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(57) ABSTRACT

Monitoring an operational characteristic of a data commu-
nication device within a network includes sampling an
operational characteristic of the data communication device
at a fine-grain sample rate over a first sampling interval to
produce fine-grain samples of the operational characteristic
of the data communication device, training a machine learmn-

ing algorithm using the fine-grain samples of the operational
characteristic of the data communication device, the fine-
grain sample rate, and a coarse-grain sample rate that 1s less
than the fine-grain sample rate, sampling the operational
characteristic of the data communication device at the
coarse-grain sample rate over a second sampling interval to
produce coarse-grain samples ol the operational character-
istic of the data communication device, and using the
machine learming algorithm to process the coarse-grain
samples of the operational characteristic of the data com-
munication device to produce accuracy-enhanced samples
of the operational characteristic of the data communication
device.
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ARTIFICIAL INTELLIGENT ENHANCED
DATA SAMPLING

CROSS REFERENCE TO RELATED
APPLICATION

The present application 1s a continuation of International
Application No. PCT/CN2019/092873 filed on Jun. 26,

2019, by Huawei Technologies Co., Ltd., and titled “Arti-
ficial intelligent enhanced data sampling,” which claims the

benefit of U.S. Provisional Patent Application No. 62/811,

285 filed on Feb. 27, 2019 by Ming L1, et al., and titled
“Artificial Intelligent Enhanced Data Sampling,” which are
hereby 1ncorporated by reference.

TECHNICAL FIELD

The present application relates to communication tech-
nology, and more particularly to the sampling of data in a
communication network.

BACKGROUND

Communication systems are known to support wireless
and wire lined communications between wireless and/or
wire lined communication devices. Such communication
systems include a vast number of interconnected networks
that support communications among and between billions of
devices, such networks including the Internet, the World
Wide Web (WWW), wide area networks, local area net-
works, cellular networks, short range wireless networks, eftc.

The Internet of Things (IoT) has grown to greatly increase
the number of devices for which communications are sup-
ported. The IoT often includes data source communication
devices that collect data, and which are sampled by data
collection communication devices. Use cases of such data
collection include big data collection, telemetry, security,
body monitoring, and many other applications. The man-
agement of a communication network 1s dependent upon
knowing the statuses of network devices. In order to manage
these network devices, their statuses, e.g., butler fill, latency,
and other characteristics, must be periodically sampled.
Many other systems depend upon the sampling of opera-
tional characteristics of communication devices.

It 1s dithicult to determine exactly the sampling rate in
which a communication device should be sampled. Thus,
sampling rates are typically chosen to ensure data 1s sampled
at a relatively high rate. Typical sampling rates may be 1n
sub-milliseconds, which 1s too frequent, but which yields
accurate samples. High sampling rates not only cause
increased and unneeded network trathic but overload the
communication and processing resources of both the data
source communication and the data collection communica-
tion device.

SUMMARY

The present disclosure describes an Artificial Intelligence
solution that reduces sampling rates and still achieves or
approaches sampling results that are obtained using high-
speed data sampling. Multiple embodiments are described
herein that accomplish the objectives of the disclosure. A
first embodiment discloses a method for monitoring an
operational characteristic of a data communication device
within a network includes sampling an operational charac-
teristic of a data communication device at a fine-grain
sample rate over a first sampling interval to produce fine-
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2

grain samples of the operational characteristic of the data
communication device. Next, the first embodiment includes
training a machine learning algorithm using the fine-grain
samples of the operational characteristic of the data com-
munication device, the fine-grain sample rate, and a coarse-
grain sample rate that is less than the fine-grain sample rate.
The first embodiment continues with sampling the opera-
tional characteristic of the data communication device at the
coarse-grain sample rate over a second sampling interval to
produce coarse-grain samples of the operational character-
istic of the data communication device. Finally, the first
embodiment includes using the machine learning algorithm
to process the coarse-grain samples of the operational char-
acteristic of the data communication device to produce
accuracy-enhanced samples of the operational characteristic
of the data communication device.

The first embodiment and the remaining embodiments
described herein provide important benefits as compared to
prior solutions. In particular, sampling according to the first
embodiment provides accurate samples of the operational
characteristic of the data communication device at the
coarse-grain sample rate, reducing network traflic and net-
work processing requirements.

The first embodiment includes a variety of optional
aspects. According to a first optional aspect, the operational
characteristic of the data communication device includes a
round-trip communication interval between a data collection
communication device and the data communication device.
According to a second optional aspect, the operational
characteristic of the data communication device includes an
average Iree buller level of the data communication device.
According to a third optional aspect, the operational char-
acteristic of the data communication device includes at least
one health related parameter. According to a fourth optional
aspect, the operational characteristic of the data communi-
cation device includes at least one network state parameter.
According to a fifth optional aspect, the operational char-
acteristic of the data communication device includes at least
one network latency parameter.

According to a sixth optional aspect, the method includes
determining, by the machine learning algorithm based upon
the fine-grain samples, a data collection sampling rate and
retrieving data from the data communication device by a
data collection communication device at the data collection
sampling rate.

According to a seventh optional aspect, the method
includes sampling the operational characteristic of the data
communication device at the fine-grain sample rate over a
third sampling interval to produce second fine-grain samples
of the operational characteristic of the data communication
device and retraining the machine learning algorithm using
the second fine-grain samples of the operational character-
istic of the data communication device of the operational
characteristic of the data communication device.

A second embodiment of the present disclosure 1s directed
to a communication device having processing circuitry,
memory, and communications circuitry. With the second
embodiment, the components of the communication device
are configured to sample an operational characteristic of a
data communication device at a fine-grain sample rate over
a first sampling interval to produce fine-grain samples of the
operational characteristic of the data communication device,
train a machine learming algorithm using the fine-grain
samples of the operational characteristic of the data com-
munication device, the fine-grain sample rate, and a coarse-
grain sample rate that 1s less than the fine-grain sample rate,
sample the operational characteristic of the data communi-
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cation device at the coarse-grain sample rate over a second
sampling interval to produce coarse-grain samples of the
operational characteristic of the data communication device,
and use the machine learning algorithm to process the
coarse-grain samples of the operational characteristic of the 5
data communication device to produce accuracy-enhanced
samples of the operational characteristic of the data com-
munication device.

The first embodiment includes a variety of optional
aspects. According to a {irst optional aspect, the operational 10
characteristic of the data communication device includes a
round-trip communication interval between a data collection
communication device and the data communication device.
According to a second optional aspect, the operational
characteristic of the data communication device includes an 15
average Iree buller level of the data communication device.
According to a third optional aspect, the operational char-
acteristic of the data communication device includes at least
one health related parameter. According to a fourth optional
aspect, the operational characteristic of the data commumni- 20
cation device includes at least one network state parameter.
According to a fifth optional aspect, the operational char-
acteristic of the data communication device includes at least
one network latency parameter.

According to a sixth optional aspect, the communication 25
device 1s further configured to determine, by the machine
learning algorithm based upon the fine-grain samples, a data
collection sampling rate and cause retrieval of data from the
data communication device by a data collection communi-
cation device at the data collection sampling rate. 30

According to a seventh optional aspect, the communica-
tion device 1s further configured to sample the operational
characteristic of the data communication device at the
fine-grain sample rate over a third sampling interval to
produce second fine-grain samples of the operational char- 35
acteristic of the data communication device and retrain the
machine learning algorithm using the second fine-grain
samples of the operational characteristic of the data com-
munication device of the operational characteristic of the
data communication device. 40

A third embodiment of the present disclosure 1s addressed
to a method for monitoring an operational characteristic of
a data communication device within a network. The method
includes sampling an operational characteristic of a data
communication device at a fine-grain sample rate over a first 45
sampling interval by a first network device to produce
fine-grain samples of the operational characteristic of the
data communication device. The method further includes
training a machine learning algorithm using the fine-grain
samples of the operational characteristic of the data com- 50
munication device, the fine-grain sample rate, and a coarse-
grain sample rate that 1s less than the fine-grain sample rate
by a second network device. The method further includes
sampling the operational characteristic of the data commu-
nication device at the coarse-grain sample rate over a second 55
sampling interval by the first network device to produce
coarse-grain samples of the operational characteristic of the
data communication device. The method concludes with
using the machine learning algorithm to process the coarse-
grain samples of the operational characteristic of the data 60
communication device to produce accuracy-enhanced
samples of the operational characteristic of the data com-
munication device.

With a first optional aspect of the third embodiment, the
operational characteristic of the data communication device 65
includes at least one of a round-trip communication interval
between a data collection communication device and the

4

data communication device, an average free buller level of
the data communication device, at least one health related

parameter, at least one network state parameter, or at least
one network latency parameter.

With a second optional aspect of the third embodiment,
the method further includes determining, by the machine
learning algorithm based upon the fine-grain samples, a data
collection sampling rate and retrieving data from the data
communication device by a data collection communication
device at the data collection sampling rate.

With a third optional aspect of the third embodiment, the
method includes sampling the operational characteristic of
the data communication device at the fine-grain sample rate
over a third sampling interval by the first network device to
produce second fine-grain samples of the operational char-
acteristic of the data communication device and retraining
the machine learning algorithm using the second fine-grain
samples by the second network device.

The second and third embodiments provide benefits same/
similar to those of the first embodiment. The first, second
and third embodiments achieve or approach sampling results
that are obtained using high-speed data sampling using a
reduced sampling-rate at no-cost. With any of these embodi-
ments, sampling the operational characteristic (e.g. the num-
ber of free bullers 1n our example) may require the sampling
of additional features (e.g. the traflic volume 1n the last
sampling period). Inputting the operational characteristic at
the reduced sampling rate and these additional features nto
the machine model during training results in the accuracy-
enhanced samples.

BRIEF DESCRIPTION OF TH.

L1

DRAWINGS

For a more complete understanding of this disclosure,
reference 1s now made to the following brief description,
taken in connection with the accompanying drawings and
detailed description, wherein like reference numerals repre-
sent like parts.

FIG. 1 1s a flow chart 1llustrating operations according to
a described embodiment of the present disclosure.

FIG. 2 1s a system diagram illustrating a first communi-
cation network constructed and operating according to a
described embodiment of the present disclosure.

FIG. 3 1s a system diagram 1llustrating a second commu-
nication network constructed and operating according to a
described embodiment of the present disclosure.

FIG. 4 1s a block diagram 1llustrating a communications
device constructed according to the present disclosure.

FIG. 5A 1s a diagram 1llustrating sampling to determine
Round Trip Time (RTT) of telemetry according to the
present disclosure.

FIG. 5B 1s a diagram illustrating a paired phone and
wristband constructed and operating according to the present
disclosure.

FIG. 5C 1s a diagram 1llustrating builer sampling accord-
ing to the present disclosure.

FIG. 6A 1s a diagram illustrating the use of fine-grain
sampling to determine average RTT between communica-
tion devices.

FIG. 6B 1s a diagram 1illustrating the use of coarse-grain
sampling without machine learning to determine average
RTT between communication devices.

FIG. 6C 1s a diagram 1illustrating the use of coarse-grain
sampling with machine learning to determine average RT'T

between communication devices.
FIG. 6D 1s a graph 1llustrating RTT that was determined
based upon the techniques of FIGS. 6A, 6B, and 6C.
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FIG. 7 1s a diagram 1illustrating Two-Stage sampling and
machine learning according to a described embodiment of

the present disclosure.

FIG. 8 1s a diagram illustrating alternate Two-Stage
sampling and machine learming according to another
described embodiment of the present disclosure.

FIG. 9 1s a diagram 1llustrating two-stage sampling and
machine learning over multiple sampling stages according to
an optional aspect of the present disclosure.

FIG. 10 1s a block diagram 1illustrating the interaction
between machine learning model training and machine
learning inference according to the present disclosure.

FIG. 11 1s a diagram illustrating various techniques to
determine real-time network state and latency information
according to the present disclosure.

DETAILED DESCRIPTION

It should be understood at the outset that, although
illustrative implementations of one or more embodiments
are provided below, the disclosed systems and/or methods
may be mmplemented using any number of techniques,
whether currently known or in existence. The disclosure
should 1n no way be limited to the illustrative implementa-
tions, drawings, and techniques 1llustrated below, including,
the exemplary designs and implementations illustrated and
described herein, but may be modified within the scope of
the appended claims along with their full scope of equiva-
lents.

FIG. 1 1s a flow chart illustrating operations according to
a described embodiment of the present disclosure. Opera-
tions 100 for monitoring an operational characteristic of a
data communication device within a network includes sam-
pling an operational characteristic of a data communication
device at a fine-grain sample rate over a first sampling
interval to produce fine-grain samples of the operational
characteristic of the data communication device (step 102).
The operations 100 continue with training a machine learn-
ing (ML) algorithm using the fine-grain samples of the
operational characteristic of the data communication device,
the ﬁne-gram sample rate, and a coarse-grain sample rate
that 1s less than the fine-grain sample rate (step 104). The
method continues with sampling the operational character-
istic of the data communication device at the coarse-grain
sample rate over a second sampling interval to produce
coarse-grain samples of the operational characteristic of the
data communication device (step 106). Operations 100
conclude with using the machine learning algorithm to
process the coarse-grain samples of the operational charac-
teristic of the data communication device to produce accu-
racy-enhanced samples of the operational characteristic of
the data communication device (step 107).

The operations 100 1include several optional steps, starting,
with determining whether to update the machine learning
algorithm (step 108). A NO decision causes operations to
remain at step 108. For a YES decision, operations 100
proceed with sampling the operational characteristic of the
data communication device at the fine-grain sample rate
over a third sampling interval to produce second fine-grain
samples of the operational characteristic of the data com-
munication device (step 110). Then, the operations 100
include retraining the machine learning algorithm using the
second fine-grain samples (step 112). Operation returns to
step 108 from step 112.

The operations 100 of FIG. 1 may be used for various
operations. With a first operation, the operational character-
istic of the data communication device includes a round-trip
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communication interval between a data collection commu-
nication device and the data communication device. With a
second operation, the operational characteristic of the data
communication device includes an average free buller level
of the data communication device. With a third operation,
the operational characteristic of the data commumnication
device 1includes at least one health related parameter. With a
fourth operation, the operational characteristic of the data
communication device includes at least one network state
parameter. With a fifth operation, the operational character-
istic of the data communication device includes at least one
network latency parameter.

The operations 100 of FIG. 1 may include additional
optional operations, including, determiming, by the machine
learning algorithm based upon the fine-grain samples, a data
collection sampling rate and retrieving data from the data
communication device by a data collection communication
device at the data collection sampling rate. The machine
learning employed, may be supervised learning, unsuper-
vised learning, semi-supervised learning, reinforcement
learning, an algorithm used, e.g., Q-Learning, Temporal
Difference (1D), or Deep Adversarial Networks, {for
example. Other machine learning algorithms that may be
employed include Linear Regression, Logistic Regression,
Decision Trees, Support Vector Machine (SVM), Naive
Bayes, k-nearest neighbors (kNN), K-Means, Random For-
est or Dimensionality Reduction Algorithms such as Gradi-
ent Boosting machine (GBM) algonthms, XGBoost, Light-
GBM or CatBoost, for example. In one particular
embodiment, the Random Forests Algorithm 1s used. Of
course, the employed machine learning algorithms depend
upon the operational characteristic of interest. For example,
a lirst machine learning algonthm may be employed to
sample health data while a differing machine learning algo-
rithm may be selected for network traflic data.

FIG. 2 15 a system diagram illustrating a communication
network constructed and operating according to a described
embodiment of the present disclosure. The wireless com-
munication system 200 includes a plurality of communica-
tion networks 204 that couple to the Internet/ WWW 202 to
service voice and data communications. Coupled to the
Internet/ WWW 202 are servers 206 and 208 and at least one
client device 210. The plurality of communication networks
204 1includes one or more of a Wide Area Network (WAN),
a Local Area Network (LAN), a Wireless Local Area Net-
work (WLAN), a Wireless Personal Area Network (WPAN),
a cellular network, and may include various other types of
networks as well.

The plurality of communication networks 204 service one
or more Wireless Access Points (WAPs) or base stations 212
that provide wireless service within respective service areas.
WAPs 212 provide wireless access service in respective
service areas within servicing frequency bands, e.g., 2.4
Gigahertz (GHz), 5 GHz, 60 GHz, etc., and support stan-
dardized (or proprictary) operating standards, e.g., IEEE
802.11x, Bluetooth, or other operating standards. Base sta-
tions, generally, provide wireless access service in respec-
tive service areas within respective frequency bands accord-
ing to one or more cellular communication standards, e.g.,
Global System of Mobile Communication (GSM), Long-
Term Evolution (LTE), xLTE, etc. In any case, these WAPs
212 provide voice and data service to a plurality of wireless
devices 214, which will be described further herein. Some of
these WAPs 212 may provide a combination of cellular,
Wireless Wide Area Network (WWAN), Wireless Local
Area Network (WLAN), and Wireless Personal Area Net-
work (WPAN) service.
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Wireless devices 214 service wireless communications
with the WAPs 212 and/or directly with one another. These
wireless devices 214 may be found in various contexts,
including the home, business, public spaces, and automo-
bile. These wireless devices 214 may be cell phones, wrist
monitors, smart watches, watch phones, tablet computers,
point-of-sale (POS) devices, readers, laptop computers,
desktop computers, video games, automobiles, media play-
ers, digital cameras, smart phones, musical instruments,
microphones, climate control systems, intrusion alarms,
audio/video surveillance or security equipment, network
attached storage, pet tracking collars, or other devices. As
additional examples, the wireless devices 214 may further
include audio head ends or digital video disc (DVD) players,
satellite music transceivers, noise cancellation systems,
voice recognition systems, navigation systems, alarm sys-
tems, engine computer systems, set top boxes, remote con-
trols, or other devices.

One or more components of the wireless communication
system 200 of FIG. 2 are configured to execute the opera-
tions 100 illustrated 1n FIG. 1. In some embodiments, a
single network component, e.g., server 206 monitors the
operations of a wireless device 214 to determine character-
istics of the wireless device 214 such as a round-trip
communication interval between a data collection commu-
nication device and the wireless device 214, an average free
bufler level of the wireless device 214, at least one health
related parameter produced by the wireless device 214, e.g.,
heartbeat, blood pressure, oxygen saturation, etc., at least
one network state parameter, and at least one network
latency parameter to name a few examples using the opera-
tions 100 of FIG. 1. In another operation, the operations 100
of FIG. 1 are divided between multiple network components
of FIG. 2, e.g., with a first network component taking
fine-grain samples, a second network components training a
machine learning model, and the first network component
taking the coarse-grain samples and using the machine
learning algorithm to process the coarse-grain samples to
produce accuracy-enhanced samples of the operational char-
acteristic of the data communication device.

FIG. 3 1s a system diagram 1illustrating a second commu-
nication network constructed and operating according to a
described embodiment of the present disclosure. The com-
munication network 300 of FIG. 3 may be a network
infrastructure that services the WWW or the Internet, a
back-haul communication network for a cellular service
provider, or another type of network inirastructure. The
communication network 300 includes a plurality of network
devices 310 that service the flow of data within the com-
munication network 300. Of interest within the communi-
cation network are bufler availability of the network devices,
latency of transmissions between network devices 310, and

various other operational characteristics of the components
of the communication network. This information, once
obtained, may be used to adjust operation of the communi-
cation network 300, alter routing of data within the com-
munication network 300, and/or to otherwise manage the
communication network 300.

Thus, according to the present disclosure, one or more
network monitoring devices 312 and/or 314 execute the
operations 100 of FIG. 1 to monitor operational character-
istics of the network devices 310 of the communication
network. These operational characteristics of the network
devices 310 may include round-trip communication interval
times, average Iree butler levels of the network devices 310,
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at least one network state parameter of one or more of the
data communication devices, or at least one network latency
parameter, for example.

FIG. 4 1s a block diagram 1llustrating a communications
device 400 constructed according to the present disclosure.
The commumnications device 400 includes processing cir-
cuitry 404, memory 406, one or more user interfaces 408, a
Radio Frequency (RF) interface 410, a Near Field Commu-
nications (NFC) interface 412, a wired/optical interface 414,
and a battery 416. The communications device 400 may be
one of the WAPs 212 illustrated in FIG. 2, one of the servers
206 or 208 of FIG. 2, and/or one of the network monitoring
devices 312 or 314 of FIG. 3.

The processing circuitry 404 may be one or more of a
microprocessor, a digital signal processor, application spe-
cific processing circuitry, and/or other circuitry capable of
executing logic operations based upon pre-programmed
instructions or the execution of software instructions. The
memory 406 may be dynamic random-access memory
(RAM), static RAM, flash RAM, read-only memory (ROM),
an electrically erasable programmable ROM (EEPROM),
programmable ROM, magnetic storage, optical storage or
other storage that 1s capable of storing instructions and data.
The stored data may be NFC antenna tuning data, audio data,
video data, user data, software instructions, configuration
data, or other data. The user interface 408 supports one or
more of a video monitor, a keyboard, an audio interface, or
other user 1nterface device.

The RF interface 410 supports one or more of cellular
communications, WLAN communications, WPAN commu-
nications, WWAN communications, 60 GHz millimeter
wave (MMW) communications, NFC communications, and/
or other wireless communications. These wireless commu-
nications are standardized in most embodiments and propri-
ctary in other embodiments. The NFC interface 412 couples
to NFC antenna 418 and supports NFC communications as
will be further described herein. The wired/optical interface
414 supports wired communications, which may be LAN
communications, WAN communications, cable network
communications, direct data link communications, or other
wired communications and/or supports optical communica-
tions, which are standardized 1in some embodiments and
proprietary in other embodiments.

Multiple of the components 404, 406, 408, 410, 412, and
414 of the communications device 400 may be constructed
on a single mtegrated circuit die. It 1s fairly common to form
all communication components, ¢.g., RF iterface 410, NFC
interface 412, and wired/optical interface 414 on a single
integrated circuit. In some cases, even the antennas support-
ing the RF interface 410 may be formed on a single
integrated circuit. In other cases, some or all of the compo-
nents of the communications device 400 may be formed on
a Printed Circuit Board (PCB).

According to an embodiment of the present disclosure,
the communications device 400 includes Artificial Intelli-
gence (Al) enhanced data sampling 4035 structure and/or
operations, also referred to as machine learning operations.
Generally, the processing circuitry 404, the memory 406,
and the communications circuitry 410/412/414 are config-
ured to sample an operational characteristic of a data com-
munication device at a fine-grain sample rate over a first
sampling 1nterval to produce fine-grain samples of the
operational characteristic of the data communication device
and train a machine learning algorithm using the fine-grain
samples of the operational characteristic of the data com-
munication device, the fine-grain sample rate, and a coarse-
grain sample rate that 1s less than the fine-grain sample rate.
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The processing circuitry 404, the memory 406, and the
communications circuitry 410/412/414 are further config-
ured to sample the operational characteristic of the data
communication device at the coarse-grain sample rate over
a second sampling interval to produce coarse-grain samples
of the operational characteristic of the data communication
device and use the machine learning algorithm to process the
coarse-grain samples of the operational characteristic of the
data communication device to produce accuracy-enhanced
samples of the operational characteristic of the data com-
munication device.

The operational characteristic of the data communication
device may include a round-trip communication interval
between a data collection communication device and the
data communication device, an average free buller level of
the data communication device, at least one health related
parameter, at least one network state parameter, or at least
one network latency parameter, for example.

Further, the processing circuitry 404, the memory 406,
and the communications circuitry 410/412/414 may be fur-
ther configured to determine, using the machine learming
algorithm based upon the fine-grain samples, a data collec-
tion sampling rate and direct a data collection device to use
the data collection sampling rate to sample data from the
data communication device.

The processing circuitry 404, the memory 406, and the
communications circuitry 410/412/414 may be further con-
figured to sample the operational characteristic of the data
communication device data at the fine-grain sample rate
over a third sampling interval to produce second fine-grain
samples of the operational characteristic of the data com-
munication device and to retrain the machine learming
algorithm using the second fine-grain samples.

FIG. SA 1s a diagram 1illustrating sampling to determine
Round Trip Time (RTT) of telemetry according to the
present disclosure. In many wireless and/or wired applica-
tions, a source device (SRC) 502 1s paired with a destination
device (DSC) 504 for exchange of data. In a telemetry
installation, for example, many sensors are communica-
tively mtercoupled with one or more controllers. By deter-
miming the RTT between the SRC 502 and the DSC 504
using pinging, for example, the operation of the SRC 502
and DSC 504 may be controlled or turther altered to reduce
network resources usage and to conserve energy. The opera-
tions 100 of FIG. 1 and/or the structure 400 of FIG. 4 may
be employed to determine RTT between the SRC 502 and
DSC 504.

FIG. 5B 1s a diagram 1llustrating a paired phone 512 and
wristband 514 constructed and operating according to the
present disclosure. A heartbeat measurement, a blood pres-
sure measurement, or a blood oxygen concentration are
examples of health-related parameters exchanged between
the paired phone 512 and wristband 514 of FIG. 5B. In such
case, the heartbeat monitoring wristband calculates the
health-related parameter of a user on a periodic basis. The
health-related parameter should only be sampled when
available to avoid the wasted eflorts of sampling to ire-
quently. Thus, according to the present disclosure, with the
operations 100 of FIG. 1 and/or the structure of FIG. 4, an
accurate sampling interval 1s determined that may be used to
cliciently sample the health-related parameter(s). Valuable
communication resources and battery life are preserved with
the data prepared by the wristband 514 only being sampled
when the data 1s available.

FIG. 3C 1s a diagram 1llustrating bufler sampling accord-
ing to the present disclosure. With the example of FIG. 5C,
telemetry data 524 1s buflered continuously even though
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relevant data 1s contained within some of the available
buflers. Sampling 522 should therefore be performed only
when relevant data 1s available. Thus, 1t 1s advantageous to
only sample the buflers containing relevant data. Thus,
according to the present disclosure, with the operations 100
of FIG. 1 and/or the structure of FIG. 4, an accurate
sampling interval i1s determined that may be used to efli-
ciently sample the telemetry data 524. Valuable communi-
cation resources and battery life are preserved with the

telemetry data 524 only being sampled when the data 1s
available.

FIG. 6A 1s a diagram illustrating the use of fine-grain
sampling to determine average RTT between communica-
tion devices. As shown, the fine-grain sampling is performed
with a fine-grain sample rate of once every second to
produce fine-grain samples of the operational characteristic
of a data communication device. Based upon this sampling
time, average RTTs are determined for the fine-grain first
sampling interval.

FIG. 6B 1s a diagram 1llustrating the use of coarse-grain
sampling without machine learning to determine average
RTT between communication devices. As 1s shown, the use
of coarse-grain sampling of 10 second intervals produce
differing average R1'1s as compared to the fine-grain sam-
pling of FIG. 1. This result 1s problematic 1n that inaccurate
data 1s returned.

FIG. 6C 1s a diagram 1llustrating the use of coarse-grain
sampling with machine learning to determine average RT'T
between communication devices. The coarse-grain sampling
that 1s done with the assistance of machine of FIG. 6C 1s
done 1n accordance with the operations 100 of FIG. 1 and/or
the structure of FIG. 4 and provides average R1'Ts that are
more like the fine-grain samphng average RT'Ts (of FIG. 6 A)
than they are to the coarse-grain sampling average RT'Ts (of
FIG. 6B).

FIG. 6D 1s a graph 1llustrating RTT that was determined
based upon the techniques of FIGS. 6A, 6B, and 6C. Note
that the average R1Ts determined using coarse-sampling
with ML (of FIG. 6C) more closely approximates the
average R1Ts determined using fine-sampling (of FIG. 6A)
than the R1Ts using coarse-grain sampling (of FIG. 6B).

FIG. 7 1s a diagram 1llustrating Two-Stage sampling and
machine learning according to a described embodiment of
the present disclosure. As shown 1n FIG. 7, data sampling
700 1s divided 1nto the two stages: (1) fine-grain sampling at
a fine-grain sample rate over a first sampling interval 702 to
produce fine-grain samples of the operational characteristic
of the data communication device followed by ML training
using the fine-grain samples and then (2) coarse-grain sam-
pling over a second sampling interval 704 using ML 1infer-
ence over a second sampling interval to produce accuracy-
enhanced coarse-grain samples of the operational
characteristic of the data communication device. With the
example of FIG. 7, the fine-grain sampling period 1s one-
tenth of the coarse-grain sampling period, corresponding to
the fine-grain sample rate being ten times the coarse-grain
sample rate.

FIG. 8 1s a diagram illustrating alternate Two-Stage
sampling and machine learning according to another
described embodiment of the present disclosure. Particu-
larly, with the example 800 of FIG. 8, a data communication
device 1s pinged using fine-grain sampling over a {irst
sampling interval 802 according to a fine-grain sample rate
and then the data communication device i1s pinged using
coarse-grain sampling over a second sampling interval 804
according to a coarse-grain sample rate.
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Referring to both FIGS. 7 and 8, ML training 1s done over
a dataset using a set of the sampling/features under the
fine-grain sampling. ML inference 1s then performed using
as the mput the current sampling/ features under the coarse-
grain samphng The target 1s for accurate sampling values 1n
the coarse-grain sampling period. Fine-grain sampling 1s
done for a short duration in the device and data collected
thereby 1s used to collect other related features to complete
the ML traiming, which can be done on a device or remote
from the device. Then, coarse-grain sampling 1s used during
the remainder of the sampling interval. Based on coarse-
grain sampling and related features, the ML model 1s used to
estimate accurate sampling values (ML inference model can
be run on the device or on a remote device). Sampling over
the fine-grain sampling interval 1s accurate and ML 1s not
required for operation on these samples, 1n some embodi-
ments.

Data Sampling 1s divided into the multiple stages with
fine-grain sampling for a short duration (ML training) and
coarse-grain sampling for a long duration (ML inference).
Generally, according to the optional aspect of FIG. 7,
fine-grain sampling 1s performed for the multiple short
durations i1n the communications device. The fine-grain
samples and other related features are collected and used to
complete ML training. Then, coarse-grain sampling 1s per-
formed over multiple durations using the ML model to
estimate accurate sampling values (ML inference model can
be run on a Device or Remote) As was previously described,
the ﬁne-gram sampling 1s the accurate sampling and ML
inference 1s not used on the fine-grain samples.

FIG. 9 1s a diagram 1llustrating two-stage sampling and
machine learning over multiple sampling stages according to
an optional aspect of the present disclosure. According to the
operations 900 of FIG. 9, sampling of an operational char-
acteristic of a data communication device at a fine-grain
sample rate 1s performed over a first sampling interval 902
to produce fine-grain samples of the operational character-
istic of the data communication device. Then, training a
machine learning algorithm using the fine-grain samples, the
fine grain sample rate, and the coarse-grain sample rate and
may further include the type of data being sampled and other
parameters. Sampling of the operational characteristic of the
data communication device 1s then performed at the coarse-
grain sample rate over a second sampling interval 904 to
produce coarse-grain samples of the operational character-
1stic of the data communication device. Then, ML 1s used to
produce accuracy-enhanced results based upon the coarse-
grain samples.

With the example of FIG. 9, sampling the operational
characteristic of the data communication device data at the
fine-grain sample rate 1s also done over a third sampling
interval 906 to produce second fine-grain samples of the
operational characteristic of the data communication device.
Then, the machine learning algorithm 1s then retrained using
the second fine-grain samples to determine an updated
coarse-grain sample rate that 1s less than the fine-grain
sample rate. Coarse-grain sampling of the operational char-
acteristic of the data communication device 1s then again
performed over coarse-grain sampling interval 908, which 1s
followed by another fine-grain sampling interval 910. These
operations may be repeated over time in a similar manner.
With these operations, coarse-grain samples are then pro-
cessed using ML to produce accuracy-enhanced samples.

FIG. 10 1s a block diagram illustrating the interaction
between machine learning model training and machine
learning inference according to the present disclosure.
Machine learning model training 1002 1s performed using
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the fine-grain samples, the fine-grain sample rate, the coarse-
grain sample rate, and other features of the ML model,
which may include the type of data being sampled, input
based upon the type of ML model employed, e.g., supervised
learning, unsupervised learning, semi-supervised learning,
reinforcement learning, an algorithm used, e.g., Q-Learning,
Temporal Diflerence (TD), or Deep Adversarial Networks,
for example. Other machine learming algorithms that may be
employed include Linear Regression, Logistic Regression,
Decision Trees, SVM, Naive Bayes, KNN, K-Means, Ran-
dom Forest or Dimensionality Reduction Algorithms such as
Gradient Boosting algorithms, GBM, XGBoost, LightGBM
or CatBoost, for example. In one particular embodiment, the
Random Forests Algorithm 1s used. Of course, the employed
machine learning algorithms depend upon the operational
characteristic of interest. For example, a first machine leamn-
ng algonthm may be employed to sample health data while
a differing machine learning algorithm may be selected for
network tratlic data.

Machine learming model parameters 1004 are then passed
to a machine learming model inference 1006, which receives
as inputs the coarse-grain samples and additional features to
produce accurate samples that are used to closely track, such
as those illustrated 1n FIG. 6C, which enable the production
of the operational characteristic of the data communication
device that accurately corresponds to the operational char-
acteristic of the data communication device produced by the
fine-grain samples.

There are three possible deployment models for the ML.
With a first deployment, ML model training 1002, coarse-
grain sampling, and ML inference 1006 with coarse-grain
samples, are done by a single device. With a second deploy-
ment, ML model training 1002 1s performed by a first device
and coarse-grain sampling and ML model inference 1006
based upon the coarse-grain samples 1s done by a second
device. With a third deployment, ML model training 1002 1s
done by a first device, coarse-sampling 1s done by a second
device, and ML inference 1006 based upon coarse-grain
samples 1s done by a third device. The features employed
with both the ML training 1002 and the ML inference
coarse-grain sampling will depend on particular use cases.

FIG. 11 1s a diagram 1illustrating RTT measurements
according to an optional aspect of the present disclosure.
I[llustrated 1n FIG. 11 are three possible methods for the RTT
measurement. Regardless of the method, a high sampling
frequency will achueve better RT'T accuracy, but the resource
consumption will be higher. The approach of the present
disclosure 1s to use ML 1nference to reduce the sampling
frequency after the ML training cycle, but still achieve or
approach the accurate sampling values. In FIG. 11, SRC
1108 stands for source and DSC 1110 stands for destination.

According to a first latency measurement technique, Ping
or Traceroute methods 1102 are used to collect a dataset for
latency measurement. Features of this method include:

Current RTT stats (stats during one sampling period at the
current time t; 1.e. [t-T, t] time interval) t, curAvgRTT,
curMaxRTT, curMinRTT, curDevRTT

Avg. RTT stats (stats during D1), mean(avgR1T), mean
(maxRTT) mean(minR1TT), mean(devR1T)

I,, T, DI, D2
T ﬁne-gram sampling period
T_;._: coarse-grain sampling period

D1: total time length of fine-grain sampling (until now)

D2: total time length of coarse-grain sampling (until now)

According to a second technique, in-situ Operations,
Administration and Maintenance (10AM) with timestamp
1104 1s used. 10AM provides real-time telemetry of 1ndi-
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vidual data packets and flows. It 1s based on telemetry
information which 1s embedded along within data packets.

According to a third technique, packet timestamps 1106
are used for measuring latency.

ML training may be done upon the fine-grain sampled
data using a data set having sampling/features, including:

{T,, curAvgRTT, curMaxRTT, curMinRTT, curDevRTT,
meanT,(avgRTT), meanT,maxRIT), meanT,(minRTT),
meanT,(devRTT), T,, T,, D, }:

127T,, curAvgRTT, curMaxRTT, curMinRTT, curDevRTT,
mean2T,(avgRTT), mean2T,(maxRTT), mean2T,
(minRTT), mean2T,(devRTT), D1}; and

13T,, curAvgRTT, curMaxRTT, curMinRTT, curDevRTT,
mean3T,(avgRTT), mean3T,(maxRTT), mean3T,
(minRTT), mean3T,(devRTT), D, }

The inference inputs and targets are as follows:

The inference mputs are the sampling/features under the

coarse-grain sampling at the time t, using {t, curAvgRTT,
curMaxRTT, curMinRTT, curDevRIT, meant(avgRTT),

meant(maxRTT), meant(minRTT), meant(devRkRTT), T,, T,,
D1},

The ML Target 1s the accurate avgR1T'T value during the
current sampling period T,: [t=T,, t].

While several embodiments have been provided in the
present disclosure, 1t may be understood that the disclosed
systems and methods might be embodied 1in many other
specific forms without departing from the spirit or scope of
the present disclosure. The present examples are to be
considered as illustrative and not restrictive, and the disclo-
sure 1s not to be limited to the details given herein. For
example, the various elements or components may be com-
bined or integrated 1n another system or certain features may
be omitted, or not implemented.

In addition, techniques, systems, subsystems, and meth-
ods described and illustrated 1n the various embodiments as
discrete or separate may be combined or integrated with
other systems, modules, techniques, or methods without
departing from the scope of the present disclosure. Other
items shown or discussed as coupled or directly coupled or
communicating with each other may be indirectly coupled or
communicating through some nterface, device, or interme-
diate component whether electrically, mechanically, or oth-
erwise. Other examples of changes, substitutions, and altera-
tions are ascertainable by one skilled 1n the art and may be
made without departing from the spirit and scope disclosed
herein.

What 1s claimed 1s:

1. A method for monitoring an operational characteristic
of a data communication device within a network, the
method comprising:

sampling the operational characteristic of the data com-

munication device at a fine-grain sample rate over a
first sampling interval to produce first fine-grain
samples of the operational characteristic of the data
communication device;

tramning a machine learming algorithm using the first

fine-grain samples, the fine-grain sample rate, and a
coarse-grain sample rate that 1s less than the fine-grain
sample rate;

sampling the operational characteristic of the data com-

munication device at the coarse-grain sample rate over
a second sampling interval to produce coarse-grain
samples of the operational characteristic of the data
communication device; and

using the machine learning algorithm to process the

coarse-grain samples to produce accuracy-enhanced

10

15

20

25

30

35

40

45

50

55

60

65

14

results based on the coarse-grain samples of the opera-
tional characteristic of the data communication device.

2. The method of claim 1, wherein the operational char-
acteristic of the data communication device includes a
round-trip communication interval between a data collection
communication device and the data communication device.

3. The method of claim 1, wherein the operational char-
acteristic of the data communication device includes an
average Iree buller level of the data communication device.

4. The method of claim 1, wherein the operational char-
acteristic of the data communication device includes at least
one health related parameter.

5. The method of claim 1, wherein the operational char-
acteristic of the data communication device includes at least
one network state parameter.

6. The method of claim 1, wherein the operational char-
acteristic of the data communication device includes at least
one network latency parameter.

7. The method of claim 1, further comprising:

determining, by the machine learning algorithm based

upon the first fine-grain samples, a data collection
sampling rate; and

retrieving data from the data communication device by a

data collection communication device at the data col-
lection sampling rate.

8. The method of claim 1, further comprising:

sampling the operational characteristic of the data com-

munication device at the fine-grain sample rate over a
third sampling interval to produce second fine-grain
samples of the operational characteristic of the data
communication device; and

retraining the machine learning algorithm using the sec-

ond fine-grain samples.

9. A communication device comprising:

a processing circuitry;

a memory; and

a communications circuitry coupled to the processing

circuitry and the memory, the communications circuitry

configured to:

sample an operational characteristic of a data commu-
nication device at a fine-grain sample rate over a first
sampling interval to produce first fine-grain samples
ol the operational characteristic of the data commu-
nication device;

train a machine learning algorithm using the first fine-
grain samples, the fine-grain sample rate, and a
coarse-grain sample rate that is less than the fine-
grain sample rate;

sample the operational characteristic of the data com-
munication device at the coarse-grain sample rate
over a second sampling interval to produce coarse-
grain samples of the operational characteristic of the
data communication device; and

use the machine learming algorithm to process the
coarse-grain samples to produce accuracy-enhanced
results based on the coarse-grain samples of the
operational characteristic of the data communication
device.

10. The communication device of claim 9, wherein the
operational characteristic of the data communication device
includes a round-trip communication interval between a data
collection communication device and the data communica-
tion device.

11. The communication device of claim 9, wherein the
operational characteristic of the data communication device
includes an average free bufler level of the data communi-
cation device.
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12. The communication device of claim 9, wherein the
operational characteristic of the data communication device
includes at least one health related parameter.

13. The communication device of claim 9, wherein the
operational characteristic of the data communication device
includes at least one network state parameter.

14. The communication device of claim 9, wherein the
operational characteristic of the data communication device
includes at least one network latency parameter.

15. The communication device of claim 9, wherein the
communications circuitry 1s further configured to:

determine, using the machine learning algorithm based

upon the first fine-grain samples, a data collection
sampling rate; and

direct a data collection device to use the data collection

sampling rate to sample data from the data communi-
cation device.

16. The communication device of claim 9, wherein the
communications circuitry 1s further configured to:

sample the operational characteristic of the data commu-

nication device at the fine-grain sample rate over a third
sampling interval to produce second fine-grain samples
of the operational characteristic of the data communi-
cation device; and

retrain the machine learning algorithm using the second

fine-grain samples.
17. A method for monitoring an operational characteristic
of a data communication device within a network, the
method comprising:
sampling, by a first network device, the operational char-
acteristic of the data communication device at a fine-
grain sample rate over a first sampling interval to
produce {irst fine-grain samples of the operational
characteristic of the data communication device;

training, by a second network device, a machine learning
algorithm using the first fine-grain samples, the fine-
grain sample rate, and a coarse-grain sample rate that 1s
less than the fine-grain sample rate;
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sampling, by the first network device, the operational
characteristic of the data communication device at the
coarse-grain sample rate over a second sampling inter-
val to produce coarse-grain samples of the operational
characteristic of the data communication device; and

using the machine learning algorithm to process the
coarse-grain samples to produce accuracy-enhanced
results based on the coarse-grain samples of the opera-
tional characteristic of the data communication device.

18. The method of claim 17, wheremn the operational

characteristic of the data communication device includes at
least one of:

a round-trip communication 1nterval between a data col-
lection communication device and the data communi-
cation device;

an average Iree buller level of the data communication
device;

at least one health related parameter;

at least one network state parameter; or

at least one network latency parameter.

19. The method of claim 17, further comprising:

determining, by the machine learning algorithm based
upon the first fine-grain samples, a data collection
sampling rate; and

retrieving data from the data communication device by a
data collection communication device at the data col-
lection sampling rate.

20. The method of claim 17, further comprising;

sampling, by the first network device, the operational
characteristic of the data communication device at the
fine-grain sample rate over a third sampling interval to
produce second fine-grain samples of the operational

characteristic of the data communication device; and
retraining, by the second network device, the machine
learning algorithm using the second fine-grain samples.
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