(12)

United States Patent
Tsybulnyk et al.

US011748150B2

US 11,748,150 B2
Sep. 5, 2023

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(65)

(1)

(52)

(58)

(56)

SYSTEM AND METHOD FOR BLOCKING
PATH DETECTION

Applicant: Microsoft Technology Licensing, LLC,
Redmond, WA (US)

Inventors: Vitalii Tsybulnyk, Redmond, WA (US);
Arka Dasgupta, Bellevue, WA (US);
Marwan Elias Jubran, Kirkland, WA
(US); Clifford Thomas Dibble, Bothell,

WA (US)

Microsoft Technology Licensing, LL.C,
Redmond, WA (US)

Assignee:

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 134(b) by 500 days.

Notice:

Appl. No.: 16/411,202

Filed: May 14, 2019

Prior Publication Data

US 2020/0364081 Al Nov. 19, 2020

Int. Cl.

GO6F 9/46 (2006.01)

GOo6F 9/48 (2006.01)

U.S. CL

CPC e, GO6F 9/4843 (2013.01)
Field of Classification Search

P e GO6F 9/4843

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

5317,737 A * 5/1994 Barton GOOF 9/526
710/200
2005/0159969 Al* 7/2005 Sheppard G06Q 10/00
705/7.36

f-——S{iﬂr

(AL >
l

RECEIVE INFOERMATION RECARDING A JOI3 TO I
RXRCUTED, THE JOR COMPRISING A PLLIRALITY OF
TASKS, AT LEAST SOME OF THE TASKS DEPENDENT

O AT LEAST OMNE OTHER TASK, WHEREDY EACH

TASK IS ASSIONED TO AN OWNERSHIP TEAM OF A

PLOCRALITY OF OWNFREHIP TEAMS

l

AT A PARTICLLAR POINT IN EXECUTION OF THE JOB,

IDENTEY STATES OF TASKS OF THE JOB, THE STATES

COMPRISING ONE OF: WATTTSNG FOR ANOTHER TASKY
FINISHED, IN PROGRHESS. AND, BLOCKED

|

WIN ATE TTIE TASKS WITH IDENTIFH-D STATES G

PARTICULAR OWNERSHIP TEAM, IDENTIFY THLE
FARTICULAR OWXERSHIF TEAM AS ON A BLOCKING
PATH

|

PERFORM AN ACLUTON REGARDING THE BLOCKING
PATH

|
«=>

fﬁ]ﬂ

/— 52§

IN PROGRESS OR BLOCKED ARF ASSIGNED TO A f 23

2006/0288334 Al* 12/2006 Tian GO6F 8/4441

tttttttttttttttttttttt

717/127
2007/0233703 Al 10/2007 Hebert et al.
2007/0256058 Al* 11/2007 Martatia GOO6F 8/51
717/137
(Continued)

OTHER PUBLICATTIONS

Donald P. Martin, “Capacity and Cycle Time—Throughput Under-
standing System (CAC-TUS) An Analysis Tool to Determine the

Components of Capacity and Cycle Time mn a Semiconductor
Manufacturing Line”, 1999.*

(Continued)

Primary Examiner — Camquy lruong
(74) Attorney, Agent, or Firm — Rainier Patents, P.S.

(57) ABSTRACT

A system and method for blocking path detection 1s pro-
vided. A job comprises tasks with at least some of the tasks
dependent on other task(s). Fach task i1s assigned to an
ownership team. At a particular point in execution of the job,
states of tasks of the job are identified. The states include one
of three mutually exclusive states: waiting for another
task/finished, i progress, and, blocked. When all the tasks
with 1dentified states of 1n progress or blocked are assigned
to a particular ownership team, the particular ownership
team 1s 1dentified as on a blocking path. An action can be
performed regarding the blocking path, for example,
selected 1n accordance with policy-defined response actions
such as generating an incident, escalating an existing 1nci-
dent, and/or sending a noftification (e.g., an accumulated
time on the blocking path can be calculated for each team
with team(s) notified when certamn threshold(s) are
exceeded).

20 Claims, 8 Drawing Sheets

il
r

RECETVE INFORMATION REGARDING EXECUTION OF |
WHEREIN HEACH TASIS ASSIGNED TO AN
PATH OF LXECUTION OF THE JOB ’
- 620
OWNHRSHIP [EAM LAS BEEN ON 11 BLOCK ING

A JOB TOBE EXECUTED, THE JGE COMPRISENG A 1
OWNERSEHP TTiAM OF A PLURALNTY OF W NURSTHRP
PATIL

i START)
FLURALTTY OF TASKS, AT LEAST SOME OF THE 1 il
TASKS DEPEMOENF ON AT LEAST ONE OTHER TaARK [
TEAMS, EACH OWKERKHIP TIME ASSIGNED A
BAXIMUM PERICD OF TIME TO BE ON A BLOCKING |
FOR AT LEAST SOME OF THE OWNERSHLP TEAMS, |
TRACK A PERKIED OF TiME THE PARTICULAR
l) a3l

AFPLR COMMENCEMENTCHY LT LFTECON CHO TR 1015,
ATPARTICULAR POINTS TN EXECUTION OF THE TOB:

|

1 hdd}
LN THY STATES QU YASKS OF U JCI TR STATES ;/'
COMPRISTNG ONE OF, WATTING TOR ANOTITLIR TASKS |

FINESHED, T PROGRESS, AND, BEOUKED

340
TAOFI T

US 11,748,150 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2015/0124608 Al1* 5/2015 Agarwal HO4L 47/122
370/235

2015/0154526 Al 6/2015 Yates et al.
2016/0004577 Al 1/2016 Geddes et al.
2016/0247104 Al1* 8/2016 Rosenteld G06Q 10/0633
2017/0083369 Al 3/2017 Jubran et al.
2017/0195183 Al 7/2017 Gershaft et al.
2018/0150321 Al1* 5/2018 Dunham GOO6F 9/4881
2018/0157466 Al 6/2018 Jubran et al.
2018/0159743 Al 6/2018 Jubran et al.
2018/0341516 A1 11/2018 Gupta et al.
2019/0089594 Al 3/2019 Jubran et al.
2019/0332379 Al* 10/2019 Calhoun GO6F 12/126

OTHER PUBLICATIONS

“International Search Report and Written Opinion Issued in PCT
Application No. PCT/US2020/027343”, dated Jul. 28, 2020, 13
Pages.

* cited by examiner

U.S. Patent Sep. 5, 2023 Sheet 1 of 8 US 11,748,150 B2

110
JOB
INFORMATION
STORE
130 120
| |
STATE IDENTIFICATION I EXECUTING :
COMPONENT | JOB |
| |
L |

140

BLOCKING PATH
DETERMINATION
COMPONENT

COMPONENT !

160 150 INFORMATION
—————— _ 4 REGARDING
| BLOCKING PATH
: BLOCKING PATH : RESPONSE
| TRACKING COMPONENT
|
|

FIG. 1

U.S. Patent Sep. 5, 2023 Sheet 2 of 8 US 11,748,150 B2

236

U.S. Patent Sep. 5, 2023 Sheet 3 of 8 US 11,748,150 B2

208 il /
— /
- ~ 240 7
' \ /
/ £ e 216 /
/ \ / /
y /
\ // / /
\--..______-""' //
/ /’
// /
/ ,/ 228
/ /
/ 4 =X, 236
/ / _ -7)
204/ y -)
/ e
/ // /
/ /22224
/ 212 7

U.S. Patent Sep. 5, 2023 Sheet 4 of 8 US 11,748,150 B2

/ 228
236

o 248/ S——7 232

KFI1G. 4

U.S. Patent Sep. 5, 2023 Sheet 5 of 8 US 11,748,150 B2

’/- S00

START

RECEIVE INFORMATION REGARDING A JOB TO BE
EXECUTED, THE JOB COMPRISING A PLURALITY OF 310
TASKS, AT LEAST SOME OF THE TASKS DEPENDENT

ON AT LEAST ONE OTHER TASK, WHEREIN EACH

TASK IS ASSIGNED TO AN OWNERSHIP TEAM OF A

PLURALITY OF OWNERSHIP TEAMS

AT A PARTICULAR POINT IN EXECUTION OF THE JOB,

IDENTIFY STATES OF TASKS OF THE JOB, THE STATES

COMPRISING ONE OF: WAITING FOR ANOTHER TASK/
FINISHED, IN PROGRESS, AND, BLOCKED

520

WHEN ALL THE TASKS WITH IDENTIFIED STATES OF
IN PROGRESS OR BLOCKED ARE ASSIGNED TO A 530

PARTICULAR OWNERSHIP TEAM, IDENTIFY THE

PARTICULAR OWNERSHIP TEAM AS ON A BLOCKING
PATH

340

PERFORM AN ACTION REGARDING THE BLOCKING
PATH

U.S. Patent Sep. 5, 2023 Sheet 6 of 8 US 11,748,150 B2

START 600
(Cmawr) -

RECEIVE INFORMATION REGARDING EXECUTION OF
A JOB TO BE EXECUTED, THE JOB COMPRISING A
PLURALITY OF TASKS, AT LEAST SOME OF THE 610
TASKS DEPENDENT ON AT LEAST ONE OTHER TASK,
WHEREIN EACH TASK IS ASSIGNED TO AN
OWNERSHIP TEAM OF A PLURALITY OF OWNERSHIP
TEAMS, EACH OWNERSHIP TIME ASSIGNED A
MAXIMUM PERIOD OF TIME TO BE ON A BLOCKING
PATH OF EXECUTION OF THE JOB

. A
FOR AT LEAST SOME OF THE OWNERSHIP TEAMS,
TRACK A PERIOD OF TIME THE PARTICULAR 620
OWNERSHIP TEAM HAS BEEN ON THE BLOCKING
PATH

630

AFTER COMMENCEMENT OF EXECUTION OF THE JOB,
ATPARTICULAR POINTS IN EXECUTION OF THE JOB:

........... 640

COMPRISING ONE OF: WAITING FOR ANOTHER TASK/
FINISHED, IN PROGRESS, AND, BLOCKED

TOFIG. 7

FIG. 6

U.S. Patent Sep. 5, 2023 Sheet 7 of 8 US 11,748,150 B2

600
r

ou ()
FIG. 6

WHEN ALL THE TASKS WITH IDENTIFIED STATES OF 630
IN PROGRESS OR BLOCKED ARE ASSIGNED TO A
PARTICULAR OWNERSHIP TEAM., IDENTIFY THE

PARTICULAR OWNERSHIP TEAM AS ON THE
BLOCKING PATH

660
INCREASE THE PERIOD OF TIME THE PARTICULAR

OWNERSHIP TEAM HAS BEEN ON THE BLOCKING
PATH

WHEN THE PERIOD OF TIME THE PARTICULAR 670

OWNERSHIP TEAM HAS BEEN ON THE BLOCKING
PATH EXCEEDS A THRESHOLD AMOUNT, PERFORM
AN ACTION REGARDING THE BLOCKING PATH

FI1G. 7

U.S. Patent Sep. 5, 2023 Sheet 8 of 8 US 11,748,150 B2

| ————————— 860
i OPERATING SYSTEM
| ey — 867
| | APPLICATIONS | |
| | %
| ;
| ey 864 SYSTEM
' moputes ¥
| e I S
R — $66
|| DATA)
e

l"'"""""”"'""""""“"""""L"""""_"“"""““‘

: 1 802

|

: |

| 820 | 230 |

1 R ekl

l

| 840 |

| PROCESSOR(S) | MEMORY

I

I

: .

| |

| 850

I

N <

| 870

| L

: 3 MASS

e STORAGE INTERFACE

DEVICE(S) COMPONENT(S) | |

(E.G., JOB EXECUTION GRAPH) NpUT OUTPUT

(E.G., INFORMTION
REGARDING BLOCKING
PATH)

FIG. 8

US 11,748,150 B2

1

SYSTEM AND METHOD FOR BLOCKING
PATH DETECTION

BACKGROUND

Complex processes involving many tasks some of which
may be dependent on other task(s) can be diflicult to
accurately model a priori. For example, processing per-
formed by particular tasks may frequently change and/or
dependencies of particular tasks may change.

SUMMARY

Described herein 1s a system for blocking path detection,
comprising: a computer comprising a processor and a
memory having computer-executable instructions stored
thereupon which, when executed by the processor, cause the
computer to: receive information regarding a job to be
executed, the job comprising a plurality of tasks, at least
some of the tasks dependent on at least one other task,
wherein each task 1s assigned to an ownership team of a
plurality of ownership teams; at a particular point in execu-
tion of the job, 1dentily states of tasks of the job, the states
comprising one of: waiting for another task/finished, in
progress, and, blocked; when all the tasks with identified
states of 1n progress or blocked are assigned to a particular
ownership team (e.g., all task(s) of all other ownership
team(s) are finished or waiting), i1dentity the particular
ownership team as on a blocking path; and, provide a
notification regarding the blocking path.

Also described herein 1s a method of blocking path
detection, comprising: recerving information regarding
execution of a job to be executed, the job comprising a
plurality of tasks, at least some of the tasks dependent on at
least one other task, wherein each task 1s assigned to an
ownership team of a plurality of ownership teams, each
ownership team assigned a maximum period of time to be on
a blocking path of execution of the job; for at least some of
the ownership teams, tracking a period of time the particular
ownership team has been on the blocking path; after com-
mencement ol execution of the job, at particular points in
execution of the job: 1dentifying states of tasks of the job, the
states comprising one of: waiting for another task/finished,
in progress, and, blocked; when all the tasks with 1dentified
states of 1n progress or blocked are assigned to a particular
ownership team, identifying the particular ownership team
as on the blocking path; increasing the period of time the
particular ownership team has been on the blocking path;
and when the period of time the particular ownership team
has been on the blocking path exceeds a threshold amount,
performing an action regarding the blocking path.

This Summary 1s provided to mtroduce a selection of
concepts 1 a simplified form that are further described
below 1n the Detailed Description. This Summary 1s not
intended to 1dentily key features or essential features of the
claimed subject matter, nor 1s 1t intended to be used to limait
the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a functional block diagram that illustrates a
system for blocking path detection.

FIG. 2 1s an exemplary execution graph.

FIG. 3 1s another exemplary execution graph.

FIG. 4 1s yet another exemplary execution graph.

FI1G. 3 1llustrates an exemplary methodology of a method
of blocking path detection.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIGS. 6 and 7 1s a flow chart that illustrates a method of
blocking path detection.

FIG. 8 1s a functional block diagram that illustrates an
exemplary computing system.

DETAILED DESCRIPTION

Various technologies pertaining to blocking path detec-
tion are now described with reference to the drawings,
wherein like reference numerals are used to refer to like
clements throughout. In the following description, for pur-
poses ol explanation, numerous specific details are set forth
in order to provide a thorough understanding of one or more
aspects. It may be evident, however, that such aspect(s) may
be practiced without these specific details. In other
istances, well-known structures and devices are shown 1n
block diagram form 1in order to facilitate describing one or
more aspects. Further, 1t 1s to be understood that function-
ality that 1s described as being carried out by certain system
components may be performed by multiple components.
Similarly, for mnstance, a component may be configured to
perform functionality that 1s described as being carried out
by multiple components.

The subject disclosure supports various products and
processes that perform, or are configured to perform, various
actions regarding block path detection. What follows are one
or more exemplary systems and methods.

Aspects of the subject disclosure pertain to the technical
problem of detecting task(s) and/or sub-task(s) that are
impeding progress ol an executing job. The technical fea-
tures associated with addressing this problem nvolve
receive mformation regarding a job to be executed, the job
comprising a plurality of tasks, at least some of the tasks
dependent on at least one other task, wherein each task is
assigned to an ownership team of a plurality of ownership
teams; at a particular point 1n execution of the job, identify
states ol tasks of the job, the states comprising one of:
waiting for another task/finished, in progress, and, blocked;
when all the tasks with identified states of in progress or
blocked are assigned to a particular ownership team (e.g., all
task(s) of all other ownership team(s) are finished or wait-
ing), identily the particular ownership team as on a blocking
path; and, perform an action regarding the blocking path.
For example, the blocking path can indicate that all in
progress or blocked task(s) are assigned to one particular
ownership team with all task(s) of all other ownership
team(s) have finished or are waiting. Accordingly, aspects of
these technical features exhibit technical effects of more
ciiciently and eflectively executing jobs, for example,
reducing consumption of computing resource(s) and/or
bandwidth.

Moreover, the term “or’ 1s intended to mean an inclusive
“or” rather than an exclusive “or.” That 1s, unless specified
otherwise, or clear from the context, the phrase “X employs
A or B” 1s mtended to mean any of the natural inclusive
permutations. That 1s, the phrase “X employs A or B” 1s
satisfied by any of the following instances: X employs A; X
employs B; or X employs both A and B. In addition, the
articles “a” and ““an” as used 1in this application and the
appended claims should generally be construed to mean
“one or more” unless specified otherwise or clear from the
context to be directed to a singular form.

As used herein, the terms “component” and “system,” as
well as various forms thereof (e.g., components, systems,
sub-systems, etc.) are intended to refer to a computer-related
entity, either hardware, a combination of hardware and
soltware, software, or software 1n execution. For example, a

US 11,748,150 B2

3

component may be, but 1s not limited to being, a process
running on a processor, a processor, an object, an instance,
an executable, a thread of execution, a program, and/or a
computer. By way of illustration, both an application run-
ning on a computer and the computer can be a component.
One or more components may reside within a process and/or
thread of execution and a component may be localized on
one computer and/or distributed between two or more com-
puters. Further, as used herein, the term “‘exemplary” 1s
intended to mean serving as an illustration or example of
something, and 1s not intended to indicate a preference.

Conventionally, job(s) and process(es) can be automated
worktlows (tasks). Typical workilows can be complex com-
posites of many sub-workflows (sub-jobs) and individual
activities (tasks) that are owned by various teams (owning
teams), some of which run 1n parallel to each other, and can
have a significant number of mutual dependencies.

Such complexity introduces several challenges. First 1t 1s
often not straightforward to i1dentity what sub-job and task
blocks and/or slows down the overall progress of a given
j0b. Next, division of cycle time goals for each owning team
1s not readily determinable. Finally, the sub jobs are owned
and defined by many different teams. The internal task-level
structure of these sub-jobs can change as teams refactor the
code. The topology of dependencies between the tasks can
also evolve and change, even during execution of a job.
When viewed as an execution graph, the topology of the
execution graph can change and evolve independent of an
execution environment.

Thus, taken together, the overall process can be fine-
grained, stochastic, and/or subject to evolution of the execu-
tion graph over time. Accordingly, 1n some embodiments,
critical path analysis and/or PERT chart analysis are not
teasible since the current execution graph (and dependencies
therein) may not be known a priori and/or may change
during execution of the job.

Described herein 1s a system and method of performing
blocking path analysis independent independence of com-
plex topologies 1n the execution graph. Instead of traversing,
a complex graph (which can be very time-consuming or
even 1mpossible 1n case of cyclic or broken graphs) the
blocking path technique described here scans current task
states and subsequently reasons over a set of defined states:
(1) waiting for another task or processing of the particular
task has been completed; (2) task 1s 1n progress; or (3) task
1s blocked. When all the tasks with 1dentified states of 1n
progress or blocked are assigned to a particular ownership
team with all task(s) of all other ownership team(s) have
finished or are waiting, the particular ownership team 1is
identified as on a blocking path.

Referring to FIG. 1, a system for blocking path detection
100 1s illustrated. The system 100 can be utilized to deter-
mine a blocking path for a monmitored complex process (job)
involving a plurality of tasks some of which are dependent
on other task(s) i order to begin and/or complete process-
ing. In some embodiments, the system 100 can avoid
complexities associated with conventional analysis tech-
niques such as critical path analysis and/or PERT chart
analysis since the system 100 1s adaptable to the evolving
execution topology, and 1s robust 1n the face of the stochastic
nature of the worktlows (tasks/sub-tasks of jobs).

For purposes of explanation and not limitation, the system
and method are described in the context of a cluster buildout
process for computer data center(s); however, the system
and method for blocking path detection can be utilized to
determine blocking path(s) for other complex processes
involving many tasks some of which are dependent on other

10

15

20

25

30

35

40

45

50

55

60

65

4

task(s). For example, the system and method can be utilized
to detect blocking path(s) 1n process(es) for software devel-
opment, manufacturing, and the like.

Frequently, a buildout process for computer data center
capacity can have a long cycle time and high variance,
which can cause capacity shortages which can impact cus-
tomer satisfaction. For example, long-tailed distributions
can be observed that stem from an excessive number of
incidents that are left unattended delaying completion for
significant period of time (e.g., hours, days). This can create
variance which can diflicult for an associated organization to
accurately perform long-range planning.

As used 1n herein, a “job” refers to an overall process
comprised of a plurality of tasks on behalf of a plurality of
owners. Each task can include zero, one, or more subtasks.
An owner (e.g., ownership team) 1s assigned responsibility
for each task. A task can be automated process (e.g., con-
figuration of a module of software), semi-automated process
(e.g., configuration of a module of software with human
input), and/or manual process (e.g., receive human nput,
physically install a piece of hardware).

The system 100 includes a job information store 110 that
stores 1nformation regarding an executing job 120. The
information can include about tasks of a particular job,
dependencies among the tasks, and, a monitored past and/or
current state of each task. As discussed in greater detail
below, for purposes of explanation and not limitation, a job
can be represented as an execution graph comprised of a
plurality of nodes with each node representing a particular
task. At least some of the nodes can dependent upon
processing of one or more other nodes. In some embodi-
ments, a dependency can be based upon a particular node
that can only be performed after completion of processing of
another node. In some embodiments, a dependency can be
based upon a particular node that can only be performed
alter recerving information from another node (e.g., during
processing of the another node and/or upon completion of
processing of the another node).

In some embodiments, each cluster buildout workflow
comprises a job tree with a single root job and zero, one or
more subjobs. Each job (root or sub) contains one or more
tasks. Jobs can be executed 1n parallel with respect to one
another. Tasks 1nside a given job can execute in parallel with
respect to one another. Additionally, dependency(ies) can
exist between a task in one job and a different task 1n a
different job.

In some embodiments, the monitored current state infor-
mation for tasks stored in the job information store 110 1s
updated periodically (e.g., every minute, every fifteen min-
utes, every hour, every day) by a state 1dentification com-
ponent 120. In some embodiments, the current state infor-
mation for a particular task comprises one of three mutually
exclusives states:

(1) The particular task waiting for another task or pro-

cessing of the particular task has been completed;

(2) The particular task in progress; or

(3) The particular task 1s blocked.

“Blocked” refers to the particular task being unable to
continued processing. In some embodiments, the particular
task can be blocked because 1t 1s 1n a wait state (e.g., waiting
for human 1nput). In some embodiments, the particular task
can be blocked because an exception has been generated
(e.g., software fault or bug).

In some embodiments, using the information stored 1n the
job information store 110, a blocking path determination
component 130 can scan the entire job tree (graph), from the
root job to all sub-jobs and the tasks spawned by them, to

US 11,748,150 B2

S

identify if at any point the progress of the entire job tree 1s
dependent on a single owning team’s task(s). If so, the
owning team’s task set and/or the owning team 1s then
designated to be on the blocking path of the process achiev-
ing goal state (e.g., completion of the job). This does not
mean that all or even any task in that taskset 1s necessarily
in a blocked state, although they often are. Thus, 1n some
embodiments, the blocking path determination 1s indicative
that the remaining task(s) of the executing job 120 (e.g.,
unexecuted task(s)) are waiting (e.g., directly and/or indi-
rectly) on task(s) only of that particular owning team.

In some embodiments, the executing job 120 can be one
of a plurality of executing jobs managed by a service
(platform). The blocking path calculation can occur in-
memory as part of each root job (e.g., executing job 13) 1n
the platform. Each platform root job can have an additional
thread (e.g., system 100) that runs parallel to the main
worktlow execution thread and periodically calculates the
blocking path information for the particular executing job
120 (e.g., every 15 minutes). First, the scanning thread (e.g.,
system 100) enumerates the jobs/sub-jobs 1n a root job tree,
down to the lowest level. Then 1t enumerates the tasks 1n
those jobs/sub-jobs and group them by their owning teams
and filters out the tasks that are used to create sub-jobs. Each
owning team 1s then mdividually evaluated to determine 1f
it owns a task that 1s a blocking path candidate. A task 1s
considered a blocking path candidate 11 it 1s 1n progress or
blocked by an incident. Any owning team that has one or
more blocking tasks 1s considered a candidate for the
blocking team. Finally, the thread rolls up this information
to the root job level, and 1f and only 1f there 1s a single
candidate blocking team, the blocking path 1s determined to
exist for the root job and that owning team 1s 1dentified as the
blocking team.

For purposes of explanation and not limitation, several
simplified executing jobs 120 will be discussed. Table 1
illustrates a simple job without sub-jobs:

TABLE 1
Root Job
Task 1 / Team 1 (finished)
Task 2 / Team 1 (blocked) — (blocking path task)
Task 3 / Team 1 (finished)
Task 4 / Team 1 (in progress) — (blocking path task)

With respect to the job of Table 1, the blocking path
determination component 140 has identified “Task 2 and
“Task 4” as candidate blocking path tasks. “Task 2 1s a
candidate because the task 1s blocked, and, “task 4 1s a
candidate because the task 1s 1n progress. Since the two
candidate blocking tasks are owned by the same team
(““Ieam 17°), the blocking path determination 140 can i1den-
tify “Task 27 and “Task 4” as on the blocking path owned by
“Team 17.

Next, Table 2 1llustrates another simple job without sub-
10bs:

TABLE 2

Root Job

Task 1 / Team 1 (finished)
Task 2 / Team 1 (blocked)
Task 3 / Team 2 (finished) notification
Task 4 / Team 2 (in progress)

Referring to Table 2, the blocking path determination
component 140 has identified “Task 2” and “lask 4” as

5

10

15

20

25

30

35

40

45

50

55

60

65

6

candidate blocking path tasks. However, since the two
candidate block path tasks are owned by different teams, the
blocking path determination component 140 does not 1den-

tify a blocking path.
Table 3 1llustrates a simple job with one sub-job:

TABLE 3

Root Job
Task 1 (finished)
Task 2 (1gnore) — Sub-job 1
Task 1 (finished)
Task 2 (finished)
Task 3 / Team 1 (in progress)

Task 3 (finished)
Task 4 / Team 1 (in progress)

With respect to Table 3, the blocking path determination
component 140 1dentifies “Task 3 of sub-job 1 of Task 27
and ““lTask 4”7 as candidate blocking path tasks. Because
these two candidate blocking tasks are owned by the same
team (““Ieam 1), the blocking path determination 140 can
identify “Task 3 of sub job 1 of Task 2" and “Task 4 as on
the blocking path owned by “Team 1.

Table 4 also 1llustrates a simple job with one sub-job:

TABLE 4

Root Job
Task 1 (finished)
Task 2 (1gnore) — Sub-job 1
Task 1 (finished)
Task 2 (finished)
Task 3 / Team 2 (in progress)
Task 3 (finished)
Task 4 / Team 1 (in progress)

With respect to Table 4, the blocking path determination
component 140 identifies “Task 3 of sub-job 1 of Task 2”
and “Task 4 as candidate blocking path tasks. However, the
since the two candidate block path tasks are owned by
different teams, the blocking path determination component

140 does not identily a blocking path.
Finally, Table 5 illustrates a complex job tree:

TABLE 5

Root Job
Task 1 (finished)
Task 2 (finished)
Task 3 (finished)
Task 4 (1gnore) — Sub-job 1
Task 1 (finished)
Task 2 / Team 1 (1n progress)
Task 3 (not started)
Task 5 (ignore) — Sub-job 2
Task 1 (finished)
Task 2 / Team 1 (blocked)
Task 3 (not started)
Task 6 (1gnore) — Sub-job 3
Task 1 (finished)
Task 2 (finished)
Task 3 (finished)
Task 4 (ignore) — Sub-job 5
Task 1 (finished)
Task 2 / Team 1 (blocked)
Task 7 (not started)
Task 8 (not started)

With respect to Table 5, the blocking path determination
component 140 1dentifies “Task 2 of sub-job 1 of Task 47,
“Task 2 of sub-job 2 of Task 5, and “Task 2 of sub-job 5 of
sub-job 3 of Task 67 as candidate blocking path tasks.

US 11,748,150 B2

7

Because these three candidate blocking tasks are owned by
the same team (““Team 17°), the blocking path determination

140 can identily “Task 2 of sub-job 1 of Task 47, “Task 2 of
sub-job 2 of Task 5, and “Task 2 of sub-job 5 of sub-job 3
of Task 6 as on the blocking path owned by “Team 1.

The blocking path determination component 140 can
provide information regarding the identified blocking path
(c.g., task(s)/sub-task(s) involved, owning team) to a
response component 150. In some embodiments, based, at
least 1n part, upon the provided information, the response
component 150 can provide a notification to the owning
team. In some embodiments, the notification can include a
notification on a user interface of the service of the platform,
an email, an SMS text message, an instant message, a
voicemail to a telephone number, and the like. In some
embodiments, the action performed 1s based upon a length
of time that the i1dentified particular owning team has been
on the blocking path for this instance (e.g., these particular
identified task(s)/sub-task(s)). In some embodiments, the
performed 1s based upon a length of time that the identified
particular owning team has been on the blocking path over
the execution of the executing job 120 (e.g., per job execu-
tion).

In some embodiments, the action performed 1s based upon
a policy that sets forth various actions, for example, generate
incident, escalate incident, notify, etc. selected based upon
the particular owning team, the particular task(s)/sub-task(s)
involved, the length of time that the identified particular
owning team has been on the block path for this instance,
and/or, the length of time that the identified particular
owning team has been on the blocking path over the execu-
tion of the executing job 120. In some embodiments, the
action performed 1s based upon a hierarchical ordering of
action, the action selected based upon the particular owning
team, the particular task(s)/sub-task(s) involved, the length
of time that the 1dentified particular owning team has been
on the block path for this instance, and/or, the length of time
that the i1dentified particular owning team has been on the
blocking path over the execution of the executing job 120.
For example, when a particular task of a particular owning
team 1s 1dentified as being on the blocking path (e.g., highly
significant software update), a particular individual (e.g.,
program manager) can receive a notification via one or more
specifled communication/notification modalities. For
example, the particular individual can 1nmitially receive an
email notification. If the condition persists for a threshold
period of time, a manager of the particular individual can
receive an email notification in order to escalate significance
of the continued blocking path determination.

In some embodiments, the system 100 can be utilized to
identily ownership team(s) having task(s)/sub-task(s) that
individually and/or collectively exceed reasonable time con-
straints. For example, 1n some 1nstances, imcident(s) associ-
ated with blocked task(s) can be leit unattended for extended
periods of time (e.g., minutes, hours, days).

Optionally, the system 100 can further include a blocking,
path tracking component 160 that tracks length(s) of time
that one, some, or all of a plurality of ownership teams have
been identified as on the blocking path of one or more
particular executing jobs 120. In some embodiments, this
tracked information can be utilized during and/or after
completion of the executing job 120 to determine perfor-
mance metric(s), process change(s) for future and/or current
10b(s), and/or resource allocation for current and/or future
job(s). In some embodiments, a period of time on the
blocking path for one, some, or all of the plurality of

5

10

15

20

25

30

35

40

45

50

55

60

65

8

ownership teams 1s pre-defined (e.g., based upon historical
information and/or target information for the job).
In some embodiments, each ownming team 1s assigned a

specific expected duration (e.g., goal) for a particular job
setting forth a period of time that each 1s allowed to be on
the blocking path of the particular job. In some embodi-
ments, this expected duration 1s derived from the end-to-end
cycle time for the particular job using ratios that are defined
from historical data computed over a particular period of
time (e.g., the last several months of execution telemetry)
using following method.

First, a sample set of historical jobs of a given kind 1s
taken with outliers removed e.g. by choosing 75% of them
in terms ol best execution duration). Next, a determination
1s made as to a quantity of time each owning team spent on
the blocking path. A statistical mean of these two metrics
(historical job execution time, and, time on blocking path for
cach owning team) can be obtained. Thereaiter, a ratio of
those means can be utilized to determine what percentage of
time job(s) of a given owning team spends on the blocking
path, on average:

Blocking path ratio=Mean time on blocking path of
all owning teams/Mean job execution time

The combined blocking path for all owning teams is a target
10b execution time adjusted by the blocking path ratio.

Next, a blocking path duration of each owning team for
cach job 1n the sample set can be calculated with outliers
removed (e.g. take 75% shortest durations per team). Each
owning team can be assigned a portion of the combined
blocking path time that the historical team’s historical share
on the blocking path in the job execution time.

In this manner, a task’s wait on its dependency does not
count against the owning team. Task(s) making progress 1n
parallel to other tasks do not count against the blocking path
time of the owning team, as long as these task(s) are not on
a blocking path for the overall main job. Accordingly, 1n
some embodiments, teams are encouraged to their work as
carly as possible and make progress in parallel to others
(even 1 such progress 1s slower than 1f given owning team
was the only one making progress) in order to reduce
end-to-end execution time.

In some embodiments, when the system 100 does not
identify a blocking path, other technique(s) can be used 1n
addition to the blocking path technique (discussed above) to
identify tasks/teams that introduce higher risks of blocking
progress, €.g. 1dentily escalation tickets linked to ““in prog-
ress” tasks, or apply “blocking path” determination to mul-
tiple teams at the same time.

Referring to FIGS. 2-4, exemplary execution graphs 200,
300, 400 at various times of execution of a particular job are
illustrated. For purposes of explanation and not limitation,
the graphs 200, 300, 400 include a start task 204, seven
action tasks 208, 212, 216, 220, 224, 228, 232, and, an end
task 236 (goal task). Also for purposes of explanation and
not limitation, the action tasks are assigned to three owner-
ship teams Team, 240, Team, 244, Team, 248. A task
waiting for another task 1s marked with a “W”, a task that
has finished 1s marked with an “F”, a task that 1s 1n progress
1s marked with a “P”, and, a task that 1s blocked 1s marked
with a “B”.

Turning to FIG. 2, an exemplary execution graph 200 1s
illustrated prior to execution. Initially, the current state of the
seven action tasks 208, 212, 216, 220, 224, 228, 232 are
“waiting for another task™ as they are all directly or 1ndi-
rectly dependent upon the start task 204.

US 11,748,150 B2

9

Referring next to FIG. 3, job execution has begun with the
start task 204, and, task 208 completed. Task 212 1s pro-
gressing, and, task 216 1s blocked. The remaining tasks 220,
224, 228, 232, and the end task 236 are “waiting for another
task”. Task 212 (progressing) and task 216 (blocked) are
blocking path candidates. Since task 212 and task 216 are
both assigned to Team., 244 and there are no block path
candidates assigned to other ownership teams, Team, 244 1s
identified by the system 100 as the blocking team.

FI1G. 4 illustrates subsequent job execution with the start
task 204, and tasks 208, 212, 216, 220, 224 completed. Task
228 1s blocked and task 232 1s progressing. Task 228
(blocked) and task 232 (progressing) are blocking path
candidates. However, since task 228 and task 232 are
assigned to different ownership teams, Team, 244 and Team,
248, respectively, the system 100 does not 1dentily a block
team at this point in time.

FIGS. 5-7 illustrate exemplary methodologies relating to
blocking path detection. While the methodologies are shown
and described as being a series of acts that are performed 1n
a sequence, 1t 1s to be understood and appreciated that the
methodologies are not limited by the order of the sequence.
For example, some acts can occur in a different order than
what 1s described herein. In addition, an act can occur
concurrently with another act. Further, in some instances,
not all acts may be required to implement a methodology
described herein.

Moreover, the acts described herein may be computer-
executable instructions that can be implemented by one or
more processors and/or stored on a computer-readable
medium or media. The computer-executable mnstructions can
include a routine, a sub-routine, programs, a thread of
execution, and/or the like. Still further, results of acts of the
methodologies can be stored im a computer-readable
medium, displayed on a display device, and/or the like.

Referring to FIG. 5, a method of blocking path detection
500 1s 1llustrated. In some embodiments, the method 500 1s
performed by the system 100.

At 510, information regarding a job to be executed 1s
received. The job comprises a plurality of tasks, at least
some of the tasks dependent on at least one other task. Each
task 1s assigned to an ownership team of a plurality of
ownership teams.

At 520, at a particular point in execution of the job, states
of tasks of the job are identified. The states comprise one of:
waiting for another task/finished, 1n progress, and, blocked.

At 530, when all the tasks with identified states of 1n
progress or blocked are assigned to a particular ownership
team, the particular ownership team 1s identified as on a
blocking path. At 540, an action 1s performed regarding the
blocking path (e.g., particular ownership team and/or tasks
with 1dentified states of 1n process or blocked).

Turning to FIGS. 6 and 7, a method of blocking path
detection 500 i1s 1illustrated. In some embodiments, the
method 600 1s performed by the system 100.

At 610, information regarding execution of a job to be
executed 1s received. The job comprises a plurality of tasks,
at least some of the tasks dependent on at least one other
task. Each task 1s assigned to an ownership team of a
plurality of ownership teams, each ownership time assigned
a maximum period of time to be on a blocking path of
execution of the job.

At 620, for at least some of the ownership teams, a period
of time the particular ownership team has been on the
blocking path 1s tracked. At 630, after commencement of
execution of the job, at particular points in execution of the

j0b, the acts of 640, 650, 660, and/or 670 are performed.

10

15

20

25

30

35

40

45

50

55

60

65

10

At 640, states of tasks of the job are identified. The states
comprise one of: waiting for another task/finished, 1n prog-
ress, and, blocked. In some embodiments, the states of tasks
are one of these three mutually exclusive states.

At 650, when all the tasks with i1dentified states of in
progress or blocked are assigned to a particular ownership
team, the particular ownership team 1s i1dentified as on the
blocking path. At 660, the period of time the particular
ownership team has been on the blocking path 1s increased.
At 670, when the period of time the particular ownership
team has been on the blocking path exceeds a threshold
amount, an action 1s performed regarding the blocking path
1s provided.

Described herein 1s a system for blocking path detection,
comprising: a computer comprising a processor and a
memory having computer-executable instructions stored
thereupon which, when executed by the processor, cause the
computer to: receive imnformation regarding a job to be
executed, the job comprising a plurality of tasks, at least
some of the tasks dependent on at least one other task,
wherein each task 1s assigned to an ownership team of a
plurality of ownership teams; at a particular point 1n execu-
tion of the job, 1dentily states of tasks of the job, the states
comprising one ol: waitting for another task/finished, in
progress, and, blocked; when all the tasks with i1dentified
states of 1n progress or blocked are assigned to a particular
ownership team, identify the particular ownership team as
on a blocking path; and perform an action regarding the
blocking path.

The system can include wherein the action comprises
providing a notification to the particular ownership team.
The system can further include wherein the action per-
formed comprises at least one of creating an incident, or
escalating severity of an existing incident. The system can
include wherein the information regarding the job to be
executed changes during execution of the job.

The system can further include wherein the computer-
executable instructions are performed periodically during
execution of the job. The memory can store further com-
puter-executable instructions which, when executed by the
processor, cause the computer to: for at least one of the
ownership teams, track a period of time the ownership team
has been on the blocking path. The memory can store further
computer-executable instructions which, when executed by
the processor, cause the computer to: for each ownership
team, track a period of time the ownership team has been on
the blocking path.

The system can further include wherein the notification
provided 1s based upon a hierarchical ordering of notifica-
tions, the notification selected based upon at least one of the
particular identified ownership team, a particular 1dentified
task as in progress or blocked, a length of time that the
identified particular owning team has been on the block path,
or, a length of time that the 1dentified particular owning team
has been on the blocking path over the execution of the job.

Described herein 1s a method of blocking path detection,
comprising: receiving information regarding execution of a
10b to be executed, the job comprising a plurality of tasks,
at least some of the tasks dependent on at least one other
task, wherein each task 1s assigned to an ownership team of
a plurality of ownership teams, each ownership team
assigned a maximum period of time to be on a blocking path
ol execution of the job; for at least some of the ownership
teams, tracking a period of time the particular ownership
team has been on the blocking path; after commencement of
execution of the job, at particular points in execution of the
job: 1dentifying states of tasks of the job, the states com-

US 11,748,150 B2

11

prising one of: waiting for another task/finished, 1n progress,
and, blocked; when all the tasks with 1dentified states of in
progress or blocked are assigned to a particular ownership
team, 1dentifying the particular ownership team as on the
blocking path; increasing the period of time the particular
ownership team has been on the blocking path; and when the
period of time the particular ownership team has been on the
blocking path exceeds a threshold amount, perform an
action regarding the blocking path.

The method can include wherein the threshold amount 1s
a maximum period of time to be on the blocking path. The
method can further include wherein the threshold amount 1s
less than the maximum period of time to be on the blocking
path. The method can include wherein the threshold amount
1s based, at least in part, upon the identified particular
ownership team.

The method can further include wherein the information
regarding the job to be executed changes during execution of
the job. The method can include wherein the method 1s
performed periodically during execution of the job.

Described herein 1s a computer storage media storing
computer-readable instructions that when executed cause a
computing device to: recerve mformation regarding a job to
be executed, the job comprising a plurality of tasks, at least
some of the tasks dependent on at least one other task,
wherein each task 1s assigned to an ownership team of a
plurality of ownership teams; at a particular point in execu-
tion of the job, 1dentily states of tasks of the job, the states
comprising one of: waiting for another task/finished, in
progress, and, blocked; when all the tasks with i1dentified
states of 1n progress or blocked are assigned to a particular
ownership team, i1dentily the particular ownership team as
on a blocking path; and perform an action regarding the
blocking path.

The computer storage media can further include wherein
the information regarding the job to be executed changes
during execution of the job including dependency of at least
one task. The computer storage media can further include
wherein the computer-readable instructions are performed
periodically during execution of the job.

The computer storage media can store further computer-
readable 1nstructions that when executed cause the comput-
ing device to: for at least one of the ownership teams, track
a period of time the ownership team has been on the
blocking path. The computer storage media can further store
turther computer-readable instructions that when executed
cause the computing device to: for each ownership team,
track a period of time the ownership team has been on the
blocking path.

The computer storage media can further include wherein
the action performed 1s based upon a hierarchical ordering of
actions, the action selected based upon at least one of the
particular identified ownership team, a particular 1dentified
as 1n progress or blocked, a length of time that the identified
particular owning team has been on the block path, or, a
length of time that the 1dentified particular owning team has
been on the blocking path over the execution of the job.

With reference to FIG. 8, illustrated 1s an example gen-
cral-purpose computer or computing device 802 (e.g.,
mobile phone, desktop, laptop, tablet, watch, server, hand-
held, programmable consumer or industrial electronics, set-
top box, game system, compute node, etc.). For instance, the
computing device 802 may be used in a system for blocking
path detection 100.

The computer 802 1includes one or more processor(s) 820,
memory 830, system bus 840, mass storage device(s) 8350,
and one or more nterface components 870. The system bus

10

15

20

25

30

35

40

45

50

55

60

65

12

840 communicatively couples at least the above system
constituents. However, 1t 1s to be appreciated that in 1ts
simplest form the computer 802 can include one or more
processors 820 coupled to memory 830 that execute various
computer executable actions, instructions, and or compo-
nents stored i memory 830. The instructions may be, for
instance, 1nstructions for i1mplementing functionality
described as being carried out by one or more components
discussed above or instructions for implementing one or
more of the methods described above.

The processor(s) 820 can be implemented with a general
purpose processor, a digital signal processor (DSP), an
application specific integrated circuit (ASIC), a field pro-
grammable gate array (FPGA) or other programmable logic
device, discrete gate or transistor logic, discrete hardware
components, or any combination thereof designed to per-
form the functions described herein. A general-purpose
processor may be a microprocessor, but in the alternative,
the processor may be any processor, controller, microcon-
troller, or state machine. The processor(s) 820 may also be
implemented as a combination of computing devices, for
example a combination of a DSP and a microprocessor, a
plurality of microprocessors, multi-core processors, one or
more microprocessors i conjunction with a DSP core, or
any other such configuration. In one embodiment, the pro-
cessor(s) 820 can be a graphics processor.

The computer 802 can include or otherwise interact with
a variety of computer-readable media to facilitate control of
the computer 802 to implement one or more aspects of the
claimed subject matter. The computer-readable media can be
any available media that can be accessed by the computer
802 and includes volatile and nonvolatile media, and remov-
able and non-removable media. Computer-readable media
can comprise two distinct and mutually exclusive types,
namely computer storage media and communication media.

Computer storage media includes volatile and nonvola-
tile, removable and non-removable media implemented in
any method or technology for storage of information such as
computer-readable 1nstructions, data structures, program
modules, or other data. Computer storage media includes
storage devices such as memory devices (e.g., random
access memory (RAM), read-only memory (ROM), electri-
cally erasable programmable read-only memory (EE-
PROM), etc.), magnetic storage devices (e.g., hard disk,
floppy disk, cassettes, tape, etc.), optical disks (e.g., compact
disk (CD), digital versatile disk (DVD), etc.), and solid state
devices (e.g., solid state drive (SSD), flash memory drive
(e.g., card, stick, key drive) etc.), or any other like mediums
that store, as opposed to transmit or communicate, the
desired information accessible by the computer 802.
Accordingly, computer storage media excludes modulated
data signals as well as that described with respect to com-
munication media.

Communication media embodies computer-readable
instructions, data structures, program modules, or other data
in a modulated data signal such as a carrier wave or other
transport mechanism and includes any information delivery
media. The term “modulated data signal” means a signal that
has one or more of its characteristics set or changed 1n such
a manner as to encode information in the signal. By way of
example, and not limitation, communication media includes
wired media such as a wired network or direct-wired con-
nection, and wireless media such as acoustic, RF, infrared
and other wireless media.

Memory 830 and mass storage device(s) 850 are
examples of computer-readable storage media. Depending
on the exact configuration and type of computing device,

US 11,748,150 B2

13

memory 830 may be volatile (e.g., RAM), non-volatile (e.g.,
ROM, tlash memory, etc.) or some combination of the two.
By way of example, the basic mput/output system (BIOS),
including basic routines to transfer information between
clements within the computer 802, such as during start-up,
can be stored 1n nonvolatile memory, while volatile memory
can act as external cache memory to facilitate processing by
the processor(s) 820, among other things.

Mass storage device(s) 850 includes removable/non-re-
movable, volatile/non-volatile computer storage media for
storage of large amounts of data relative to the memory 830.
For example, mass storage device(s) 850 includes, but 1s not
limited to, one or more devices such as a magnetic or optical
disk drive, tfloppy disk drive, flash memory, solid-state drive,
Oor memory stick.

Memory 830 and mass storage device(s) 850 can include,
or have stored therein, operating system 860, one or more
applications 862, one or more program modules 864, and
data 866. The operating system 860 acts to control and
allocate resources of the computer 802. Applications 862
include one or both of system and application software and
can exploit management of resources by the operating
system 860 through program modules 864 and data 866
stored 1n memory 830 and/or mass storage device (s) 850 to
perform one or more actions. Accordingly, applications 862
can turn a general-purpose computer 802 mto a specialized
machine in accordance with the logic provided thereby.

All or portions of the claimed subject matter can be
implemented using standard programming and/or engineer-
ing techniques to produce software, firmware, hardware, or
any combination thereof to control a computer to realize the
disclosed functionality. By way of example and not limita-
tion, system 100 or portions thereof, can be, or form part, of
an application 862, and include one or more modules 864
and data 866 stored in memory and/or mass storage
device(s) 850 whose functionality can be realized when
executed by one or more processor(s) 820.

In some embodiments, the processor(s) 820 can corre-
spond to a system on a chip (SOC) or like architecture
including, or 1n other words 1ntegrating, both hardware and
software on a single integrated circuit substrate. Here, the
processor(s) 820 can include one or more processors as well
as memory at least similar to processor(s) 820 and memory
830, among other things. Conventional processors include a
mimmal amount of hardware and software and rely exten-
sively on external hardware and software. By contrast, an
SOC implementation of processor 1s more powerful, as 1t
embeds hardware and software therein that enable particular
functionality with minimal or no reliance on external hard-
ware and soltware. For example, the system 100 and/or
associated functionality can be embedded within hardware
in a SOC architecture.

The computer 802 also includes one or more interface
components 870 that are communicatively coupled to the
system bus 840 and facilitate interaction with the computer
802. By way of example, the interface component 870 can
be a port (e.g., serial, parallel, PCMCIA, USB, FireWire,
etc.) or an interface card (e.g., sound, video, etc.) or the like.
In one example implementation, the interface component
870 can be embodied as a user mput/output interface to
enable a user to enter commands and information into the
computer 802, for instance by way of one or more gestures
or voice 1nput, through one or more mput devices (e.g.,
pointing device such as a mouse, trackball, stylus, touch pad,
keyboard, microphone, joystick, game pad, satellite dish,
scanner, camera, other computer, etc.). In another example
implementation, the interface component 870 can be embod-

10

15

20

25

30

35

40

45

50

55

60

65

14

ied as an output peripheral interface to supply output to
displays (e.g., LCD, LED, plasma, etc.), speakers, printers,
and/or other computers, among other things. Still further yet,
the interface component 870 can be embodied as a network
interface to enable communication with other computing
devices (not shown), such as over a wired or wireless
communications link.

What has been described above includes examples of
aspects of the claimed subject matter. It 1s, of course, not
possible to describe every conceivable combination of com-
ponents or methodologies for purposes of describing the
claimed subject matter, but one of ordinary skill 1n the art
may recognize that many further combinations and permu-
tations of the disclosed subject matter are possible. Accord-
ingly, the disclosed subject matter 1s intended to embrace all
such alterations, modifications, and wvariations that fall
within the spirit and scope of the appended claims. Further-
more, to the extent that the term “includes” 1s used 1n either
the details description or the claims, such term 1s mtended to
be inclusive 1n a manner similar to the term “comprising” as
“comprising” 1s interpreted when employed as a transitional
word 1n a claim.

What 1s claimed 1s:

1. A system, comprising;

a processor; and

a memory having computer-executable instructions stored

thereupon which, when executed by the processor,
cause the system to:

recerve mformation regarding a job to be executed on the

system, the job comprising a plurality of tasks, at least
some of the tasks having dependencies on at least one
other task, wherein each task has one or more corre-
sponding characteristics;

at a particular point 1 execution of the job, i1dentily

execution states of respective tasks of the job, the
execution states comprising one of: a waiting execution
state, an 1n progress execution state, and a blocked
execution state;

when a set of tasks having the 1n progress execution state

or the blocked execution share a particular character-
istic 1n common, 1dentify the set of tasks as on a
blocking path of the job that prevents the system from
executing other tasks of the job; and

take at least one action with respect to the set of tasks on

the blocking path.

2. The system of claim 1, wherein the job comprises a root
10ob and multiple sub-jobs, and the memory stores further
computer-executable istructions which, when executed by
the processor, cause the system to:

execute a scanning thread in the root job, the scanning

thread running in parallel to an execution thread of the
job and performing in-memory 1dentification of the
blocking path.

3. The system of claim 1, wherein the at least one action
comprises creating an incident with respect to the blocking
path or escalating severity of an existing incident with
respect to the blocking path.

4. The system of claim 1, wherein the information regard-
ing the job to be executed changes during execution of the
10b.

5. The system of claim 1, wherein the computer-execut-
able 1nstructions are performed periodically during execu-
tion of the job.

6. The system of claim 5, wherein the memory stores
further computer-executable 1nstructions which, when
executed by the processor, cause the system to:

US 11,748,150 B2

15

track a period of time that tasks having the particular
characteristic 1n common have been on the blocking

path of the job.

7. The system of claim 6, wherein the memory stores
further computer-executable 1nstructions which, when
executed by the processor, cause the system to:

allocate resources to the job based at least on the length

of time that the tasks having the particular character-
1stic 1n common have been on the blocking path of the
10b.
8. The system of claim 1, wherein the memory stores
further computer-executable 1nstructions which, when
executed by the processor, cause the system to:
perform 1n-memory identification of the blocking path.
9. A method, comprising:
receiving information regarding execution of a job to be
executed on a computing device, the job comprising a
plurality of tasks, at least some of the tasks having
respective dependencies on at least one other task,
wherein each task has one or more corresponding
characteristics;
after commencement of execution of the job, at particular
points 1n execution of the job on the computing device:

identifying execution states of respective tasks of the job,
the execution states being selected from a group com-
prising: a waiting execution state, an in-progress execu-
tion state, and a blocked execution state;
when a set of all tasks having the in-progress execution
state or the blocked execution state share a particular
characteristic 1n common, identifying the set of tasks as
being on a blocking path of the job that prevents the
computing device from executing other tasks of the job;

determining a period of time that the set of tasks sharing
the particular characteristic have been on the blocking
path and preventing the computing device from execut-
ing the other tasks of the job; and

when the period of time that the set of tasks sharing the

particular characteristic have been on the blocking path
exceeds a threshold amount, performing an action
regarding the blocking path.

10. The method of claim 9, wherein the threshold amount
1s a maximum period of time to be on the blocking path.

11. The method of claim 9, wherein the threshold amount
1s less than the maximum period of time to be on the
blocking path.

12. The method of claim 9, wherein the particular char-
acteristic relates to one or more entities responsible for the
tasks on the blocking path.

10

15

20

25

30

35

40

45

16

13. The method of claim 9, wherein the information
regarding the job to be executed changes during execution of
the job.

14. The method of claim 9, wherein the method 1is
performed periodically during execution of the job.

15. A computer storage media storing computer-readable
instructions that, when executed, cause a computing device
to:

recerve mformation regarding a job to be executed on the

computing device, the job comprising a plurality of
tasks, at least some of the tasks having dependencies on
at least one other task, wherein each task has one or
more corresponding characteristics;

at a particular point 1 execution of the job on the

computing device, 1dentify execution states of respec-
tive tasks of the job, the execution states comprising
one of: a waiting execution state, an in progress execu-
tion state, and a blocked execution state;

when a set of each of the tasks having the in progress

execution state or the blocked execution state shares a
particular characteristic 1n common, 1dentity the set of
tasks as on a blocking path of the job that prevents the
computing device from executing other tasks of the job;
and

take at least one action with respect to the set of tasks on

the blocking path.

16. The computer storage media of claim 15, wherein the
information regarding the job to be executed changes during
execution of the job including dependency of at least one
task.

17. The computer storage media of claim 15, wherein the
computer- readable 1nstructions are performed periodically
during execution of the job.

18. The computer storage media of claim 17 storing
further computer-readable mstructions that, when executed,
cause the computing device to:

track a period of time that all tasks on the blocking path

have had the particular characteristic.

19. The computer storage media of claim 17 storing
turther computer-readable mstructions that, when executed,

cause the computing device to:
for each respective characteristic ol multiple characteris-
tics, track a period of time that tasks having the
respective characteristic have been on the blocking
path.

20. The computer storage media of claim 17, the at least
one action comprising outputting a notification regarding the
blocking path via a user interface to a particular person that
has the particular characteristic.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

