US011748115B2

a2 United States Patent (10) Patent No.: US 11,748,115 B2

Burman et al. 45) Date of Patent: Sep. 5, 2023
(54) APPLICATION AND RELATED OBJECT (36) References Cited
SCHEMATIC VIEWER FOR SOFTWARE N
APPLICATION CHANGE TRACKING AND U.s. PALENT DOCUMENTS
MANAGEMENT 4,941,084 A 7/1990 Terada et al.
5,185,800 A 2/1993 Wu
(71) Applicant: ServiceNow, Inc., Santa Clara, CA (Continued)
(US)
FORFEIGN PATENT DOCUMENTS
(72) Inventors: Jacob Burman, San Diego, CA (US); EP 0433979 6/1991
Michel Abou Samah, San Diego, CA EP 1607824 12/2005
(US); Kylin Follenweider, San Diego, (Continued)
CA (US); Sharon Elizabeth
Carmichael Ehlert, San Diego, CA OTHER PUBLICATIONS
(US)

“Orlando I'T Operations Management™, ServiceNow Docs, Jun. 18,

_ 2020, 573 pages.
(73) Assignee: ServiceNow, Inc., Santa Clara, CA

US) (Continued)

Primary Examiner — Tammara R Peyton

(*) Notice: Subject to any disclaimer, the term of this (74) Attorney, Agent, or Firm — McDonnell Boehnen
patent is extended or adjusted under 35 Hulbert & Berghott LLP
U.S.C. 1534(b) by 427 days.

(57) ABSTRACT

_ A system could include persistent storage containing appli-

(21) Appl. No.: 16/934,356 cation components. A plurality of soitware applications
could be installed on the system. The software applications

(22) Filed: Jul. 21, 2020 could be respectively associated context records that include
references to application components that provide some

_ o behavior or data for the software applications. The system

(65) Prior Publication Data could also include processors configured to perform opera-
US 2022/0027169 A1l Jan. 27, 2022 tions. The operations could include recerving a request to
generate a topology map for a software application and

identifying, based on a context record for the software

(51) Int. Cl. application, a subset of application components ‘that‘ provide
GO6F 9/445 (2018.01) some behavior or data for the software application. The
GOGF 8/77 (2018.01) operations could further include determining relationship
GO6EF 8/34 (2018.01) types between pairs of application components and gener-

ating a topology map for the soiftware application. The

(52) gPSC Cl. GOGF 9/44505 (2013.01); GOGF 8/34 subset of application components may be represented as

nodes 1n the topology map, and edges between the nodes

(2013.01); GO6F 8/77 (2013.01) may be defined from relationship types between correspond-

(58) FKield of Classification Search ing pairs ol application components.
CPC GO6F 9/44505; GO6F 8/43; GO6F 8/77
See application file for complete search history. 18 Claims, 15 Drawing Sheets

REMOTE NETWORK
MANAGEMENT PLATFORM
324

MANAGED NETWORK 300

| CLIENT DEVICES |

|82} VIRTUAL
MACHINES 308

- - T —— e — e —t

| INSTANCE { i INSTANCE |

s mEp R YR gE s e o e e e e e |

[~ T T T 1 | SERVERS 312
E ROUTERS 306 : ---------

e ————— —— ki — —

PUBLIC CLOUD
NETWORKS
340

US 11,748,115 B2

Page 2
(56) References Cited 7,281,170 B2 10/2007 Taylor et al.
7,412,502 B2 8/2008 Fearn et al.
U.S. PATENT DOCUMENTS 7,505,872 B2 3/2009 Keller et al.
7,593,013 B2 9/2009 Agutter et al.
5,237,518 A 8/1993 Sztipanovits et al. 7,596,716 B2 9/2009 Frost et al.
5,261,097 A 11/1993 Saxon 7,617,073 B2 11/2009 Trinon et al.
5,265,252 A 11/1993 Rawson, III et al. 7,660,731 B2 2/20j~0 Ch:‘:lddha et al.
5,367,685 A 11/1994 Gosling 7,676,294 B2 3/2010 Baier et al.
5,390,297 A 2/1995 Barber et al. 7,676,437 B2 3/2010 Satkunanathan et al.
5,442,791 A 8/1995 Wrabetz et al. 7,742940 Bl 6/2010 Shan
5452415 A 0/1995 Hotka 7,840,490 B1 11/2010 Sellers et al.
5,522,042 A 5/1996 Fee et al. 7,877,783 Bl 1/2011 Cline et al.
5,533,116 A 7/1996 Vesterinen 7,890,869 Bl 2/2011 Mayer et al.
5,655,081 A 8/1997 Bonnell et al. 7,966,398 B2 6/2011 Wiles, Ir.
5,659,736 A 8/1997 Hasegawa et al. 8,060,396 Bl 11/2011 Bessler et al.
5,671,412 A 9/1997 Christiano 8,196,210 B2 6/2012 Sterin
5,696,701 A 12/1997 Burgess et al. 8,321,948 B2 11/2012 Robinson et al.
5,715,463 A 2/1998 Merkin 8,407,669 B2 3/2013 Yee et al.
5,745,879 A 4/1998 Wyman 8,554,750 B2 10/2013 Rangarajan et al.
5,761,502 A 6/1998 Jacobs 8,595,647 B2 11/2013 Sabin et al.
5,764,913 A 6/1998 Jancke et al. 8,620,818 B2 12/2013 Hughes et al.
5,887,139 A 3/1999 Madison, Jr. et al. 8,646,093 B2 2/2014 Myers et al.
5,909,217 A 6/1999 Bereiter 8,674,992 B2 3/2014 Poston et al.
5,937,165 A 2/1999 Schwaller et al. 8,725,647 B2 5/2014 Disciascio et al.
5,949,976 A 9/1999 Chappelle 9,053,460 B2 6/2015 Gilbert et al.
5,978,594 A 11/1999 Bonnell et al. 10,606,583 B2* 3/2020 Benedett: GO6F 9/44505
6,021,437 A /2000 Chen et al. 2002/0116340 Al 8/2002 Hellberg et al.
6,041,347 A 3/2000 Harsham et al. 2002/0133584 Al 9/2002 Greuel et al.
6,088,717 A 7/2000 Reed et al. 2002/0158969 A1 10/2002 Gupta
6,101,500 A */2000 T.au 2003/0118087 Al 6/2003 Goldthwaite et al.
6,128,016 A 10/2000 Coelho et al. 2003/0200293 Al 10/2003 Fearn et al.
6,131,118 A 10/2000 Stupek, Jr. et al. 2005/0015217 Al 1/2005 Weidl et al.
6,134,581 A 10/2000 Ismael et al. 2005/0091356 Al 4/2005 Izzo
6,138,122 A 10/2000 Smith et al. 2006/0026453 Al 2/2006 Frost et al.
6,148335 A 11/2000 Haggard et al. 2006/0095461 Ajh 5/2006 Raymond
6,166,732 A 12/2000 Mitchell et al. 2006/0179058 Al 82006 Bram et al.
6,167,448 A 12/2000 Hemphill et al. 2006/0293942 A1 12/2006 Chaddha et al.
6,175,866 Bl 1/2001 Holloway et al. 2007/0033279 Al 2/2007 Battat et al.
6,175,878 Bl 1/2001 Seaman et al. 2007/0050273 Al 3/2007 Burke, Jr.
6,260,050 Bl 7/2001 Yost et al. 2007/0188494 Al 8/2007 Agutter et al.
6,263,457 Bl 7/2001 Anderson et al. 2007/0288389 Al 12/2007 Vaughan et al.
6,272,150 Bl Q/2001 Hrastar et al. 2008/0133289 Al 6/2008 Armour et al.
6,336,138 Bl 1/2002 Caswell et al. 2008/0148253 Al 6/2008 Badwe et al.
6,363,421 B2 3/2002 Barker et al. 2008/0300963 A1 12/2008 Seetharaman
6,393,386 Bl 5/2002 Zager et al. 2008/0319779 A1 12/2008 Hughes et al.
6,397,245 Bl 5/2002 Johnson, II et al. 2009/0088875 Al 4/2009 Baier et al.
6,434,626 Bl R/2002 Prakash et al. 2009/0228984 Al 9/2009 Sterin
6,438,592 Bl {/2002 Killian 2010/0110932 Al 5/2010 Doran et al.
6,456,306 Bl 0/2002 Chin et al. 2010/0299433 Al 112010 De Boer
6,466,932 Bl 10/2002 Dennis et al. 2013/0246106 Al1* 9/2013 Kroetsch G06Q 10/06
6,487,590 B1 11/2002 Foley et al. 705/7.12
6,505,248 Bl 1/2003 Casper et al. 2014/0222511 Al 8/2014 Broady
6,526,442 Bl 2/2003 Stupek, Jr. et al. 2017/0032400 Al 2/2017 Gilmore
6,621,823 Bl 9/2003 Mellquist et al. 2018/0158079 Al 6/2018 Chu
6,707,795 Bl 3/2004 Noorhosseini et al. 2020/0279198 Al 9/2020 Turner
6,742,015 Bl 5/2004 Bowman-Amuah
0,763,380 Bl 7/2004 Mayton et al. FOREIGN PATENT DOCUMENTS
6,816,898 B1 11/2004 Scarpell et al.
6,895,586 Bl 5/2005 Brasher et al. WO WO 99/34785 7/199G
6,948,175 Bl 972005 Tong et al. WO WO 00/52559 9/2000
6,985,901 Bl 1/2006 Sachse et al. WO WO 01/79970 10/2001
7,003,564 B2 2/2006 Greuel et al.
7,028,228 Bl 4/2006 Lovy et al.
7,043,537 Bl 5/2006 Pratt OTHER PUBLICATIONS
7,043,661 B2 5/2006 Valadarsky et al. _
7.062.683 B2 6/2006 Warpenburg et al. Office Action, U.S. Appl. No. 17/211,539, dated Apr. 14, 2023.
7,096,459 B2 8/2006 Keller et al. Hyndman, R.J., & Athanasopoulos, G. (2018) Forecasting: prin-
7.146,574 B2 12/2006 Goldthwaite et al. ciples and practice, 2nd edition, OTexts: Melbourne, Australia.
7,197,466 Bl 3/2007 Peterson et al. OTexts.com/fpp2, chapter 3.1.
7.215.360 B2 5/2007 Gupta Office Action, U.S. Appl. No. 17/211,539, dated Jan. 11, 2023.
7,216,304 Bl 5/2007 Gourdol et al.
7.222.147 Bl 5/2007 Black et al. * cited by examiner

US 11,748,115 B2

Sheet 1 of 15

Sep. 5, 2023

U.S. Patent

LINN 1NdLNO / LNdNI

801

"1

SNOILLVOI1ddV

riiiii

TANY I

AJOWZIN

v0l

Ol

OL1

001

J0V4441NI

AYOMLAN

J0SS300d

901

¢0l

U.S. Patent Sep. 5, 2023 Sheet 2 of 15 US 11,748,115 B2

SERVER CLUSTER

ROUTERS

210

NETWORK 212

US 11,748,115 B2

Sheet 3 of 15

Sep. 5, 2023

U.S. Patent

ove
SHYOMLAN

anod dndnd

JONVISNI |
| | IYNOILY.LNJINOD | |

JONVLISNI |
| IYNOLLY.LNAINOD | |

WH041V1d LNJWIOVNYIA
AJOMLAN 310N

A i G A kbbb Wb gy b p———

| 80% SANIHOVN |
| wnLyA - !

L I I I I B]

N TR T T T T T T T

| ﬂq.w. |

PARBANS AMBANAL: SAMAARE SAMMRAG WAABARSS REAMRAS: < BARBAAS < IMAMMAE ARARARAY

| Z0¢ |

00€ YMOMLIN AOVNVIA

US 11,748,115 B2

Sheet 4 of 15

Sep. 5, 2023

U.S. Patent

|
|
| 30NvISNI €
|

g90v
_ WIONVIVE QYO _rlv.

—_——— — L

¢S .
_

TYNOILV.LNANOI

AVMILYO NdA |

d00v 431INJI V1VQ

NOILVOI'ld3d

4Svav.ivd

VLI _Tv_

 43IONVTVE QVOT ;

—_—— — — L

IR 4R RN RN]IIIIIII

5 .

JINVLSNI rlv_

Veov |
AVM3LYO NdA |

V00y d41INH0 ViV(

9Ly 43SN 310Ny

I T T T T T T T

¢y AVMALVYO NdA _AIJ

e R

0Ly SNl _
zo_._.dz:mv_n_zoo

- | NYLVEHOIEINYY

00 M4OMLAN AdOVNVIA

US 11,748,115 B2

Sheet 5 of 15

Sep. 5, 2023

U.S. Patent

JONVLISNI TVNOILVLNdANOD

Sl

VG Ol4

00 YYOMLIN
J4OVNVIA

NOILVANDIANOD

0343A008Id

SANVININOD

SISNOJSIY \

ANV $390d

Wil R R TR TR e A wimmeR S,

| Z1S WAL _ |
NOLLV¥NOIANOD | |

| 015 WALl _ w
zo_Em_:w_.._zoo

Y TR TR TR TR TR TERE R Ry

| 805 WLl _ _

|_NOLLYNOINOD |

. ST TR AT S AR AR .

| 906 Wall _ ”

_ zo_._.dm_:w_n_zoo

U.S. Patent Sep. 5, 2023 Sheet 6 of 15 US 11,748,115 B2

520
POPULATE TASK LIST 4

SCANNING PHASE: o« 522
PROBE IP ADDRESSES FOR DEVICES AND DETERMINE OPERATING SYSTEMS

CLASSIFICATION PHASE: Pl
PROBE FOR OPERATING SYSTEM VERSION OF DISCOVERED DEVICES

IDENTIFICATION PHASE: 4— 226
PROBE FOR CONFIGURATION OF DISCOVERED DEVICES

EXPLORATION PHASE:
PROBE FOR OPERATIONAL STATE AND SERVICES OF DISCOVERED DEVICES

FURTHER EDITING OF CONFIGURATION ITEMS IN CMDB

US 11,748,115 B2

Sheet 7 of 15

Sep. 5, 2023

U.S. Patent

¢9

1001 AD010d0L

NOILVOI1ddV

0¢¢ NYO41V1d INJWIDVNVIN YHOMLAN 3103

00€ YYOMLIN A3I9OVNVIA

009

US 11,748,115 B2

Sheet 8 of 15

Sep. 5, 2023

U.S. Patent

089 (S).LNINOdINO0I @

dNOdD d3SMN

029 (S)LNaNOdINOD . 099 (S)LNAINOJINOD
TYNOILONNA 503 no

@a:zmzon_s_oo
V1va b

N o 079 (S)LNINOdINO)D P
~_ NOWVINddY _~-

o ——

’lll

19 NOLLVOIddV

US 11,748,115 B2

Sheet 9 of 15

Sep. 5, 2023

U.S. Patent

0. ¥3d0T13A30

. 13401
0ZZ V140d <“«————|INgNS
anowow3sn (&) NVIOINHO3L NV
TWNOILONNS {O%
. AILON
%
N393T 91 MOl 8lL
LNWNOISSY wzm_m o NVIOINHO3L
90L MO
IONVNILNIVIA AMLNZ A8 Q3R 10533 51
ToF LY3SNI NV ~
oS SNV ~)__ 0LS3ON3NI4TY 7
AYLN3 _. SNIVINOJ S13SSV
L43SNI N9 - .
301 SINIAION 1
0L SFONTYIA3N
13%OIL NON4 SANTLY SNIVLNOD

Linans |

NV

F0L TYLNOd 77 g
43401330 INIWLNYdIA %

L Ol

001

U.S. Patent Sep. 5, 2023 Sheet 10 of 15 US 11,748,115 B2

800

pV

IDENTIFY APPLICATION COMPONENTS 310
THAT FORM THE SOFTWARE APPLICATION 4

DETERMINE THE TYPES OF RELATIONSHIPS BETWEEN

THE APPLICATION COMPONENTS

DETERMINE APPLICATION TOPOLOGY 230
MAP MODIFICATIONS
GENERATE AND DISPLAY TOPOLOGY MAP 840

FIG. 8

U.S. Patent Sep. 5, 2023 Sheet 11 of 15 US 11,748,115 B2

DEVELOPER 910

e

IUSERS/GROUPS/DEVELOPER
DEVELOPER

PORTAL 920
APPLICATION CONTEXT [UI/PORTALS/DEVELOPER

RECORD 900

IAPP_DATA/TABLES/INCIDENTS

INCIDENTS 708

U.S. Patent Sep. 5, 2023 Sheet 12 of 15 US 11,748,115 B2

1000

1020 1012 1018
p"

TASK TABLE INCIDENTS TABLE
OPENED 110 | oPENED | DESCRIPTION| A REF

121519 | ONE:ONE 1215119

S c1aay | LOREMQUIS | AID_1
121419
7:01PM

DEP. TABLE

l/

pip | NaME

DID_1

FINANCE

12/4/19
2otpy | UTETDOLO | AID_2

MANY:ONE ONE:MANY
1016
o \
A ID DESCRIPTION
oHEMANY

AiD_1 SERVER #11

AlD_1 DID_2

VPN #12 AID 2

AlD_2

-
ll

RELATIONSHIPS

Y TASK TABLE INCIDENT TABLE EXTENDS FROM
INCIDENT TABLE ASSET TABLE REFERENCE
DEPARTMENT TABLE REFERENCE

DEPARTMENT TABLE ASSET TABLE REFERENCE
FIG. 10A

U.S. Patent Sep. 5, 2023 Sheet 13 of 15 US 11,748,115 B2

1040

X 1050
K

import data.incidents !
import users technicians 4 1092

=
I

function assign_incidents () {

for each incident in incidents.get_incidents() {
technicians.assign_technician(incident);

-~ OO U W N —

8 | }
10 |5

12 | function update_incidents () {

13

14 for each incident in technicians.resolved_incidents() {
15 incidents.update(incident);

16 }

17 |}

R NN RN

RELATIONSHIPS
COMPONENT A COMPONENT B

INCIDENT TABLE | ASSIGNMENT FLOW REFERENCE
TECHINCIAN GROUP | ASSIGNMENT FLOW REFERENCE

US 11,748,115 B2

Sheet 14 of 15

Sep. 5, 2023

U.S. Patent

anou yasn (B)

s
S0t

VivQd

-

UN4937

b Old

811
NVIOINHOAL

A8 G3AT0S3d S

49 iy B TEEGTTENEEEN 801
S13SSV [—~J SNIVINOD SLN3AIONI
01 SIONI¥I4TY 13Y9IL LINENS NVD
wz_qwzoo
INTWLYYdIC

¢0L 43d013A4d

o0zl

1.1n9,,

[.SMSV L. :.IHONSI IAON:
<TVNOILINNA,] :.THONDI NODI.

0LLL

0011

U.S. Patent Sep. 5, 2023 Sheet 15 of 15 US 11,748,115 B2

RECEIVE, FROM A CLIENT DEVICE, A REQUEST TO GENERATE AN APPLICATION
TOPOLOGY MAP FOR A SOFTWARE APPLICATION FROM A PLURALITY OF
SOFTWARE APPLICATIONS INSTALLED ON A SYSTEM, WHERE THE SYSTEM
INCLUDES PERSISTENT STORAGE CONTAINING APPLICATION COMPONENTS, AND 1200
WHERE THE PLURALITY OF SOFTWARE APPLICATIONS HAVE RESPECTIVELY |4
ASSOCIATED APPLICATION CONTEXT RECORDS THAT INCLUDE REFERENCES TO
ONE OR MORE OF THE APPLICATION COMPONENTS THAT PROVIDE AT LEAST
SOME BEHAVIOR OR DATA RELATED TO THE PLURALITY OF SOFTWARE
APPLICATIONS

IDENTIFY, BASED ON AN APPLICATION CONTEXT RECORD ASSOCIATED WITH THE
SOFTWARE APPLICATION, A SUBSET OF APPLICATION COMPONENTS THAT | 1210
PROVIDE AT LEAST SOME BEHAVIOR OR DATA RELATED TO THE SOFTWARE
APPLICATION

DETERMINE, BASED ON THE SUBSET OF APPLICATION COMPONENTS,
RELATIONSHIP TYPES BETWEEN PAIRS OF APPLICATION COMPONENTS FROM THE | «— 1220
SUBSET OF APPLICATION COMPONENTS

GENERATE AN APPLICATION TOPOLOGY MAP FOR THE SOFTWARE APPLICATION,
WHERE THE SUBSET OF APPLICATION COMPONENTS ARE REPRESENTED AS
NODES IN THE APPLICATION TOPOLOGY MAP, AND WHERE EDGES BETWEEN THE | «—
NODES ARE DEFINED BASED ON THE RELATIONSHIP TYPES BETWEEN
CORRESPONDING PAIRS OF APPLICATION COMPONENTS

1230

PROVIDE, FOR DISPLAY ON THE CLIENT DEVICE, A REPRESENTATION OF THE
APPLICATION TOPOLOGY MAP

US 11,748,115 B2

1

APPLICATION AND RELATED OBJECT
SCHEMATIC VIEWER FOR SOFTWARE
APPLICATION CHANGE TRACKING AND
MANAGEMENT

BACKGROUND

A remote network management platform may support the
creation of custom soltware applications for enterprise
users. These custom applications can range from simple web
forms to worktlow management and other productivity
tools. To facilitate rapid development of such applications,
the remote network management platform may support a set
ol application components. For example, these application
components may include a set of widgets for graphical user
interface (GUI) development.

SUMMARY

A remote network management platform could offer vari-
ous pre-constructed software applications. Such pre-con-
structed software applications could include, for example,
device and software discovery applications, service mapping
applications, mformation technology (IT) operations and
service management applications, machine learming appli-
cations, and so on. These pre-constructed software applica-
tions could be developed by developers or operators of the
remote network management platform or by a third-party
entity.

Occasionally, however, an enterprise user could have a
unique requirement that cannot be addressed by any of the
pre-constructed soltware applications offered by the remote
network management platform. For instance, if the enter-
prise user Irequently engages in telemarketing, then the
enterprise user may require a custom telemarketing man-
agement application. To handle this scenario, the remote
network management platform may support the creation of
custom software applications. These custom software appli-
cations could be new software applications or could be built
on top of existing, pre-constructed software applications.
Further, these custom software applications may be execut-
able within the remote network management platform, and
could thus take full advantage of the infrastructure and
computational services oflered by the remote network man-
agement platform.

To facilitate the development of custom software appli-
cations, the remote network management platform may
support a set ol application components, such as widgets for
GUI development, pre-populated database tables containing
records, user authentication services, and the like. Such
application components could eliminate unnecessary devel-
opment complexity and enable applications built using the
remote network management platform to have a common
look and feel.

A custom software application could have hundreds, 11 not
thousands, of these application components. Each applica-
tion component could be configured to provide a specific
service and could be interconnected with one or more other
application components to provide a compound service. For
istance, a first application component could pass data to a
second application component, which 1n turn may perform
processing on the data and pass the processed data to a third
application component. Yet, while the services of an indi-
vidual application component can be viewed, the services
that application components provide in combination may
not be apparent by examining any one thereof.

10

15

20

25

30

35

40

45

50

55

60

65

2

To address this i1ssue, the present disclosure provides for
the concept of an “application topology map.” As detailed
below, an application topology map could be a wvisual
representation speciiying the application components that
contribute to a software application. The application topol-
ogy map could depict the application components as nodes
in a graph, with edges 1in the graph representing logical
dependencies between the application components. Advan-
tageously, the application topology map can help an enter-
prise user understand the application components impacted,
for example, by a failed application component or by an
application component that 1s to be taken out of service for
an upgrade. The application component map could also help
the enterprise user determine the root cause of a problem that
impacts the performance or availability of an application
component within the software application.

In accordance with the disclosure, the remote network
management platform could include an application topology
tool that could generate application topology maps for
soltware applications installed on the remote network man-
agement platform. During operations, the application topol-
ogy tool could identify, from an application context record
associated with a given software application, the various
application components that form the given software appli-
cation. With the application components i1dentified, the
application topology tool could then determinate relation-
ships between the various application components. Finally,
by exploring those determined relationships, an application
topology map for the given soiftware application could be
produced.

Accordingly, a first example embodiment may 1nvolve a
system that includes persistent storage containing applica-
tion components. A plurality of software applications may
be installed on the system. The plurality of soitware appli-
cations may be respectively associated with application
context records that include references to one or more of the
application components that provide at least some behavior
or data related to the plurality of software applications. The
system may also iclude one or more processors configured
to perform operations. The operations may include receiv-
ing, from a client device, a request to generate an application
topology map for a software application from the plurality of
soltware applications. The operations may turther include
identifving, based on an application context record associ-
ated with the software application, a subset of application
components that provide at least some behavior or data
related to the software application. The operations may also
include determining, based on the subset of application
components, relationship types between pairs of application
components from the subset of application components. The
operations may additionally include generating an applica-
tion topology map for the soiftware application, where the
subset of application components are represented as nodes 1n
the application topology map, and where edges between the
nodes are defined based on the relationship types between
corresponding pairs of application components. The opera-
tions may also include providing, for display on the client
device, a representation of the application topology map.

In a second example embodiment, an article of manufac-
ture may include a non-transitory computer-readable
medium, having stored thereon program instructions that,
upon execution by a computing system, cause the computing
system to perform operations in accordance with the first
example embodiment.

In a third example embodiment, a computing system may
include at least one processor, as well as memory and
program 1nstructions. The program instructions may be

US 11,748,115 B2

3

stored 1in the memory, and upon execution by the at least one
processor, cause the computing system to perform opera-
tions 1n accordance with the first example embodiment.

In a fourth example embodiment, a system may include
various means for carrying out each of the operations of the
first example embodiment.

These, as well as other embodiments, aspects, advantages,
and alternatives, will become apparent to those of ordinary
skill 1n the art by reading the following detailed description,
with reference where appropriate to the accompanying
drawings. Further, this summary and other descriptions and
figures provided herein are intended to illustrate embodi-
ments by way of example only and, as such, that numerous
variations are possible. For instance, structural elements and
process steps can be rearranged, combined, distributed,
climinated, or otherwise changed, while remaining within
the scope of the embodiments as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a schematic drawing of a computing
device, 1 accordance with example embodiments.

FIG. 2 illustrates a schematic drawing of a server device
cluster, in accordance with example embodiments.

FIG. 3 depicts a remote network management architec-
ture, 1n accordance with example embodiments.

FIG. 4 depicts a communication environment involving a
remote network management architecture, i accordance
with example embodiments.

FIG. SA depicts another communication environment
involving a remote network management architecture, 1n
accordance with example embodiments.

FIG. 5B 1s a flow chart, in accordance with example
embodiments.

FIG. 6A depicts a network architecture, in accordance
with example embodiments.

FIG. 6B depicts example application components, in
accordance with example embodiments.

FIG. 7 illustrates an application topology map, in accor-
dance with example embodiments.

FIG. 8 1s a flow chart 1llustrating example operations of a
application topology tool, 1 accordance with example
embodiments.

FIG. 9 depicts an application context record, 1 accor-
dance with example embodiments.

FIG. 10A 1illustrates a schema, 1n accordance with
example embodiments.

FIG. 10B depicts a source code file, in accordance with
example embodiments.

FIG. 11 illustrates a topology specification, 1n accordance
with example embodiments.

FIG. 12 1s a flow chart, in accordance with example
embodiments.

DETAILED DESCRIPTION

Example methods, devices, and systems are described
herein. It should be understood that the words “example”
and “exemplary” are used herein to mean “serving as an
example, nstance, or illustration.” Any embodiment or
feature described herein as being an “example” or “exem-
plary” 1s not necessarily to be construed as preferred or
advantageous over other embodiments or features unless
stated as such. Thus, other embodiments can be utilized and
other changes can be made without departing from the scope
of the subject matter presented herein.

10

15

20

25

30

35

40

45

50

55

60

65

4

Accordingly, the example embodiments described herein
are not meant to be limiting. It will be readily understood

that the aspects of the present disclosure, as generally
described herein, and illustrated in the figures, can be
arranged, substituted, combined, separated, and designed 1n
a wide variety of different configurations. For example, the
separation of features into “client” and *“‘server’” components
may occur in a number of ways.

Further, unless context suggests otherwise, the features
illustrated in each of the figures may be used 1n combination
with one another. Thus, the figures should be generally
viewed as component aspects ol one or more overall
embodiments, with the understanding that not all illustrated
features are necessary for each embodiment.

Additionally, any enumeration of elements, blocks, or
steps 1n this specification or the claims 1s for purposes of
clarity. Thus, such enumeration should not be mterpreted to
require or imply that these elements, blocks, or steps adhere
to a particular arrangement or are carried out 1n a particular
order.

I. Introduction

A large enterprise 1s a complex entity with many interre-
lated operations. Some of these are found across the enter-
prise, such as human resources (HR), supply chain, infor-
mation technology (IT), and finance. However, each
enterprise also has 1ts own unique operations that provide
essential capabilities and/or create competitive advantages.

To support widely-implemented operations, enterprises
typically use ofl-the-shell software applications, such as
customer relationship management (CRM) and human capi-
tal management (HCM) packages. However, they may also
need custom software applications to meet their own unique
requirements. A large enterprise often has dozens or hun-
dreds of these custom software applications. Nonetheless,
the advantages provided by the embodiments herein are not
limited to large enterprises and may be applicable to an
enterprise, or any other type of organization, of any size.

Many such software applications are developed by 1ndi-
vidual departments within the enterprise. These range from
simple spreadsheets to custom-built software tools and data-
bases. But the proliferation of siloed custom software appli-
cations has numerous disadvantages. It negatively impacts
an enterprise’s ability to run and grow 1ts operations, 1nno-
vate, and meet regulatory requirements. The enterprise may
find 1t difficult to integrate, streamline, and enhance its
operations due to lack of a single system that unifies its
subsystems and data.

To efhiciently create custom applications, enterprises
would benefit from a remotely-hosted application platform
that eliminates unnecessary development complexity. The
goal of such a platform would be to reduce time-consuming,
repetitive application development tasks so that software
engineers and individuals 1n other roles can focus on devel-
oping unique, high-value features.

In order to achieve this goal, the concept of Application
Platform as a Service (aPaaS) 1s introduced, to intelligently
automate workilows throughout the enterprise. An aPaaS
system 1s hosted remotely from the enterprise, but may
access data, applications, and services within the enterprise
by way of secure connections. Such an aPaaS system may
have a number of advantageous capabilities and character-
istics. These advantages and characteristics may be able to
improve the enterprise’s operations and worktlows for IT,
HR, CRM, customer service, application development, and
security.

US 11,748,115 B2

S

The aPaaS system may support development and execu-
tion of model-view-controller (MVC) applications. MVC
applications divide their functionality into three intercon-
nected parts (model, view, and controller) 1n order to 1solate
representations of information from the manner in which the
information 1s presented to the user, thereby allowing for
cllicient code reuse and parallel development. These appli-
cations may be web-based, and offer create, read, update,
delete (CRUD) capabilities. This allows new applications to
be built on a common application inirastructure.

The aPaaS system may support standardized application
components, such as a standardized set of widgets for
graphical user interface (GUI) development. In this way,
applications built using the aPaaS system have a common
look and feel. Other software components and modules may
be standardized as well. In some cases, this look and feel can
be branded or skinned with an enterprise’s custom logos
and/or color schemes.

The aPaaS system may support the ability to configure the
behavior of applications using metadata. This allows appli-
cation behaviors to be rapidly adapted to meet specific
needs. Such an approach reduces development time and
increases flexibility. Further, the aPaaS system may support
GUI tools that facilitate metadata creation and management,
thus reducing errors 1n the metadata.

The aPaaS system may support clearly-defined interfaces
between applications, so that software developers can avoid
unwanted inter-application dependencies. Thus, the aPaaS
system may implement a service layer in which persistent
state information and other data are stored.

The aPaaS system may support a rich set of integration
teatures so that the applications thereon can interact with
legacy applications and third-party applications. For
instance, the aPaaS system may support a custom employee-
onboarding system that integrates with legacy HR, IT, and
accounting systems.

The aPaaS system may support enterprise-grade security.
Furthermore, since the aPaaS system may be remotely
hosted, 1t should also utilize security procedures when it
interacts with systems in the enterprise or third-party net-
works and services hosted outside of the enterprise. For
example, the aPaaS system may be configured to share data
amongst the enterprise and other parties to detect and
identily common security threats.

Other features, functionality, and advantages of an aPaaS
system may exist. This description 1s for purpose of example
and 1s not mtended to be limiting.

As an example of the aPaaS development process, a
soltware developer may be tasked to create a new applica-
tion using the aPaaS system. First, the developer may define
the data model, which specifies the types of data that the
application uses and the relationships therebetween. Then,
via a GUI of the aPaaS system, the developer enters (e.g.,
uploads) the data model. The aPaaS system automatically
creates all of the corresponding database tables, fields, and
relationships, which can then be accessed via an object-
oriented services layer.

In addition, the aPaaS system can also build a fully-
tunctional MVC application with client-side interfaces and
server-side CRUD logic. This generated application may
serve as the basis of further development for the user.
Advantageously, the developer does not have to spend a
large amount of time on basic application functionality.
Further, since the application may be web-based, it can be
accessed from any Internet-enabled client device. Alterna-

10

15

20

25

30

35

40

45

50

55

60

65

6

tively or additionally, a local copy of the application may be
able to be accessed, for instance, when Internet service 1s not

available.

The aPaaS system may also support a rich set of pre-
defined functionality that can be added to applications.
These features include support for searching, email, tem-
plating, workflow design, reporting, analytics, social media,
scripting, mobile-friendly output, and customized GUISs.

Such an aPaaS system may represent a GUI 1n various
ways. For example, a server device of the aPaaS system may
generate a representation of a GUI using a combination of
HTML and JAVASCRIPT®. The JAVASCRIPT® may
include client-side executable code, server-side executable
code, or both. The server device may transmit or otherwise
provide this representation to a client device for the client
device to display on a screen according to its locally-defined
look and feel. Alternatively, a representation of a GUI may
take other forms, such as an intermediate form (e.g., JAVA®
byte-code) that a client device can use to directly generate
graphical output therefrom. Other possibilities exist.

Further, user interaction with GUI elements, such as
buttons, menus, tabs, sliders, checkboxes, toggles, etc. may
be referred to as “selection”, “activation”, or ‘“actuation”
thereof. These terms may be used regardless of whether the
GUI elements are interacted with by way of keyboard,
pointing device, touchscreen, or another mechanism.

An aPaaS architecture 1s particularly powerful when
integrated with an enterprise’s network and used to manage
such a network. The following embodiments describe archi-
tectural and functional aspects of example aPaaS systems, as
well as the features and advantages thereof.

II. Example Computing Devices and Cloud-Based
Computing Environments

FIG. 1 1s a simplified block diagram exemplilying a
computing device 100, i1llustrating some of the components
that could be included 1n a computing device arranged to
operate 1n accordance with the embodiments herein. Com-
puting device 100 could be a client device (e.g., a device
actively operated by a user), a server device (e.g., a device
that provides computational services to client devices), or
some other type of computational platform. Some server
devices may operate as client devices from time to time 1n
order to perform particular operations, and some client
devices may incorporate server features.

In this example, computing device 100 includes processor
102, memory 104, network interface 106, and input/output
unmit 108, all of which may be coupled by system bus 110 or
a similar mechanism. In some embodiments, computing
device 100 may include other components and/or peripheral
devices (e.g., detachable storage, printers, and so on).

Processor 102 may be one or more of any type of
computer processing element, such as a central processing
unmt (CPU), a co-processor (€.g., a mathematics, graphics, or
encryption co-processor), a digital signal processor (DSP), a
network processor, and/or a form ol integrated circuit or
controller that performs processor operations. In some cases,
processor 102 may be one or more single-core processors. In
other cases, processor 102 may be one or more multi-core
processors with multiple independent processing units. Pro-
cessor 102 may also include register memory for temporar-
ily storing instructions being executed and related data, as
well as cache memory for temporarily storing recently-used
instructions and data.

Memory 104 may be any form of computer-usable
memory, including but not limited to random access memory

US 11,748,115 B2

7

(RAM), read-only memory (ROM), and non-volatile
memory (e.g., flash memory, hard disk drives, solid state
drives, compact discs (CDs), digital video discs (DVDs),
and/or tape storage). Thus, memory 104 represents both
main memory units, as well as long-term storage. Other
types of memory may include biological memory.

Memory 104 may store program instructions and/or data
on which program instructions may operate. By way of
example, memory 104 may store these program instructions
on a non-transitory, computer-readable medium, such that
the mnstructions are executable by processor 102 to carry out
any of the methods, processes, or operations disclosed in this
specification or the accompanying drawings.

As shown 1n FIG. 1, memory 104 may include firmware
104A, kernel 104B, and/or applications 104C. Firmware
104 A may be program code used to boot or otherwise initiate
some or all of computing device 100. Kernel 104B may be
an operating system, including modules for memory man-
agement, scheduling and management of processes, mput/
output, and communication. Kernel 1048 may also include
device drivers that allow the operating system to commu-
nicate with the hardware modules (e.g., memory units,
networking interfaces, ports, and buses) of computing
device 100. Applications 104C may be one or more user-
space soltware programs, such as web browsers or email
clients, as well as any soltware libraries used by these
programs. Memory 104 may also store data used by these
and other programs and applications.

Network 1nterface 106 may take the form of one or more
wircline interfaces, such as Ethernet (e.g., Fast Ethernet,
(igabit Ethernet, and so on). Network interface 106 may
also support communication over one or more non-Ethernet
media, such as coaxial cables or power lines, or over
wide-area media, such as Synchronous Optical Networking,
(SONET) or digital subscriber line (DSL) technologies.
Network interface 106 may additionally take the form of one
or more wireless interfaces, such as IEEE 802.11 (Wif1),
BLUETOOTH®, global positioning system (GPS), or a
wide-area wireless interface. However, other forms of physi-
cal layer interfaces and other types of standard or proprietary
communication protocols may be used over network inter-
tace 106. Furthermore, network intertace 106 may comprise
multiple physical interfaces. For instance, some embodi-
ments of computing device 100 may include Ethernet,
BLUETOOTH®, and Wifl interfaces.

Input/output unit 108 may facilitate user and peripheral
device mteraction with computing device 100. Input/output
unit 108 may include one or more types of mput devices,
such as a keyboard, a mouse, a touch screen, and so on.
Similarly, mput/output unit 108 may include one or more
types of output devices, such as a screen, monitor, printer,
and/or one or more light emitting diodes (LEDs). Addition-
ally or alternatively, computing device 100 may communi-
cate with other devices using a universal serial bus (USB) or
high-definition multimedia interface (HDMI) port intertace,
for example.

In some embodiments, one or more computing devices
like computing device 100 may be deployed to support an
aPaaS architecture. The exact physical location, connectiv-
ity, and configuration of these computing devices may be
unknown and/or unimportant to client devices. Accordingly,
the computing devices may be referred to as “cloud-based”
devices that may be housed at various remote data center
locations.

FI1G. 2 depicts a cloud-based server cluster 200 1n accor-
dance with example embodiments. In FIG. 2, operations of
a computing device (e.g., computing device 100) may be

10

15

20

25

30

35

40

45

50

55

60

65

8

distributed between server devices 202, data storage 204,
and routers 206, all of which may be connected by local
cluster network 208. The number of server devices 202, data
storages 204, and routers 206 1n server cluster 200 may
depend on the computing task(s) and/or applications
assigned to server cluster 200.

For example, server devices 202 can be configured to
perform various computing tasks ol computing device 100.
Thus, computing tasks can be distributed among one or more
of server devices 202. To the extent that these computing
tasks can be performed in parallel, such a distribution of
tasks may reduce the total time to complete these tasks and
return a result. For purposes of simplicity, both server cluster
200 and 1ndividual server devices 202 may be referred to as
a “server device.” This nomenclature should be understood
to imply that one or more distinct server devices, data
storage devices, and cluster routers may be involved 1n
server device operations.

Data storage 204 may be data storage arrays that include
drive array controllers configured to manage read and write
access to groups of hard disk drives and/or solid state drives.
The drive array controllers, alone or 1n conjunction with
server devices 202, may also be configured to manage
backup or redundant copies of the data stored 1n data storage
204 to protect against drive failures or other types of failures
that prevent one or more of server devices 202 from access-
ing units of data storage 204. Other types of memory aside
from drives may be used.

Routers 206 may include networking equipment config-
ured to provide internal and external communications for
server cluster 200. For example, routers 206 may include
one or more packet-switching and/or routing devices (in-
cluding switches and/or gateways) configured to provide (1)
network communications between server devices 202 and
data storage 204 via local cluster network 208, and/or (11)
network communications between server cluster 200 and
other devices via communication link 210 to network 212.

Additionally, the configuration of routers 206 can be
based at least 1n part on the data communication require-
ments of server devices 202 and data storage 204, the
latency and throughput of the local cluster network 208, the
latency, throughput, and cost of communication link 210,
and/or other factors that may contribute to the cost, speed,
fault-tolerance, resiliency, efliciency, and/or other design
goals of the system architecture.

As a possible example, data storage 204 may include any
form of database, such as a structured query language (SQL)
database. Various types ol data structures may store the
information in such a database, including but not limited to
tables, arrays, lists, trees, and tuples. Furthermore, any
databases 1n data storage 204 may be monolithic or distrib-
uted across multiple physical devices.

Server devices 202 may be configured to transmit data to
and receive data from data storage 204. This transmission
and retrieval may take the form of SQL queries or other
types of database queries, and the output of such queries,
respectively. Additional text, images, video, and/or audio
may be included as well. Furthermore, server devices 202
may organize the recerved data into web page or web
application representations. Such a representation may take
the form of a markup language, such as the hypertext
markup language (HI'ML), the extensible markup language
(XML), or some other standardized or proprietary format.
Moreover, server devices 202 may have the capability of
executing various types of computerized scripting lan-
guages, such as but not limited to Perl, Python, PUP
Hypertext Preprocessor (PHP), Active Server Pages (ASP),

US 11,748,115 B2

9

JAVASCRIPT®, and so on. Computer program code written
in these languages may facilitate the providing of web pages
to client devices, as well as client device 1interaction with the
web pages. Alternatively or additionally, JAVA® may be
used to facilitate generation of web pages and/or to provide
web application functionality.

I11.

Example Remote Network Management
Architecture

FIG. 3 depicts a remote network management architec-
ture, 1n accordance with example embodiments. This archi-
tecture 1includes three main components—managed network
300, remote network management platform 320, and public
cloud networks 340—all connected by way of Internet 350.

A. Managed Networks

Managed network 300 may be, for example, an enterprise
network used by an entity for computing and communica-
tions tasks, as well as storage of data. Thus, managed
network 300 may include client devices 302, server devices
304, routers 306, virtual machines 308, firewall 310, and/or
proxy servers 312. Client devices 302 may be embodied by
computing device 100, server devices 304 may be embodied
by computing device 100 or server cluster 200, and routers
306 may be any type of router, switch, or gateway.

Virtual machines 308 may be embodied by one or more of
computing device 100 or server cluster 200. In general, a
virtual machine 1s an emulation of a computing system, and
mimics the functionality (e.g., processor, memory, and com-
munication resources) of a physical computer. One physical
computing system, such as server cluster 200, may support
up to thousands of individual virtual machines. In some
embodiments, virtual machines 308 may be managed by a
centralized server device or application that facilitates allo-
cation of physical computing resources to individual virtual
machines, as well as performance and error reporting. Enter-
prises often employ virtual machines in order to allocate
computing resources in an eflicient, as needed fashion.
Providers of wvirtualized computing systems 1nclude

VMWARE® and MICROSOFT®.

Firewall 310 may be one or more specialized routers or
server devices that protect managed network 300 from
unauthorized attempts to access the devices, applications,
and services therein, while allowing authorized communi-
cation that 1s mitiated from managed network 300. Firewall
310 may also provide intrusion detection, web filtering,
virus scanning, application-layer gateways, and other appli-
cations or services. In some embodiments not shown 1n FIG.
3, managed network 300 may include one or more virtual
private network (VPN) gateways with which 1t communi-
cates with remote network management platform 320 (see
below).

Managed network 300 may also include one or more
proxy servers 312. An embodiment of proxy servers 312
may be a server application that facilitates communication
and movement of data between managed network 300,
remote network management platform 320, and public cloud
networks 340. In particular, proxy servers 312 may be able
to establish and maintain secure communication sessions
with one or more computational instances of remote network
management platform 320. By way of such a session, remote
network management platform 320 may be able to discover
and manage aspects of the architecture and configuration of
managed network 300 and its components. Possibly with the
assistance of proxy servers 312, remote network manage-

10

15

20

25

30

35

40

45

50

55

60

65

10

ment platform 320 may also be able to discover and manage
aspects of public cloud networks 340 that are used by
managed network 300.

Firewalls, such as firewall 310, typically deny all com-
munication sessions that are imcoming by way of Internet
350, unless such a session was ultimately imitiated from
behind the firewall (1.e., from a device on managed network
300) or the firewall has been explicitly configured to support
the session. By placing proxy servers 312 behind firewall
310 (e.g., within managed network 300 and protected by
firewall 310), proxy servers 312 may be able to mnitiate these
communication sessions through firewall 310. Thus, firewall
310 might not have to be specifically configured to support
incoming sessions from remote network management plat-
form 320, thereby avoiding potential security risks to man-
aged network 300.

In some cases, managed network 300 may consist of a few
devices and a small number of networks. In other deploy-
ments, managed network 300 may span multiple physical
locations and include hundreds of networks and hundreds of
thousands of devices. Thus, the architecture depicted in FIG.
3 1s capable of scaling up or down by orders of magnitude.

Furthermore, depending on the size, architecture, and
connectivity of managed network 300, a varying number of
proxy servers 312 may be deployed therein. For example,
cach one of proxy servers 312 may be responsible for
communicating with remote network management platiorm
320 regarding a portion of managed network 300. Alterna-
tively or additionally, sets of two or more proxy servers may
be assigned to such a portion of managed network 300 for
purposes of load balancing, redundancy, and/or high avail-
ability.

B. Remote Network Management Platforms

Remote network management platform 320 1s a hosted
environment that provides aPaaS services to users, particu-
larly to the operator of managed network 300. These ser-
vices may take the form of web-based portals, for example,
using the aforementioned web-based technologies. Thus, a
user can securely access remote network management plat-
form 320 from, for example, client devices 302, or poten-
tially from a client device outside of managed network 300.
By way of the web-based portals, users may design, test, and
deploy applications, generate reports, view analytics, and
perform other tasks.

As shown 1 FIG. 3, remote network management plat-
form 320 includes four computational instances 322, 324,
326, and 328. Each of these computational instances may
represent one or more server nodes operating dedicated
copies of the aPaaS software and/or one or more database
nodes. The arrangement of server and database nodes on
physical server devices and/or virtual machines can be
flexible and may vary based on enterprise needs. In combi-
nation, these nodes may provide a set of web portals,
services, and applications (e.g., a wholly-functioning aPaaS
system) available to a particular enterprise. In some cases, a
single enterprise may use multiple computational instances.

For example, managed network 300 may be an enterprise
customer of remote network management platform 320, and
may use computational instances 322, 324, and 326. The
reason for providing multiple computational instances to one
customer 1s that the customer may wish to independently
develop, test, and deploy 1ts applications and services. Thus,
computational instance 322 may be dedicated to application
development related to managed network 300, computa-
tional mstance 324 may be dedicated to testing these appli-
cations, and computational instance 326 may be dedicated to
the live operation of tested applications and services. A

US 11,748,115 B2

11

computational instance may also be referred to as a hosted
instance, a remote instance, a customer mstance, or by some
other designation. Any application deployed onto a compu-
tational instance may be a scoped application, in that its
access to databases within the computational instance can be
restricted to certain elements therein (e.g., one or more
particular database tables or particular rows within one or
more database tables).

For purposes of clarity, the disclosure herein refers to the
arrangement of application nodes, database nodes, aPaaS
soltware executing thereon, and underlying hardware as a
“computational instance.” Note that users may colloquially
refer to the graphical user interfaces provided thereby as
“instances.” But unless 1t 1s defined otherwise herein, a
“computational instance” 1s a computing system disposed
within remote network management platform 320.

The multi-instance architecture of remote network man-
agement platform 320 1s in contrast to conventional multi-
tenant architectures, over which multi-instance architectures
exhibit several advantages. In multi-tenant architectures,
data from diflerent customers (e.g., enterprises) are coms-
ingled 1n a single database. While these customers’ data are
separate from one another, the separation 1s enforced by the
software that operates the single database. As a conse-
quence, a security breach in this system may impact all
customers’ data, creating additional risk, especially for
entities subject to governmental, healthcare, and/or financial
regulation. Furthermore, any database operations that
impact one customer will likely impact all customers sharing
that database. Thus, if there 1s an outage due to hardware or
software errors, this outage affects all such customers.
Likewise, 11 the database 1s to be upgraded to meet the needs
of one customer, 1t will be unavailable to all customers
during the upgrade process. Often, such maintenance win-
dows will be long, due to the size of the shared database.

In contrast, the multi-instance architecture provides each
customer with 1ts own database 1n a dedicated computing
instance. This prevents comingling of customer data, and
allows each instance to be independently managed. For
example, when one customer’s instance experiences an
outage due to errors or an upgrade, other computational
instances are not impacted. Maintenance down time 1s
limited because the database only contains one customer’s
data. Further, the simpler design of the multi-instance archi-
tecture allows redundant copies of each customer database
and instance to be deployed in a geographically diverse
fashion. This facilitates high availability, where the live
version of the customer’s mstance can be moved when faults
are detected or maintenance 1s being performed.

In some embodiments, remote network management plat-
form 320 may include one or more central instances, con-
trolled by the enftity that operates this platform. Like a
computational instance, a central instance may include some
number of application and database nodes disposed upon
some number of physical server devices or virtual machines.
Such a central instance may serve as a repository for specific
configurations of computational instances as well as data
that can be shared amongst at least some of the computa-
tional 1nstances. For instance, definitions of common secu-
rity threats that could occur on the computational instances,
soltware packages that are commonly discovered on the
computational instances, and/or an application store for
applications that can be deployed to the computational
instances may reside in a central mstance. Computational
instances may communicate with central instances by way
of well-defined interfaces 1n order to obtain this data.

10

15

20

25

30

35

40

45

50

55

60

65

12

In order to support multiple computational instances 1n an
cilicient fashion, remote network management platiorm 320
may i1mplement a plurality of these instances on a single
hardware platform. For example, when the aPaaS system 1s
implemented on a server cluster such as server cluster 200,
it may operate virtual machines that dedicate varying
amounts of computational, storage, and communication
resources to instances. But full virtualization of server
cluster 200 might not be necessary, and other mechanisms
may be used to separate instances. In some examples, each
instance may have a dedicated account and one or more
dedicated databases on server cluster 200. Alternatively, a
computational instance such as computational instance 322
may span multiple physical devices.

In some cases, a single server cluster of remote network
management platform 320 may support multiple indepen-
dent enterprises. Furthermore, as described below, remote
network management platform 320 may include multiple
server clusters deployed in geographically diverse data
centers 1n order to facilitate load balancing, redundancy,
and/or high availability.

C. Public Cloud Networks

Public cloud networks 340 may be remote server devices
(e.g., a plurality of server clusters such as server cluster 200)
that can be used for outsourced computation, data storage,
communication, and service hosting operations. These serv-
ers may be virtualized (1.e., the servers may be virtual
machines). Examples of public cloud networks 340 may
include AMAZON WEB SERVICES® and MICROSOFT®
AZURE®. Like remote network management platform 320,
multiple server clusters supporting public cloud networks
340 may be deployed at geographically diverse locations for
purposes of load balancing, redundancy, and/or high avail-
ability.

Managed network 300 may use one or more of public
cloud networks 340 to deploy applications and services to 1ts
clients and customers. For instance, 1 managed network 300
provides online music streaming services, public cloud
networks 340 may store the music files and provide web
interface and streaming capabilities. In this way, the enter-
prise ol managed network 300 does not have to build and
maintain 1ts own servers for these operations.

Remote network management platform 320 may include
modules that integrate with public cloud networks 340 to
expose virtual machines and managed services therein to
managed network 300. The modules may allow users to
request virtual resources, discover allocated resources, and
provide flexible reporting for public cloud networks 340. In
order to establish this functionality, a user from managed
network 300 might first establish an account with public
cloud networks 340, and request a set of associated
resources. Then, the user may enter the account information
into the appropriate modules of remote network manage-
ment platform 320. These modules may then automatically
discover the manageable resources 1n the account, and also
provide reports related to usage, performance, and billing.

D. Communication Support and Other Operations

Internet 350 may represent a portion of the global Inter-
net. However, Internet 350 may alternatively represent a
different type of network, such as a private wide-area or
local-area packet-switched network.

FIG. 4 further 1llustrates the communication environment
between managed network 300 and computational instance
322, and introduces additional features and alternative
embodiments. In FIG. 4, computational instance 322 1is
replicated across data centers 400A and 400B. These data
centers may be geographically distant from one another,

US 11,748,115 B2

13

perhaps in different cities or different countries. Each data
center includes support equipment that facilitates commu-
nication with managed network 300, as well as remote users.

In data center 400A, network traflic to and from external
devices flows either through VPN gateway 402A or firewall
404A. VPN gateway 402A may be peered with VPN gate-

way 412 of managed network 300 by way of a security
protocol such as Internet Protocol Security (IPSEC) or
Transport Layer Security (TLS). Firewall 404A may be
configured to allow access from authorized users, such as
user 414 and remote user 416, and to deny access to
unauthorized users. By way of firewall 404A, these users
may access computational mstance 322, and possibly other
computational instances. Load balancer 406 A may be used
to distribute tratlic amongst one or more physical or virtual
server devices that host computational instance 322. Load
balancer 406 A may simplity user access by hiding the
internal configuration of data center 400A, (e.g., computa-
tional instance 322) from client devices. For instance, i
computational instance 322 includes multiple physical or
virtual computing devices that share access to multiple
databases, load balancer 406 A may distribute network traflic
and processing tasks across these computing devices and
databases so that no one computing device or database 1s
significantly busier than the others. In some embodiments,
computational instance 322 may include VPN gateway
402A, firewall 404 A, and load balancer 406A.

Data center 400B may include 1ts own versions of the
components 1n data center 400A. Thus, VPN gateway 402B,
firewall 404B, and load balancer 4068 may perform the
same or similar operations as VPN gateway 402A, firewall
404 A, and load balancer 406 A, respectively. Further, by way
of real-time or near-real-time database replication and/or
other operations, computational instance 322 may exist
simultaneously 1n data centers 400A and 400B.

Data centers 400A and 400B as shown in FIG. 4 may
tacilitate redundancy and high availability. In the configu-
ration of FIG. 4, data center 400A 1s active and data center
400B 1s passive. Thus, data center 400A 1s serving all traflic
to and from managed network 300, while the version of
computational instance 322 i1n data center 400B 1s being
updated 1n near-real-time. Other configurations, such as one
in which both data centers are active, may be supported.

Should data center 400A fail 1n some fashion or otherwise
become unavailable to users, data center 400B can take over
as the active data center. For example, domain name system
(DNS) servers that associate a domain name of computa-
tional instance 322 with one or more Internet Protocol (IP)
addresses of data center 400A may re-associate the domain
name with one or more IP addresses of data center 400B.
After this re-association completes (which may take less
than one second or several seconds), users may access
computational mstance 322 by way of data center 400B.

FIG. 4 also 1llustrates a possible configuration of managed
network 300. As noted above, proxy servers 312 and user
414 may access computational instance 322 through firewall
310. Proxy servers 312 may also access configuration items
410. In FIG. 4, configuration items 410 may refer to any or
all of client devices 302, server devices 304, routers 306, and
virtual machines 308, any applications or services executing,
thereon, as well as relationships between devices, applica-
tions, and services. Thus, the term “configuration items”
may be shorthand for any physical or virtual device, or any
application or service remotely discoverable or managed by
computational mstance 322, or relationships between dis-
covered devices, applications, and services. Configuration

10

15

20

25

30

35

40

45

50

55

60

65

14

items may be represented i1n a configuration management
database (CMDB) of computational instance 322.

As noted above, VPN gateway 412 may provide a dedi-
cated VPN to VPN gateway 402A. Such a VPN may be
helptul when there 1s a significant amount of tratlic between
managed network 300 and computational instance 322, or
security policies otherwise suggest or require use of a VPN
between these sites. In some embodiments, any device in
managed network 300 and/or computational instance 322
that directly communicates via the VPN 1s assigned a public
IP address. Other devices in managed network 300 and/or
computational instance 322 may be assigned private IP
addresses (e.g., IP addresses selected from the 10.0.0.0-
10.255.255.255 or 192.168.0.0-192.168.255.255 ranges,
represented 1n shorthand as subnets 10.0.0.0/8 and
192.168.0.0/16, respectively).

IV. Example Device, Application, and Service

Discovery

In order for remote network management platform 320 to
administer the devices, applications, and services of man-
aged network 300, remote network management platiorm
320 may first determine what devices are present 1n man-
aged network 300, the configurations and operational sta-
tuses of these devices, and the applications and services
provided by the devices, as well as the relationships between
discovered devices, applications, and services. As noted
above, each device, application, service, and relationship
may be referred to as a configuration item. The process of
defining configuration items within managed network 300 1s
referred to as discovery, and may be facilitated at least in
part by proxy servers 312.

For purposes of the embodiments herein, an “application”
may refer to one or more processes, threads, programs, client
modules, server modules, or any other software that
executes on a device or group of devices. A “service” may
refer to a high-level capability provided by multiple appli-
cations executing on one or more devices working in con-
junction with one another. For example, a high-level web
service may ivolve multiple web application server threads
executing on one device and accessing information from a
database application that executes on another device.

FIG. 5A provides a logical depiction of how configuration
items can be discovered, as well as how information related
to discovered configuration 1tems can be stored. For sake of
simplicity, remote network management platform 320, pub-
lic cloud networks 340, and Internet 350 are not shown.

In FIG. 5A, CMDB 500 and task list 502 are stored within
computational instance 322. Computational instance 322
may transmit discovery commands to proxy servers 312. In
response, proxy servers 312 may transmit probes to various
devices, applications, and services 1n managed network 300.
These devices, applications, and services may transmit
responses to proxy servers 312, and proxy servers 312 may
then provide information regarding discovered configuration
items to CMDB 500 for storage therein. Configuration items
stored in CMDB 500 represent the environment of managed
network 300.

Task list 502 represents a list of activities that proxy
servers 312 are to perform on behall of computational
instance 322. As discovery takes place, task list 502 1is
populated. Proxy servers 312 repeatedly query task list 502,
obtain the next task therein, and perform this task until task
list 502 1s empty or another stopping condition has been
reached.

US 11,748,115 B2

15

To facilitate discovery, proxy servers 312 may be config-
ured with information regarding one or more subnets in
managed network 300 that are reachable by way of proxy
servers 312. For instance, proxy servers 312 may be given
the IP address range 192.168.0/24 as a subnet. Then, com-
putational instance 322 may store this information in CMDB
500 and place tasks 1n task list 502 for discovery of devices
at each of these addresses.

FIG. 5A also depicts devices, applications, and services in
managed network 300 as configuration 1tems 504, 506, 508,
510, and 512. As noted above, these configuration items
represent a set of physical and/or virtual devices (e.g., client
devices, server devices, routers, or virtual machines), appli-
cations executing thereon (e.g., web servers, email servers,
databases, or storage arrays), relationships therebetween, as
well as services that involve multiple individual configura-
tion 1tems.

Placing the tasks in task list 502 may trigger or otherwise
cause proxy servers 312 to begin discovery. Alternatively or
additionally, discovery may be manually triggered or auto-
matically triggered based on triggering events (e.g., discov-
cery may automatically begin once per day at a particular
time).

In general, discovery may proceed 1n four logical phases:
scanning, classification, 1dentification, and exploration.
Each phase of discovery involves various types of probe
messages being transmitted by proxy servers 312 to one or
more devices in managed network 300. The responses to
these probes may be received and processed by proxy
servers 312, and representations thereol may be transmitted
to CMDB 500. Thus, each phase can result 1n more con-
figuration 1tems being discovered and stored in CMDB 500.

In the scanning phase, proxy servers 312 may probe each
IP address 1n the specified range of IP addresses for open
Transmission Control Protocol (TCP) and/or User Datagram
Protocol (UDP) ports to determine the general type of
device. The presence of such open ports at an IP address may
indicate that a particular application 1s operating on the
device that 1s assigned the IP address, which 1n turn may
identify the operating system used by the device. For
example, 11 TCP port 135 1s open, then the device 1s likely
executing a WINDOWS® operating system. Similarly, 1f
TCP port 22 1s open, then the device 1s likely executing a
UNIX® operating system, such as LINUX®. ITf UDP port
161 1s open, then the device may be able to be further
identified through the Simple Network Management Proto-
col (SNMP). Other possibilities exist. Once the presence of
a device at a particular IP address and 1ts open ports have
been discovered, these configuration items are saved in
CMDB 500.

In the classification phase, proxy servers 312 may further
probe each discovered device to determine the version of its
operating system. The probes used for a particular device are
based on information gathered about the devices during the
scanning phase. For example, 11 a device 1s found with TCP
port 22 open, a set of UNIX®-specific probes may be used.
Likewise, 11 a device 1s found with TCP port 135 open, a set
of WINDOWS®-specific probes may be used. For either
case, an appropriate set of tasks may be placed in task list
502 for proxy servers 312 to carry out. These tasks may
result 1n proxy servers 312 logging on, or otherwise access-
ing information from the particular device. For instance, 1f
TCP port 22 1s open, proxy servers 312 may be instructed to
initiate a Secure Shell (SSH) connection to the particular
device and obtain information about the operating system
thereon from particular locations 1n the file system. Based on
this information, the operating system may be determined.

10

15

20

25

30

35

40

45

50

55

60

65

16

As an example, a UNIX® device with TCP port 22 open
may be classified as AIX®, HPUX, LINUX®, MACOS®,
or SOLARIS®. This classification information may be
stored as one or more configuration 1tems 1n CMDB 500.

In the 1dentification phase, proxy servers 312 may deter-
mine specific details about a classified device. The probes
used during this phase may be based on information gath-
ered about the particular devices during the classification
phase. For example, 1f a device was classified as LINUX®,
a set of LINUX®-specific probes may be used. Likewise, 1
a device was classified as WINDOWS® 2012, as a set of
WINDOWS®-2012-specific probes may be used. As was
the case for the classification phase, an appropriate set of
tasks may be placed 1n task list 502 for proxy servers 312 to
carry out. These tasks may result in proxy servers 312
reading information from the particular device, such as basic
mput/output system (BIOS) information, serial numbers,
network interface information, media access control
address(es) assigned to these network interface(s), IP
address(es) used by the particular device and so on. This
identification information may be stored as one or more
configuration items 1 CMDB 500.

In the exploration phase, proxy servers 312 may deter-
mine further details about the operational state of a classified
device. The probes used during this phase may be based on
information gathered about the particular devices during the
classification phase and/or the i1dentification phase. Again,
an appropriate set of tasks may be placed 1n task list 502 for
proxy servers 312 to carry out. These tasks may result in
proxy servers 312 reading additional information from the
particular device, such as processor information, memory
information, lists of running processes (applications), and so
on. Once more, the discovered information may be stored as
one or more configuration items 1n CMDB 500.

Running discovery on a network device, such as a router,
may utilize SNMP. Instead of or in addition to determining
a list of running processes or other application-related
information, discovery may determine additional subnets
known to the router and the operational state of the router’s
network interfaces (e.g., active, inactive, queue length, num-
ber of packets dropped, etc.). The IP addresses of the
additional subnets may be candidates for further discovery
procedures. Thus, discovery may progress iteratively or
recursively.

Once discovery completes, a snapshot representation of
cach discovered device, application, and service 1s available
in CMDB 500. For example, after discovery, operating
system version, hardware configuration, and network con-
figuration details for client devices, server devices, and
routers 1 managed network 300, as well as applications
executing thereon, may be stored. This collected information
may be presented to a user 1n various ways to allow the user
to view the hardware composition and operational status of
devices, as well as the characteristics of services that span
multiple devices and applications.

Furthermore, CMDB 500 may include entries regarding
dependencies and relationships between configuration
items. More specifically, an application that 1s executing on
a particular server device, as well as the services that rely on
this application, may be represented as such in CMDB 500.
For example, suppose that a database application 1s execut-
ing on a server device, and that this database application 1s
used by a new employee onboarding service as well as a
payroll service. Thus, if the server device 1s taken out of
operation for maintenance, 1t 1s clear that the employee
onboarding service and payroll service will be impacted.
Likewise, the dependencies and relationships between con-

US 11,748,115 B2

17

figuration 1tems may be able to represent the services
impacted when a particular router fails.

In general, dependencies and relationships between con-
figuration 1tems may be displayed on a web-based 1nterface
and represented 1n a hierarchical fashion. Thus, adding,
changing, or removing such dependencies and relationships
may be accomplished by way of this interface.

Furthermore, users from managed network 300 may
develop worktlows that allow certain coordinated activities
to take place across multiple discovered devices. For
instance, an I'T worktlow might allow the user to change the
common admimstrator password to all discovered LINUX®
devices 1n a single operation.

In order for discovery to take place in the manner
described above, proxy servers 312, CMDB 500, and/or one
or more credential stores may be configured with credentials
for one or more of the devices to be discovered. Credentials
may 1include any type of information needed in order to
access the devices. These may include userid/password
pairs, certificates, and so on. In some embodiments, these
credentials may be stored 1n encrypted fields of CMDB 500.
Proxy servers 312 may contain the decryption key for the
credentials so that proxy servers 312 can use these creden-
tials to log on to or otherwise access devices being discov-
ered.

The discovery process 1s depicted as a flow chart in FIG.
5B. At block 520, the task list 1n the computational instance
1s populated, for instance, with a range of IP addresses. At
block 522, the scanming phase takes place. Thus, the proxy
servers probe the IP addresses for devices using these IP
addresses, and attempt to determine the operating systems
that are executing on these devices. At block 524, the
classification phase takes place. The proxy servers attempt to
determine the operating system version of the discovered
devices. At block 526, the 1dentification phase takes place.
The proxy servers attempt to determine the hardware and/or
software configuration of the discovered devices. At block
528, the exploration phase takes place. The proxy servers
attempt to determine the operational state and applications
executing on the discovered devices. At block 530, further
editing of the configuration items representing the discov-
ered devices and applications may take place. This editing
may be automated and/or manual in nature.

The blocks represented 1n FIG. 5B are examples. Discov-
ery may be a highly configurable procedure that can have
more or fewer phases, and the operations of each phase may
vary. In some cases, one or more phases may be customized,
or may otherwise deviate from the exemplary descriptions
above.

In this manner, a remote network management platform
may discover and inventory the hardware, software, and
services deployed on and provided by the managed network.
As noted above, this data may be stored 1n a CMDB of the
associated computational mstance as configuration items.
For example, individual hardware components (e.g., com-
puting devices, virtual servers, databases, routers, etc.) may
be represented as hardware configuration items, while the
applications installed and/or executing thereon may be rep-
resented as soltware configuration 1tems.

The relationship between a software configuration item
installed or executing on a hardware configuration 1tem may
take various forms, such as “is hosted on”, “runs on”, or
“depends on”. Thus, a database application installed on a
server device may have the relationship “1s hosted on™ with
the server device to indicate that the database application 1s
hosted on the server device. In some embodiments, the
server device may have a reciprocal relationship of “used

10

15

20

25

30

35

40

45

50

55

60

65

18

by”” with the database application to indicate that the server
device 1s used by the database application. These relation-

ships may be automatically found using the discovery pro-
cedures described above, though 1t 1s possible to manually
set relationships as well.

The relationship between a service and one or more
soltware configuration 1tems may also take various forms.
As an example, a web service may include a web server
soltware configuration 1tem and a database application soft-
ware configuration item, each installed on different hard-
ware configuration items. The web service may have a
“depends on” relationship with both of these software con-
figuration items, while the software configuration items have
a “used by” reciprocal relationship with the web service.
Services might not be able to be fully determined by
discovery procedures, and instead may rely on service
mapping (e.g., probing configuration files and/or carrying
out network tratlic analysis to determine service level rela-
tionships between configuration items) and possibly some
extent of manual configuration.

Regardless of how relationship information 1s obtained, it
can be valuable for the operation of a managed network.
Notably, I'T personnel can quickly determine where certain
soltware applications are deployed, and what configuration
items make up a service. This allows for rapid pinpointing
of root causes of service outages or degradation. For
example, 1I two different services are suflering from slow
response times, the CMDB can be queried (perhaps among
other activities) to determine that the root cause 1s a database
application that 1s used by both services having high pro-
cessor utilization. Thus, IT personnel can address the data-
base application rather than waste time considering the
health and performance of other configuration items that
make up the services.

V. Example Application Topology Maps

FIG. 6 A depicts network architecture 600, 1n accordance
with example embodiments. Network architecture 600
includes managed network 300 and remote network man-
agement platform 320, which may be communicatively
connected by way of a network, such as Internet 350.

Managed network 300 may be an enterprise network used
by an enfity for computing and communication tasks, as well
as storage of data. In examples, managed network 300 may
utilize one or more of the software applications contained
within computational instance 322.

Users 630 and users 632 can represent people or sources
(e.g., another enterprise) that use software applications pro-
vided by computational instance 322. In example embodi-
ments, users 630 may represent people that work for the
entity associated with managed network 300, such as engi-
neers, scientists, managers, accountants, financial analysts,
IT stail, and so on, whereas users 632 may correspond to
people outside of the entity associated with managed net-
work 300. For simplicity, examples will be described using
users 630. However, the disclosed principles could apply 1n
other scenarios with other users as well.

Computational instance 322 may be disposed within
remote network management platform 320 and may be
dedicated to managed network 300. Computational instance
322 may store, in CMDB 500, discovered configuration
items that represent the environment of managed network
300. Additionally, computational 1nstance 322 may include
one or more software applications installed therein, such as
application 610. These software applications could provide
various types ol services. For example, application 610

US 11,748,115 B2

19

could be designed to manage and resolve incidents related to
various assets (e.g., server devices, printing devices, or
another configuration items) operating within managed net-
work 300.

The software applications 1nstalled within computational
instance 322 could be developed by remote network man-
agement platform 320, users 630, or some other third-party
entity. Further, in line with the discussion above, the sofit-
ware applications installed within computational instance
322 could be formed from one or more application compo-
nents.

FIG. 6B includes a call out of application 610 that
demonstrates how application 610 could be formed from one
or more application components 640. As used herein, an
application component may include a software module that
encapsulates at least some of the behavior or data related to
a software application. An application component could
provide one or more functions for a software application
and/or may communicate with other application components
to provide compound functions for the software application.

In some embodiments, remote network management plat-
torm 320 could provide a set of pre-configured application
components for software application development. For
instance, remote network management platform 320 could
provide a pre-configured authentication component that
veriflies user 1dentities. Accordingly, when creating a soft-
ware application, an application developer could utilize the
pre-defined authentication component rather than develop-
ing a new authentication component.

Alternatively, application developers could create their
own application components. The application developers
could create application components from scratch or from
templates provided by remote network management plat-
form 320. For example, remote network management plat-
form 320 may provide a standardized set of widgets for
creating graphical user interface (GUI) components, and an
application developer may utilize the standardized set of
widgets when creating GUI components for a software
application.

Application components could be reusable. For instance,
an application developer could use a data component con-
taining financial records for both an auditing software appli-
cation as well as a financial reporting software application.

Application components could have limits to the extent of
their customization. For example, remote network manage-
ment platform 320 could dictate that all application com-
ponents must be created using a set of N pre-defined
functions. While numerous application components could be
created from the set of N pre-defined functions, the extent of
customization of those applications 1s nonetheless limited by
the set of N pre-defined functions.

In example embodiments, application components could
be stored within remote network management platform 320,
perhaps in CMDB 500 or another database. In order to use
an application component, a software application may ret-
erence the location of the application component within
remote network management platform 320. Such references
could be contained 1n an application context record associ-
ated with the software application, further details of which
are provided below.

Various types ol application components may exist. For
instance, 1 FIG. 6B, application component(s) 640 are
shown to include one or more data components 650, one or
more GUI components 660, one or more functional com-
ponents 670, and one or more user group components 680.

Data component(s) 650 may be application components
that allow for persistent storage of data related to application

10

15

20

25

30

35

40

45

50

55

60

65

20

610. For mnstance, a data component may take the form of a
database table physically disposed on CMDB 500 or perhaps
another database within remote network management plat-
form 320.

GUI component(s) 660 may be application components
that allow users to engage with application 610. For
instance, a GUI component may contain one or more loca-
tions in which to display information, and/or one or more
user-selectable 1tems such as buttons or tabs. GUI compo-
nents can take on many forms. Some GUI components may
be, for mstance, web-based GUI components that can be
displayed on a screen of a computing device. In some cases,
GUI components may be built using a standardized set of
widgets that are provided by remote network management
platiorm 320.

Functional component(s) 670 may be application compo-
nents that contain any form of source code, object code,
machine code, executable instructions, build instructions,
confliguration instructions, or data that 1s used to compile
and/or execute application 610. For instance, a functional
component may take the form of a shell script that, when
executed, accomplishes one or more goals.

User group component(s) 680 may be application com-
ponents that associate users of application 610 1n some
fashion (e.g., based on the type of the user, geographic
location of the user, and/or the job function of the user). For
instance, a user group component may encompass users of
application 610 that are part of a human resource (HR)
department, whereas another user group component may
encompass users of application 610 that are part of a finance
department. Various permissions could be assigned to a user
group component. For example, the finance user group
component may be granted access to financial documents
disposed within application 610, whereas the HR user group
component might not be granted access to these documents.

Notably, data component(s) 650, GUI component(s) 660,
functional component(s) 670, and user group component(s)
680 are presented for the purpose of example and are not
intended to be limiting with respect to the embodiments
herein. In practice, application component(s) 640 could
include other types of application components, or perhaps a
different set of application components than shown 1n FIG.
6B.

Referring back to FIG. 6A, application topology tool 620
may be disposed within remote network management plat-
form 320. Application topology tool 620 could take the form
of a background process, an executable application, or the
like. Application topology tool 620 may be granted access to
data associated with various software applications installed
within computational instance 322. For simplicity, examples
will now be described using application 610 and data related
to application 610. However, the disclosed principles could
apply 1n other scenarios with other software applications as
well.

Application topology tool 620 could create an application
topology map for application 610. This may involve, for
example, application topology tool 620 obtaining informa-
tion related to the application components of application 610
and then building an application topology map using those
application components. In line with the discussion above,
an application topology map may be a visual representation,
on a web-based GUI for instance, that depicts the application
components of application 610 as nodes in a graph. The
edges of the graph may represent logical connectivity
between those nodes. This visual representation allows users
to rapidly determine the impact of a problematic application
component on other application components of application

US 11,748,115 B2

21

610. For instance, rather than viewing, in 1solation, the
properties of a data component, the data component can be
represented as having connections to other components that
rely upon or support the data component. Thus, 1f the data
component 1s exhibiting a problem (e.g., has a software bug
therein), the impacted application component(s) can be
cliciently determined.

FIG. 7 illustrates an example application topology map
700 for application 610, in accordance with example
embodiments. The nodes in application topology map 700
may represent application components ol application 610
and the edges 1n application topology map 700 may repre-
sent relationships between application components of appli-
cation 610. Application topology map 700 may be generated
for display on the screen of a computing device, such as
computing device 100 or any client device that can access
computational nstance 322.

The nodes of application topology map 700 may take the
form of 1cons related to the respective functions of applica-
tion 610. These 1cons help communicate application com-
ponent types. As shown in the legend, application topology
map 700 uses four diflerent 1cons: a screen 1con, a database
icon, a gear 1con, and a person 1con.

The screen 1con may be used for nodes that relate to GUI
components of application 610. In application topology map
700, developer portal 704 and technician portal 720 are both
GUI components and thus are represented by a screen 1con.

The database 1con may be used for nodes that relate to
data components of application 610. In application topology
map 700, incidents table 708, assets table 712, and depart-
ment table 714 are each data components and thus are
represented by a database 1con.

The gear 1con may be used for nodes that relate to
functional components of application 610. In application
topology map 700, maintenance tlow 706 and assignment
flow 716 are each functional components and thus are
represented by a gear icon.

The person 1con may be used for nodes that relate to user
group components of application 610. In application topol-
ogy map 700, developer group 702 and technician group 718
are each user group components and thus are represented by
a person 1con.

Notably, the screen 1con, the database 1con, the gear 1con,
and the person 1con are merely presented for the purpose of
example and are not mtended to be limiting with respect to
the embodiments herein. Other types of 1cons that relate to
other types of application components may also exist.

In line with the discussion above, application 610 may be
designed to resolve incidents related to various assets (e.g.,
server devices, printing devices, or another configuration
items) operating within managed network 300. Accordingly,
the nodes and edges 1n application topology map 700 may
help illustrate how application 610 actually achieves its
designed objectives.

For instance, application topology map 700 contains
developer group 702. Developer group 702 could be a user
group component that encompasses application developers.
These application developers may be responsible for creat-
ing and maintaining various soitware applications used by
managed network 300. Further, these application developers
may determine (e.g., perhaps while developing a software
application) incidents related to assets on managed network
300. For mstance, a member of developer group 702 may
determine that a server device operating within managed
network 300 1s malfunctioning. Application topology map

10

15

20

25

30

35

40

45

50

55

60

65

22

700 shows that upon determining an incident, members from
developer group 702 may submit a ticket through developer
portal 704.

Developer portal 704 could be a GUI component that
contains input fields for submitting tickets. Upon receiving
a ticket from a member of developer group 702, application
topology map 700 shows how developer portal 704 could
insert a corresponding entry for that ticket in incidents table
708. In practice, developer portal 704 could do this by
initiating a POST request to an application programing
interface (API) endpoint associated with incidents table 708.
However, other ways of inserting entries are also possible.

Alternatively and/or additionally, application topology
map 700 shows that entries in 1incidents table 708 could be
inserted via maintenance flow 706. Maintenance tlow 706
may be a functional component that continuously monitors
the health of various assets disposed within managed net-
work 300. Application topology map 700 shows that upon
determining that an incident has occurred, maintenance tlow
706 could msert a corresponding entry for that incident 1n
incidents table 708.

Incidents table 708 may be a data component configured
to store mformation related to various icidents. In practice,
incidents table 708 could store this information 1n a series of
rows and columns, with the rows corresponding to incidents
and the columns corresponding to attributes of those 1inci-
dents. The attributes may include, for example, the entity
that reported the incident (e.g., the particular member from
developer group 702), a timestamp for when the incident
was submitted, and so on.

Application topology map 700 shows that incidents table
708 may extend from task table 710. That 1s, incidents table
708 may contain all of the attributes of task table 710
(however, task table 710 need not contain all of the attributes
of icidents table 708.) In the present disclosure, such a
relationship may be referred to as a “parent-child” relation-
ship, with task table 710 being the “parent” and incidents
table 708 being the “child”. Additional details about “parent-
chuld” relationships are provided below.

Application topology map 700 also shows that incidents
table 708 may contain references to attributes of assets table
712. In the present disclosure, such a relationship may be
referred to as a “reference” relationship, with incidents table
708 being the “referring” table and assets table 712 being the
“referred to” table. Further, application topology map 700
shows that assets table 712 may contain references to
department table 714. Additional details about “reference”
relationships are provided below.

Application topology map 700 shows that assignment
flow 716 could resolve incidents from incidents table 708. In
examples herein, assignment flow 716 could be a functional
component that assesses and assigns incidents in incidents
table 708 to members of technician group 718. For 1nstance,
incidents table 708 may contain an attribute that indicates
whether or not a given incident has been resolved. Assign-
ment flow 716 could monitor that attribute and then, upon
determining that an incident has yet to be resolved, could
assign that incident to a member of technician group 718.
Once the incident 1s resolved, assignment flow 716 could
update mcidents table 708. For instance, upon receiving a
notification from technician portal 720 that the incident has

been resolved by a member of technician group 718, assign-
ment flow 716 could locate that incident 1n incidents table
708 and update that incident to indicate that the incident has
been resolved.

Technician group 718 may be a user group component
that encompasses technicians of managed network 300.

US 11,748,115 B2

23

These technicians may be responsible for maintaining and
supporting various assets disposed within managed network
300. Application topology map 700 shows how members of
technician group 718 could be assigned by assignment flow
716 to address incidents from incidents table 708. For
instance, a member of technician group 718 may be assigned
to address an incident related to a server device operating,
within managed network 300. Application topology map
700 shows that upon resolving the incident (e.g., updating
firmware, replacing a malfunctioning battery, etc.), members
of technician group 718 may submit a ticket via technician
portal 720.

Technician portal 720 may be a GUI component that
contains 1put fields for submitting tickets. Application
topology map 700 shows that upon receiving a ticket sub-
mission from a member of technician group 718, technician
portal 720 could notity assignment flow 716. In practice, the
notification could contain information on the resolved inci-
dent, including the timestamp for when the incident was
resolved, the name of the technician assigned to the incident,
and so on. To do this, technician portal 720 could 1nitiate a
POST request to an API endpoint associated with assign-
ment flow 716. However, other ways of notifying assign-
ment flow 716 are also possible.

Notably, the arrangement of application topology map
700 1s used merely for purposes of illustration and 1s not
intended to be limiting with respect to the embodiment
heremn. In practice, various arrangements of application

topology map 700 may exist. For example, more or fewer
nodes with potentially different edges may be present.

V1. Intelligent Determination of Application
Topology Maps

FIG. 8 1illustrates procedure 800, in accordance with
example embodiments. In some examples, application
topology tool 620 could perform procedure 800 to generate
application topology map 700 for application 610. Despite
procedure 800 containing particular blocks arranged n a
particular order, more or fewer blocks may be performed in
a different order without departing from the embodiments
herein.

Procedure 800 may begin at block 810, where application
topology tool 620 identifies the application components that
form application 610. To do this, application topology tool
620 could consult an application context record associated
with application 610, although other ways of identifying
application components are also possible.

As an example related to block 810, FIG. 9 contains
application context record 900. In embodiments herein,
application context record 900 could be a file, series of
database tables, or the like that stores metadata related to
application 610. For instance, application context record 900
could contain the name of application 610, the version of
application 610, and so on. Application context record 900
could be disposed within remote network management plat-
form 320, perhaps in CMDB 500 or another database.

In example embodiments, application context record 900
may contain references to the application components that
form application 610. These references could take the form
of path names to specific locations within remote network
management platform 320. For example, application context
record 900 could reference developer group 910 through the
pathname “/USERS/GROUPS/DEVELOPER,” reference
developer portal 920 through the pathname “/UI/PORTALS/
DEVELOPER,” and reference incidents table 708 through

10

15

20

25

30

35

40

45

50

55

60

65

24

the pathname “/APP_DATA/TABLES/INCIDENTS.” Other
ways of referencing application components are also pos-

sible.

Returning back to FIG. 8, at block 820, application
topology tool 620 could determine the types of relationships
between the application components identified at block 810.
This could involve, for example, determining “parent-child”
relationships between application components, “reference”
relationships between application components, whether one
application component extends from another application
component, among other possibilities. Application topology
tool 620 could determine the relationship types by analyzing
schemas associated with the application components of
application 610, source code files associated with the appli-
cation components of application 610, or other pieces of data
related to the application components of application 610.

As an illustrative example related to block 820, FIG. 10A
shows an example schema 1000 that contains five tables:
incidents table 1012, assets table 1014, assets/department
table 1016, department table 1018, and task table 1020. Each

of these tables may be configured and/or arranged by remote
network management platform 320 or by users 630. For
instance, task table 1020 and department table 1018 could be
default database tables that are provided by remote network
management platform 320, whereas incidents table 1012 and
assets table 1014 could be database tables that are config-
ured by users 630 for use in application 610.

Schema 1000 shows how incidents table 1012 has a one
to one relationship with task table 1020 and a many to one
relationship with assets table 1014. Schema 1000 also shows
how assets table 1014 and department table 1018 have a
many to many relationship that 1s facilitated via assets/
department table 1016. These relationships may be config-
ured and/or arranged by remote network management plat-
form 320 or by users 630. For instance, the one to one
relationship between incidents table 1012 and task table
1020 may be configured by users 630 upon the mstantiation
of incidents table 1012. In some implementations, users 630
could configure such relationships via a schema design tool
provided by remote network management platform 320, or
perhaps by other means.

In the examples herein, incidents table 1012, assets table
1014, department table 1018, and task table 1020 could be
referenced by an application context record associated with
application 610 and thus may be considered as application
components of application 610. Accordingly, application
topology tool 610 may be configured to analyze the rela-
tionships in schema 1000 and then store those relationships
in relationship table 1030. For instance, to capture the
relationship between incidents table 1012 and task table
1020, application topology tool 620 could add to relation-
ship table 1030 an entry contains: (1) a reference to task table
1020, (11) a reference to incidents table 1012, and (111) the
type of relationship between task table 1020 and incidents
table 1012. Because task table 1020 has a one to one
relationship with incidents table 1012 in schema 1000, the
relationship type between task table 1020 and incidents table
1012 may be considered as a “EXTENDS FROM” relation-
ship type. Similarly, to capture the relationship between
incidents table 1012 and assets table 1014, application
topology tool 620 could add to relationship table 1030 an
entry contains: (1) a reference to incidents table 1012, (11) a
reference to assets table 1014, and (111) the type of relation-
ship between incidents table 1012 and assets table 1014.
Because incidents table 1012 has a many to one relationship
with assets table 1014 1n schema 1000, the relationship type

US 11,748,115 B2

25

between incidents table 1012 and assets table 1014 may be
considered as a “REFRENCE” relationship type.

Notice how schema 1000 contains assets/department table
1016, but application topology map 700 does not contain
any nodes that correspond to assets/department table 1016.
This 1s because application topology tool 620 could be
configured to 1gnore such linking tables when generating
application topology maps. Instead, application topology
tool 620 may represent assets/department table 1016 as a
bilateral relationship between assets table 1014 and depart-
ment table 1018. That 1s, application topology tool 620 may
add two entries 1n relationship table 1030 to capture assets/
department table 1016: one entry where assets table 1014
“references” department table 1018, and one entry 1n which
department table 1018 “references” assets table 1014.

During operations, application topology tool 620 could
refer to the entries 1n relationship table 1030 to determine
whether an edge should be displayed between the nodes of
an application topology map. As discussed below, applica-
tion topology tool 620 could visually depict a specific
relationship type by using unique colors for the edges
corresponding to that relationship type, using unique line
format (e.g., a dash type, a line weight) for edges corre-
sponding to that relationship type, or by including a textual
description next to edges corresponding to that relationship
type. For example, application topology tool 620 could
visually distinguish a “parent-child” relationship between
two application components using a red color for the edge,
using a dashed line format for the edge, or by including a
textual description next to the edge. Other ways of distin-
guishing relationship types are also possible.

As another example related to block 820, FIG. 10B
depicts source code file 1040. For the purpose of example,
source code file 1040 1s shown to correspond to assignment
flow 716. However, 1n practice, source code file 1040 may
correspond to any one of application component(s) 640,
including any one of data component(s) 650, GUI compo-
nent(s) 660, functional(s) component 670, user group com-
ponent(s) 680, or other type of application component.
Source code file 1040 may be disposed within remote
network management plattorm 320, perhaps in CMDB 500
or another database. In some examples, source code file
1040 can have more, fewer, and/or different types of content
than indicated in FIG. 10B.

In example embodiments, application topology tool 620
could be configured to locate certain statements of 1nterest
within source code file 1040. These statements of interest
may correspond to certain variable names, certain function
names, or other types of statements.

For instance, as shown 1n FIG. 10B, source code file 1040
contains two import statements: import statement 1050,
which imports “DATA.INCIDENTS” 1nto source code file
1040, and import statement 1052, which imports “USER-
S.TECHNICIANS” 1nto source code file 1052. During
operations, application topology tool 620 could scan source
code file 1040, locate those import statement, and determine
that source code file 1040 contains references to “DATA.IN-
CIDENTS” and “USERS.TECHNICIANS”. Upon that
determination, application topology tool 620 could conclude
that application flow 716 has a relationship with 1ncidents
table 708 and a relationship with technician group 718.

Application topology tool 620 could then store those
relationships 1 relationship table 1070. For instance, to
capture the relationship between incidents table 708 and
assignment flow 716, application topology tool 620 could
add to relationship table 1070 an entry contains: (1) a
reference to incidents table 708, (1) a reference to assign-

10

15

20

25

30

35

40

45

50

55

60

65

26

ment flow 716, and (111) the type of relationship between
incidents table 708 and assignment flow 716. Because
assignment flow 716 refers to incidents table 708 1n source
code file 1040, the relationship type between incidents table
708 and assignment flow 716 may be considered as a
“REFRENCE” relationship type. Similarly, to capture the
relationship between technician group 718 and assignment
flow 716, application topology tool 620 could add to rela-
tionship table 1070 an entry contains: (1) a reference to
technician group 718, (11) a reference to assignment flow
716, and (111) the type of relationship between technician
group 718 and assignment tlow 716. Because assignment
flow 716 refers to technician group 718 in source code file
1040, the relationship type between technician group 718
and assignment flow 716 may be considered as a
“REFRENCE” relationship type.

During operations, application topology tool 620 could
refer to the entries 1n relationship table 1070 to determine
whether an edge should be displayed between the nodes of
an application topology map. As discussed below, applica-
tion topology tool 620 could visually depict a specific
relationship type by using unique colors for the edges
corresponding to that relationship type, using unique line
format (e.g., a dash type, a line weight) for edges corre-
sponding to that relationship type, or by including a textual
description next to edges corresponding to that relationship
type. For example, application topology tool 620 could
visually distinguish a “reference” relationship between two
application components using a blue color for the edge,
using a solid line format for the edge, or by including a
textual description next to the edge. Other ways of distin-
guishing relationship types are also possible.

Returning back to FIG. 8, at block 830, application
topology tool 620 could determine one or more application
topology map modifications. To do this, application topol-
ogy tool 620 could refer to a pre-configured topology
specification disposed within remote network management
plattorm 320, although other ways of applying application
topology map modifications are possible.

As an 1llustrative example related to block 830, FIG. 11
shows an example scenario 1100 that contains topology
specification 1110 and modified application topology map
1120.

Topology specification 1110 could be a file, database
table(s), or the like that 1s disposed within remote network
management platform 320 and associated with application
610. Remote network management platform 320 may
prompt users 630 to enter appropriate data for topology
specification 1110. This may be accomplished by way of a
web page or series of web pages hosted by remote network
management platform 320 and provided to users 630 upon
request. The data entered into topology specification 1110
could specily modifications that application topology tool
620 should make when displaying application topology
maps.

For example, topology specification 1110 1s shown to
include two data records: an array titled “ICON IGNORE”
and an array fitled “NODE IGNORE.” The “ICON
IGNORE” array contains two entries: “FUNCTIONAL” and
“GUI”. The “NODE IGNORE” array contains one entry:
“TASKS”. Application topology tool 620 could read the data
records from topology specification 1110 to determine modi-
fications that should be made when displaying an application
topology map for application 610. In the example shown in
FIG. 11, these modifications are represented by modified
application topology map 1120, which may be a modified
version of application topology map 700 from FIG. 7.

US 11,748,115 B2

27

As may be seen by comparing application topology map
700 to modified application topology map 1120, modified
application topology map 1120 does not include nodes that
are associated with the display 1con (e.g., developer portal
704 and technician portal 720). This modification may be the
result of the “FUNCTIONAL” entry in the “ICON
IGNORE” array of topology specification 1110. Addition-
ally, modified application topology map 1120 does not
include nodes that are associated with the gear icon (e.g.,
maintenance flow 706 and assignment flow 716). This
modification may be the result of the “GUI” entry in the
“ICON IGNORE” array of topology specification 1110.

Further, modified application topology map 1120 does not
include tasks table 710. This modification may be the result

of the “TASKS” entry in the “NODE IGNORE” array of

topology specification 1110.

Notably, the entries and arrangement of topology speci-
fication 1110 are merely used for example and are not
intended to be limiting with respect to the embodiments
herein. Other entries and arrangements of topology specifi-
cation 1110 are also possible.

Returming back to FIG. 8, at block 840, application
topology tool 620 could generate and display an application
topology map using the results from blocks 810, 820, and
830. For example, application topology tool 620 could
display could the application components 1dentified at block
810 as nodes 1n the application topology map. Then, appli-
cation topology tool 620 could display the determined
relationship from block 820 as edges between the nodes.
Concurrently, application topology tool 620 could use the
modifications determined at block 830 to modified the
edges/nodes. After the generating, application topology tool
620 could display the application topology map, perhaps on
a graphical user interface, a web application, or the like.

VII. Example Operations

FIG. 12 1s a flow chart 1illustrating an example embodi-
ment. The process 1llustrated by FIG. 12 may be carried out
by a computing device, such as computing device 100,
and/or a cluster of computing devices, such as server cluster
200. However, the process can be carried out by other types
of devices or device subsystems. For example, the process
could be carried out by a computational instance of a remote
network management platform, one or more processors
disposed within a remote network management platform, or
a portable computer, such as a laptop or a tablet device.

The embodiments of FIG. 12 may be simplified by the
removal ol any one or more of the features shown therein.
Further, these embodiments may be combined with features,
aspects, and/or 1mplementations of any of the previous
figures or otherwise described herein.

Block 1200 involves recerving, from a client device, a
request to generate an application topology map for a
soltware application from a plurality of software applica-
tions 1nstalled on a system, where the system includes
persistent storage containing application components, and
where the plurality of software applications have respec-
tively associated application context records that include
references to one or more of the application components that
provide at least some behavior or data related to the plurality
ol software applications.

Block 1210 involves identilying, based on an application
context record associated with the software application, a
subset of application components that provide at least some
behavior or data related to the software application.

10

15

20

25

30

35

40

45

50

55

60

65

28

Block 1220 involves determining, based on the subset of
application components, relationship types between pairs of
application components from the subset of application com-
ponents.

Block 1230 involves generating an application topology
map for the software application, where the subset of
application components are represented as nodes 1n the
application topology map, and where edges between the
nodes are defined based on the relationship types between
corresponding pairs of application components.

Block 1240 involves providing, for display on the client
device, a representation of the application topology map.

In some embodiments, the application components have
associated application component types and generating the
application topology map includes representing nodes for
application components with unique icons per component
type.

In some embodiments, generating the application topol-
ogy map 1ncludes representing edges with unique colors or
unique line types per relationship type.

In some embodiments, determining relationship types
between pairs ol application components includes: deter-
mining that a pair of application components from the subset
of application components 1s stored in the persistent storage
in a pair ol database tables; and identifying a relationship
type between the pair of application components based on a
schema associated with the pair of database tables.

In some embodiments, determining relationship types
between pairs of application components includes: deter-
mining that a first application component from the subset of
application components 1s stored in the persistent storage at
least 1n part as a source code {file; locating statements within
the source code {ile relating to a second application com-
ponent from the subset of application components; and
identifying a relationship type between the first application
component and the second application component based on
the statements within the source code file.

In some embodiments, the persistent storage contains a
specification related to the software application. In such
embodiments, the specification contains references to at
least some of the application components in the subset of
application components, and generating the application
topology map involves omitting, from the application topol-
ogy map, the application components referenced in the
specification.

In some embodiments, at least one of the application
components are pre-defined by the system.

In some embodiments, the references include pathnames
to locations of the application components within the sys-
tem.

In some embodiments, reception of the application topol-
ogy map by the client device causes the client device to
display the application topology map on a graphical user
interface.

Some embodiments include receiving, from the client
device, a second request to generate a second application
topology map for a second soitware application from the
plurality of software applications, where the second soft-
ware application 1s diflerent than the software application.
Such embodiments may further include identifying, based
on a second application context record associated with the
second software application, a second subset of application
components that provide at least some behavior or data
related to the second soitware application. Such embodi-
ments may even further include determining, based on the
second subset of application components, relationship types
between pairs of application components from the second

US 11,748,115 B2

29

subset of application components. Such embodiments may
also include generating a second application topology map

for the second software application, where the second subset
of application components are represented as nodes in the
second application topology map, and where edges between
the nodes are defined based on the relationship types
between corresponding pairs of application components
from the second subset of application components. Such
embodiments may additionally include providing, for dis-
play on the chient device, a second representation of the
second application topology map.

In some embodiments, the second subset of application
components and the subset of application components share
at least one application component.

In some embodiments, a system may include means for
receiving, from a client device, a request to generate an
application topology map for a software application from a
plurality of software applications installed on the system.
Such a system may include persistent storage containing
application components, and where the plurality of software
applications have respectively associated application con-
text records that include references to one or more of the
application components that provide at least some behavior
or data related to the plurality of software applications. The
system may also include means for identifying, based on an
application context record associated with the software
application, a subset of application components that provide
at least some behavior or data related to the software
application. The system may further include determining,
based on the subset of application components, relationship
types between pairs ol application components from the
subset ol application components. The system may addi-
tionally include means for generating, an application topol-
ogy map for the software application, wherein the subset of
application components are represented as nodes in the
application topology map, and wherein edges between the
nodes are defined based on the relationship types between
corresponding pairs of application components. The system
may further include means for providing, for display on the
client device, a representation of the application topology
map.

VIII. Closing

The present disclosure 1s not to be limited 1n terms of the
particular embodiments described in this application, which
are mntended as 1llustrations of various aspects. Many modi-
fications and variations can be made without departing from
its scope, as will be apparent to those skilled in the art.
Functionally equivalent methods and apparatuses within the
scope of the disclosure, 1n addition to those described herein,
will be apparent to those skilled in the art from the foregoing,
descriptions. Such modifications and variations are intended
to fall within the scope of the appended claims.

The above detailed description describes various features
and operations of the disclosed systems, devices, and meth-
ods with reference to the accompanying figures. The
example embodiments described herein and in the figures
are not meant to be limiting. Other embodiments can be
utilized, and other changes can be made, without departing
from the scope of the subject matter presented herein. It will
be readily understood that the aspects of the present disclo-
sure, as generally described herein, and illustrated 1n the
figures, can be arranged, substituted, combined, separated,
and designed 1n a wide variety of different configurations.

With respect to any or all of the message tlow diagrams,
scenarios, and tflow charts in the figures and as discussed

10

15

20

25

30

35

40

45

50

55

60

65

30

herein, each step, block, and/or communication can repre-
sent a processing ol mformation and/or a transmission of
information in accordance with example embodiments.
Alternative embodiments are included within the scope of
these example embodiments. In these alternative embodi-
ments, for example, operations described as steps, blocks,
transmissions, communications, requests, responses, and/or
messages can be executed out of order from that shown or
discussed, including substantially concurrently or 1n reverse
order, depending on the functionality involved. Further,
more or fewer blocks and/or operations can be used with any
of the message tlow diagrams, scenarios, and tflow charts
discussed herein, and these message flow diagrams, sce-
narios, and flow charts can be combined with one another,
in part or in whole.

A step or block that represents a processing of information
can correspond to circuitry that can be configured to perform
the specific logical functions of a herein-described method
or technique. Alternatively or additionally, a step or block
that represents a processing of information can correspond
to a module, a segment, or a portion ol program code
(including related data). The program code can include one
or more 1nstructions executable by a processor for 1mple-
menting specific logical operations or actions 1n the method
or technique. The program code and/or related data can be
stored on any type of computer readable medium such as a
storage device including RAM, a disk drive, a solid state
drive, or another storage medium.

The computer readable medium can also include non-
transitory computer readable media such as computer read-
able media that store data for short periods of time like
register memory and processor cache. The computer read-
able media can further include non-transitory computer
readable media that store program code and/or data for
longer periods of time. Thus, the computer readable media
may include secondary or persistent long term storage, like
ROM, optical or magnetic disks, solid state drives, or
compact-disc read only memory (CD-ROM), for example.
The computer readable media can also be any other volatile
or non-volatile storage systems. A computer readable
medium can be considered a computer readable storage
medium, for example, or a tangible storage device.

Moreover, a step or block that represents one or more
information transmissions can correspond to information
transmissions between software and/or hardware modules 1n
the same physical device. However, other information trans-
missions can be between software modules and/or hardware
modules 1n different physical devices.

The particular arrangements shown in the figures should
not be viewed as limiting. It should be understood that other
embodiments can include more or less of each element
shown 1 a given figure. Further, some of the illustrated
elements can be combined or omitted. Yet further, an
example embodiment can include elements that are not
illustrated 1n the figures.

While various aspects and embodiments have been dis-
closed herein, other aspects and embodiments will be appar-
ent to those skilled in the art. The various aspects and
embodiments disclosed herein are for purpose of illustration
and are not intended to be limiting, with the true scope being
indicated by the following claims.

What 1s claimed 1s:

1. A system comprising: persistent storage containing
application components and a plurality of software applica-
tions installed on the system, wherein the plurality of
software applications are available to a managed network 1n
remote communication with the system, wherein the plural-

US 11,748,115 B2

31

ity of soltware applications have respectively associated
application context records that include references to one or
more ol the application components that provide at least
some behavior or data related to the plurality of software
applications; and one or more processors configured to
perform operations including: receiving, at a computational
instance of the system, a request to generate an application
topology map for a software application available to the
managed network; identifying, by the computational
instance based on an application context record available to
the computational 1nstance and associated with the software
application, a subset of application components that provide
at least some behavior or data related to the software
application; determining, based on the subset of application
components, relationship types between pairs of application
components from the subset of application components;
generating an application topology map for the software
application, wherein the subset of application components
are represented as nodes in the application topology map,
and wherein edges between the nodes are defined based on
the relationship types between corresponding pairs of appli-
cation components; and providing, by the computational
instance, a representation of the application topology map
for display on a client device; and wherein determining
relationship types between pairs of application components
comprises: determining that a first application component
from the subset of application components 1s stored in the
persistent storage at least in part as a source code file;
locating statements within the source code file relating to a
second application component from the subset of application
components; and 1dentifying a relationship type between the
first application component and the second application com-
ponent based on the statements within the source code file.
2. The system of claim 1, wherein the application com-
ponents have associated application component types, and
wherein generating the application topology map includes
representing nodes for application components with unique
icons per component type.
3. The system of claim 1, wherein generating the appli-
cation topology map includes representing edges with
unique colors or unique line types per relationship type.
4. The system of claim 1, wherein determining relation-
ship types between pairs of application components com-
Prises:
determining that a pair of application components from
the subset of application components 1s stored in the
persistent storage 1n a pair of database tables; and

identifying a relationship type between the pair of appli-
cation components based on a schema associated with
the pair of database tables.

5. The system of claim 1, wherein the persistent storage
contains a specification related to the software application,
wherein the specification contains references to at least some
of the application components 1n the subset of application
components, and wherein generating the application topol-
ogy map 1nvolves omitting, from the application topology
map, the application components referenced in the specifi-
cation.

6. The system of claim 1, wherein at least one of the
application components are pre-defined by the system.

7. The system of claim 1, wherein the references comprise
pathnames to locations of the application components within
the system.

8. The system of claim 1, wherein reception of the
application topology map by the client device causes the
client device to display the application topology map on a
graphical user interface.

10

15

20

25

30

35

40

45

50

55

60

65

32

9. The system of claim 1, wherein the operations further
include:

recerving a second request to generate a second applica-

tion topology map for a second software application
from the plurality of software applications, wherein the
second soltware application 1s diflerent than the soft-
ware application;

identifying, based on a second application context record

associated with the second software application, a
second subset of application components that provide
at least some behavior or data related to the second
soltware application;

determiming, based on the second subset of application

components, relationship types between pairs of appli-
cation components from the second subset of applica-
tion components;

generating a second application topology map for the

second software application, wherein the second subset
of application components are represented as nodes 1n
the second application topology map, and wherein
edges between the nodes are defined based on the
relationship types between corresponding pairs of
application components from the second subset of
application components; and

providing a second representation of the second applica-

tion topology map for display on the client device.

10. The system of claim 9, wherein the second subset of
application components and the subset of application com-
ponents share at least one application component.

11. A computer-implemented method comprising: receiv-
ing, at a computational instance within a system, a request
to generate an application topology map for a software
application from a plurality of software applications
installed on the system, wherein the plurality of software
application are available to a managed network 1n remote
communication with the system and, wherein the system
includes persistent storage contaiming application compo-
nents, and wherein the plurality of software applications
have respectively associated application context records that
include references to one or more of the application com-
ponents that provide at least some behavior or data related
to the plurality of software applications; identitying, by the
computational instance utilizing an application context
record associated with the software application, a subset of
application components that provide at least some behavior
or data related to the software application; determining, by
the computational instance and based on the subset of
application components, relationship types between pairs of
application components from the subset of application com-
ponents; generating, by the computational istance, an appli-
cation topology map for the software application, wherein
the subset of application components are represented as
nodes 1n the application topology map, and wherein edges
between the nodes are defined based on the relationship
types between corresponding pairs ol application compo-
nents; providing, by the computational 1nstance, a represen-
tation of the application topology map for display on a client
device; and wherein determining relationship types between
pairs of application components comprises: determining that
a {irst application component from the subset of application
components 1s stored 1n the persistent storage at least 1n part
as a source code file; locating statements within the source
code file relating to a second application component from
the subset of application components; and identifying a
relationship type between the first application component
and the second application component based on the state-
ments within the source code file.

US 11,748,115 B2

33

12. The computer-implemented method of claim 11,
wherein the application components have associated appli-
cation component types, and wherein generating the appli-
cation topology map includes representing nodes for appli-
cation components with unique i1cons per component type.

13. The computer-implemented method of claiam 11,
wherein generating the application topology map includes
representing edges with unique colors or unique line types
per relationship type.

14. The computer-implemented method of claim 11,
wherein determining relationship types between pairs of
application components comprises:

determining that a pair of application components from

the subset of application components 1s stored in the

persistent storage in a pair of database tables; and

identifying a relationship type between the pair of appli-
cation components based on a schema associated with
the pair of database tables.

15. The computer-implemented method of claim 11,
wherein the persistent storage contains a specification
related to the software application, wherein the specification
contains references to at least some of the application
components 1n the subset of application components, and
wherein generating the application topology map involves
omitting, from the application topology map, the application
components referenced in the specification.

16. The computer-implemented method of claim 11, fur-
ther comprising:

receiving a second request to generate a second applica-

tion topology map for a second software application
from the plurality of software applications, wherein the
second software application 1s diflerent than the soft-
ware application;

identifying, based on a second application context record

associated with the second soiftware application, a
second subset of application components that provide
at least some behavior or data related to the second
soltware application;

determining, based on the second subset of application

components, relationship types between pairs of appli-
cation components from the second subset of applica-
tion components;

generating a second application topology map for the

second software application, wherein the second subset
of application components are represented as nodes 1n
the second application topology map, and wherein
edges between the nodes are defined based on the
relationship types between corresponding pairs of

10

15

20

25

30

35

40

45

34

application components from the second subset of
application components; and

providing a second representation of the second applica-

tion topology map for display on a client device.

17. The computer-implemented method of claim 16,
wherein the second subset of application components and
the subset ol application components share at least one
application component.

18. An article of manufacture including a non-transitory
computer-readable medium, having stored thereon program
instructions that, upon execution by one or more processors
disposed within a computing system, cause the one or more
processors to perform operations comprising: receiving, at a
computational instance, a request to generate an application
topology map for a software application from a plurality of
soltware applications installed on a system, wherein the
plurality of software application are available to a managed
network 1n remote commumnication with the system, and
wherein the system includes persistent storage contaiming
application components, and wherein the plurality of sofit-
ware applications have respectively associated application
context records that include references to one or more of the
application components that provide at least some behavior
or data related to the plurality of software applications;
identifying, based on an application context record associ-
ated with the software application, a subset of application
components that provide at least some behavior or data
related to the software application; determining, based on
the subset of application components, relationship types
between pairs of application components from the subset of
application components; generating, an application topology
map for the software application, wherein the subset of
application components are represented as nodes 1n the
application topology map, and wherein edges between the
nodes are defined based on the relationship types between
corresponding pairs of application components; and provid-
ing, by the computation instance, a representation of the
application topology map for display on a client device; and
wherein determining relationship types between pairs of
application components comprises: determining that a first
application component from the subset of application com-
ponents 1s stored in the persistent storage at least 1n part as
a source code file; locating statements within the source
code file relating to a second application component from
the subset of application components; and identifying a
relationship type between the first application component
and the second application component based on the state-
ments within the source code file.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

