, the system of
an aspect may employ one or more memories or memory
modules (such as, for example, remote memory block 16
and local memory 11) configured to store data, program
istructions for the general-purpose network operations, or
other information relating to the functionality of the aspects
described herein (or any combinations of the above). Pro-
gram 1nstructions may control execution of or comprise an
operating system and/or one or more applications, for
example. Memory 16 or memories 11, 16 may also be
configured to store data structures, configuration data,
encryption data, historical system operations information, or
any other specific or generic non-program information
described herein.

Because such information and program instructions may
be employed to implement one or more systems or methods
described herein, at least some network device aspects may
include nontransitory machine-readable storage media,
which, for example, may be configured or designed to store
program 1nstructions, state information, and the like for
performing various operations described herein. Examples
of such nontransitory machine-readable storage media
include, but are not limited to, magnetic media such as hard
disks, tloppy disks, and magnetic tape; optical media such as
CD-ROM disks; magneto-optical media such as optical
disks, and hardware devices that are specially configured to
store and perform program instructions, such as read-only
memory devices (ROM), flash memory (as 1s common in
mobile devices and integrated systems), solid state drives
(SSD) and “hybnid SSD” storage drives that may combine
physical components of solid state and hard disk drives in a
single hardware device (as are becoming increasingly com-
mon 1n the art with regard to personal computers), memristor
memory, random access memory (RAM), and the like. It
should be appreciated that such storage means may be
integral and non-removable (such as RAM hardware mod-
ules that may be soldered onto a motherboard or otherwise
integrated into an electronic device), or they may be remov-
able such as swappable flash memory modules (such as
“thumb drives” or other removable media designed for
rapidly exchanging physical storage devices), “hot-swap-
pable” hard disk drives or solid state drives, removable
optical storage discs, or other such removable media, and
that such integral and removable storage media may be
utilized interchangeably. Examples of program instructions
include both object code, such as may be produced by a
compiler, machine code, such as may be produced by an
assembler or a linker, byte code, such as may be generated
by for example a JAVA™ compiler and may be executed
using a Java virtual machine or equivalent, or files contain-
ing higher level code that may be executed by the computer
using an interpreter (for example, scripts written in Python,
Perl, Ruby, Groovy, or any other scripting language).

In some aspects, systems may be implemented on a
standalone computing system. Referring now to FIG. 37,

US 11,748,309 B2

33

there 1s shown a block diagram depicting a typical exem-
plary architecture of one or more aspects or components
thereol on a standalone computing system. Computing
device 20 includes processors 21 that may run software that
carry out one or more functions or applications of aspects,
such as for example a client application 24. Processors 21
may carry out computing instructions under control of an
operating system 22 such as, for example, a version of
MICROSOFT WINDOWS™ operating system, APPLE
macOS™ or 1058™ operating systems, some variety of the
Linux operating system, ANDROID™ operating system, or
the like. In many cases, one or more shared services 23 may
be operable 1n system 20, and may be useful for providing
common services to client applications 24. Services 23 may
for example be WINDOWST™ services, user-space common
services 1n a Linux environment, or any other type of
common service architecture used with operating system 21.
Input devices 28 may be of any type suitable for receiving
user mput, icluding for example a keyboard, touchscreen,
microphone (for example, for voice mnput), mouse, touch-
pad, trackball, or any combination thereof. Output devices
27 may be of any type suitable for providing output to one
or more users, whether remote or local to system 20, and
may include for example one or more screens for visual
output, speakers, printers, or any combination thereof.
Memory 25 may be random-access memory having any
structure and architecture known in the art, for use by
processors 21, for example to run software. Storage devices
26 may be any magnetic, optical, mechanical, memristor, or
clectrical storage device for storage of data in digital form
(such as those described above, referring to FIG. 36).
Examples of storage devices 26 include flash memory,
magnetic hard drive, CD-ROM, and/or the like.

In some aspects, systems may be implemented on a
distributed computing network, such as one having any
number of clients and/or servers. Referring now to FI1G. 38,
there 1s shown a block diagram depicting an exemplary
architecture 30 for implementing at least a portion of a
system according to one aspect on a distributed computing
network. According to the aspect, any number of clients 33
may be provided. Each client 33 may run soitware for
implementing client-side portions of a system; clients may
comprise a system 20 such as that illustrated in FIG. 37. In
addition, any number of servers 32 may be provided for
handling requests received from one or more clients 33.
Clients 33 and servers 32 may communicate with one
another via one or more electronic networks 31, which may
be 1n various aspects any of the Internet, a wide area
network, a mobile telephony network (such as CDMA or
GSM cellular networks), a wireless network (such as Wi-Fi,
WiIMAX, LTE, and so forth), or a local area network (or
indeed any network topology known 1n the art; the aspect
does not prefer any one network topology over any other).
Networks 31 may be implemented using any known network
protocols, including for example wired and/or wireless pro-
tocols.

In addition, 1n some aspects, servers 32 may call external
services 37 when needed to obtain additional information, or
to refer to additional data concerning a particular call.
Communications with external services 37 may take place,
for example, via one or more networks 31. In various
aspects, external services 37 may comprise web-enabled
services or functionality related to or installed on the hard-
ware device itsell. For example, 1n one aspect where client
applications 24 are implemented on a smartphone or other
clectronic device, client applications 24 may obtain infor-
mation stored 1n a server system 32 in the cloud or on an

5

10

15

20

25

30

35

40

45

50

55

60

65

34

external service 37 deployed on one or more of a particular
enterprise’s or user’s premises.

In some aspects, clients 33 or servers 32 (or both) may
make use of one or more specialized services or appliances
that may be deployed locally or remotely across one or more
networks 31. For example, one or more databases 34 may be
used or referred to by one or more aspects. It should be
understood by one having ordinary skill in the art that
databases 34 may be arranged 1n a wide variety of archi-
tectures and using a wide variety of data access and manipu-
lation means. For example, 1n various aspects one or more
databases 34 may comprise a relational database system
using a structured query language (SQL), while others may
comprise an alternative data storage technology such as
those referred to i the art as “NoSQL” (for example,
HADOOP CASSANDRA™, GOOGLE BIGTABLE™, and
so forth). In some aspects, variant database architectures
such as column-oriented databases, 1n-memory databases,
clustered databases, distributed databases, or even flat file
data repositories may be used according to the aspect. It will
be appreciated by one having ordinary skill in the art that
any combination of known or future database technologies
may be used as appropriate, unless a specific database
technology or a specific arrangement of components 1s
specified for a particular aspect described herein. Moreover,
it should be appreciated that the term “database™ as used
herein may refer to a physical database machine, a cluster of
machines acting as a single database system, or a logical
database within an overall database management system.
Unless a specific meanming 1s specified for a given use of the
term “database”, it should be construed to mean any of these
senses of the word, all of which are understood as a plain
meaning of the term “database” by those having ordinary
skill 1 the art.

Similarly, some aspects may make use of one or more
security systems 36 and configuration systems 33. Security
and configuration management are common information
technology (IT) and web functions, and some amount of
cach are generally associated with any I'T or web systems. It
should be understood by one having ordinary skill in the art
that any configuration or security subsystems known 1in the
art now or 1n the future may be used 1n conjunction with
aspects without limitation, unless a specific security 36 or
configuration system 35 or approach 1s specifically required
by the description of any specific aspect.

FIG. 39 shows an exemplary overview ol a computer
system 40 as may be used in any of the various locations
throughout the system. It 1s exemplary of any computer that
may execute code to process data. Various modifications and
changes may be made to computer system 40 without
departing from the broader scope of the system and method
disclosed herein. Central processor unit (CPU) 41 1s con-
nected to bus 42, to which bus 1s also connected memory 43,
nonvolatile memory 44, display 47, input/output (I/O) unit
48, and network interface card (NIC) 53. I/O unit 48 may,
typically, be connected to keyboard 49, pointing device 50,
hard disk 52, and real-time clock 51. NIC 53 connects to
network 54, which may be the Internet or a local network,
which local network may or may not have connections to the
Internet. Also shown as part of system 40 1s power supply
unit 45 connected, 1n this example, to a main alternating
current (AC) supply 46. Not shown are batteries that could
be present, and many other devices and modifications that
are well known but are not applicable to the specific novel
functions of the current system and method disclosed herein.
It should be appreciated that some or all components 1llus-
trated may be combined, such as in various integrated

US 11,748,309 B2

35

applications, for example Qualcomm or Samsung system-
on-a-chip (SOC) devices, or whenever 1t may be appropriate
to combine multiple capabilities or functions into a single
hardware device (for instance, 1n mobile devices such as
smartphones, video game consoles, in-vehicle computer
systems such as navigation or multimedia systems 1n auto-
mobiles, or other integrated hardware devices).
In various aspects, functionality for implementing sys-
tems or methods of various aspects may be distributed
among any number of client and/or server components. For
example, various soitware modules may be implemented for
performing various functions 1n connection with the system
ol any particular aspect, and such modules may be variously
implemented to run on server and/or client components.
The skilled person will be aware of a range of possible
modifications of the various aspects described above.
Accordingly, the present invention 1s defined by the claims
and their equivalents.
What 1s claimed 1s:
1. A system for error-resilient data reduction, comprising:
a computing device comprising a memory, a processor,
and a non-volatile data storage device;
a data deconstruction engine comprising a first plurality of
programming instructions stored 1n the memory of, and
operatmg on a processor of, the Computlng device,
wherein the first plurality of programming instructions,
when operating on the processor, cause the computing
device to:
train an encoding algorithm on sourceblocks at multiple
phases, wherein each phase comprises a distinct
starting bit offset of a respective sourceblock;

deconstruct incoming data into a plurality of chunklets;

encode the chunklets using the encoding algorithm and
a reference codebook; and

send the encoded chunklets to a data reconstruction
engine; and

a data reconstruction engine comprising a second plu-
rality of programming instructions stored in the
memory of, and operating on a processor of, the
computing device, wherein the second plurality of
programming instructions, when operating on the
processor, cause the computing device to:

10

15

20

25

30

35

40

36

decode received chunklets using the key-value pairs
stored within the reference codebook:

for each decoded chunklet, determine 1t the decoded
chunklet has exceeded a predetermined threshold
probability that the decoded chunklet was properly
encoded, wherein the decoded chunklet 1s in-phase 11

the threshold 1s exceeded and the decoded chunklet
1s out-of-phase if the threshold i1s not exceeded; and
request retransmission ol out-of-phase chunklets.
2. The system of claim 1, wherein the threshold probabil-
ity 1s determined using logistic regression.
3. The system of claim 1, wherein multiple phases refer to
byte-phase sourceblocks with an oflset.
4. The system of claim 3, wherein the offset 1s an integer
value 1n the inclusive range of 1 to 7.
5. A method for error-resilient data reduction, comprising
the steps of:
training an encoding algorithm on sourceblocks at mul-
tiple phases, wherein each phase comprises a distinct
starting bit oilset of a respective sourceblock;
deconstructing mncoming data mto a plurality of chunk-
lets;
encoding the chunklets using an encoding algorithm and
a reference codebook;
decoding the chunklets at a data reconstruction engine
using key-value pairs stored within the reference code-
book:
for each decoded chunklet, determining 1t the decoded
chunklet exceeded a predetermined threshold probabil-
ity that the decoded chunklet was properly encoded,
wherein the decoded chunklet 1s in-phase if the thresh-
old 1s exceeded and the decoded chunklet 1s out-oi-
phase 11 the threshold 1s not exceeded; and
requesting retransmission ol out-of-phase chunklets.
6. The method of claim 5, wherein the threshold prob-
ability 1s determined using logistic regression.
7. The method of claim 5, wherein multiple phases refer
to byte-phase sourceblocks with an offset.
8. The method of claim 7, wherein the oflset 1s an integer
value 1n the inclusive range of 1 to 7.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

