12 United States Patent

Dupuis et al.

US011745545B2

US 11,745,345 B2
Sep. 5, 2023

(10) Patent No.:
45) Date of Patent:

(54) PLANNING BY WORK VOLUMES TO AVOID

(38) Field of Classification Search

CONFLICTS CPC ... B23] 9/1666; B251 9/0084; B23J 9/1661;
B251 9/1682; GO3B 2219/39109; G05B
(71) Applicant: Intrinsic Innovation LLC, Mountain o 2_219/40417
View, CA (US) See application file for complete search history.
(56) References Cited
(72) Inventors: Jean-Francois Dupuis, San Francisco, |
CA (US); Keegan Go, Mountain View, U.S. PAIENT DOCUMENTS
CA (US); Stoyan Gaydaroy, 0,104,197 B2 82015 Miegel et al
Burlingame, CA (US) 0,915,937 B2 3/2018 Linnell et al.
9,093,824 B2 6/2018 Menges et al.
(73) Assignee: Intrinsic Innovation LLC, Mountain 10,035,266 Bl 7/2018 Kroeger
View, CA (US) 10,296,012 B2 5/2019 Lalonde et al.
j 11,199,853 B1* 12/2021 Af%‘ouzi GO5D 1/0246
(*) Notice: Subject to any disclaimer, the term of this 20100190926 AL 772010 _KnShmswamy et al.
patent 1s extended or adjusted under 35 _ _ (Continued)
U.S.C. 154(b) by 101 days. Primary Examiner — Robert T Nguyen
Assistant Examiner — Karston . Evans
(21) Appl. No.: 17/005,060 (74) Attorney, Agent, or Firm — Fish & Richardson P.C.
- (37) ABSTRACT
(22) Filed: Aug. 27, 2020 Methods, systems, and apparatus, including computer pro-
(65) Prior Publication Data grams encoded on computer storage media, for planning by
work volumes to avoid conflicts. One of the methods
US 2021/0060779 Al Mar. 4, 2021 includes receiving a process definition graph for a robot that
includes action nodes, wherein the action nodes include (1)
transition nodes that represent a motion to be taken by the
Related U.S. Application Data robot from a respective start location to an end location and
. L (2) task nodes that represent a particular task to be per-
(60) g’gm;gllognal application No. 62/894.615, filed on Aug. formed by the robot at a particular task location. An 1nitial
’ ' modified process definition graph that ignores one or more
(51) Int. CL conilicts between respective transition nodes as well as one
B257 9/16 (2006.01) or more conilicts between respective transition nodes and
B257 9/00 (2006.01) task nodes 1s generated from the process definition graph. A
(52) U.S. Cl refined process definition graph that 1gnores contlicts
CPC ' B25J 9/1666 (2013.01): B25J 9/0084 between transition nodes and recognizes conflicts between

transition nodes and task nodes 1s generated from the 1nitial
modified process definition graph.

20 Claims, 9 Drawing Sheets

(2013.01); B25J 9/1661 (2013.01); B25J
9/1682 (2013.01); GOSB 2219/39109
(2013.01); GOSB 2219/40417 (2013.01)

Receive Underconstrained Process Definition
Graph
10
Apply Local Transformers
220

Generate Transitions
220

1

Perform Conflict Identification
240

1

Perform Scheduling
250

Perform Deconfliction
260

" Optionally run add J

Optionally run additional usar-selectad
transformers

—E—— e e e e e e —————— ———— — — — — —— — —— — — — —— ————

More
iterations? NG
206
No
¥

Raise Error
295

Output Final Plan
285

US 11,745,345 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2011/0153080 Al* 6/2011 Shapiro B25J 9/1666
700/255
2012/0215351 Al1* 8/2012 McGeecccee... B25J 9/1676
700/248
2015/0316925 A1 11/2015 Frsk
2017/0028559 Al1* 2/2017 Davidi B25J 9/1682
2017/0210008 Al1* 7/2017 Maeda B25J 9/1666
2018/0333847 Al* 11/2018 Maccooooiiniininnn..n, GO5D 1/02
2019/0086894 Al1l* 3/2019 Tenorth B25J9/163
2020/0125116 Al* 4/2020 Wang B25J 11/0085
2020/0174460 Al 6/2020 Byrne et al.
2021/0060777 Al1* 3/2021 Dupuis B25J 9/0084
2021/0078172 Al1* 3/2021 Cao ...ccoevvvvveviiinnnnn, GO6T 7/579

* cited by examiner

US 11,745,345 B2

Sheet 1 of 9

Sep. 5, 2023

U.S. Patent

4
LORDSIBS
JSULIOBURBS |
oS
¥4
LiCE 0
BB LICIHUUS(T] 558004
SOIAB(] SRV
SOBMS U]
BsSN

28
1] UDIINoaX

O51 G891

SUIDUT | wesAsgng
UCHNDSXY T 55T | SOBLSIU]
FHSU SPURBLILLIO T 1000

ger
ey
UCHHLINS(T $88004
DUTSAS-SDMICAA

ori 14

IZt SIOULIOISUBS | JAULIB]

LODBI8S JBULIoisURL |

it
LOEINGHUD T
jBlliosuesy

§TT
Udeic) uojius (g
2880044 DRUIBJIISLUOTIBRUN

Git g1
&@Q@@ Q B T EQN nggmwﬁm
SS800I 4 TRUOBUAS-|[SIMIOAA

§0i
§ealo Pul-Ty
SSRD0S A

44444
L

= w m & w ma & dlw

Ugli

N OG0

1 g 1000y

&pli

¥ J0GOY |

gLL [IEIMIOAA

ol inrwit dierein sy by ThifnreFie el e

Loos

il

U.S. Patent

Yes

Sep. 5, 2023 Sheet 2 of 9

US 11,745,345 B2

Receive Underconstrained Process Definition

Graph
210

l

Apply Local Transformers
220

l

Generate Transitions
230

o

Perform Conflict Identification
240

l

Perform Scheduling
250

rararamra rarar. rararuaran

l

Perform Deconfliction
260

Optionally run additional user-selected
transformers

- - - - L L e - - - -

iterations”?

No
Y

Goal
\[e! reached?”

280

Raise Error
295

FIG. 2

Yes—»

Output Final Plan
285

U.S. Patent

3001

Action1
332

Action3
242

Sep. 5, 2023

Action4
344

Process
310

AllOfINnOrder
322

Action5
246

FIG. 3

Sheet 3 of 9

US 11,745,345 B2

Action’/
334

Actiont
348

U.S. Patent Sep. 5, 2023 Sheet 4 of 9 US 11,745,345 B2

400a ?‘

AllOfINnOrder
410

Welqa1 Wela2
420 430

FIG. 4A

U.S. Patent Sep. 5, 2023 Sheet 5 of 9 US 11,745,345 B2

400b?‘

AllOfINnOrder
410

Welqd1 OneOf Wela2
420 440 430

Transition4
Transition1 480

450

TransitionZ Transition3
460 470

FIG. 4B

745,345 B2

2

US 11

Sheet 6 of 9

Sep. 5, 2023

U.S. Patent

8IS
Jajsuel |

G Ol

g82¢ | 92%

| PIBAA | | ®ACINRUIOL

2¢6
SAOI\UION

44
SAOJUION

Jojsuel |

0cS
¢ 1040y

01S

BulN}xi 4

U.S. Patent Sep. 5, 2023 Sheet 7 of 9 US 11,745,345 B2

Receive Initial Modified Process Definition {620
Graph

|

Reintroduce Certain Constraints __§ 630

|

Generate Refined Process Definition Graph 5 640

No

All constraints
reintroduced?

650

Yes

¢

Output Candidate Final Process Definition __§ 660
Graph

FIG. 6

U.S. Patent

Sep. 5, 2023 Sheet 8 of 9

US 11,745,345 B2

Receive Initial Modified Process Definition
Graph and Reintroduced Constraints

|

Reapply Local Transformers

|

Generate Modified Transitions

|

Perform Conflict Identification

|

Generate Modified Schedule

|

Output Refined Process Definition Graph

FIG. 7

U.S. Patent

Sep. 5, 2023 Sheet 9 of 9

US 11,745,345 B2

(Generate a volume occupied by a first robot __§ 810

during execution of a task

Add volume to operation environment to
generate updated environment

5820

(Generate a collision-free path for a second
robot that avoids updated environment

57830

FIG. 8

US 11,745,345 B2

1

PLANNING BY WORK VOLUMES TO AVOID
CONFKFLICTS

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims priority to U.S. Provisional Appli-
cation No. 62/894,613, filed on Aug. 30, 2019. The disclo-
sure of the prior application 1s considered part of and 1s
incorporated by reference 1n the disclosure of this applica-
tion.

BACKGROUND

This specification relates to robotics, and more particu-
larly to planning robotic movements.

Robotics planning refers to scheduling the physical move-
ments of robots 1n order to perform tasks. For example, an
industrial robot that builds cars can be programmed to first
pick up a car part and then weld the car part onto the frame
of the car. Each of these actions can themselves include
dozens or hundreds of individual movements by robot
motors and actuators.

Robotics planning has traditionally required immense
amounts of manual programming in order to meticulously
dictate how the robotic components should move 1n order to
accomplish a particular task. Manual programming 1is
tedious, time-consuming, and error prone. In addition, a
schedule that 1s manually generated for one workcell can
generally not be used for other workcells. In this specifica-
tion, a workcell 1s the physical environment 1n which a robot
will operate. Workcells have particular physical properties,
¢.g., physical dimensions, that impose constraints on how
robots can move within the workcell. Thus, a manually
programmed schedule for one workcell may be incompatible
with a workcell having different robots, a different number
ol robots, or different physical dimensions.

In many industrial robotics applications, the primary
success or failure criteria of a schedule 1s the time 1t takes to
complete a task. For example, at a welding station in a car
assembly line, the time 1t takes for robots to complete welds
on each car 1s a critical aspect of overall throughput of the
factory. When using manual programming, 1t 1s often dith-
cult or impossible to predict how long the resulting schedule
will take to complete the task.

Workcells often contain more than one robot. For
example, a workcell can have multiple robots each welding
a different car part onto the frame of a car at the same time.
In these cases, the planning process can include assigning
tasks to specific robots and planning all the movements of
cach of the robots. Manually programming these movements
in a way that avoids collisions between the robots while
mimmizing the time to complete the tasks 1s diflicult, as the
search space i a 6D coordinate system 1s very large and
cannot be searched exhaustively 1n a reasonable amount of
time.

SUMMARY

This specification describes how a system can generate a
schedule for one or more robots using an underconstrained
process definition graph. In general the system can 1tera-
tively apply transformers in order to repeatedly transform
the process definition graph until a schedule satistying one
or more goal criteria 1s reached. As part of this iterative
process, the system can first relax certain constraints
required for the final process definition graph in order to

10

15

20

25

30

35

40

45

50

55

60

65

2

produce an 1nitial modified process definition graph that may
not satisiy the relaxed constraints. The system can then
reintroduce some of the relaxed constraints to produce a
refined process definition graph that satisfies the reintro-
duced constraints but may not satisty the relaxed constraints
that were not reintroduced. The system can repeat this
process more than once until 1t produces a final process
definition graph that represents a final schedule that satisfies
all goal criteria.

For example, the system can first produce an initial
modified process definition graph that allows for collisions
between a first robot executing a first task and a second robot
moving within the workcell to position 1tself to begin a
second task. The system can then produce a refined process
definition graph that avoids all such collisions, but still
allows for collisions between two robots that are both
moving within the workcell to position themselves to begin
respective tasks. Finally, the system can produce a final
process definition graph that avoids all collisions between all
robots.

In order to avoid collisions between a first robot executing,
a task and second robot moving within a workcell, for
example, the system can first generate a work volume for the
first robot characterizing the space occupied by the first
robot during the execution of the task. The system can then
generate a path for the second robot that avoids the work
volume of the first robot, thereby ensuring that the first and
second robots do not collide.

Particular embodiments of the subject matter described 1n
this specification can be implemented so as to realize one or
more of the following advantages.

Using transformers to iteratively manipulate a process
definition graph to generate a robotics schedule dramatically
reduces the amount of manual programming required in
order to program robots. The system can generate a fully
constrained schedule for an arbitrary number of robots from
an 1nitial underconstrained process definition graph. Using a
process definition graph makes specifying robot actions
more flexible, faster, and less error-prone. In addition, the
techniques described below allow for exploring a much
larger search space than what could be achieved by mere
manual programming. Therefore, the resulting schedules are
likely to be faster and more eflicient than manually pro-
grammed schedules.

When a system generates a robotics schedule using a
process defimition graph, the system can guarantee that the
process definition graph 1s always 1n a usable state even 1t
the graph currently contains errors. That 1s, the system can
track each step that the system took to arrive at the current
state of the graph, maintaining a full history of the graph,
allowing the system to debug the errors in the graph much
more efliciently. In addition, because each transform applied
to the process definition graph 1s independent and can be
back-tracked, the system can experiment with different
transformation pipelines without risk to the integrity of the
final graph.

Furthermore, the system can reuse the set of transformers
multiple times and in different ways. For example, the
system can compose, from the same set of transformers,
different sequences of particular transformers to generate
robotics schedules for diflerent tasks. The composed
sequence of particular transformers for generating a robotics
schedule for a particular task or set of tasks can depend on
multiple factors, e.g., the requirements of the particular task
or set of tasks, the robotic operating environment 1n which
the robotics schedule will be executed, etc. Furthermore, this

US 11,745,345 B2

3

composability framework allows each transformer in the set
of transformers to be reused and tested in a straightforward
mannet.

Initially relaxing constraints to produce an 1initial plan 1s
computationally advantageous. In the first iteration, the
system 1s able to generate a sequence of tasks and assign
them to respective robots without overengineering the initial
plan to avoid potential collisions. It 1s neflicient to fully
solve the plan for all collisions at such an early stage, as the
plan 1s very likely to be changed later in the process. Some
of the motions of the robots are likely to be modified, added,
or eliminated, and so the work of ensuring that these motions
avoid collisions 1s wasted.

After generating the initial plan, the system has a rough
sketch of what each robot will be doing, as each task 1s
assigned to a specific robot at a specific time. With this
information, the system can reintroduce constraints and
define more precise motions to avoid collisions. There are
many possible paths a first robot can take between a start
point and an end point, and so it 1s beneficial for the system
to have a rough sketch of what all the robots are doing 1n the
workcell when the first robot 1s moving 1n order to decide
which path the first robot should take to avoid collisions.

This specification refers to generating a robotics schedule
for robots to accomplish one or more tasks. However,
generally the same techmiques can be applied to generating
a plan for any device to accomplish one or more tasks to be
performed on a schedule 1n an 1mitially underconstrained
problem space. For example, using techniques described in
this specification, a system can generate, from an initially
underconstrained graph, a plan to emit a sequence of sounds.

The details of one or more embodiments of the subject
matter of this specification are set forth in the accompanying,
drawings and the description below. Other features, aspects,
and advantages of the subject matter will become apparent
from the description, the drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a diagram that 1llustrates an example system.

FI1G. 2 15 a flowchart of an example process for iteratively
applying transformers to generate a final process definition
graph.

FIG. 3 illustrates an example underconstrained process
definition graph.

FIGS. 4A-B 1llustrate generating transitions for a portion
of a process defimition graph.

FIG. 5 1s a visual illustration of a schedule.

FIG. 6 1s a tflowchart of an example process for perform-
ing decontliction by iteratively adding constraints and pro-
ducing refined process definition graphs.

FIG. 7 1s a flowchart of an example process for generating,
a refined process definition graph.

FI1G. 8 1s a flowchart of an example process for generating
modified transitions.

Like reference numbers and designations 1n the various
drawings indicate like elements.

DETAILED DESCRIPTION

FI1G. 1 1s a diagram that 1llustrates an example system 100.
The system 100 1s an example of a system that can imple-
ment the techniques described 1n this specification.

The system 100 1ncludes a number of functional compo-
nents, mcluding a process definer 110, a planner 120, a
collection of transtformers 130, a user interface device 140,
an onsite execution engine 150, and a robot interface sub-

10

15

20

25

30

35

40

45

50

55

60

65

4

system 160. Each of these components can be implemented
as computer programs installed on one or more computers 1n
one or more locations that are coupled to each other through
any appropriate communications network, €.g., an intranet
or the Internet, or combination of networks.

The system 100 also includes a workcell 172 that includes
N robots 170a-n. The overall goal of the planner 120 and
other components of the system 100 1s to generate, from the
underconstrained process definition graph 1135, a schedule
that will be executed by the robots 170a-» to accomplish one
or more tasks. The resulting schedule can be represented 1n
a variety of ways and may be represented as a near-fully
constramed or a tully constrained process definition graph,
¢.g., the workcell-specific process definition graph 135. As
mentioned above, a common goal metric for such schedules
1s elapsed time, and thus the planner 120 can aim to generate
a schedule that causes the robots 170a-» to accomplish the
one or more tasks 1n the shortest possible amount of time.

In this specification, a robot 1s a machine having a base
position, one or more movable components, and a kinematic
model that can be used to map desired positions, poses, or
both 1n one coordinate system, e.g., Cartesian coordinates,
into commands for physically moving the one or more
movable components to the desired positions or poses. In
this specification, a tool 1s a device that 1s part of and 1s
attached at the end of the kinematic chain of the one or more
movable components of the robot. Example tools include
grippers, welding devices, and sanding devices. That 1s, a
robot can include one or more tools.

In this specification, a task 1s an operation to be performed
by a tool. For brevity, when a robot has only one tool, a task
can be described as an operation to be performed by the
robot as a whole. Example tasks include welding, glue
dispensing, part positioning, and surfacing sanding, to name
just a few examples. Tasks are generally associated with a
type that indicates the tool required to perform the task, as
well as a position within a workcell at which the task will be
performed.

In this specification, a motion plan 1s a data structure that
provides mformation for executing an action, which can be
a task, a cluster of tasks, or a transition. Motion plans can be
tully constrained, meaning that all values for all controllable
degrees of freedom for the robot are represented explicitly or
implicitly; or underconstrained, meaning that some values
for controllable degrees of freedom are unspecified. In some
implementations, 1 order to actually perform an action
corresponding to a motion plan, the motion plan must be
fully constrained to include all necessary values for all
controllable degrees of freedom for the robot. Thus, at some
points 1n the planning processes described in this specifica-
tion, some motion plans may be underconstrained, but by the
time the motion plan 1s actually executed on a robot, the
motion plan can be fully constrained. In some implementa-
tions, motion plans represent edges 1n a task graph between
two configuration states for a single robot. Thus, generally
there 1s one task graph per robot. In some implementation,
a motion plan can include 1nstructions for the robot to “rest,”
1.€., to stay in the current position.

In this specification, a motion swept volume 1s a region of
the space that 1s occupied by a least a portion of a robot or
tool during the entire execution of a motion plan. The motion
swept volume can be generated by collision geometry asso-
ciated with the robot-tool system.

In this specification, a transition 1s a motion plan that
describes a movement to be performed between a start point
and an end point. The start pont and end point can be
represented by poses, locations in a coordinate system, or

US 11,745,345 B2

S

tasks to be performed. Transitions can be underconstrained
by lacking one or more values of one or more respective
controllable degrees of freedom (DOF) for a robot. Some
transitions represent i{ree motions. In this specification, a
free motion 1s a transition in which none of the degrees of
freedom are constrained. For example, a robot motion that
simply moves from pose A to pose B without any restriction
on how to move between these two poses 1s a free motion.
During the planning process, the DOF variables for a free
motion are eventually assigned values, and path planners
can use any appropriate values for the motion that do not
contlict with the physical constraints of the workcell.

In this specification, a schedule 1s data that assigns each
task to at least one robot. A schedule also specifies, for each
robot, a sequence of actions to be performed by the robot. A
schedule also includes dependency information, which
specifies which actions must not commence until another
action 1s finished. A schedule can specily start times for

actions, end times for actions, or both.

To mmtiate schedule generation, a user can provide a
process description 105 and workcell-specific information
107 to a process definer 110. The process description 105
can include a high-level description of the tasks to be
completed. The workcell-specific nformation 107 can
include data that represents properties of the workcell,
including physical dimensions, the locations and dimensions
ol obstacles or other hardware 1n the workcell, or the type
and number of robots 170a-r 1n the workcell.

From the process description 105 and the workcell-
specific information, the process definer 110 can generate an
underconstrained process definition graph 115. Alternatively
or in addition, a user can provide the underconstrained
process definition graph 115 to the planner 120. In this
specification, a process defimition graph, or for brevity, a
graph, 1s a directed acyclic graph having constraint nodes
and action nodes.

Action nodes represent actions for a robot to perform,
which can include nodes representing tasks or clusters of
tasks, e.g., as specified i the original process description.
Action nodes can also represent transitions that robots can
perform, e.g., transitions between tasks or other locations in
the workcell.

Constraint nodes represent particular relationships
between children nodes that must be preserved in any
schedule. In general, constraint nodes can represent €xis-
tence constraints or time constraints. An existence constraint
specifies a constraint on which children can be selected. A
time constraint specifies a constraint on the timing among,
chuldren. For example, a constraint node can have as chil-
dren two action nodes, and the constraint node can represent
a time constraint that a first action represented by a first of
the two action nodes must start before a second action
represented by a second of the two action nodes.

Being an underconstrained process definition graph
means that the graph lacks various kinds of information
required to actually drive the robots 170a-» to accomplish
the tasks. The graph can be underconstrained in a variety of
ways. For example, the graph can lack any sense of time,
scheduling, or ordering between tasks. Being undercon-
strained can also mean that various properties of task nodes
are partially defined or undefined.

Thus, 1 some 1mplementations the planner 120 can
receive a process defimition graph 115 having nodes repre-
senting the tasks to be performed as specified by the process
description, but without specitying any ordering between the
tasks, without specifying any assignment of any of the

5

10

15

20

25

30

35

40

45

50

55

60

65

6

robots 170a-» to any of the tasks, and without speciiying
what movements the robots should undertake 1n order to
prepare to perform the tasks.

The planner 120 can then perform an iterative process to
begin solving constraints in the underconstrained process
definition graph 115. The final output of this process 1s data
representing a schedule, which can be a workcell-specific
process definition graph 135, which, for brevity may also be
referred to as a final schedule. The workcell-specific process
definition graph 135 contains enough information to drive
the robots 170a-n to complete the one or more tasks speci-
fied 1n the original underconstrained process definition graph
115. Thus, the workcell-specific process defimition graph
135 will generally specity which robots will be performing
which tasks. The workcell-specific process definition graph
135 can also specily the timing, scheduling, ordering and
movement actions to be taken by each robot between tasks.
Additionally, the movements specified by the workcell-
specific process definition graph 135 can take into account
the physical attributes and obstacles of the workcell 172.

The onsite execution engine 150 receives the workcell-
specific process definition graph 1335 and 1ssues commands
155 to the robot interface system 160 in order to actually
drive the movements components, €.g., the joints, of the
robots 170a-x. In some implementations, the robot interface
subsystem 160 provides a hardware-agnostic interface so
that the commands 1355 1ssued by onsite execution engine
150 are compatible with multiple different versions of
robots. During execution the robot interface subsystem 160
can report execution data 157 back to the onsite execution
engine 150 so that the onsite execution engine 150 can make
real-time or near real-time adjustments to the robot move-
ments, €.g., due to local faults or other unanticipated con-
ditions.

In execution, the robots 170a-n generally continually
execute the commands specified explicitly or implicitly by
the motion plans to perform the various tasks or transitions
of the schedule. The robots can be real-time robots, which
means that the robots are programmed to continually
execute theirr commands according to a highly constrained
timeline. For example, each robot can expect a command
from the robot interface subsystem 160 at a particular
frequency, e.g., 100 Hz or 1 kHz. If the robot does not
receive a command that 1s expected, the robot can enter a
fault mode and stop operating.

In some implementations, the planner 120 and the process
definer 110 are cloudbased systems that are physically

removed from a facility that physically houses the workcell
172, while the onsite execution engine 150 1s local to the
facility that physically houses the workcell 150. This
arrangement allows the planner 120 to use massive cloud-
based computing resources to consider many possibilities
for robot schedules, while also allowing for real-time reac-
tion to unanticipated events by the onsite execution engine
150.

As stated above, the planner 120 can generate a workcell-
specific process definition graph 135 from the 1mitial under-
constrained process definition graph 115. To do so, the
planner 120 can repeatedly apply a number of transformers
from a collection of transformers 130. Each transformer 1s a
stateless function that takes as mput an underconstrained
process defimition graph and resolves variables 1n the under-
constrained process defimition graph. As part of this process,
a transformer can modily action nodes, constraint nodes, or
both, by adding, moditying, or deleting these nodes, and

US 11,745,345 B2

7

generates as output a modified process definition graph. This
process 1s described in more detail below with reference to
FIG. 2.

The transformers to be used can also be specified by a user
as a transformer configuration 117. In other words, the user
can specily which of the collection of transformers 130 are
to be used when iteratively moditying the itial undercon-
strained process definition graph 115.

The planner 120 can also optionally invite users to make
transiformer selections while generating a final schedule. In
other words, the planner 120 can provide a candidate process
definition graph 123 to a user interface device 140. The user
interface device 140 can then present a user interface that
allows a user to mput a user transformer selection 125,
which directs the planner 120 to perform the next iteration
using a transformer selection 127 specified by the user. This
interactive process can allow the planner 120 to take into
consideration constraints and other real-world consider-
ations that were not or could not be specified as part of the
original process description.

FI1G. 2 15 a flowchart of an example process for iteratively
applying transformers to generate a final process definition
graph. The process can be implemented by one or more
computer programs installed on one or more computers 1n
one or more locations and programmed 1n accordance with
this specification. For example, the process can be per-
formed by the planner 120 shown in FIG. 1. For conve-
nience, the process will be described as being performed by
a system of one or more computers.

The system receives an underconstrained process defini-
tion graph (210). As described above, a process definition
graph 1s a directed acyclic graph that can include at least two
different types of nodes, constraint nodes and action nodes.

FIG. 3 illustrates an example underconstrained process
definition graph 300. The graph includes a root node 310,
two constraint nodes 322 and 324, and six action nodes 332,
334, 342, 344, 346, and 348.

Each of the action nodes represents one or more physical
actions to be performed by a particular robot. For example,
an action node can represent an action to move a robot arm,
apply a weld, open a gripper, close a gripper, or any other
appropriate action that can be performed by a robot. Action
nodes can also be composite actions that include multiple
other actions. For example, a PickAndPlace composite
action can include a pick action and a separate place action.

Notably, the action nodes need not specity which robot 1n
a workcell will perform each action. The action nodes can be
partially defined by specitying some values, e.g., a duration
or a location for each action. The action nodes can also be
partially defined by specitying options, e.g., a list or a range
ol acceptable durations.

The AllOfInOrder constraint node 322 specifies that its
children nodes have to be performed in a particular order. In
other words, the constraint node 322 introduces a constraint
that Action 1, represented by the action node 332, has to
occur before any of the other actions, and that Action 7,
represented by the action node 334, has to occur after any of
the other actions.

The AllOT constraint node 324 specifies simply that all of
its children have to be performed, but does not specily an
ordering. Thus, through the iterative planning process, the
planner 1s free to schedule Actions 3-6 1n any approprate
order that does not violate any other constraints 1n the graph.

One concrete example of an application that might use a
graph similar to the graph 300 1s welding a part 1n a factory.
For example, the mnitial action node 332 can represent an
action that moves the part into place, and the final action

10

15

20

25

30

35

40

45

50

55

60

65

8

node 334 can represent an action to move the part to its
destination. Those are examples of actions that have to
happen first and last, as specified by the AllOfInOrder
constraint node 322.

Actions 3-6 can be welding actions for 4 separate weld
points on the part. For most welding applications, the order
does not matter. Thus, while the AllOf constraint node 324
imposes a constraint that all welds have to be performed, the
AllOT constraint node 324 does not impose any constraints
on the ordering 1n which the welds must be performed.

Instead, the planner will use various transformers in order
to search the space of schedules that satisty the constraints
imposed by the final graph and choose a schedule that 1s best
according to a particular objective function. For example,
the planner can simply search the space of schedules that
satisly the constraints and identify which schedule executes
all the actions the fastest.

TABLE 1 lists some common constraint node types.

TABLE 1

Constraint Node Name Constraint

AllOT All children must be performed

AnvyOf Any children can be performed

OneOf Exactly one child must be performed

InOrder Children must be performed in an order
specified by the representation in the graph

DirectlyInOrder Children must be performed in an order
specified by the representation in the graph,
without any intervening actions

MustOccurDuring Child must be performed during a specified
time period

MustNotOccurDuring Child must not be performed during a
specific time period

Conflict Children cannot occur at overlapping times

Cluster All children must be performed by the same
robot

If If one child occurs, the subsequent child

must happen after it

A constraint node can combine multiple constraint node
types. For example, 1n this notation, the AllOfInOrder node
had a name that specified two constraint types, both the
AllOT constraint type as well as the InOrder constraint type.

As shown 1n FIG. 2, the system applies local transformers
(220). As described above, each transformer i1s a function
that further constrains the process definition by assigning
values to variables or manipulating or expanding nodes in
the graph.

In general a system can apply a transformer by matching
certain patterns associated with nodes in the graph. As one
example, applying a transformer can include looking for
underconstrained properties 1n the graph and assigning val-
ues to those properties. As another example, a transformer
can have one or more defined node types as input and the
system can determine that the transformer 1s a match for the
node types when a matching arrangement of nodes found in
the graph.

The system can distinguish between local transformers
and global transformers and apply local transformers first. A
local transformer 1s a transformer that does not require
reconsideration of all nodes 1n the graph and which affects
only a sufliciently small subset of the graph. The system can
use any appropriate definition for what 1s a sufliciently small
subset of the graph, e.g., only transformers that aflect their
direct children or nodes not more than N links away. As a
particular example, a local transformer can be applied to a
single node in the graph.

US 11,745,345 B2

9

An example of a global transformer 1s a “clustering”
transformer, which takes consideration all tasks in the graph
that change the position of one or more robots, and proposes
ordering constraints that ensure that the robots move etl-
ciently between tasks (for example, avoiding doubling back
by robots where possible).

The system can apply local transformers {irst in order to
quickly generate many additional constraints in the graph.
For example, if an action node has a particular pose, the
system can apply an inverse kinematics (IK) transformer
that will generate the kinematic parameters for achieving the
pose. Thus, for a given pose, the system can consider an IK
transformer to be a local transformer because the trans-
former aflects only a single action node.

The system generates transitions (230). Transitions are
actions taken by robots to move from one configuration to
another. For example, 11 two tasks are to be performed by a
robot 1n sequence, the system can generate a transition
between the tasks by determining how the robot can move
from a final pose for a first task to a starting pose for a
second task. In some implementations, the system imple-
ments transition generators as transformers that seek to
match on two action nodes 1n sequence that so far have no
assigned intermediate transition. For example, a transition
can be represented by a transition node between two respec-
tive task nodes in the graph.

Some transformers are designed to generate many alter-
native options that can all be considered when performing
scheduling. For example, when generating transitions, the
system can generate multiple different ways of moving from
one action to another. The system can represent each gen-
crated alternative transition as a separate node in the graph.
Since only one transition 1s needed, the system can constrain
the alternatives with an appropriate OneOf constraint node.

FIGS. 4A-B 1llustrate generating transitions for a portion
400a of a process definition graph. In FIG. 4A, an All-
OflnOrder constraint node 410 represents that a welding
action represented by a task node 420 should be performed
before a welding action represented by another task node
430. In some 1mplementations, during transition generation
the system searches the graph for gaps between sequenced
actions that lack transitions. Thus, the system can identily
the portion 400a as a portion of the graph having two
sequenced actions but lacking a transition between them.

FI1G. 4B 1llustrates a modified portion 40056 of the process
definition graph after transition generation. As shown, the
system generated four alternative transitions for transition-
ing between the task node 420 and the task node 430. Each
alternative transition 1s represented by its own action node,
¢.g., the transition nodes 450, 460, 470, and 480. The
transition nodes 450-480 are constrained by a OneOf con-
straint node 440 that represents that the system should
execute one and only one of the generated alternative
transitions.

This example 1llustrates how transtormers can add addi-
tional constraints to the graph in the form of alternatives
rather than selections. In other words, the transformers seek
to 1ncrease the space of possible alternative schedules rather
than attempting to solve the constraints of the schedule in
one pass.

Therefore, after the system performs transition genera-
tion, the process definition graph typically has many more
nodes that it previously did, with each added node repre-
senting a possible transition between actions.

As shown 1n FIG. 2, the system performs conflict 1den-
tification (240). In other words, the system 1dentifies actions
in the graph that cannot occur at the same time, the same

10

15

20

25

30

35

40

45

50

55

60

65

10

space, or both. For example, the system can generate a
volume for each action node in the graph characterizing the
space occupied by the robot performing the respective
action, and i1dentity which actions are potentially conflicting.
For example, the system can generate a first volume char-
acterizing the space occupied by a first robot and a second
volume characterizing the space occupied by a second robot.
The two robots can be considered to have a contlict when the
first and second volumes intersect.

Notably, the system can perform the contlict identification
process belfore scheduling occurs. The system can then
perform a decontliction process after scheduling occurs. In
other words, the system identifies contlicts before schedul-
ing, but need not strive to avoid conflicts during scheduling.

In some implementations, the system identifies certain
types of conflicts that 1t will strive to avoid during sched-
uling, and other types of conflicts that 1t will 1gnore during
scheduling. For example, the system might designate three
types of contlict, among others. A first type of contlict can
characterizes collisions between two robots that are each
executing a respective task. A second type of contlict can
characterize collisions between a first robot executing a task
and a second robot moving within the workcell between
executing tasks. A third type of conflict can characterize
collisions between two robots that are each moving within
the workcell between executing tasks. In some implemen-
tations, the system strives to avoid conflicts of the first type,
while not striving to avoid conflicts of the second and third
types. In these implementations, the system can wait to solve
for the second and third types of contlict during the decon-
fliction step (260).

The system performs scheduling (250). The output of the
scheduling process 1s an initial modified process definition
graph. As described above, a schedule specifies one robot to
perform each task, and for each robot, a sequence of actions
to be performed. A schedule can also specily a start time for
cach action and dependencies between actions.

For example, to perform scheduling, the system can
receive as mput a set of possible graphs, e.g., a set of every
possible alternative graph that can be generated from the
graph and that accomplishes the required tasks. The system
can process the set of possible graphs to generate an output
that 1s a selection of action nodes to execute as well as
dependencies (1.e., a selection of constraint nodes) that
specily requirements of the schedule. That 1s, the output of
the scheduling process can be an updated graph, generated
from the original graph, with extra constraints that remove
the uncertainties of the original graph.

As a particular example, referring to the example depicted
in FIG. 4B, the output of the scheduling process might be a
graph that includes an AllOfInOrder node with three child
nodes 420, 460, and 430. That 1s, the system selected the
second transition 460 from the set of possible transitions
450, 460, 470, and 480, removing the uncertainty of the
OneOf node 440.

As another particular example, there may be a situation
where two robots need to cross each other, the system can
identily (e.g., during conflict 1dentification) the constraint
that the two robots cannot collide when crossing each other.
The output of the scheduling process can therefore include
a scheduling constraint that ensures that the two robots do
not perform the movement at the same time, for example, by
generating a dependency between the completion of the first
movement and the beginning of the second movement (e.g.,
using an InOrder node or a MustNotOccurDuring node).

In some implementations the system generates the initial
modified process definition graph by ignoring some con-

US 11,745,345 B2

11

straints. For example, the system can i1gnore one or more
contlicts between respective transition nodes as well as one
or more conilicts between respective transition nodes and
task nodes.

In general, the scheduling process solves for undercon-
strained values in the graph until either no more values need
to be solved or the system determines that no solution can be
found.

In general, the system can use a variety of solvers to
determine that no more constraints need to be solved. For
example, the system can use a circuit solver to determine
when sequenced starting and ending points have no gaps in
between. I gaps remain, the system can use transition
generation to fill the gaps or raise an error if no solution
exi1sts.

The system can also insert rests into the actions and adjust
the values of the rests 1 order to find a scheduling solution.
For example, one perhaps not ideal schedule 1s that a robot
can perform an action and then wait for all other robots to
finish their tasks before doing anything else. But by using
rests, the system increases the chances that a scheduling
solution can be found.

As part of the scheduling process, the system can assign
tasks to individual robots in the workcell. Thus, at the end
of the scheduling process, the system can generate a visual
representation of which tasks are performed by which robots
and when.

FIG. 5 1s a visual illustration of a schedule. The informa-
tion 1llustrated 1n FIG. 5 can still be represented as a process
definition graph. And 1n fact, the decontliction process that
occurs after scheduling can operate on the mitial modified
process definition graph generated by the scheduling pro-
cess. However, the visualization shown in FIG. 5 1s usetul
for understanding the constraints encoded into the graph.

In FIG. 5, three robotic components 1n a workcell have
been assigned to perform a variety of tasks. Time generally
moves from left to right in FIG. 5, and the arrows represent
time ordered constraints between actions by ditferent robotic
components. For actions performed by the same robotic
component, the ordering of the actions implies a time
ordered constraint.

Thus, the example schedule 1llustrated 1n FIG. 5 first has
the fixturing 510 of the workcell perform a part transier 512
and then a close clamps action 514. For example, the close
clamps action 514 can represent clamps closing down on the

part to secure 1t for welding.

At some time after the transfer 512 starts, the first robot
520 performs a joint move 522 to get into position for
welding. However, the action weld action 524 cannot hap-
pen until the actual clamps are closed, as illustrated by the
arrow from the closed clamps action 514 to the weld action
524.

At some time after the clamps are closed, a second robot
530 performs a joint move 532 to get into position for a weld
534. The joint move 532 also has a constraint that 1t has to
happen after the clamps are closed by the close clamps
action 514.

The first robot 520 can then perform a second joint move
526 to get into position for the second weld 528, but not until
the second robot has finished its joint move 332, as repre-
sented by the arrow from the joint move 532 to the joint
move 326. The first robot can then perform the second weld
528.

Finally, the fixturing 510 can open the clamps with an
open clamps action 516, but not until both welds 528 and

10

15

20

25

30

35

40

45

50

55

60

65

12

534 are completed. The fixturing 510 can then perform a
transier action 518 to move the part along in an assembly
line.

As shown 1n FIG. 2, the system performs deconfliction
(260). In general, the decontliction process also applies
transformers on the mitial modified process definition graph
it receives as input, aiming to solve the remaining contlicts
in the schedule. The decontliction process can iteratively
apply these transformers to produce refined process defini-
tion graphs with more and more conflicts resolved, until 1t
outputs a candidate final process definition graph. As
described above, although contlicts may have been 1denti-
fied before scheduling, the scheduler was not necessarily
bound by such conflicts during scheduling. In general,
generating an 1nitial solution using an underconstrained
graph that 1gnores some contlicts provides computational
advantages over trying to solve all constraints and all
possible contlicts 1n one pass. The decontliction process 1s
described 1n more detail below in reference to FIG. 6.

The system optionally runs additional user-selected trans-
formers (270). As described above, the system can provide
a user interface that seamlessly allows some human design
in the process. In particular, the system can present a user
interface that allows a user to manually specily a next
transiormer to be applied in the graph or some other manipu-
lation of the graph. As part of this user interface, the system
can also present a graphical simulation of the robots execut-
ing a particular candidate schedule. For example, 1f a
particular transition between actions seems too awkward or
otherwise not i1deal, a human can manually select a difierent
transition. As another example, humans tend to be better at
performing geometric or spatial groupings. Thus, a human
may want to impose a Cluster constraint node for a particular
group of actions that are close together in space, time, or

both.

The system determines whether a goal has been reached
(280). The system can use a goal solver to determine
whether a candidate final process definition graph meets
various goal criteria. As mentioned above, total time 1s often
a critical goal criterion. Each action in the schedule can be

associated with a respective duration, and then the system
can use the respective durations to determine whether a
schedule exists that meets the goal criteria. The system can
also use other goal critenia, e.g., power used, or some
combined score of multiple goal critena.

If the goal 1s reached (280), the system outputs the final
schedule (branch to 285). For example, the final schedule
can then be provided to an onsite execution engine for
execution by robots 1n a workcell.

If the goal 1s not reached, the system determines whether
to perform more 1terations (290). In some 1implementations,
the system automatically performs another iteration as long
as the system has not determined that a solution 1s not
possible. The system can alternatively or in addition perform
an additional iteration only 1f a maximum number of itera-
tions has not been reached.

If no more 1terations are to be performed and the goal has
not been reached, the system can raise an error (branch to
295). At that point, the users can determine whether to
modily the original process definition 1n order to try to find
a valid solution with different 1nputs.

In some 1mplementations, as depicted 1n FIG. 2, if more
iterations are to be performed, the system returns to step 220
and reapplies local transformers. In some other implemen-
tations, the system can return to step 240 to perform another

US 11,745,345 B2

13

round of conflict identification. That 1s, the system might not
need to reapply the local transformers or to generate tran-
sitions again.

One of the advantages of representing all phases of the
planning process as a process definition graph i1s that the
history of the process 1s represented explicitly. The output of
every transiformer and every phase 1s saved, so that every
intermediate process definition graph 1s available. The state
of the schedule as it evolved over the 1terations 1s therefore
available. This allows changes to be easily undone and the
schedule’s modifications rewound in time and tried again
with different transformers or parameters. This also makes
debugging the schedules much easier because 1t becomes
clear how the schedule got to where 1t 1s and by which
transformers.

In some implementations, the system can perform the
process depicted 1in FIG. 2 multiple times to generate mul-
tiple different candidate schedules. For example, the system
might perform the process multiple times 1n parallel, e.g., by
selecting diflerent sequences of transformations to generate
the different candidate schedules. The system can then select
the final schedule from the set of candidate schedules
according to one or more criteria, €.g., a time to complete the
one or more required tasks, a measure of efliciency, a
measure of safety, etc. That 1s, the system can search the
space of possible schedules by evaluating different transfor-
mation sequences. As a particular example, the system might
evaluate a particular sequence of transformation sequences
and determine to “backtrack” to a particular transformation
in the sequence and being a new sub-sequence from that
point.

FIG. 6 1s a flowchart of an example process for perform-
ing decontliction by 1iteratively reintroducing constraints and
producing refined process definition graphs. The process can
be implemented by one or more computer programs
installed on one or more computers and programmed 1n
accordance with this specification. For example, the process
can be performed by the planner 120 shown 1 FIG. 1. For
convenience, the process will be described as being per-
formed by a system of one or more computers.

The system receives an itial modified process definition
graph (step 620). For example, the nitial modified process
definition graph can be the output of a scheduler, e.g., the
scheduling block 250 1n FIG. 2. The 1nitial modified process
definition graph does not satisfy certain constraints. For
example, the graph might satisty the constraint that no
collisions occur between two robots executing tasks, but not
satisty the constraint that no collisions occur between a first
robot transitioning between tasks and a second robot execut-
ing a task or transitioning between tasks. This constraint
relaxation can be represented in the graph by disallowing
conflicts between two or more task nodes but allowing
contlicts 1nvolving transition nodes.

The system reintroduces certain constraints that were
ignored when generating the initial modified process defi-
nition graph (step 630). For example, the system can now
disallow collisions that occur between a first robot perform-
ing a task and a second robot transitioning between tasks.
The system can continue to 1gnore some other contlicts, for
example contlicts between two robots transitioning between
tasks.

The system generates a refined process definition graph
(step 640). The system enforces the reintroduced constraints
when generating the refined process defimition graph. For
example, 1f the system reintroduced the constraint disallow-
ing collisions between a first robot executing a task and a
second robot transitioning between tasks, then the refined

5

10

15

20

25

30

35

40

45

50

55

60

65

14

process definition graph would eliminate conflicts between
transition nodes and task nodes. If the system did not
reintroduce the constraint disallowing collisions between
two robots transitioning between tasks, then the refined
process definition graph would 1gnore contlicts between two
or more transition nodes. The system applies transiformers
on the mitial modified process definition graph to generate
the refined process definition graph. This process 1s
described in more detail below with reterence to FIG. 7.

The system determines 11 all constraints have been rein-
troduced (step 650). In some implementations, the system
executes a predetermined number of iterations, where a
predetermined set of constraints 1s remntroduced at each
respective iteration. In these implementations, the system
determines 11 1t has completed the predetermined number of
iterations.

If all constraints have been remntroduced, the system
outputs the current iteration of the refined process definition
graph as a candidate final process definition graph (step
660). For example, the candidate final process definition
graph can then be evaluated to see whether 1t satisfies certain
goal criteria (step 280 of FIG. 2).

I1 all constraints have not been reintroduced, the system
performs another iteration of reintroducing constraints and
generating a refined process defimition graph, returming to
step 630. For example, the system can now disallow colli-
sions between two robots transitioming between tasks.

FIG. 7 1s a flowchart of an example process for generating,
a refined process definition graph. The process can be
implemented by one or more computer programs installed
on one or more computers and programmed 1n accordance
with this specification. For example, the process can be
performed by the planner 120 shown 1n FIG. 1. For conve-
nience, the process will be described as being performed by
a system ol one or more computers.

The system recerves as input an initial modified process
definition graph and remtroduced constraints (710). The
reintroduced constraints are constraints that are not enforced
in the initial modified process definition graph but will be
enforced in the generated refined process definition graph.

The system reapplies local transformers (720). As
described above, a local transformer 1s a transformer that
does not require reconsideration of all nodes in the graph and
which aflects only a sufliciently small subset of the graph.
Local transformers were applied when generating the 1nitial
modified process definition graph, but some or all of the
same local transformers may need to be reapplied to gen-
erate the refined process defimition graph, to ensure that the
reintroduced constraints are satisfied. For example, the sys-
tem might reapply an inverse kinematics (IK) transformer
that generates kinematic parameters for a robot to achieve a
pose, 1 order to ensure that the robot does not collide with
any other robots when entering the pose. As another
example, the system might reapply a local “path planning”
transformer that recomputes paths of diflerent nodes 1n order
to obey the remntroduced constraints.

The system generates modified transitions (730). As
described above, transitions are actions taken by robots to
move Irom one state to another. Transitions were generated
for the 1mtial modified process defimition graph, but those
transitions might not have satisfied the reintroduced con-
straints. In some implementations, generating a transition for
a {irst robot to avoid a contlict between the first robot and a
second robot includes generating a work volume for the
second robot that characterizes the space occupied by the
second robot, and generating a transition for the first robot
that avoids the work volume. An example of this process 1s

US 11,745,345 B2

15

discussed in more detail below 1n reference to FIG. 8, where
the reintroduced constraints disallow conflicts between tran-
sition nodes and task nodes. As before, some transformers
are designed to generate many alternative options that can
all be considered when performing scheduling.

The system performs conflict identification (740). As
betore, the system 1dentifies actions in the graph that cannot
occur at the same time, the same space, or both. The system
classifies each contlict either as one that 1t will strive to
avold during scheduling or as one that 1t will not strive to
avold during scheduling. The reintroduced constraints, for
example, are designated as conflicts that the system will
strive to avold during scheduling.

The system generates a modified schedule (750). As
before, 1n general, the scheduling process solves for under-
constrained values 1n the refined process definition graph
until either no more values need to be solved or the system
determines that no solution can be found. If the system
determines that no solution exists, the system can raise an
error. As before, the system can assign tasks to individual
robots 1n the workcell, and can insert rests into the actions
and adjust the values of the rests 1n order to find a scheduling
solution.

After the modified schedule i1s completed, the system
outputs the refined process definition graph (760). For
example, the refined definition graph can then be evaluated
to see whether all constraints have been reintroduced (step
650 of FIG. 6).

FIG. 8 1s a flowchart of an example process for generating,
modified transitions for a process definition graph that does
not allow conflicts between task nodes and transition nodes.
The process can be implemented by one or more computer
programs 1nstalled on one or more computers and pro-
grammed 1n accordance with this specification. For example,
the process can be performed by the planner 120 shown in
FIG. 1. For convenience, the process will be described as
being performed by a system of one or more computers.

The system generates a first volume occupied by a first
robot during execution of a task (810). The first volume
characterizes the space occupied by the first robot during the
execution of the task. The task 1s represented by a task node
in the process definition graph.

The system adds the first volume to an operation envi-
ronment to generate an updated environment (820). The
operation environment characterizes obstacles that should
be avoided by robots when executing tasks and moving
between tasks. The operation environment can include the
physical dimension of the workcell and the dimensions of
the robots and other appliances in the workcell. The opera-
tion environment can depend on time, e.g. if a robot moves
within the workcell, the coordinates of the obstacle repre-
senting the robot 1n the operation environment change over
time. By adding the first volume to the operation environ-
ment, the system generates an updated environment that
includes a further obstacle that should be avoided by other
robots during the execution of the task by the first robot.

Having a configurable operation environment that char-
acterizes a particular workcell and configuration of robots
and tasks eliminates the need for manually programming a
plan for one particular workcell. Generating a plan for a
different workcell only requires executing the same process
with a different initial operation environment as input. This
allows the system to generate a solution optimized for the
particular workcell much faster than manual programming.

The system generates a collision-free path for a second
robot that avoids the updated environment (830). The path
characterizes a transition that avoids a conflict between the

10

15

20

25

30

35

40

45

50

55

60

65

16

first and second robots. The system adds the path as a
candidate transition node to the process definition graph. In
some 1mplementations, generating the path includes gener-
ating a second volume that characterizes the space occupied
by the second robot while travelling the path. The path 1s
considered collision-iree 1t the first volume and the second
volume do not intersect.

In some implementations, the system aims to avoid the
updated environment in generating the path, but allows
small conflicts between the updated environment and the
path. For example, the system can classily a given conflict
as “small” or “not small” when determining whether a path
1s valid. For example, a conflict can exist 1f the first volume,
characterizing the space occupied by the first robot, and the
second volume, characterizing the space occupied by the
second robot, intersect. The conflict can be classified as
“small” 1f the volume of the intersection 1s below a certain
threshold, e.g. 100 cm’®. If the conflict is classified as
“small”, the system can allow the contlict.

In some implementations, steps 810 and 820 are executed
iteratively for every task node in the graph, so that the
updated environment includes volumes for every task in the
graph. Then, step 830 1s executed iteratively for every
transition. Thus, all candidate transition nodes characterize
paths that avoid collisions with volumes characterizing all
task nodes. In a workcell that includes multiple robots, this
means a first path generated for a first robot avoids a first
volume occupied by a second robot, and a second path
generated for the second robot avoids a second volume
occupied by the first robot.

The robot functionalities described in this specification

can be implemented by a hardware-agnostic software stack,
or, Tor brevity just a software stack, that 1s at least partially
hardware-agnostic. In other words, the software stack can
accept as input commands generated by the planning pro-
cesses described above without requiring the commands to
relate specifically to a particular model of robot or to a
particular robotic component. For example, the software
stack can be implemented at least partially by the onsite
execution engine 150 and the robot interface subsystem 160
of FIG. 1.
The software stack can include multiple levels of increas-
ing hardware specificity in one direction and increasing
software abstraction in the other direction. At the lowest
level of the software stack are robot components that include
devices that carry out low-level actions and sensors that
report low-level statuses. For example, robots can include a
variety of low-level components including motors, encod-
ers, cameras, drivers, grippers, application-specific sensors,
linear or rotary position sensors, and other peripheral
devices. As one example, a motor can receive a command
indicating an amount of torque that should be applied. In
response to receiving the command, the motor can report a
current position of a joint of the robot, e.g., using an encoder,
to a higher level of the software stack.

Each next highest level in the software stack can imple-
ment an interface that supports multiple different underlying
implementations. In general, each interface between levels
provides status messages from the lower level to the upper
level and provides commands from the upper level to the
lower level.

Typically, the commands and status messages are gener-
ated cyclically during each control cycle, e.g., one status
message and one command per control cycle. Lower levels
of the software stack generally have tighter real-time
requirements than higher levels of the software stack. At the
lowest levels of the software stack, for example, the control

US 11,745,345 B2

17

cycle can have actual real-time requirements. In this speci-
fication, real-time means that a command received at one
level of the software stack must be executed and optionally,
that a status message be provided back to an upper level of

this real-time requirement 1s not met, the robot can be
configured to enter a fault state, e.g., by freezing all opera-
tion.

At a next-highest level, the software stack can include
soltware abstractions of particular components, which waill
be referred to motor feedback controllers. A motor feedback
controller can be a software abstraction of any appropriate
lower-level components and not just a literal motor. A motor
teedback controller thus receives state through an interface
into a lower-level hardware component and sends com-
mands back down through the interface to the lower-level
hardware component based on upper-level commands
received from higher levels 1n the stack. A motor feedback
controller can have any appropriate control rules that deter-
mine how the upper-level commands should be interpreted
and transformed into lower-level commands. For example, a
motor feedback controller can use anything from simple
logical rules to more advanced machine learning techniques
to transform upper-level commands nto lower-level com-
mands. Similarly, a motor feedback controller can use any
appropriate fault rules to determine when a fault state has
been reached. For example, 11 the motor feedback controller
receives an upper-level command but does not receive a
lower-level status within a particular portion of the control
cycle, the motor feedback controller can cause the robot to
enter a fault state that ceases all operations.

At a next-highest level, the software stack can include
actuator feedback controllers. An actuator feedback control-
ler can include control logic for controlling multiple robot
components through their respective motor feedback con-
trollers. For example, some robot components, €.g., a joint
arm, can actually be controlled by multiple motors. Thus, the
actuator feedback controller can provide a software abstrac-
tion of the joint arm by using its control logic to send
commands to the motor feedback controllers of the multiple
motors.

At a next-highest level, the software stack can include
joint feedback controllers. A joint feedback controller can
represent a joint that maps to a logical degree of freedom 1n
a robot. Thus, for example, while a wrist of a robot might be
controlled by a complicated network of actuators, a joint
teedback controller can abstract away that complexity and
exposes that degree of freedom as a single joint. Thus, each
joint feedback controller can control an arbitrarily complex
network of actuator feedback controllers. As an example, a
s1x degree-of-1freedom robot can be controlled by six differ-
ent joint feedback controllers that each control a separate
network of actual feedback controllers.

Each level of the software stack can also perform enforce-
ment of level-specific constraints. For example, 11 a particu-
lar torque value received by an actuator feedback controller
1s outside of an acceptable range, the actuator feedback
controller can either modity it to be within range or enter a
fault state.

To drive the mput to the joint feedback controllers, the
software stack can use a command vector that includes
command parameters for each component in the lower
levels, e.g., a positive, torque, and velocity, for each motor
in the system. To expose status from the joint feedback
controllers, the software stack can use a status vector that
includes status information for each component in the lower
levels, e.g., a position, velocity, and torque for each motor 1n

10

15

20

25

30

35

40

45

50

55

60

65

18

the system. In some implementations, the command vectors
also include some limit information regarding constraints to
be enforced by the controllers 1n the lower levels.

At a next-highest level, the software stack can include

the software stack, within a particular control cycle time. If 5 joint collection controllers. A joint collection controller can

handle 1ssuing of command and status vectors that are
exposed as a set of part abstractions. Each part can include
a kinematic model, e.g., for performing inverse kinematic
calculations, limit information, as well as a joint status
vector and a joint command vector. For example, a single
joint collection controller can be used to apply diflerent sets
of policies to different subsystems 1n the lower levels. The
jomt collection controller can effectively decouple the rela-
tionship between how the motors are physically represented
and how control policies are associated with those parts.
Thus, for example 11 a robot arm has a movable base, a joint
collection controller can be used to enforce a set of limait
policies on how the arm moves and to enforce a diflerent set
of limit policies on how the movable base can move.

At a next-highest level, the software stack can include
joint selection controllers. A joint selection controller can be
responsible for dynamically selecting between commands
being 1ssued from different sources. In other words, a joint
selection controller can receive multiple commands during a
control cycle and select one of the multiple commands to be
executed during the control cycle. The ability to dynamically
select from multiple commands during a real-time control
cycle allows greatly increased flexibility in control over
conventional robot control systems.

At a next-highest level, the software stack can include
joint position controllers. A joint position controller can
receive goal parameters and dynamically compute com-
mands required to achieve the goal parameters. For example,
a joint position controller can receive a position goal and can
compute a set point for achieve the goal.

At a next-highest level, the software stack can include
Cartesian position controllers and Cartesian selection con-
trollers. A Cartesian position controller can receive as input
goals 1n Cartesian space and use inverse kinematics solvers
to compute an output in joint position space. The Cartesian
selection controller can then enforce limit policies on the
results computed by the Cartesian position controllers before
passing the computed results 1n joint position space to a joint
position controller 1n the next lowest level of the stack. For
example, a Cartesian position controller can be given three
separate goal states 1n Cartesian coordinates X, y, and z. For
some degrees, the goal state could be a position, while for
other degrees, the goal state could be a desired velocity.

These functionalities aflorded by the software stack thus
provide wide flexibility for control directives to be easily
expressed as goal states 1n a way that meshes naturally with
the higher-level planning techniques described above. In
other words, when the planning process uses a process
definition graph to generate concrete actions to be taken, the
actions need not be specified 1 low-level commands for
individual robotic components. Rather, they can be
expressed as high-level goals that are accepted by the
soltware stack that get translated through the various levels
until finally becoming low-level commands. Moreover, the
actions generated through the planning process can be
specified 1n Cartesian space 1n way that makes them under-
standable for human operators, which makes debugging and
analyzing the schedules easier, faster, and more ituitive. In
addition, the actions generated through the planning process
need not be tightly coupled to any particular robot model or
low-level command format. Instead, the same actions gen-
erated during the planning process can actually be executed

US 11,745,345 B2

19

by different robot models so long as they support the same
degrees of freedom and the appropriate control levels have
been implemented 1n the software stack.

Embodiments of the subject matter and the functional
operations described in this specification can be imple-
mented 1n digital electronic circuitry, in tangibly-embodied
computer soltware or firmware, i computer hardware,
including the structures disclosed in this specification and
their structural equivalents, or 1n combinations of one or
more of them. Embodiments of the subject matter described
in this specification can be implemented as one or more
computer programs, 1.€., one or more modules of computer
program 1nstructions encoded on a tangible non-transitory
storage medium for execution by, or to control the operation
ol, data processing apparatus. The computer storage medium
can be a machine-readable storage device, a machine-read-
able storage substrate, a random or serial access memory
device, or a combination of one or more of them. Alterna-
tively or in addition, the program instructions can be
encoded on an artificially-generated propagated signal, e.g.,
a machine-generated electrical, optical, or electromagnetic
signal, that 1s generated to encode information for transmis-
sion to suitable recerver apparatus for execution by a data
processing apparatus.

The term “data processing apparatus™ refers to data pro-
cessing hardware and encompasses all kinds of apparatus,
devices, and machines for processing data, including by way
of example a programmable processor, a computer, or mul-
tiple processors or computers. The apparatus can also be, or
turther include, special purpose logic circuitry, e.g., an
FPGA (field programmable gate array) or an ASIC (appli-
cation-specific integrated circuit). The apparatus can option-
ally include, 1n addition to hardware, code that creates an
execution environment for computer programs, €.g., code
that constitutes processor firmware, a protocol stack, a

database management system, an operating system, or a
combination of one or more of them.

A computer program which may also be referred to or
described as a program, software, a software application, an
app, a module, a software module, a script, or code) can be
written 1n any form of programming language, including
compiled or interpreted languages, or declarative or proce-
dural languages, and 1t can be deployed in any form,
including as a stand-alone program or as a module, compo-
nent, subroutine, or other unit suitable for use 1n a computing,
environment. A program may, but need not, correspond to a
file 1n a file system. A program can be stored 1n a portion of
a lile that holds other programs or data, e.g., one or more
scripts stored 1 a markup language document, in a single
file dedicated to the program in question, or in multiple
coordinated files, e.g., files that store one or more modules,
sub-programs, or portions of code. A computer program can
be deployed to be executed on one computer or on multiple
computers that are located at one site or distributed across
multiple sites and interconnected by a data communication
network.

For a system of one or more computers to be configured
to perform particular operations or actions means that the
system has installed on it software, firmware, hardware, or
a combination of them that 1n operation cause the system to
perform the operations or actions. For one or more computer
programs to be configured to perform particular operations
or actions means that the one or more programs include
instructions that, when executed by data processing appa-
ratus, cause the apparatus to perform the operations or
actions.

10

15

20

25

30

35

40

45

50

55

60

65

20

As used 1n this specification, an “engine,” or “software
engine,” refers to a software implemented input/output sys-
tem that provides an output that 1s different from the input.
An engine can be an encoded block of functionality, such as
a library, a platform, a software development kit (“SDK™),
or an object. Each engine can be implemented on any
appropriate type of computing device, e.g., servers, mobile
phones, tablet computers, notebook computers, music play-
ers, e-book readers, laptop or desktop computers, PDAs,
smart phones, or other stationary or portable devices, that
includes one or more processors and computer readable
media. Additionally, two or more of the engines may be
implemented on the same computing device, or on ditfierent
computing devices.

The processes and logic flows described 1n this specifi-
cation can be performed by one or more programmable
computers executing one or more computer programs to
perform functions by operating on input data and generating
output. The processes and logic flows can also be performed
by special purpose logic circuitry, e.g., an FPGA or an ASIC,
or by a combination of special purpose logic circuitry and
one or more programmed computers.

Computers suitable for the execution of a computer
program can be based on general or special purpose micro-
processors or both, or any other kind of central processing
umt. Generally, a central processing unit will receive
instructions and data from a read-only memory or a random
access memory or both. The essential elements of a com-
puter are a central processing unit for performing or execut-
ing 1structions and one or more memory devices for storing
instructions and data. The central processing unit and the
memory can be supplemented by, or incorporated 1n, special
purpose logic circuitry. Generally, a computer will also
include, or be operatively coupled to receirve data from or
transier data to, or both, one or more mass storage devices
for storing data, e.g., magnetic, magneto-optical disks, or
optical disks. However, a computer need not have such
devices. Moreover, a computer can be embedded in another
device, e.g., a mobile telephone, a personal digital assistant
(PDA), a mobile audio or video player, a game console, a
Global Positioning System (GPS) receiver, or a portable
storage device, e.g., a umversal serial bus (USB) flash drive,
to name just a few.

Computer-readable media suitable for storing computer
program 1nstructions and data include all forms ol non-
volatile memory, media and memory devices, including by
way ol example semiconductor memory devices, e.g.,
EPROM, EEPROM, and flash memory devices; magnetic
disks, e.g., imnternal hard disks or removable disks; magneto-
optical disks; and CD-ROM and DVD-ROM disks.

To provide for interaction with a user, embodiments of the
subject matter described 1n this specification can be imple-
mented on a computer having a display device, e.g., a CRT
(cathode ray tube) or LCD (liquid crystal display) monitor,
for displaying information to the user and a keyboard and
pointing device, e.g., a mouse, trackball, or a presence
sensitive display or other surface by which the user can
provide input to the computer. Other kinds of devices can be
used to provide for interaction with a user as well; for
example, feedback provided to the user can be any form of
sensory feedback, e.g., visual feedback, auditory feedback,
or tactile feedback; and mput from the user can be received
in any form, including acoustic, speech, or tactile mput. In
addition, a computer can interact with a user by sending
documents to and receiving documents from a device that 1s
used by the user; for example, by sending web pages to a
web browser on a user’s device 1n response to requests

US 11,745,345 B2

21

received from the web browser. Also, a computer can
interact with a user by sending text messages or other forms
of message to a personal device, e.g., a smartphone, running
a messaging application, and receiving responsive messages
from the user in return.

Embodiments of the subject matter described in this
specification can be implemented in a computing system that
includes a back-end component, e.g., as a data server, or that
includes a middleware component, e.g., an application
server, or that includes a front-end component, e.g., a client
computer having a graphical user interface, a web browser,
or an app through which a user can interact with an 1mple-
mentation of the subject matter described 1n this specifica-
tion, or any combination of one or more such back-end,
middleware, or front-end components. The components of
the system can be interconnected by any form or medium of
digital data communication, €.g., a communication network.
Examples ol communication networks include a local area
network (LAN) and a wide area network (WAN), e.g., the
Internet.

The computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other. In some embodi-
ments, a server transmits data, e.g., an HITML page, to a user
device, e.g., for purposes of displaying data to and receiving
user input from a user interacting with the device, which acts
as a client. Data generated at the user device, e.g., a result
of the user interaction, can be received at the server from the
device.

While this specification contains many specific 1mple-
mentation details, these should not be construed as limita-
tions on the scope of any mvention or on the scope of what
may be claimed, but rather as descriptions of features that
may be specific to particular embodiments of particular
inventions. Certain features that are described 1n this speci-
fication in the context of separate embodiments can also be
implemented 1n combination 1n a single embodiment. Con-
versely, various features that are described 1n the context of
a single embodiment can also be implemented 1n multiple
embodiments separately or in any suitable subcombination.
Moreover, although features may be described above as
acting 1n certain combinations and even 1nitially be claimed
as such, one or more features from a claimed combination
can 1n some cases be excised from the combination, and the
claimed combination may be directed to a subcombination
or variation of a subcombination.

Similarly, while operations are depicted in the drawings 1n
a particular order, this should not be understood as requiring
that such operations be performed in the particular order
shown or 1n sequential order, or that all 1llustrated operations
be performed, to achieve desirable results. In certain cir-
cumstances, multitasking and parallel processing may be
advantageous. Moreover, the separation of various system
modules and components in the embodiments described
above should not be understood as requiring such separation
in all embodiments, and i1t should be understood that the
described program components and systems can generally
be 1mntegrated together 1n a single software product or pack-
aged 1mto multiple software products.

Particular embodiments of the subject matter have been
described. Other embodiments are within the scope of the
following claims. For example, the actions recited in the
claims can be performed 1n a different order and still achieve
desirable results. As one example, the processes depicted 1n

10

15

20

25

30

35

40

45

50

55

60

65

22

the accompanying figures do not necessarily require the
particular order shown, or sequential order, to achieve
desirable results. In certain some cases, multitasking and
parallel processing may be advantageous.

What 1s claimed 1s:

1. A method performed by one or more computers, the
method comprising:

recerving, by the one or more computers, a process

definition graph for a robot, the process definition
graph having a plurality of action nodes, wherein the
action nodes include (1) transition nodes that represent
a motion to be taken by the robot from a respective start
location to an end location and (2) task nodes that
represent a particular task to be performed by the robot
at a particular task location, and wherein the process
definition graph 1s associated with constraints that
disallow contlicts between work volumes of robots
performing action nodes in the process definition
graph;

performing, by the one or more computers, a sequence of

modifications to generate, from the process definition

graph, a plurality of different final process definition

graphs representing candidate plans for controlling

multiple robots, including:

generating, from the process definition graph, an nitial
modified process definition graph that assigns one or
more action nodes to each robot of the multiple
robots, including relaxing one or more of the con-
straints to allow conftlicts between pairs of transition
nodes and to allow contlicts between transition
nodes and task nodes, and

after generating the initial modified process definition
graph, performing a conilict resolution process that
reintroduces a constraint that disallows contlicts
between transition nodes and task nodes to generate,
from the mitial modified process definition graph, a
refined process definition graph, comprising gener-
ating updated paths for one or more transition nodes
that avoid volumes occupied by robots performing
tasks represented by task nodes 1n the mitial modi-
fied process definition graph.

2. The method of claim 1, wherein generating the updated
paths for the one or more transition nodes comprises gen-
crating a path that keeps the robot outside a volume occupied
by a task.

3. The method of claim 1, wherein the 1nitial modified
process definition graph specifies paths for respective tran-
sition nodes that conflict with volumes occupied by tasks
represented by respective task nodes.

4. The method of claim 3, wherein the refined process
definition graph specifies paths for transition nodes that are
contlicting.

5. The method of claim 3, wherein the refined process
definition graph includes no transition nodes having paths
that conflict with any volume occupied by any task repre-
sented by a task node 1n the graph.

6. The method of claim 1, wherein the process definition
graph has respective action nodes for multiple robots, and
wherein generating the refined process definition graph
comprises generating alternative plans for the multiple
robots.

7. The method of claim 6, wherein generating alternative
plans for the multiple robots comprises:

generating, for a first robot of the multiple robots, a first

path that avoids a work volume occupied by a second
robot of the multiple robots; and

US 11,745,345 B2

23

generating, for the second robot of the multiple robots, a
second path that avoids a second work volume occu-
pied by the first robot of the multiple robots.
8. The method of claim 1, further comprising generating,
from the refined process definition graph, a schedule for the
robot that specifies executing motion actions that avoid
volumes occupied by tasks represented by task nodes in the
graph.
9. A system comprising:
one or more computers and one or more storage devices
storing 1nstructions that are operable, when executed by
the one or more computers, to cause the one or more
computers to perform operations comprising:
receiving, by the one or more computers, a process
definition graph for a robot, the process definition
graph having a plurality of action nodes, wherein the
action nodes include (1) transition nodes that represent
a motion to be taken by the robot from a respective start
location to an end location and (2) task nodes that
represent a particular task to be performed by the robot
at a particular task location, and wherein the process
definition graph 1s associated with constraints that
disallow conflicts between work volumes of robots
performing action nodes in the process definition
graph;
performing, by the one or more computers, a sequence of
modifications to generate, from the process definition
graph, a plurality of different final process definition
graphs representing candidate plans for controlling
multiple robots, including:
generating, from the process definition graph, an nitial
modified process definition graph that assigns one or
more action nodes to each robot of the multiple
robots, 1including relaxing one or more of the con-
straints to allow contlicts between pairs of transition
nodes and to allow contlicts between transition
nodes and task nodes, and

alter generating the initial modified process definition
graph, performing a conilict resolution process that
reinfroduces a constraint that disallows conflicts
between transition nodes and task nodes to generate,
from the mnitial modified process definition graph, a
refined process definition graph, comprising gener-
ating updated paths for one or more transition nodes
that avoid volumes occupied by robots performing
tasks represented by task nodes 1n the mitial modi-
fied process definition graph.

10. The system of claim 9, wherein the 1mitial modified
process definition graph specifies paths for respective tran-
sition nodes that contlict with volumes occupied by tasks
represented by respective task nodes.

11. The system of claim 10, wherein the refined process
definition graph includes no transition nodes having paths
that conflict with any volume occupied by any task repre-
sented by a task node in the graph.

12. The system of claim 9, wherein the process definition
graph has respective action nodes for multiple robots, and
wherein generating the refined process definition graph
comprises generating alternative plans for the multiple
robofts.

13. The system of claim 12, wherein generating alterna-
tive plans for the multiple robots comprises:

generating, for a first robot of the multiple robots, a first
path that avoids a work volume occupied by a second
robot of the multiple robots; and

10

15

20

25

30

35

40

45

50

55

60

65

24

generating, for the second robot of the multiple robots, a
second path that avoids a second work volume occu-
pied by the first robot of the multiple robots.
14. The system of claim 9, wherein the operations further
comprise generating, from the refined process definition
graph, a schedule for the robot that specifies executing
motion actions that avoid volumes occupied by tasks rep-
resented by task nodes 1n the graph.
15. One or more non-transitory computer storage media
encoded with computer program instructions that when
executed by a one or more computers cause the one or more
computers to perform operations comprising:
recerving, by the one or more computers, a process
definition graph for a robot, the process definition
graph having a plurality of action nodes, wherein the
action nodes include (1) transition nodes that represent
a motion to be taken by the robot from a respective start
location to an end location and (2) task nodes that
represent a particular task to be performed by the robot
at a particular task location, and wherein the process
definition graph 1s associated with constraints that
disallow conflicts between work volumes of robots
performing action nodes in the process definition
graph;
performing, by the one or more computers, a sequence of
modifications to generate, from the process definition
graph, a plurality of different final process definition
graphs representing candidate plans for controlling
multiple robots, including:
generating, from the process definition graph, an 1nitial
modified process definition graph that assigns one or
more action nodes to each robot of the multiple
robots, including relaxing one or more of the con-
straints to allow contlicts between pairs of transition
nodes and to allow conflicts between transition
nodes and task nodes, and

after generating the initial modified process definition

graph, performing a contlict resolution process that
reintroduces a constraint that disallows contlicts
between transition nodes and task nodes to generate,
from the 1nitial modified process definition graph, a
refined process definition graph, comprising gener-
ating updated paths for one or more transition nodes
that avoid volumes occupied by robots performing
tasks represented by task nodes 1n the mitial modi-
fied process definition graph.

16. The non-transitory computer storage media of claim
15, wherein the imitial modified process definition graph
specifies paths for respective transition nodes that conflict
with volumes occupied by tasks represented by respective
task nodes.

17. The non-transitory computer storage media of claim
16, wherein the refined process definition graph includes no
transition nodes having paths that conflict with any volume
occupied by any task represented by a task node 1n the graph.

18. The non-transitory computer storage media of claim
15, wherein the process definition graph has respective
action nodes for multiple robots, and wherein generating the
refined process definition graph comprises generating alter-
native plans for the multiple robots.

19. The non-transitory computer storage media of claim
18, wherein generating alternative plans for the multiple
robots comprises:

generating, for a first robot of the multiple robots, a first

path that avoids a work volume occupied by a second
robot of the multiple robots; and

US 11,745,345 B2

25

generating, for the second robot of the multiple robots, a
second path that avoids a second work volume occu-
pied by the first robot of the multiple robots.

20. The non-transitory computer storage media of claim
15, wherein the operations further comprise generating,
from the refined process definition graph, a schedule for the
robot that specifies executing motion actions that avoid
volumes occupied by tasks represented by task nodes in the
graph.

10

26

	Front Page
	Drawings
	Specification
	Claims

