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PHASE IDENTIFICATION IN POWER
DISTRIBUTION SYSTEMS

PRIORITY CLAIM

This application 1s a U.S. National Stage Filing under 35
US.C. 371 from International Application No. PCT/
US2017/045589, filed on Aug. 4, 2017, and published as
WO 2018/027180 Al on Feb. 8, 2018, which claims the
benelit of priority to U.S. Provisional Patent Application No.
62/371,381 entitled “Phase Connectivity Identification 1in
Electric Power Distribution System with Smart Meter Data”,
filed Aug. 5, 2016, each of which 1s imncorporated herein by
reference 1n its entirety.

TECHNICAL FIELD

Embodiments pertain to power distribution networks and
phase 1dentification. Some embodiments relate to techniques
tor phase 1dentification, where the phase identification prob-
lem 1s defined as 1dentifying the phase connectivity of each
customer and structure i a power distribution network.

BACKGROUND

Driven by stricter environmental regulations, technologi-
cal advances, and business model 1nnovations, distributed
energy resources (DERs) are being deployed 1n the electric
power distribution system at an unprecedented pace. DERSs
may include renewable energy sources for supply of power
via an energy distribution network, such as, for example an
clectric distribution system or electric grid. To fully exploit
the benefits of distributed energy resources (DERSs), energy
distribution networks must be actively managed. To operate
the distribution system in an eflicient and reliable manner,
distribution system operators typically rely on a set of tools
and applications including three-phase power flow, distri-
bution system state estimation, three-phase optimal power
flow, distribution system restoration, distribution network
reconfiguration, etc. However, all of these applications
require an accurate distribution network and phase connec-
tivity model. Although the network connectivity model 1s
mostly accurate, phasing errors are common. Therelore,
accurate phase i1dentification methods are needed.

BRIEF DESCRIPTION OF THE DRAWINGS

In the following detailed description of example embodi-
ments of the invention, reference 1s made to the accompa-
nying drawings which form a part hereof, and which 1s
shown by way of 1illustration only, specific embodiments 1n
which the invention may be practiced. It 1s to be understood
that other embodiments may be utilized and structural
changes may be made without departing from the scope of
the present mnvention.

The present disclosure 1s illustrated by way of example
and 1s not limited to the figures of the accompanying
drawings, 1n which like references indicate similar elements
and 1n which:

FIG. 1 illustrates a simple electric distribution system in
accordance with some embodiments;

FIG. 2 1s a flowchart illustrating a method for phase
identification 1n accordance with some embodiments;

FIG. 3 illustrates an example distribution of voltage time
series data, 1n accordance with some embodiments:

FI1G. 4 illustrates another example distribution of voltage
time series data, in accordance with some embodiments:
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2

FIG. S 1llustrates example phase i1dentification results, 1n
accordance with some embodiments;

FIG. 6 1llustrates an example formation of a base simpli-
cial complex, 1mn accordance with some embodiments;

FIG. 7 illustrates the operation of a method of phase
identification which uses voltage metering data, 1n accor-
dance with some embodiments;

FIG. 8 depicts constructions and output of a Mapper
algorithm, 1n accordance with some embodiments;

FIG. 9 illustrates a visualization of extending a Mapper
algorithm to a classification algorithm, in accordance with
some embodiments;

FIG. 10 illustrates splitting a stmplicial complex by phase,
in accordance with some embodiments;

FIG. 11 1illustrates a visualization of a distance metric, 1in
accordance with some embodiments:

FIG. 12 illustrates an 1image ol a data set under a filter
function at 5% traiming data, 1n accordance with some
embodiments;

FIG. 13 depicts a comparison between a Mapper exten-
s10n, a Nearest Neighbors algorithm, and the Nearest Neigh-
bors algorithm 1n a filtered space, 1n accordance with some
embodiments;

FIG. 14 1s a block diagram 1llustrating a representative
soltware architecture, which may be used in conjunction
with various hardware architectures herein described; and

FIG. 15 1s a block diagram illustrating components of a
machine, according to some example embodiments, able to
read instructions from a machine-readable medium (e.g., a
machine-readable storage medium) and perform any one or
more of the methodologies discussed herein.

DETAILED DESCRIPTION

The following description and the drawings suiliciently
illustrate specific embodiments to enable those skilled 1n the
art to practice them. Other embodiments may incorporate
structural, logical, electrical, process, and other changes.
Portions and features of some embodiments may be included
1n, or substituted for, those of other embodiments. Embodi-
ments set forth 1n the claims encompass all available equiva-
lents of those claims.

Accurate network and phase connectivity models are
crucial to distribution system analytics, operations and plan-
ning. Although network connectivity information 1s mostly
reliable, phase connectivity data 1s typically missing or
erroneous. In the present disclosure, an mnovative phase
identification algorithm 1s presented. In some embodiments,
the phase 1dentification algorithm 1s developed by clustering
of voltage time series gathered from smart meters. A smart
meter 1s a utility meter device which 1s capable of measuring,
a metered quantity, typically a commodity like electricity,
water, natural gas, efc.

Smart meters are used with Automated Meter Reading
systems to provide services and capabilities to monitor
and/or report the usage (or consumption) of a commodity,
such as water, electricity, gas, etc. Such systems provide
communication between a commodity meter (e.g., a smart
meter) and one or more systems to report commodity usage,
bill, etc. Commodity metering information, as well as other
information, 1s typically reported from the network devices
associated with the smart meters to reporting and billing
systems. Automatic meter reading may automatically collect
data from smart metering devices (e.g., a smart gas meter, a
smart electricity meter) and/or transier the data to a central
database for analyzing the data. The automatic meter reading
may include handheld, mobile and/or network technologies
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based on telephony platiorms (e.g., wired and wireless),
radio frequency (RF), and/or powerline transmission, or
dedicated, land-line connectivity such as the Ethernet.

The network technologies of the automatic meter reading,
may be based on a network (e.g., a network for an electric
distribution system having a plurality of smart meters)
permanently installed to capture and/or transier the data. The
network may also include other devices (e.g., antennas,
towers, collectors, repeaters, and/or other permanently
installed infrastructure) to transfer (e.g., automatically) the
data collected from a plurality of metering devices (e.g.,
smart meters) to the central database of a server (e.g., which
oversees the metering devices and the other devices).

In certain embodiments, the feature-based clustering
approach 1s adopted where linear or nonlinear dimension-
ality reduction 1s first carried out to extract feature vectors
from a raw time series. A constrained or unconstrained
clustering algorithm 1s then executed to separate customers
(e.g., smart meters associated with customers) into various
phase connectivity groups. In one example, the algorithm 1s
applied on a real distribution feeder 1n a power utility (e.g.,
an electrical utility) service territory. As disclosed herein, the
accuracy of the proposed algorithm 1s over 90%. Embodi-
ments employ clustering, data mining, phase 1dentification,
dimensionality reduction techniques, and smart meter data.

Electric utility companies typically do not have accurate
phase connectivity information. Moreover, the phase con-
nectivity of the distribution network changes over time when
new customers are connected to the system. With more
DERs connected to the power distribution system, correct
phase connectivity data become increasingly important to
cilicient and reliable operations of power distribution sys-
tems. The present disclosure develops an unsupervised
machine learning algorithm to identify the phase connectiv-
ity of customers based on smart meter data and supervisory
control and data acquisition (SCADA) data.

Embodiments provide phase i1dentification solutions that
are unavailable using existing, traditional approaches and
techniques. Very few studies on phase identification have
been carried out. Existing techniques for solving the phase
identification problem may be categorized into two general
approaches. In the first approach, only smart meter data and
SCADA information are assumed to be available. In the
second approach, special equipment such as microsynchro-
phasors, signal generators and discriminators need to be
installed to accurately identify the phase of distribution
system customers and/or structures.

In the first approach, 0-1 integer linear programming and
correlation-based methods are proposed to solve the phase
identification problem. The phase identification problem 1is
formulated as a 0-1 integer linear programming problem
where the phase connection of smart meters are treated as
binary variables. Tabu search and branch and bound search
are used to solve the integer optimization problem.

In correlation-based methods, correlation coeflicients or
R* (coeflicient of determination) are calculated between the
voltage profile of individual smart meters and the voltage
profile of the substation on each phase. "

T'hese correlation
coefficients or R* are assumed to have the highest value
when the customer’s phase 1s correctly labeled.

In the second approach, microsynchrophasors, signal gen-
erators, and discriminators are leveraged to accurately 1iden-
tify the phase of each customer. In one example of this
second approach, microsynchrophasors are deployed at the
target bus for phase identification. Microsynchrophasors can
measure voltage phase angles 1n addition to voltage mag-
nitude. The main 1dea behind the method is that the correct
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customer phase label should yield the highest voltage mag-
nitude and phase correlation with the corresponding phase at
the substation. A benefit of the micro-synchrophasor
approach 1s that the method 1s applicable to all types of
customer phase connections. In another example of this
second approach, a signal generator 1s deployed at the
distribution substation and signal discriminators are
deployed at the target customer sites to accurately i1dentily
the phases of smart meters.

There are two drawbacks associated with the existing 0-1
integer programming method. The first drawback 1s 1ts
computational complexity. A typical distribution feeder
serves 1000 to 3000 customers on average. Therefore, the
0-1 integer programming problem for phase identification
has thousands of binary decision variables, which requires
daunting computational time. The second drawback 1s 1ts
low tolerance for erroneous and missing measurements. The
existing methods only work when there are no unmetered
loads or erroneous load measurements.

Although existing correlation-based methods may be
cllective 1n 1dentifying single-phase customers, such tradi-
tional methods may not be able to be successiully applied in
the distribution circuits where the majority of the loads are
two-phase. In addition, the algorithm used by such methods
may incorrectly label customers on the same single-phase
secondary differently.

One disadvantage of traditional methods in the second
approach noted above 1s the expensive capital and mainte-
nance costs for the additional equipment.

Example Electric Power Distribution System

FIG. 1 illustrates a simple electric distribution system 100
in accordance with some embodiments. To understand the
phase 1dentification problem, a brief description of an elec-
tric power distribution system 1s provided with reference to
FIG. 1. As would be understood by one skilled 1n the
relevant art(s), the electric power distribution system 1s the
final portion of the power delivery infrastructure that carries
clectricity from highly interconnected, high-voltage trans-
mission systems to end-use customers. An illustration of a
simple electric distribution system 100 1s depicted 1n FIG. 1.
The starting point of the distribution system 100 1s the
distribution substation 102. In the distribution substation
102, a step-down transformer lowers the transmission-level
voltage (35 to 230 kV) to a medium-level voltage (4 to 35
kV) 1n the primary distribution circuits. The electric power
then flows through the primary feeders (a, b, and c¢) and
laterals (LL1-L5) to distribution transformers (11—104,
12—106,13—108, T4—110, T5—112,'T6—114, T7—116,
and T8—118), which further step down the voltage to
low-voltage secondary circuits. The secondary circuits serve
end-use customers and operate at 120/240V single-phase,
120/208 V three-phase, or 277/480V three-phase. Laterals
may be single-phase (L2), two-phase, also called “V” phase
(L3, L4), or three-phase (L1, L5).

The majority of the electric power 1s supplied by three-
phase generators. In balanced conditions, the electric power
circuits are three-phase circuits and the three voltage pha-
sors, V__. V, . and V_, difler only in their angles, with
120-degree differences between any pair. Residential cus-
tomers may be served by either a 120/240V three-wire
secondary through a center-tapped transformer (e.g.,
13—108, T4—110, T7—116) or a 120V single-phase sec-
ondary through a single-phase transformer (e.g., T1—104,
12—106, T5—112, T6—114). Commercial customers are
typically served by a 208 V or 480V three-phase four-wire
secondary through a three-phase transformer (e.g.,
T8—118).
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The phase 1dentification problem 1s defined as 1dentifying
the phase connectivity of each customer and structure in the
power distribution network.

Very few studies on phase 1dentification have been carried
out. Existing methods for solving the phase identification
problem may be separated into two general approaches. In
the first approach, only smart meter data and SCADA
information are assumed to be available. In the second
approach, special equipment such as microsynchrophasors,
signal generators, and discriminators need to be installed to
accurately 1dentify the phase of distribution system custom-
ers and/or structures.

Example Methods for Phase Idenfification in Electric
Power Distribution Systems by Clustering of Smart Meter
Data

FIG. 2 1s a flowchart 1llustrating a method 200 for phase
idenfification 1 accordance with some embodiments. A
framework of embodiments disclosed herein performs phase
1idenfification algorithm by clustering smart meter data. In
particular, the operations of method 200 perform phase
1identification by clustering smart meter data.

At operation 202, voltage measurements are collected
from smart meters and the SCADA system.

At operation 204, distribution connectivity information 1s
obtamned. In an embodiment, operation 204 may include
retrieving distribution connectivity information from an
enfity (e.g., an electrical power ufility) operating an electric
distribution system, such as, for example the electric distri-
bution system 100 shown 1n FIG. 1.

At operation 206, customer voltage time series are nor-
malized by their standard deviations. In the example of FIG.
2, operation 202 includes applying linear and non-linear
dimensionality reduction techniques. Various dimensional-
ity reduction techniques, such as, for example, principal
component analysis (PCA), Sammon mapping, curvilinear
components analysis, Isomap, and t-distributed stochastic
neighbor embedding may be leveraged to extract key fea-
tures from the voltage time series at operation 206. For
example, operation 206 can include applying PCA on the
normalized time series to extract the top n components.

At operation 208, constraints 1n the clustering process are
defined by 1mnspecting the network connectivity data obtained
1n operation 204.

At operation 210, a constrained clustering method 1s then
applied to parfition customers nto clusters. In certain
embodiments, operation 210 may include applying a cen-
troid based or density based constrained clustering method
to partition customers mto clusters. In alternative or addi-
tional embodiments, operation 210 may include applying a
k-means constrained clustering method.

Then, at operation 212, the phase of each cluster 1s
1dentified by solving a minimization problem. Operation 212
can 1dentify the phase of each cluster by solving the mini-
mization problem.

The phase 1denftification method 200 can include using an
algonthm ufilizing the known information about line con-
figurations in the network connectivity model to avoid
mislabeling the customers on the same secondary feeder
which can occur 1n the existing methods. In some embodi-
ments, an example phase 1dentification algorithm 1s compu-
tationally efficient and more accurate than a 0-1 integer
linear programming method and correlation-based methods.
For example, a phase 1denfification algorithm may be used
in embodiments that 1s less expensive than approaches
where special equipment needs to be mnstalled 1n an electric
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power distribution system, such as, for mstance, an electric
power distribution system similar to the electric distribution

system 100 shown 1 FIG. 1.

In certain embodiments, an innovative constrained clus-
tering algorithm of smart meter data 1s proposed to solve the
phase 1dentfification problem. Instead of directly using the
voltage time series data, certain embodiments first extract
unique features from the voltage time series of smart meters.
Then, certain embodiments define customer phase con-
stramnts by exploiting the known nformation about line
configurations in the network connectivity model. At last,
constrained and unconstrained clustering algorithms may be
applied to accurately i1dentify the phase connection of each
customer. In one non-limiting example, a constrained
k-means clustering algorithm may be applied to idenfify the
phase connection of each customer.

Unique features of certain embodiments are as follows: 1.
An example phase 1dentification algorithm ufilizes known
information about line configurations 1n the network con-
nectivity model to avoid mislabeling the customers on the
same secondary feeder which can occur 1mn the existing
methods. 2. The example phase 1denftification algorithm 1s
computationally efficient compared with the 0-1 integer

linear programming method and the correlation-based meth-
ods.

As noted above with reference to FIG. 2, the framework
of an example phase 1dentification algorithm clusters smart
meter data.

In some embodiments, the method 200 1includes clustering
time series data. One goal of clustering 1s to 1denfify the
structure 1n an unlabeled dataset by objectively organizing
data into homogeneous groups such that the objects in the
same group are more similar to each other than those 1n
different groups. Various algorithms have been developed to
cluster time series data. One clustering algorithm 1s
k-means, 1n which the objects are divided into k clusters so
that the within-cluster sum of squares 1s minimized. Though
typically 1t 1s not practical to find the minimal sum of
squares among all partitions, 1t 1s practical to find local
optimal solutions using this algorithm.

Many clustering algorithms require a similarity or dis-
tance function. There are many different types of distance
functions. Embodiments consider two such distance func-
tions. The first one 1s Euclidean distance. If a, and a, are two
P-dimensional time series data points, then their Euclidean
distance 1s defined by

(L)
dr =

P
2
Z(ﬂfﬂc - ﬂjﬂc)
k=1

y

Another type of distance function 1s related to Pearson’s
correlation coefficient. For two P-dimensional time series

data points a, and a,, their Pearson’s correlation factor is
defined by

P 2)
> (@i - p)ag — i)
k=1

cC =
Sij
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where y, and p. are the mean values of a, and a, and s, and

s, are the scatters of a, and a,, i.e., SL:\/E;C:]P (a,—1.)*
Then the distance between a, and a; may be defined based
on cc as

1 —cc

B
dlzl—cc:{}rdzz( ],(;5’}0).

1 +cc

Smart meter time series data are high-dimensional. It 1s

not desirable to work with high-dimensional noisy raw data
1in practice. Therefore, certain embodiments adopt a feature-
based clustering method for the phase identification prob-
lem. Drawing features from data often requires expert
knowledge of the data, but 1n the phase 1dentification prob-
lem, little knowledge exists regarding what features are
important. PCA 1s a useful tool to reduce the data dimension
and extract key features hidden 1n the time series data. PCA
transforms a dataset into a new set of uncorrelated variables
called principal components (PCs). PCs are ordered such
that the first component retains the most of the variation 1n
the original variables, the second component retains the
second most of the variation, and so on. In certain embodi-
ments, PCA may be used to select the most important
features of the voltage time series data by picking the first n
components. Euclidean distance in the chosen principal
components’ space will be used as the distance mefric in the
subsequent clustering process.

Clustering of Smart Meter Data with Constraints

The intuition behind identifying phase connectivity
through clustering of voltage time series data 1s that the
distribution system 1s typically operated in an unbalanced
manner. The unbalanced impedances and electric loads on
three phases lead to unbalanced line currents and voltages.
This implies that the trajectory of voltage time series of
customers with the same phase connectivity will have more
similar behavior than those with different phase connectiv-
ity. As mentioned above, instead of working directly with
the raw voltage data, in some embodiments, a feature-based
clustering approach 1s adopted with features extracted from
the voltage time series by PCA. Preprocessing, including
normalization and centering of the raw voltage data, 1s
conducted before applying PCA. As shown 1n the case study
herein, a relatively small number of features can yield very
accurate clustering results.

One goal of clustering the voltage data from smart meters
1s to 1dentify distinct groups of customers such that all
customers 1n the same group have the same phase connec-
tivity. Using the distribution feeder shown in FIG. 1 as an
example, customers x7, x8, x9, x10, x15 and x16 are all
connected to phase BC through a single-phase three-wire
system (120/240V), and they should be clustered into the
same group. Similarly, consumers x1, x2, x3 and x4 should
also be 1n one cluster because they are all connected to phase
A and have the same voltage level (120V).

Before applying the clustering algorithm, some embodi-
ments first separate customers based on their service voltage
levels (120V, 120/240V, 208 V, 277V, 480V). These voltage
levels may be easily idenfified by inspecting the voltage
magnitude data from smart meters. The algorithm used 1n
some embodiments aims at clustering customers of the same
voltage level. For example, if there 1s a set of 120/240V
meters, then the meters need to be clustered into three
groups. This 1s because 120/240V single-phase three-wire
service has three possible phase connections: AB, BC, and
CA.
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Various studies have been carried out to attempt to
improve clustering/learning performances by utilizing con-
straints from background knowledge. In one such study, two
kinds of hard constraints are introduced: must-link con-
straints and cannot-link constraints. Must-link constraints
specily that two data points have to be 1n the same cluster;
cannot-link constraints specify that two data points cannot
be 1 the same cluster.

As shown 1n the example of FIG. 2, at operation 208, the
constraints for the phase 1dentification problem may be
formed based on the network connectivity information
obtained at operation 204. Such network connectivity infor-
mation 1s typically available for power distribution systems,
such as, for example, the electric power distribution system
100 shown 1n FIG. 1. The network connectivity information
obtained at operation 204 may include line segment con-
figurations and the connectivity between customers, distri-
bution transformers, laterals, and primary feeders. If two
customers are connected to the same secondary laterals and
have the same voltage level, then they have the same phase
connectivity and should be linked together 1n the clustering
process. For example, with reference to FIG. 1, customers
x7, X8, X9 and x10 are all connected to the same lateral 1.3,
and receive power through a three-wire single-phase (120/
240V) configuration. Therefore, these customers should be
grouped 1nto the same cluster. However, customers 7 and
x15 should not be linked to each other because they are
connected to different laterals.

In another study, a scheme 1s introduced for constrained
k-means clustering. This scheme 1s similar to the basic
k-means clustering algorithm except that in the constrained
clustering algorithm, each data point 1s assigned to the
closest cluster such that it does not violate the constraints.
The phase 1denfification problem has must-link constraints
where certain data points must be 1n the same cluster. In
certain embodiments, first, customers on the same laterals
are put into a subset. Then, an augmented k-means clustering
algorithm 1s performed to the subsets themselves to obtain
the full partition. Let D=D,wD,u . . . UD, be the whole
dataset, and D,, . . ., D, _ are the subsets in which every data
point 1s linked together by the constraints. If a data point 1s
not linked to any other data point, then i1t forms a subset 1n
D 1tself. The constrained k-means clustering algorithm for
phase 1dentification 1s described 1n Algorithm 1 below.

Embodiments overcome 1ssues with the difficulty of find-
ing optimal result(s) by k-means clustering. For instance, to
get a relatively good clustering result 1 example
approaches, the clustering algorithm 1s performed multiple
times with different sets of random 1nitial cluster centers.
The clustering result with the smallest sum of squared
distances 1s selected 1n the end.

Algorithm 1 Constrained k-means clustering algorithm
1. procedure CON-K-MEANS(D=D,uD,u ... uUD,)

2: Choose data points randomly from D as the 1nitial cluster
centers C,, ..., C,.

3: For each subset D, assign 1t to the closest cluster C.. The
closest cluster 1s the cluster that has the minimum sum of
squared distances with all the data points 1n D..)

4: For each cluster update 1ts center by averaging all the data
points that have been assigned to 1t.

5: Iterate between (3) and (4) until convergence.

6: return {C,, ..., C.}.

7: end procedure Identifying the Phase of Cluster

Once the customers are clustered as described above with
reference to the method 200 of FIG. 2, an additional step 1s
to 1dentify the phase of each cluster. Since the customers 1n
the same cluster should have the same phase connection, an
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embodiment can 1dentify the phase of each cluster by
picking a small number of customers from that cluster and

1dentifying their phase connectivity. This 1s a huge workload
reduction compared with performing phase i1dentification
algorithms on every single customer. One may 1dentify the
phase of these few customers by microsynchrophasors,
signal generators, and discriminators.

However, to further reduce the computational workload,
and to save the expense of equipment needed with tradi-
tional approaches, certain embodiments identify the phase of
each cluster by a one-to-one matching between the set of
clusters and the set of possible phase connections. The
one-to-one matching may be found by solving the following
minimization problem. Suppose there are K clusters to be
identified with centers C,, . . . , Cg, and there are K
substation voltage time series on the K possible phases. The
K substation voltage series are centered and normalized by
their standard deviations, and then projected onto the chosen
principal components’ space used for clustering.
Let V., ..., V. be the coordinates of the K voltage series
in the chosen principal components’ space, and let f:
(Ci, ..., Cp)>{V,, ..., Vr} be an unknown bijection
between the cluster set and the substation voltage set. The
solution of the mimimization 1n (3) 1s the one-to-one match-
ing for phase identification. The phase of each cluster’s
paired voltage data 1s the cluster’s 1dentified phase.

K
argmin ZdE(Cf: f(C)
¥ bijection f:{Cl,... ﬁCK}—}{Vl,... *VK}le

Here, d.(C,,J(C,)) is the Euclidean distance between C,

and J(C,). The minimization may be solved by exhaustive
search, because there are only K! possible bijections, where
K 1s small (e.g., K=3 at 120/240V level).

Example Results Based on Electric Power Utility Distri-
bution Feeder

In this section, the proposed phase 1dentification method
1s validated through a case study of a distribution feeder 1n
a power utility’s service territory. The results show that the
constrained k-means clustering algorithm vyields highly
accurate phase connectivity on a typical distribution feeder.

Description of Datasets and Preprocessing of Data

The distribution feeder used for case study 1s a 12.47 kV
network with a peak load of about 5.2 MW. The feeder
serves about 1500 customers. The majority of the customers
are residential customers.

The raw data collected to test the phase i1dentification
algorithm include: 1) hourly smart meter readings of volt-
ages; 2) feeder line-to-line voltage readings of three phases
from the SCADA system; 3) network connectivity of the
distribution system. The SCADA system only records new
feeder measurements when the difference between the new
measurement and the previous measurement exceeds a cer-
tain threshold. For example, the threshold setting for the
line-to-line voltage 1s 0.02 kV. At last, to evaluate the
accuracy of the proposed phase 1denfification method, the
correct phase connectivity of each meter 1s also gathered to
serve as the ground truth.

Since the SCADA readings are recorded at non-uniform
timestamps, linear interpolation 1s used to create a new set
of voltages that have the same timestamps as the smart meter
readings. All the readings are centered and normalized by
their standard deviations. PCA and k-means clustering are
performed on time series data of the same time period with
the same timestamps. The timestamps are chosen such that
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most meters have a complete set of measurements. A smart
meter 1s removed from the case study 1f it has missing
readings at the chosen timestamps 1n the study period. In the
testing distribution feeder, most of the customers are served
by a three-wire single-phase system (120/240V) based on
the smart meter voltage levels. A few customers are served
by three-phase laterals; there 1s no need to perform phase
identification for these customers. Less than 1% of the
customers are served by two-wire single-phase systems
(120V). Due to the small number of datasets, they are
removed from the clustering process and their phase con-
nectivity may be identified.

After preprocessing the test data, about 1500 customers/
meters need to be clustered into three groups: phase AB,
phase BC, and phase CA. PCA may be conducted on the
preprocessed time series data. In certain embodiments, only
the first two principal components are used to calculate
Euclidean distances among customers. Based on the simu-
lation results, mncluding additional principal components
does not further improve the performance of the phase
identification results. The phase of each cluster may be
identified by finding the bijection as described above with
reference to FIG. 2. In this case, the bijection 1s between
three clusters and the substation voltages of phase AB, BC

and CA.
Example Clustering Results

TABLE 1

Example Clustering Results

Overall

Accuracy

Number
of Meters

Identified

Cluster Phase Accuracy

Unconstrained Clustering Results of August 2015

1 AB 674 02.58%

2 BC 518 87.64% 87.55%
3 CA 246 73.58%

Constrained Clustering Results of August 2015

1 AR 636 08.27%

2 BC 560 87.68% 90.40%
3 CA 242 76.03%

Unconstrained Clustering Results of September 2015

1 AB 678 03.36%

2 BC 547 03.60% 03.12
3 CA 244 01.39%

Constrained Clustering Results of September 2015

1 AB 645 08.29%

2 BC 559 07.67% 07.28%
3 CA 265 03:96%

Unconstrained Clustering Results of October 2015

1 AB 662 05.02%

2 BC 531 03.60% 03.09%
3 CA 254 87.01%

Constrained Clustering Results of October 2015

1 AB 630 09.84%

2 BC 550 08.36% 07.86%
3 CA 267 02.13%

In the example results, three months of SCADA, smart
meter, and network connectivity data are collected from
Aug. 1, 2015 to Oct. 31, 2015. 1438 smart meters’™ data are
available 1n August. Of these smart meters, 629 of them are
connected to phase AB laterals, 557 of them are connected
to phase BC laterals, and 252 of them are connected to phase
CA laterals. In September, 1469 smart meters’ data are
available. Of these smart meters, 638 of them are connected
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to phase AB laterals, 571 of them are connected to phase BC
laterals, and 260 of them are connected to phase CA laterals.
In October, 1447 smart meters’ data are available. Of these
smart meters, 633 of them are connected to phase AB
laterals, 562 of them are connected to phase BC laterals, and
252 of them are connected to phase CA laterals.

The example clustering and phase identification results
are shown 1n Table I above. These example results may be
interpreted as follows. The clustering and phase identifica-
tion algorithms group the smart meters into three clusters.
The phase identified for each cluster 1s listed in the 1dentified
phase column. If a meter 1s assigned to a cluster whose
identified phase 1s the same as the meter’s actual phase, then
it 1s assigned to the correct cluster. The accuracy column
shows the percentage of correct assignments in each cluster
and the overall accuracy column shows the overall accuracy
of the phase 1dentification algorithm.

Table I shows that the phase 1dentification algorithm of
both unconstrained and constrained clustering achieved at
least 90% overall accuracy in September and October. In
addition, 1n all months, the constrained clustering algorithm
yields a higher accuracy than the unconstrained k-means
clustering algorithm. The constraimned clustering outper-
forms the unconstrained clustering by letting must-link
constraints pull a linked meter back to the correct cluster
when 1t 1s near the boundary of two clusters.

FIGS. 3 and 4 illustrate example distributions of voltage
time series data, 1n accordance with some embodiments. In
particular, FIGS. 3 and 4 show the distributions of two
months of voltage data points 1n the space of the first two
principal components. For example, FIG. 3 shows the dis-
tribution of August voltage time series data, with voltage
data points in the space of the first two principal compo-
nents, 302 and 304. Also, for example, FIG. 4 shows the
distribution of October voltage time series data, with voltage
data points in the space of the first two principal compo-
nents, 402 and 404. In FIGS. 3 and 4, dashed lines are the
boundaries of Voronoi cells associated with cluster centers
derived from the constrained clustering algorithm.

FIG. 4 also shows an example of how the constrained
clustering algorithm improves the accuracy of phase 1den-
tification. For example, mn FIG. 4, a set of CA cluster data
points grouped by must-link constraints are connected by
solid lines. Although this set of data points are separated by
a boundary, they are closer to the CA cluster as a whole.
Therefore, they are assigned to the CA cluster, which 1s the
correct phase. Without these must-link constraints, some of
the data points will be assigned to the BC cluster, which 1s
incorrect. FIGS. 3 and 4 show that data points of different
phases are separated in the space of the first two principal
components. However, there are more data points of phases
BC and CA overlapped in FIG. 3 than in FIG. 4. As a result,
the overall accuracy of phase BC and CA are lower when
using data from August, compared with data from October.

FIG. 5 1llustrates example phase 1dentification results 500,
in accordance with some embodiments. In particular, FIG. 5
shows the clustering results on the distribution circuit map
for a distribution substation 502 based on the smart meter
data of October 2015. In FIG. 5, each line 1s colored
according to 1ts actual phase. In FIG. 5, each structure 512
(¢.g., a transformer) 1s represented by a small dot. In FIG. 5,
the solid three-phase black lines are primary feeder lines
504. Structures may be connected to primary feeder lines
504 through a three-wire single-phase (120/240V) system,
so they may be connected to any phase of AB lines 506, BC
lines 508, and CA lines 510. In FIG. §, arectangle 1s overlaid

on top of a structure 512 11 1t 1s assigned to a wrong cluster.
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The type of line (e.g., solid, dashed, dotted) of a rectangle
shows the identified phase of the cluster. Note that the
number of structures 512 1n results 500 1s smaller than the
number ol smart meters/customers as a distribution trans-
former typically serves several customers.

The results 500 in FIG. 5 show that the constrained
k-means clustering algorithm groups the meters by phase at
high accuracy, and the identification method correctly 1den-
tifies the phase of each cluster.

An mnovative distribution system phase identification
algorithm using constrained k-means clustering of smart
meter data 1s presented i1n the present disclosure. The
example algorithm leverages the network connectivity infor-
mation to avoid mislabeling of customers on the same
secondary feeder. Utilizing only the smart meter and
SCADA information, the proposed algorithm i1s not only
computationally ethicient but also yields high accuracy; a
real-world distribution feeder was used as a test case to
validate the example algorithm. The case study results
discussed above and provided 1n Table I and FIG. § show
that the constrained k-means clustering algorithm outper-
forms the unconstrained algorithm. The overall accuracy of
the example algorithm 1s at least 90%.

Table I shows that this example algorithm performs better
during some months than during others. In some embodi-
ments, algorithms not only perform phase 1dentification but
they also estimate the confidence level of clustering result
for each individual meter.

Additional or alternative embodiments pertain to a proba-
bilistic phase 1dentification algorithm. In addition to 1denti-
tying the phase connectivity of a structure/customer, the
probabilistic phase 1dentification algorithm also provides the
coniidence level of each customer’s phase assignment. Ben-
eficially, the probabilistic phase i1dentification algorithm
allows electric distribution system power engineers to spend
more time performing field validation only for the few
customers whose phase assignment have a low confidence
level.

To estimate the probability that a customer 1s connected to
a given phase, an embodiment uses a fuzzy rule-based phase
identification approach. In the traditional k-means clustering
method, the membership of a customer X, 1n the 1-th cluster
u, can only take on a value o1 0 or 1. In the fuzzy rule-based
approach, the membership u,, can take on any positive value
subject to the constraint that the memberships of a customer
k across all ¢ clusters sum to 1. The memberships assigned
to each customer x, are inversely related to the relative
distance of x, to the cluster centers {V,},_, . [57]. For
example, 1f ¢c=2 and x, 1s equidistant from two cluster
centers, the membership of x, 1 each cluster will be the
same (=0.5). The confidence level associated with the mem-
bership assignment can then be found through minimizing
the weighted sum of square distances between the customers
and the cluster centroids.

The objective tunction of the optimization problem may
be formulated as MinXZ_ X, _ "(u,)’|x,—v/|>. The con-
straints are (1) u,€E [0,1]V1, k and (2)2._,“u,,=1.

In other words, each x, could belong to more than one
cluster with each belongingness taking a fractional value
between O and 1. The problem may be solved iteratively by
alternating optimization by leveraging the necessary condi-
tions for 1ts local minima. The alternating optimization
approach iteratively estimates 1) the membership values u,,
and 2) the updated cluster centers v,.

An additional feature of the probabilistic phase 1dentifi-
cation algorithm 1s that it considers how eflectively utilities
use existing phase connectivity information to further
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improve the accuracy of the phase identification problem. If
a small subset of customers’ phase connectivity information
1s known, then the connectivity of the remaining customers
may be extrapolated with high accuracy. The extrapolation
may be done with any typical machine learming algorithms,
but most rely on a large mitial subset of customer data
measurements. Since measurements have a high opportunity
cost, the algorithm that seeks to minimize the size of this
initial subset with accuracy 1s necessary.

To minimize the size of the subset, an example method 1s
based on the Topological Data Analysis algorithm Mapper.
Mapper 1s an algorithm that finds connectivity 1n data by
applying a multidimensional filter function to 1t. The filter’s
codomain 1s then covered by an open covering. The open
covering 1s converted to a simplicial complex called the
nerve of the open covering, and this simplicial complex 1s
pulled back through the filter to form a simplicial complex
on the data. Data that 1s connected through this complex are
closely related and may be clustered together.

In an embodiment, the Mapper algorithm 1s expanded 1nto
a classification algorithm by first performing Mapper on the
training data and saving the resulting simplicial complex
(see FIG. 6). FIG. 6 1llustrates an example formation of a
base simplicial complex, in accordance with some embodi-
ments. In particular, FIG. 6 shows how a filter function 602
1s applied to open cover 604 (1.e., open covering) to form a
trained complex 606.

Each node in the complex 1s then assigned a phase label
by a majority rule on the customers in that node. This
simplex can then be used to assign labels to new data. Any
new data will be sent through Mapper. This will send the
new data point to a node, but will not change the original
complex. The node that the data point 1s sent to will then be
compared with the nodes of the original complex, and the
closest node’s label will be assigned to the new data point.
To make this algorithm work, three choices are made. First,
a distance metric 1s chosen. Next, in the example of FIG. 6,
a filter function 602, and finally, an open covering 604 of the
codomain of the filter 1s applied. The open covering 604 1s
casy to characterize and therefore easy to choose. Larger
open coverings 604 lead to more resolution (less customers
per node). The filter function 602 and distance metrics are
more dithcult.

One benefit of the proposed method 1s 1its visualization
properties. Once all phase labels are chosen for the training
data, embodiments may map these labels to integers (1n any
way) to form a new filter. Appending this filter to the old one
and running Mapper on the training data will then yield three
copies of the original complex-one for each phase. Nodes
that are more umiformly spread across these phases may be
considered less reliable than nodes that are concentrated on
one phase.

Distribution Network Phase Identification Through Topo-
logical Data Analysis

According to additional or alternative embodiments,
phase 1dentification 1s accomplished through topological
data analysis. These embodiments are described in the
following sections.

Phase connectivities of structures fed by a distribution
network (e.g., an electrical distribution network such as the
example provided in FIG. 1) are important to the modeling,
operation, and optimization of that network. However, phase
connectivities are often mislabeled or missing entirely. As
discussed above, phase connectivity may be measured, but
such measurements are expensive. In accordance with
embodiments, a minimally supervised machine learning
algorithm accurately generalizes a small number (i1.e., a
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subset) of phase connectivity measurements to the entire
distribution network. According to such embodiments, the
algorithm 1tself 1s an extension of the Mapper algorithm 1n
topological data analysis. In examples discussed herein, real
distribution feeder data provided by a power utility (e.g., an
clectrical utility), 1s used to show that this example algo-
rithm can correctly generalize the phase connectivity of over
96% of the buildings/customers 1n a distribution feeder by
measuring just 5% of them. Embodiments pertain to electric
distribution networks, machine learning, phase 1dentifica-
tion, smart meter data, and topological data analysis. In the
topological data analysis embodiments, algorithms, and for-
mulae discussed in the following paragraphs, the nomen-
clature below 1s used.

NOMENCLATUR.

T

X The data set.
d,- A distance metric.

Y A low-dimensional topological space.
T A filter function.
U An open set of Y.

o. An index for an open covering on Y.

] The index set for an open covering of Y.
V An open set of X.

3 An mdex for an open covering on X

K The index set for an open covering of X.
C An open covering.

N The nerve of an open covering.

X, A training data point.

X, A selected test data point.

v, A forest vector.

u An ensemble mean.

std An ensemble standard deviation.

> A simplicial complex.

o A simplex 1n a simplicial complex.

T A topology.

B_(r) An open ball of radius € centered at r.

Distribution system operators (DSOs) rely on various
optimization and planning tools to ethciently operate a
distribution network. These tools require an accurate model
of the network 1tself. A significant part of a distribution
network model 1s the subset of phases connected to each
building. These phase connections are not documented accu-
rately 1n real distribution circuits; they are often mislabeled
or rearranged during network maintenance and expansions.
Thus, an accurate method of identifying the phases con-
nected to each building 1n a distribution network 1s 1mpor-
tant to that network’s operation. When phases are not
identified correctly, all optimization and planning algorithms
used on a distribution network are run on the wrong circuit
and will yield results that are inaccurate to the true circuit.

With the large-scale deployment of smart meters, machine
learning algorithms and advanced data analytics have
become viable solution techniques to several problems at the
distribution network level. By extending and synergistically
combining advanced techniques in data analytics and
machine learning, the present disclosure introduces a novel
algorithm that solves the phase identification problem with
high accuracy and low supervision.

On the data analytics side, topological data analysis
(TDA) represents a suite of computational methods used to
infer the structure of an unknown topological space (e.g.,
some high-dimensional manifold) from which mnput data 1s
measured. The central method to TDA 1s persistent homol-
ogy, but one particular algorithm, called Mapper, generates
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an easily visualized approximation of this hidden structure
so that the user can quickly make important inferences from
the dataset.

Some embodiments extend Mapper to a machine learning
algorithm capable of accurately identifying the phases con-
nected to every building 1n a distribution network. Further,
certain embodiments do this by using only a small set of
samples as traiming data. By applying this extension to a real
distribution network in Southern California, the phase con-
nectivities of 96% of the constituent buildings were accu-
rately 1identified when only 5% of the buildings were used as
training data.

The rest of the present disclosure 1s organized as follows.
First, a review ol past attempts of phase 1dentification and
discussions of advantages and disadvantages of each exist-
ing technique are provided. Then, detailed descriptions of
the Mapper algorithm and 1ts extension to a supervised
machine learning algorithm are provided. This 1s followed
by a discussion of the results of the extension when applied
to the phase 1dentification problem on a case study. Lastly,
the mathematics behind the Mapper algorithm are provided.

TDA Background and Review

Understanding the phase identification problem begins
with understanding the network topology of a radial distri-
bution network. A distribution network starts with a substa-
tion and typically descends 1n a tree-like structure to laterals
and then to customers. The substation transformer 1s used to
step down the high voltage of the transmission network.
Both sides of the substation use three-phase wiring. From
the secondary side of the transformer, any combination of
phase wires may be tapped and sent into laterals, which are
then stepped down once more before connecting to custom-
ers. The combination of phase wires used for a given lateral
depends on the customers that the lateral feeds. Large
commercial buildings will often connect to all three phases,
while residential houses will often use a single phase (e.g.,
A, B, or C for line-to-neutral loads or AB, BC, or CA for
line-to-line loads) to form a split phase center-tapped con-
nection. Determining which combination of phase wires
compose the lateral that feeds a given structure 1s the phase
identification problem.

A phase 1dentification system has been developed based
on high-resolution timing measurements communicated
between the base station and the feeder transformer second-
aries. This system 1s highly accurate and even yields the
voltage phasors of the secondaries themselves instead of just
the phase names of the wires connected to them. However,
the system 1s quite sophisticated, and deploying such a
system for each feeder i a distribution circuit (or more
realistically, across several distribution circuits) i1s challeng-
ing and expensive.

An existing method seeks to perform phase 1dentification
through signal injection. A signal generator 1s placed at the
base substation and a unique signal 1s created for each phase.
These signals are detected by a signal discriminator at each
customer location. By matching the signals, the phase con-
nectivities may be accurately reproduced. However, this
method requires many devices to be installed into the
network.

Another existing phase i1dentification technique seeks to
use microsynchrophasors. For example, in a phase identifi-
cation system, microsynchrophasors measure voltage pha-
sors directly. This method has a few advantages, however.
First, microsynchrophasors are much simpler to use than the
system ol high-resolution timing measurements and com-
munications required by the previous method. Secondly,
microsynchrophasors are mobile. This means that only a few
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devices (and a database) are needed to obtain the phase
connectivities of an entire distribution network. However,
this still requires significant manual labor as each secondary
must be physically measured at least once.

Another existing technique seeks to use a load tlow
estimation algorithm coupled with substation measurements
and customer load data to predict phase connectivity. By
choosing (arbitrarily at first) the phase connectivities of the
circuit, a model of the network 1s formed. L.oad flow is run
on this model and the output 1s compared to the measure-
ments. The goal, then, 1s to iteratively change the phase
connectivities such that the error between output and mea-
surements 15 minimized. Phases are changed in iteration
based on a set of allowed ‘moves’. By implementing Tabu
restrictions, the space of allowed moves 1s significantly
reduced such that the algorithm’s computational complexity
1s limited. However, the method achieved only 50% accu-
racy. This percentage was significantly improved to 78.5%
by 1ncluding nodal measurements of the network, but the
results are highly sensitive to the number and locations of
these measurements.

Yet another existing technique seeks to identily phase
connectivity by assuming a configuration, calculating the
power consumed by each phase, and then changing the
configuration until the consumption matches the substation
powers delivered to the network. While the method performs
extremely well, 1ts scope 1s limited as any missing data will
cause a power mismatch between the secondaries and the
measured loads. Furthermore, 1t assumes that each customer
1s connected to a single phase only and thus does not
perform well on circuits mvolving line-to-line connections.

An additional existing technique attempts to identily
phase using only voltage measurements at the customer and
lateral levels of the network. By computing the correlations
between the voltages at these levels, good results were
obtained. However, voltage measurements at the lateral
level requires extra infrastructure.

Another existing technique also attempts to 1dentily
phases through just voltage magnitude data gathered by
smart meters. In this case, however, the voltage magnitude
data 1s compared to the base substation rather than the
voltage at the laterals. Thus, no additional equipment 1s
needed beyond the smart metering infrastructure. A linear
regression model 1s assumed to represent the measured
voltage levels as a linear function of substation power on an
assumed phase, substation voltage on that phase, and the
power consumed by the customer. The model 1s then fit from
meter data three times (one for each phase assumption) and
the fit with the highest R* value is taken. The accuracy of this
existing technique was uncertain due to model uncertainties
and 1t 1s not fit for substations 1n delta connection or for
customers that have line-to-line connections, but it 1s easily
implemented and may be used to solve several other prob-
lems 1 distribution networks as described in the present
disclosure.

In the present disclosure, a method of phase 1dentification
1s described which uses voltage metering data. Beneficial
features of embodiments presented herein 1nclude:

Methods that yield high accuracy with little infrastructure
and physical labor.

The methods do not require any modeling of the network.
For example, branch impedances do not need to be
known.

The methods are robust with respect to missing data.

Implementations and tuning of the example algorithms
are very user-friendly.
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The methods can handle any type of phase connectivity

without additional changes.

According to some embodiments, phase identification
methods use measurements of the connectivity of some
structures (e.g., with microsynchrophasors), but the amount
of measurements 1s extremely low. Such example methods
improve phase i1dentification accuracy without requiring
measuring every structure. Thus, such example methods
serve as a good tradeofl between accuracy and labor. The
methods themselves perform much better than traditional
machine learning algorithms, especially at low levels of
training data, and can thus be used in other machine learning,

problems as well.
Example TDA Methods

This section uses several topological notions. Formal
definitions of abstract simplicial complexes, topologies, the
discrete topology, the Euclidean topology, the weak topol-
ogy, open coverings, and the nerve of an open covering are
all provided later in the present disclosure.

The method of phase 1dentification used 1n some embodi-
ments 1s an extension of the Mapper algorithm in TDA.
Mapper transforms an mmput metric space mmto an easily
visualized representation called an abstract simplicial com-
plex. From this simplicial complex, subsets of similar data
points are easily 1dentified. In this sense, Mapper 1s akin to
a human-aided clustering algorithm. Some embodiments
extend Mapper to a human-aided classification algorithm.
According to such embodiments, this extension 1s performed
by learning the algorithm’s two most critical parameters
from training data, building a base simplicial complex from
that training data, and defining how new data 1s classified
from this base simplicial complex.

FI1G. 7 1llustrates the operation of a method 700 of phase
identification which uses voltage metering data, 1n accor-
dance with some embodiments. The example method 700 1s
summarized 1n FIG. 7. At block 706, operations 702 and 704
are performed to mitialize the algorithm. As shown, opera-
tion 702 obtains all data (e.g., voltage measurements 1nclud-
ing a plurality of customer voltage time series) and operation
704 obtains training data.

Then, at block 716, operation 714 uses the training data
obtained at operation 704 to build a forest of random trees.
At operation 712, this forest 1s used to transform each data
point into a forest vector.

Next, in block 708, at operation 710, a two-component
t-SNE algorithm 1s run on the entire ensemble. As shown in
FIG. 7, operation 710 may comprise running the t-SNE
algonthm with a hamming metric. At operation 718, the
numerical results are stored (for each data point) 1n a table
which represents the filter function.

At operation 720, the ensemble 1s then split into training
and testing data. The tramning data 1s then put through
Mapper by performing operations 722, 726, 732, 736, and
740 to build a base simplicial complex. As shown, operation
722 filters the training data, operation 726 inverts open sets
of a covering, operation 732 clusters inverse 1image subsets
to form trained clusters. With continued reference to FIG. 7,
operation 736 builds a nerve of the covering, and operation
740 provides a visualization (e.g., presents a visualization on
a user interface of a display device).

Finally, in block 738, new data 1s classified by filtering
that point at operation 724, performing operation 728 to
consider open sets in the covering that the point lands 1n, and
grouping 1t to the nearest appropriate cluster at operation
730. Lastly, the nearest trained cluster 1s labeled at operation

734.
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Detailed Description of the Mapper Algorithm

An example Mapper algorithm takes as put a finite
metric space (X, dy). X 1s the set of data points and d,-
XxX—R 1s any distance metric. d, induces the discrete
topology on X because X 1s finite, so every subset of X 1s
considered open. In the first step of the algorithm, X 1is
mapped to a low-dimensional topological space Y through a
continuous filter function f: X—Y. The codomain of  is
typically taken to be either Euclidean space R with the
Euclidean topology or some subset of R™ (e.g., the unit circle
SY) with the weak topology.

Y is further equipment with an open covering {U_!}
This may be pulled back through the inverse of f to form an
open covering of X, {VB}BEK as follows. For each open set
U, in the covering of Y, the inverse image f*(U_) is found.
Thls image, which 1s a subset of the data set X, 1s then
clustered according to any predetermined clustering algo-
rithm (single linkage hierarchical clustering was used here).
The clustering 1s performed without the influence of the
other data points 1n X. Each cluster output by this procedure
will be a subset of data points which will then be placed in
the open cover of X. The steps that cluster inverse 1mages
may be referred to herein as back-clustering steps. For
brevity, the present disclosure also denotes the open cover
on Y as C; and the constructed covering on X as Cs.

Open covers are readily converted to simplicial com-
plexes called the nerve of the covering. Thus, a simplicial
complex representing X 1s found by performing the above
steps to get an open covering on X and then converting this
open covering to 1ts nerve. The nerve of C 1s labeled N(C;)
and the nerve of C,- (the output of Mapper) 1s labeled N(C).

To obtain 1nsights about what the output simplicial com-
plex tells us, consider two of its O-sumplices o, and o,. If
these two simplices were generated in the same back-
clustering step, then they will not be connected. Otherwise
if these two simplices were not generated in the same
back-clustering step, then o, 1s a cluster 1n the inverse image
of some open set U, and o, 1s a cluster 1n the inverse image
of some open set U, with U,=U,. Then o,Uoc, forms a
1-simplex in the output if and only if dx&EX such that
Fx)&U,NU,. Thus, the Mapper output, in a sense, repre-
sents the filtered connectivity of the data.

FIG. 8 depicts constructions 800, including output 806, of
a Mapper algorithm, 1n accordance with some embodiments.
As 1llustrated 1n FIG. 8, the Mapper output 806 may repre-
sent the filtered connectivity of the data. FIG. 8 contains
three objects. The object on the left, covered filtered space,
represents Y=R” covered by open hexagons (e.g., a hexago-
nal covering 802). In FIG. 8, the dots represent the image of
data points under a filter f: X—=R>. The object on the top
right of FIG. 8 represents a nerve 804 of the hexagonal
covering 802. The nerve 804 has constituents that should be
read as follows: diamonds represent O-simplices, edges
represent 1-simplices, and filled tnangles represent 2-sim-
plices. There 1s a O-simplex for every hexagon, a 1-simplex
for every intersection of two hexagons, and a 2-simplex for
every intersection of three hexagons. The object on the
bottom right represents Mapper’s output 806. The constitu-
ents of the output 806 should be read the same way as those
of the nerve 804. The output 806 i1s different from the
original nerve 1n that several simplices have been removed.
A simplex 1s removed 11 the corresponding intersection does
not contain a data point mapped through . It is clear that the
Mapper output 806 somewhat captures the connectivity of
the data 1n the filtered space.

In some embodiments, a Python Mapper implementation
of this algorithm 1s used. For example, a Mapper implemen-
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tation with 30 unit squares may be used for the open
covering of the filtered space.

Extending to a Classification Algorithm

Suppose the data set X 1s partitioned by training data and
test data. The training data are those data points for which
the phase labels are known, and the test data are those data
points for which the phase labels are not known. It 1s desired
to obtain accurate labels for the test data given only the
training data. This cannot be achieved with Mapper alone.
Mapper can form a simplicial complex that visualizes con-
nections between similar data points, but a rule must be set
for labeling the test data points from the complex. Further-
more, certain embodiments need the complex itself to rep-
resent connections related to the phase labels 11 certain
embodiments are to achieve high accuracy. To ensure such
connections are represented, 1t 1s reasonable to build the
simplicial complex from only the data 1n which the labels are
known.

The extension used 1n some embodiments 1s described as
follows. First, certain embodiments build the simplicial
complex from the training data alone. To ensure that this
complex represents the connections that are desirable, cer-
tain embodiments train the distance metric and filter func-
tion ol Mapper with the training data. This 1s the subject of
the next two subsections. Once the complex 1s built from the
training data, the O-simplices are labeled by majority rule.
That 1s, certain embodiments look at the data points 1n each
open set UEC, and label the corresponding O-simplex by
whichever phase label occurred most frequently. Finally,
each test data point x, 1s labeled as follows. x, 1s first sent
through the filter function f-f(x,) will fall into one or more
of the open sets in C;. These open sets will also contain the
image ol some of the training data (if they do not, then the
label of x. 1s chosen through the simple nearest neighbor
algorithm). This subset of traimning data 1s then separated
from the rest of X, and the nearest traiming data point to x,
in this subset 1s selected with nearness measured in the
original space.

This selected training data point 1s referred to herein as x -
This selected data point will belong to one or more of the
open sets of C,- which have corresponding 0-simplices 1n
N(C,). If x,. belongs to only one such set, the label of this
0-simplex 1s given to x,. If X~ belongs to multiple subsets 1n
C, (1.e., f(x,) lies in the intersection of open covers in Cy,),
then the most confident of these open sets 15 selected. A
description of an embodiment for estimating the confidence
of the open sets 1s provided below with reference to FIG. 9.

FIG. 9 illustrates a visualization 900 of extending a
Mapper algorithm to a classification algorithm, in accor-
dance with some embodiments. In particular, the visualiza-
tion 900 1s shown 1n FIG. 9, where the possible phase labels
are assumed to be A-902/908, B-904, and C-910. The dot t
represents the test data point x,. There are four training data
points selected from the location of f(x,). These have been
labeled 1, 2, 7, and 8 1 FIG. 9 (included 1n traiming data
points 906). The closest of these points, 1n the filtered space
Y, is the one to the bottom left of F(x,). However, this is not
necessarily the closest point to xt in (X, dy). In the example
of FIG. 9, the point above and the left of f(x,) 1s the closest,
and so 1t 1s selected. It belongs to the top right and top leit
O-simplices of N(C,) as shown in the right object of the
figure. In this example, the top ledt simplex 1s more confident
than the top right one. Since this O-Simplex 1s labeled A-902,
x, will also be labeled A-902.

Confidence Estimation

Some open sets of C,- (and the corresponding O-simplices
of N(C,)) will be more reliable than others. With the Mapper
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setup, 1t 1s easy to estimate the confidence of each open set
both numerically and visually.

Numerically estimating the confidence of an open set
VEC, 1s straightforward. Each training data point XV 1s
already labeled. Then, 11 V has phase label P, 1t 1s suflicient
to find the percentage of data points 1n V that have phase
label P.

This confidence can also be encoded visually in the
trained simplicial complex. First, each open set of C,-1s split
into three new open sets by phase label. This forms a new
open covering C,. The nerve of C,, N (C,) is then further
extended to include all 1-simplices consisting of the 0-sim-
plices in C,- whose corresponding open sets in C, were
generated at the same open set 1n C,. This extended nerve
is referred to as: NV (C,).

This example procedure generates three copies of the
original trammed simplicial complex—one for each phase
(see, e.g., FIG. 10, discussed below). If the O-simplices of
this new complex are sized (in the visualization of the
complex) by number of data points in the corresponding
open set of C,, then it is easy to quickly visualize the
performance of each node. This can help substantially in
moditying any parameters of the algorithm on the fly to
achieve better results.

FIG. 10 illustrates splitting a stmplicial complex by phase,
in accordance with some embodiments. In particular, an
example 1000 of an extended simplicial complex 1s shown
in FIG. 10. In the example 1000 of FIG. 10, each layer 1s one
copy of the original simplicial complex. In FIG. 10, the
layers are connected via dotted lines representing the added
1-stmplices. Most of the O-simplices carry high confidence.
For example, the data points 1 the open cover C, corre-
sponding to the 0-simplex on the top right (C-1004, B-1008,
and A-1016) 1s contained mostly in the B layer; few of the
data points are contained in the layers of the other two
phases. Thus, 11 a test data point accepts the label from this

node, we may be confident that that test data point should
indeed have label B. However, the bottom left (C-1010,

B-1018, and A-1022) O-simplex has 1ts data points spread
evenly across the three layers, so we should not be confident
of the labels assigned to any test data points by this 0-sim-
plex. IT possible, this node should be focused on whether
parameters such as the filter function are to be changed. As

shown, the other data points 1n the example 1000 are spread
across the three layers, C-1002, B-1006, A-1014, C-1012,

B-1020, and A-1024.

Learning the Distance Metric

For good accuracy, certain embodiments use a distance
metric that considers data points of the same label close and
data points of diflering labels distant. To achieve this, certain
embodiments learn the distance metric itself from the train-
ing data.

To learn the distance metric, a hamming metric 1s formed
from a forest of random trees. A forest of random trees 1s a
set of decision trees created from the training data alone. The
number of trees 1n the forest 1s determined ahead of time and
each tree 1s built as follows. First, a random subset of the
training data 1s selected. The depth of the tree 1s set to 0 and
a random feature (e.g., hour 271) 1s selected. Next, the value
of that feature that best separates the selected subset of
training data by label 1s found (measured by entropy). The
depth of the tree 1s then set to 1, and two features may be
selected randomly (one for each branch). This will repeat
until a pre-specified depth 1s reached or until the change in
entropy from introducing a new depth becomes smaller than
a set threshold. Once each tree 1s built, we will have a forest
that 1s learned from the training data. In some embodiments,
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the forest may be created with the Python Sklearn class
RandomForestClassifier. Once the forest 1s generated, the
trees that it contains may be ordered arbitrarily.

In certain embodiments, the forest may be used to create
a vector, which 1s referred to herein as a “forest vector”,
from each data point as follows. First, the data point 1s sent
through each tree in order. At step i, the i” tree will ask a
series ol questions about the data point and send 1t to a leat
1. The value of the 1th component of that data point’s forest
vector 1s then set to 1. In general, each forest vector will have
dimension equal to the number of trees in the forest, and
each component will have a value from the set {0, 1, . . .,
2°”-1} where D is the depth of each tree.

The forest vectors are then used to determine the distance
between any two data points via the Hamming Metric. If two
data points x,; and x, have forest vectors v, and v, then
d.{X,, X,) 1s the number of components that differ between
Va and v,

This metric 1s illustrated 1n FIG. 11. FIG. 11 illustrates a
visualization 1100 of a distance metric, 1n accordance with
some embodiments. As shown 1n FIG. 11, two one-dimen-
sional data points x=2:5 (1108) and y=1:1 (1128) are com-
pared. The data points 1108 and 1128 are sent through three
trees of depth two. The trees ask, 1 order of appearance,
whether or not the data point 1s less than one (see, e.g., 1102,
1122), less than two (see, e.g., 1104, 1124), and less than
three (see, e.g., 1106, 1126). The respective answers to these
questions for x=2.5 (data point 1108) are no (see, e.g., 1110),
no (see, e¢.g., 1114), and ves (see, e.g., 1112), so x’s forest
vector is [0,0,1]7.

The forest vector for y=1.1 (data point 1128) is [0,1,1]".
These forest vectors differ only 1n the second component, so
the distance between x and y, d,(X, y) 1s 1. The respective
answers 1o these questions for y=1.1 (data point 1128) are no
(see, e.g., 1130), no (see, e.g., 1134), and ves (see, e.g.,
1132). In an example, results used 1350 trees of varying
depth.

Learning the Filter Function

To ensure that the trained simplicial complex of the
Mapper algorithm separates the traiming data of different
phase labels, the filter function § is also learned. The filter
function may be any standard classification algorithm with
a numerical output. For example, one of the most popular
classification algorithms 1s the support vector machine.
Here, a support vector machine may be built to find the
directions 1n which the data points are most sufliciently
separated by phase label, and the mnner product of the data
points with the normal vectors to the found hyperplanes may
be used as a multidimensional filter function. However, 1n
certain cases, support vector machines are less accurate than
using the two components of the two-dimensional t-Distrib-
uted Stochastic Neighbor Embedding (t-SNE) dimensional-
ity reduction algorithm even when kernel tricks were used
on the support vector machines. Thus, the t-SNE algorithm
approach was used for our results.

Example results use the Python Sklearn implementation
of the t-SNE algorithm. The t-SNE algorithm maps high-
dimensional data sets such that data points that are close 1n
the original space remain close and points that were distant
in the original space remain distance. While the algorithm
traditionally uses Euclidean distance, implementations for
the Hamming metric are available.

Example Parameters of the Open Covering

While the open covering of the filtered space Y may be
any open covering, 1t 1s useful in computation to use open
sets from a parameterized set of a given shape. For example,
FIGS. 8 and 9 use open hexagons of a given size to cover Y.
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The overlap between any pair of hexagons 1s also set. These
parameters, (shape, size, and overlap) will characterize the
results of the Mapper extension to some degree (though
much less so than the distance metric and filter function).

First, the size of the open sets in the covering will
determine the resolution of the trained simplicial complex.
If the sets are small (in Lebesgue measure), then there will
be more open sets 1n C,- (as each nonempty open set in C;,
generates at least one open set 1n C,.). Further, each of the
open sets 1n C,-will contain fewer points than 11 larger open
sets were used. In the extreme case of small open sets 1n C,,
there will be one open set in C, for each data point and thus
the number of O-stmplices 1n the trained simplicial complex
will be equal to the cardinality of X. However, 1n the other
extreme, 11 there 1s only one large open set 1n C;- (Y 1itsell)
then there will be only one open set in C,- (X 1tsell), and thus
only one O-simplex 1n the trained simplicial complex.

Second, the amount of overlap between any two pairs of
sets 1 C,- will determine the connectivity of the trained
simplicial complex. This connectivity 1s determined by the
1-stmplices included. 1-simplices are found whenever two
open sets 1n C,-have nontrivial intersection, but this happens
only 11 the 1image of a data point under the filter function falls
in one of the overlapping regions between two sets 1n Cy.
When these overlaps are larger, there 1s a higher chance that
this happens.

Finally, the shape itself will influence the order of the
simplices 1n the tramned simplicial complex. Higher-order
simplices are found when there are several open sets 1 Cs-
with nontrivial intersection. For example, 1f three open sets
in C, share data points, then three 1-simplices (one for each
pair) and a 2-simplex will be generated in the trained
simplicial complex. This happens only 1f multiple sets 1n C;
overlap. For example, 1n FIG. 8, the largest intersection of
open covers involves three open sets in C; so there will
never be a 3-simplex 1n the trained simplicial complex (but
a 2-simplex 1s possible). IT a less eflicient shape were used,
such as squares, then higher-order simplices would be
possible.

Example TDA Results—Data Description and Prepara-
tion

The data used to test the example phase i1dentification
algorithm 1s from a power utility (e.g., an electrical utility).
The data consists of hourly averaged voltage magnitude data
for all buildings and structures in a particular distribution
network during the month of October. In this example, only
voltage magnitudes are measured; 1i voltage phasors were
measured, then the problem of phase 1dentification would be
trivial. This distribution network was measured 1n full to
obtain the phase connectivity data of each building and
structure, and the correct phase labels were provided. The
data consists of 1274 data vectors that each have 744
features. Each feature 1s a voltage magnitude at the respec-
tive hour.

Some of the data points had missing measurements and
thus had dimension less than 744. Data points of this type
(30 1n total) were discarded. Furthermore, buildings con-
nected to all three phases at once are easily identified by
checking 11 the voltage magnitude of that building is close to
208V or 480V, and so all data points of this type (six 1n total)
were also discarded. Thus, there remained 1228 data points
of dimension 744 which were each connected to two phases.

The voltage levels of these remaining customers were all
240V with small vaniations. The possible labels are AB, BC,

and CA.
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The data was standardized before running the algorithm.
That 1s, each component of the 1th data point was trans-
formed through the following example equation:

i T H
IH 7
Sﬂiij

Where y. 1s the ensemble mean of component j and std, 1s
the ensemble standard deviation of component j.

Accuracy

The Mapper Extension classifier 1s able to accurately
predict the phase connectivities of 96% of the structures in
the distribution network after measuring only 5% of them.
This 1s a good accuracy for a small amount of labor. In
practice, the accuracy will be even better. Since several
structures will belong to the same feeder, 1t 1s easy to
discover structures that have the same phase connectivity by
analyzing the connectivity of the network itself. Thus,
realistically, only a few secondaries need to be measured
before applying this method to achieve high accuracy.

For testing purposes, training data was sampled at random
from the set of all data. Realistically, this training data would
be measured with synchrophasors or one of the other physi-
cal methods referenced 1n the literature review. The accuracy
of the algorithm depends on the tramning data used. The
reported values are averages over 10 trials of random
training data. The optimal location of these training data
points for accuracy remains an open question.

Once the training data 1s selected and the data 1s put in the
form of a 744 dimensional vector, they are input into the
Mapper Extension algorithm. The algorithm then builds the
simplicial complex from the training data, and the rest of the
data 1s classified accordingly. The output of the algorithm 1s
a list of pairs (1d,phase), one for each customer, where 1d 1s
a unique 1dentification number for that customer.

Influence of the Mapper Extension on the Results

FIG. 12 1llustrates an 1mage 1200 of a data set under a
filter function at 3% training data, 1n accordance with some
embodiments. In some embodiments, 1t 1s 1mportant to
check that the Mapper Extension 1s responsible for this
accuracy and not just the metric and filter function. Indeed,
the metric and filter function alone give rise to 1image 1200
in FIG. 12, which appears to separate the data points mto
classes (see, e.g., class AB-1204, class BC-1206, and class
CA-1208) fairly well. Nonetheless, the example groupings
in the t-SNE space (see, e.g., t-SNE 1-1210 and t-SNE
2-1202) 1 1mmage 1200 are rather complicated and may
benelit 1n accuracy from the Mapper Extension.

To test this, an embodiment compared the full Mapper
Extension to an algorithm that utilizes the metric change and
the transformation to the filtered space. Specifically, the
algorithm to be compared changes the metric, transforms the
data 1into the t-SNE space, and then uses a k-means nearest
neighbor algorithm to classify the test data. This procedure
1s labeled as the filtered Nearest Neighbor classifier for
reference 1n the present disclosure. Certain embodiments
also compared the accuracy of the Mapper Extension to
plain Nearest Neighbors 1n the unfiltered space. The nearest
neighbor algorithms were i1mplemented with Python’s
Sklearn library.

In an embodiment, both algorithms were run on the same
data set at varying percentages of training data. FIG. 13
depicts a comparison between a Mapper extension 1310, a
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Nearest Neighbors algorithm 1306, and the Nearest Neigh-
bors algorithm 1n a filtered space 1308, in accordance with
some embodiments.

The example results of these trials are plotted in FIG. 13.
FIG. 13 plots three lines 1n terms of respective percentages

of training data 1302 and accuracy 1304. Line 1310 repre-
sents the accuracy of the Mapper Extension algorithm. Line

1306 1s that of the unfiltered Nearest Neighbors algorithm
and line 1308 1s that of the filtered Nearest Neighbors
algorithm. As shown 1 FIG. 13, filtering yields a small
improvement in accuracy 1304 over the unfiltered case, but
the Mapper Extension brings about the largest jump 1n
accuracy.

As shown 1n FIG. 13, at 10% and 5% traimning data 1302,
the Mapper Extension outperforms the Nearest Neighbor
algorithms by a huge margin as measured 1n percentage of
accuracy 1304. Thus, the true value of the Mapper Extension
1s that 1t performs much better than traditional machine
learning algorithms when the traiming data 1302 1s limited.
As depicted 1 FIG. 13, this value decreases as more training
data 1302 becomes available.

Aside from the improvement in accuracy, Mapper still
g1ves the visunalization properties discussed above. With this
visualization, making improvements to the metric and filter
1s a simple process. If this particular pair of metric and filter
function did not perform well on a new data set, then the
Mapper visualization could be used to improve them on the
fly. This visnalization will also allow us to quickly decide 1f
a particular random trial of the algorithm should be trusted
or 1f a new random trial should be run. The number on each
node 1s the number of points 1n the associated open covering
in Cs.

Example Results with More Complicated Circuits

As described herein, certain embodiments use an exten-
sion of the Mapper algorithm 1 TDA to a classification
problem. In particular, 1t described how to train the simpli-
cial complex output from Mapper with training data. It also
described how to classify new data points using this trained
simplicial complex. It then established a method of quickly
visualizing the confidence that certain embodiments should
put mto results and explained how this may be used to
choose the parameters of the Mapper algorithm for improve-
ments. Using real distribution network data provided by an
electrical utility, 1t was shown that this algorithm, unlike
standard classification algorithms, accurately identifies
phase connectivity even when less than 3% of the data 1s
used to train the complex. Certain embodiments further
showed that this accuracy at low-level traimning data does
indeed result from the Mapper extension and not just from
the steps used to train the complex.

On more complicated circuits, however, accuracy may be
lower for some of the algorithms. For circuits involving only
line-to-line connections, however, embodiments 1mple-
mented with the Mapper Extension provide an excellent
tradeoff between the manual labor and costs of measuring
phase connectivities and accuracy.

Abstract Simplicial Complexes

As would be understood by one skilled 1n the relevant
art(s), an abstract sitmplicial complex X 1s a set of subsets G
of a finite set A with just one axiom. 1) If ceX, then all
subsets of ¢ are also 1n 2. (J 1s included 1n X because 1t 1s a
subset of every set. For example, Let A={a, b, c}. A
simplicial complex may be built from the subsets of A. The
set {0, {a}, {b}, {c}, {a, b}} 1s a simplicial complex.

In this example, the underlying set A 1s called the vertex
set of the simplicial complex. A subset e X of cardinality
(n+1) 1s called an n-simplex and all subsets of ¢ are called
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the faces of o. If the underlying set 1s not explicitly given
then the vertex set 1s just the set of all elements that appear
in any subset 0. The vertex set is denoted as X” in this case.

The notion of simplicial complex 1s a generalization of
that of a graph. In the example case where the largest
simplex 1n the complex 1s a 1-simplex, a graph may be
formed naturally by taking the graph vertices to be the vertex
set of the complex and the graph edges to be the 1-simplices
of the complex. Likewise, there 1s a natural way to encode
any graph as a simplicial complex of this form.

There exists another notion of simplicial complex that 1s
commonly used as defimition. It 1s essentially a geometric
version of the same 1dea, and it 1s easy to map from this form
to the abstract form and vice versa. In certain embodiments,
a simplicial complex refers to an abstract simplicial complex
as described above.

The weak topology 1s a natural way to restrict a topologi-
cal space to a subset. If 1" 1s the original space and vC1I' the
open sets of the weak topology on v are the sets V such that
V=yMU where U 1s an open set of I'. For example, consider
R? endowed with the Euclidean topology and let S1 be the
unit circle. Since S'CR*, we can endow it with the weak
topology by taking the intersections of the open sets of R*
with S*. One such open set is the set {(cos 0, sin 0): —la<6<a,
a<qt/2} as this set is the intersection of S' and an open ball
centered at (1, 0) with radius V2(1=cosa).

Open Coverings and Nerves

As would be understood by one skilled in the relevant
art(s), an open covering of a topological space X 1s an
indexed collection of open sets {U_}__, such that the
following condition holds: XCU__, U .

The nerve of an open covering, N, 1s a simplicial complex
representing the structure of that covering. The nerve’s
simplices are formed from subsets of the indexing set J of
the open cover. Explicitly, it QCJ, then Q 1s placed 1n N 1f
the following conditions are met:

O=1) 1)
(Vac0),U_=0. 2)
(Vao,pe0),U_U Up=0. 3)

Example Software Architecture

FIG. 14 1s a block diagram 1400 illustrating a represen-
tative software architecture 1402, which may be used in
conjunction with various hardware architectures herein
described. FIG. 14 1s merely a non-limiting example of a
soltware architecture, and 1t will be appreciated that many
other architectures may be implemented to facilitate the
functionality described herein. The software architecture
1402 may be executing on hardware such as a machine 1500
of FIG. 15 that includes, among other things, processors
1510, memory/storage 1530, and I/O components 1550. A
representative hardware layer 1404 1s illustrated and can
represent, for example, the machine 1500 of FIG. 15. The
representative hardware layer 1404 comprises one or more
processing units 1406 having associated executable instruc-
tions 1408. The executable instructions 1408 represent the
executable instructions of the software architecture 1402,
including implementation of the systems, methods, algo-
rithms, visualizations, modules, and so forth of FIGS. 1-13.
The hardware layer 1404 also includes memory and/or
storage modules 1410, which also have the executable
instructions 1408. The hardware layer 1404 may also com-
prise¢ other hardware 1412, which represents any other
hardware of the hardware layer 1404, such as the other
hardware 1illustrated as part of the machine 1500.
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In the example architecture of FIG. 14, the software
architecture 1402 may be conceptualized as a stack of layers
where each layer provides particular functionality. For
example, the software architecture 1402 may include layers
such as an operating system 1414, libraries 1416, frame-
works/middleware 1418, applications 1420, and a presenta-
tion layer 1444. Operationally, the applications 1420 and/or
other components within the layers may invoke API calls
1424 through the software stack and receive responses,
returned values, and so forth, illustrated as API calls 1426
(e.g., messages), 1n response to the API calls 1424. The
layers 1llustrated are representative in nature and not all
soltware architectures have all layers. For example, some
mobile or special-purpose operating systems may not pro-
vide a layer of frameworks/middleware 1418, while others
may provide such a layer. Other software architectures may
include additional or different layers.

The operating system 1414 may manage hardware
resources and provide common services. The operating
system 1414 may include, for example, a kemel 1428,
services 1430, and drivers 1432. The kernel 1428 may act as
an abstraction layer between the hardware and the other
software layers. For example, the kernel 1428 may be
responsible for memory management, processor manage-
ment (e.g., scheduling), component management, network-
ing, security settings, and so on. The services 1430 may
provide other common services for the other software layers.
The dnivers 1432 may be responsible for controlling or
interfacing with the underlying hardware. For instance, the
drivers 1432 may include display drivers, camera drivers,
Bluetooth® drivers, flash memory drivers, serial communi-
cation drivers (e.g., Universal Serial Bus (USB) drivers),
Wi-F1® drivers, audio drivers, power management drivers,
and so forth depending on the hardware configuration.

The libraries 1416 may provide a common infrastructure
that may be utilized by the applications 1420 and/or other
components and/or layers. The libraries 1416 typically pro-
vide functionality that allows other software modules to
perform tasks 1 an easier fashion than by interfacing
directly with the underlying operating system 1414 func-
tionality (e.g., kemnel 1428, services 1430, and/or drivers
1432). The libraries 1416 may include system libraries 1434
(e.g., C standard library) that may provide functions such as
memory allocation functions, string manipulation functions,
mathematic functions, and the like. In addition, the libraries
1416 may include API libraries 1436 such as media libraries
(e.g., libraries to support presentation and manipulation of
various media formats such as MPEG4, H.264, MP3, AAC,
AMR, JPG, PNG), graphics libraries (e.g., an OpenGL
framework that may be used to render 2D and 3D graphic
content on a display), database libraries (e.g., SQLite that
may provide various relational database functions), web
libraries (e.g., WebKit that may provide web browsing
functionality), and the like. The libraries 1416 may also
include a wide variety of other libraries 1438 to provide
many other APIs to the applications 1420 and other software
components/modules.

The frameworks 1418 (also sometimes referred to as
middleware) may provide a higher-level common infrastruc-
ture that may be utilized by the applications 1420 and/or
other software components/modules. For example, the
frameworks 1418 may provide various graphic user inter-
tace (GUI) functions (e.g., GUI functions to present visu-
alizations, plots, and outputs such as those shown in the
examples of FIGS. 3-5, 8-10, 12, and 13), high-level
resource management, high-level location services, and so
forth. The frameworks 1418 may provide a broad spectrum
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of other APIs that may be utilized by the applications 1420
and/or other software components/modules, some of which
may be specific to a particular operating system or platform.

The applications 1420 include built-in applications 1440
and/or third-party applications 1442. Examples of represen-
tative built-in applications 1440 may include, but are not
limited to, a contacts application, a browser application, a
book reader application, a location application, a media
application, a messaging application, and/or a game appli-
cation. The third-party applications 1442 may include any of
the built-in applications 1440 as well as a broad assortment
of other applications. In a specific example, the third-party
application 1442 (e.g., an application developed using the
Android™ or 10S™ gsoftware development kit (SDK) by an
entity other than the vendor of the particular platform) may
be mobile software running on a mobile operating system
such as 10OS™_  Android™, Windows® Phone, or other
mobile operating systems. In this example, the third-party
application 1442 may invoke the API calls 1424 provided by
the mobile operating system such as the operating system
1414 to facilitate functionality described herein.

The applications 1420 may utilize built-in operating sys-
tem 1414 functions (e.g., kernel 1428, services 1430, and/or
drivers 1432), libraries 1416 (e.g., system libraries 1434,
API libraries 1436, and other libraries 1438), and frame-
works/middleware 1418 to create user interfaces to interact
with users of the system. Alternatively, or additionally, 1n
some systems, interactions with a user may occur through a
presentation layer, such as the presentation layer 1444. In
these systems, the application/module ‘logic’ may be sepa-
rated from the aspects of the application/module that interact
with a user.

Some software architectures utilize virtual machines. In
the example of FIG. 14, this 1s 1illustrated by a wvirtual
machine 1448. A virtual machine creates a soltware envi-
ronment where applications/modules can execute as if they
were executing on a hardware machine (such as the machine
1500 of FIG. 15, for example). A virtual machine 1s hosted
by a host operating system (e.g., operating system 1414 in
FIG. 14) and typically, although not always, has a virtual
machine monitor 1446, which manages the operation of the
virtual machine 1448 as well as the interface with the host
operating system (e.g., operating system 1414). A software
architecture executes within the virtual machine 1448, such
as an operating system 1450, libraries 1452, frameworks/
middleware 1454, applications 1456, and/or a presentation
layer 14358. These layers of soltware architecture executing
within the virtual machine 1448 may be the same as corre-
sponding layers previously described or may be different.

Example Architecture and Machine-Readable Medium

FIG. 15 1s a block diagram 1llustrating components of a
machine 1500, according to some example embodiments,
able to read instructions from a machine-readable medium
(¢.g., a machine-readable storage medium) and perform any
one or more of the methodologies discussed herein. Spe-
cifically, FIG. 15 shows a diagrammatic representation of
the machine 1500 in the example form of a computer
system, within which instructions 1516 (e.g., soitware, a
program, an application, an applet, an app, or other execut-
able code) for causing the machine 1500 to perform any one
or more of the methodologies discussed herein may be
executed (e.g., phase 1dentification methods). The nstruc-
tions 1516 transform the general, non-programmed machine
into a particular machine programmed to carry out the
described and 1llustrated functions in the manner described.
In alternative embodiments, the machine 1500 operates as a
standalone device or may be coupled (e.g., networked) to
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other machines. In a networked deployment, the machine
1500 may operate 1n the capacity of a server machine or a
client machine 1n a server-client network environment, or as
a peer machine 1n a peer-to-peer (or distributed) network
environment. The machine 1500 may comprise, but not be
limited to, a server computer, a client computer, a PC, a
tablet computer, a laptop computer, a netbook, a set-top box
(STB), a personal digital assistant (PDA), an entertainment
media system, a cellular telephone, a smart phone, a mobile
device, a wearable device (e.g., a smart watch), a smart
home device (e.g., a smart appliance), other smart devices,
a web appliance, a network router, a network switch, a
network bridge, or any machine capable of executing the
instructions 1516, sequentially or otherwise, that specity
actions to be taken by the machine 1500. Further, while only
a single machine 1500 is illustrated, the term ‘machine’ shall
also be taken to include a collection of machines 1500 that
individually or jointly execute the structions 1516 to
perform any one or more of the methodologies discussed
herein (e.g., phase identification—including phase 1dentifi-
cation through TDA).

The machine 1500 may include processors 1310,
memory/storage 1530, and I'O components 1350, which
may be configured to communicate with each other such as
via a bus 1502. In an example embodiment, the processors
1510 (e.g., a Central Processing Unit (CPU), a Reduced
Instruction Set Computing (RISC) processor, a Complex
Instruction Set Computing (CISC) processor, a Graphics
Processing Unit (GPU), a Digital Signal Processor (DSP), an
ASIC, a Radio-Frequency Integrated Circuit (RFIC),
another processor, or any suitable combination thereol) may
include, for example, a processor 1512 and a processor 1514
that may execute the mstructions 1516. The term ‘processor’
1s itended to include multi-core processors that may com-
prise two or more independent processors (sometimes
referred to as ‘cores’) that may execute instructions con-
temporaneously. Although FIG. 15 shows multiple proces-
sors 1510, the machine 1500 may include a single processor
with a single core, a single processor with multiple cores
(e.g., a multi-core processor), multiple processors with a
single core, multiple processors with multiples cores, or any
combination thereof.

The memory/storage 1530 may include a memory 1532,
such as a main memory, or other memory storage, and a
storage unit 1536, both accessible to the processors 1510
such as via the bus 1502. The storage unit 1536 and memory
1532 store the mstructions 1516 embodying any one or more
of the methodologies or functions described herein. The
istructions 1516 may also reside, completely or partially,
within the memory 1532, within the storage unit 1536,
within at least one of the processors 1510 (e.g., within the
processor’s cache memory), or any suitable combination
thereof, during execution thereof by the machine 1500.
Accordingly, the memory 1532, the storage unit 1536, and
the memory of the processors 1510 are examples of
machine-readable media.

As used herein, ‘machine-readable medium’ means a
device able to store instructions and data temporarnly or
permanently and may include, but 1s not limited to, random-
access memory (RAM), read-only memory (ROM), buller
memory, flash memory, optical media, magnetic media,

cache memory, other types of storage (e.g., Erasable Pro-
grammable Read-Only Memory (EEPROM)), and/or any

suitable combination thereof. The term ‘machine-readable
medium” should be taken to include a single medium or
multiple media (e.g., a centralized or distributed database, or
associated caches and servers) able to store the mstructions
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1516. The term ‘machine-readable medium’ shall also be
taken to include any medium, or combination of multiple
media, that 1s capable of storing instructions (e.g., mstruc-
tions 1516) for execution by a machine (e.g., machine 1500),
such that the instructions, when executed by one or more
processors of the machine (e.g., processors 1510), cause the
machine to perform any one or more of the methodologies
described herein. Accordingly, a ‘machine-readable
medium’ refers to a single storage apparatus or device, as
well as ‘cloud-based’ storage systems or storage networks
that include multiple storage apparatus or devices. The term
‘machine-readable medium’ excludes signals per se.

The I/O components 1550 may include a wide variety of
components to receive input, provide output, produce out-
put, transmit information, exchange information, capture
measurements, and so on. The specific 1/0 components
1550 that are included 1n a particular machine will depend
on the type of machine. For example, portable machines
such as mobile phones will likely include a touch input
device or other such input mechanisms, while a headless
server machine will likely not include such a touch input
device. It will be appreciated that the I/O components 1550
may 1clude many other components that are not shown in
FIG. 15. The I/O components 1550 are grouped according to
functionality merely for simplitying the following discus-
sion and the grouping i1s 1n no way limiting. In various
example embodiments, the I'O components 1550 may
include output components 1552 and input components
1554.

The output components 1552 may include visual compo-
nents (e.g., a display such as a plasma display panel (PDP),
a light emitting diode (LED) display, a liquid crystal display
(LCD), a projector, or a cathode ray tube (CRT)), acoustic
components (e.g., speakers), haptic components (e.g., a
vibratory motor, resistance mechanisms), other signal gen-
erators, and so forth. The output components may be used to
present visualizations, plots, and outputs such as those
shown 1n the examples of FIGS. 3-5, 8-10, 12, and 13. The
input components 1554 may include alphanumeric nput
components (€.g., a keyboard, a touch screen configured to
receive alphanumeric nput, a photo-optical keyboard, or
other alphanumeric mput components), point-based 1nput
components (e.g., a mouse, a touchpad, a trackball, a joy-
stick, a motion sensor, or another pointing instrument),
tactile input components (e.g., a physical button, a touch
screen that provides location and/or force of touches or
touch gestures, or other tactile mput components), audio
input components (e.g., a microphone), and the like.

In further example embodiments, the I/O components
1550 may include motion components 1558, environmental
components 1560, or position components 1562, among a
wide array of other components. The motion components
1558 may include acceleration sensor components (e.g.,
accelerometer), gravitation sensor components, rotation sen-
sor components (e.g., gyroscope), and so forth.

The environmental components 1560 may include, for
example, 1llumination sensor components (e.g., photom-
eter), temperature sensor components (e.g., one or more
thermometers that detect ambient temperature), humidity
sensor components, pressure sensor components (e.g.,
barometer), acoustic sensor components (€.g., one or more
microphones that detect background noise), proximity sen-
sor components (e.g., mfrared sensors that detect nearby
objects), gas sensors (e.g., gas detection sensors to detect
concentrations of hazardous gases for safety or to measure
pollutants 1n the atmosphere), or other components that may
provide indications, measurements, or signals corresponding,
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to a surrounding physical environment. The position com-
ponents 1562 may include location sensor components (e.g.,
a Global Position System (GPS) receiver component), alti-
tude sensor components (e.g., altimeters or barometers that
detect air pressure from which altitude may be derived),
orientation sensor components (e.g., magnetometers), and
the like.

Communication may be implemented using a wide vari-
ety of technologies. The I/O components 1550 may include
communication components 1564 operable to couple the
machine 1500 to a network 1580 or devices 1570 via a
coupling 1582 and a coupling 1572, respectively. For
example, the communication components 1564 may include
a network interface component or other suitable device to
interface with the network 1580. In further examples, the
communication components 1564 may include wired com-
munication components, wireless communication compo-
nents, cellular communication components, Near Field
Communication (NFC) components, Bluetooth® compo-
nents (e.g., Bluetooth® Low Energy), Wi-F1® components,
and other communication components to provide commu-
nication via other modalities. The devices 1570 may be
another machine or any of a wide variety of peripheral
devices (e.g., a peripheral device coupled via a USB).

Moreover, the communication components 1564 may
detect i1dentifiers or include components operable to detect
identifiers. For example, the communication components
1564 may include Radio Frequency Identification (RFID)
tag reader components, NFC smart tag detection compo-
nents, optical reader components (e.g., an optical sensor to
detect one-dimensional bar codes such as Universal Product
Code (UPC) bar code, multi-dimensional bar codes such as
Quick Response (QR) code, Aztec code, Data Matrix, Data-
glyph, MaxiCode, PDF417, Ultra Code, UCC RSS-2D bar
code, and other optical codes), or acoustic detection com-
ponents (e.g., microphones to 1dentily tagged audio signals).
In addition, a variety of information may be derived via the
communication components 1564, such as location wvia
Internet Protocol (IP) geolocation, location via Wi-Fi®
signal triangulation, location via detecting an NFC beacon
signal that may indicate a particular location, and so forth.

Example Transmission Medium

In various example embodiments, one or more portions of
the network 1580 may be an ad hoc network, an intranet, an
extranet, a virtual private network (VPN), a local area
network (LAN), a wireless LAN (WLAN), a WAN, a
wircless WAN (WWAN), a metropolitan area network
(MAN), the Internet, a portion of the Internet, a portion of
the Public Switched Telephone Network (PSTN), a plain old
telephone service (POTS) network, a cellular telephone
network, a wireless network, a Wi-Fi® network, another
type ol network, or a combination of two or more such
networks. For example, the network 1580 or a portion of the
network 1580 may include a wireless or cellular network
and the coupling 1582 may be a Code Division Multiple
Access (CDMA) connection, a Global System for Mobile
communications (GSM) connection, or another type of
cellular or wireless coupling. In this example, the coupling
1582 may implement any of a variety of types of data
transier technology, such as Single Carrier Radio Transmis-
sion Technology (1xRTT), Evolution-Data Optimized
(EVDO) technology, General Packet Radio Service (GPRS)
technology, Enhanced Data rates for GSM Evolution
(EDGE) technology, third-Generation Partnership Project
(3GPP) including 3G, fourth-generation wireless (4G) net-
works, Umniversal Mobile Telecommunications System
(UMTS), High-Speed Packet Access (HSPA), Worldwide
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Interoperability for Microwave Access (W1IMAX), Long-
Term Evolution (LTE) standard, others defined by various
standard-setting organizations, other long-range protocols,
or other data transier technology.

The 1nstructions 1516 may be transmitted or received over
the network 1580 using a transmission medium via a net-
work 1nterface device (e.g., a network interface component
included in the communication components 1564) and uti-
lizing any one of a number of well-known transfer protocols
(e.g., HI'TP). Similarly, the instructions 1516 may be trans-
mitted or received using a transmission medium via the
coupling 1572 (e.g., a peer-to-peer coupling) to the devices
1570. The term ‘transmission medium’ shall be taken to
include any intangible medium that 1s capable of storing,
encoding, or carrying the instructions 1516 for execution by
the machine 1500, and includes digital or analog commu-
nications signals or other intangible media to facilitate
communication of such software.

Language

Throughout this specification, plural instances may imple-
ment components, operations, or structures described as a
single instance. Although individual operations of one or
more methods are illustrated and described as separate
operations, one or more of the individual operations may be
performed concurrently, and nothing requires that the opera-
tions be performed 1n the order illustrated. Structures and
functionality presented as separate components in example
configurations may be implemented as a combined structure
or component. Similarly, structures and functionality pre-
sented as a single component may be implemented as
separate components. These and other variations, modifica-
tions, additions, and improvements fall within the scope of
the subject matter herein.

Although an overview of the mnventive subject matter has
been described with reference to specific example embodi-
ments, various modifications and changes may be made to
these embodiments without departing from the broader
scope of embodiments of the present disclosure. Such
embodiments of the inventive subject matter may be referred
to herein, individually or collectively, by the term ‘inven-
tion” merely for convenience and without intending to vol-
untarily limit the scope of this application to any single
disclosure or inventive concept 1f more than one 1s, 1n fact,
disclosed.

The embodiments 1llustrated herein are described 1n sui-
ficient detail to enable those skilled 1n the art to practice the
teachings disclosed. Other embodiments may be used and
derived therefrom, such that structural and logical substitu-
tions and changes may be made without departing from the
scope of this disclosure. The Detailed Description, therefore,
1s not to be taken 1n a limiting sense, and the scope of various
embodiments 1s defined only by the appended claims, along
with the full range of equivalents to which such claims are
entitled.

As used herein, the term ‘or’ may be construed 1n either
an 1nclusive or an exclusive sense. Moreover, plural
instances may be provided for resources, operations, or
structures described herein as a single instance. Additionally,
boundaries between various resources, operations, modules,
engines, and data stores are somewhat arbitrary, and par-
ticular operations are illustrated 1 a context of specific
illustrative configurations. Other allocations of functionality
are envisioned and may fall within a scope of various
embodiments of the present disclosure. In general, structures
and functionality presented as separate resources in the
example configurations may be implemented as a combined
structure or resource. Similarly, structures and functionality
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presented as a single resource may be implemented as
separate resources.

These and other variations, modifica-

tions, additions, and improvements fall within a scope of
embodiments of the present disclosure as represented by the
appended claims. The specification and drawings are,
accordingly, to be regarded in an illustrative rather than a
restrictive sense.

EXAMPLES

The following examples pertain to further embodiments.
To better 1illustrate the method and apparatuses disclosed
herein, a non-limiting list of examples 1s provided here:

Example 1 1s a method of phase 1dentification, compris-
Ing: receiving voltage measurements, the voltage measure-
ments mcluding a plurality of customer voltage time series;
obtaining distribution connectivity information: normalizing
the plurality of customer voltage time series by their respec-
tive standard deviations; defining constraints for a clustering
process by ispecting the distribution connectivity informa-
tion; applying constrained and unconstrained clustering to
partition customers ito a plurality of clusters; and identi-
tying a phase of each of the plurality of clusters by solving
a minimization problem.

In Example 2, the subject matter of Example 1 includes,
wherein the receiving comprises receiving the voltage mea-
surements from a plurality of smart meters in an electric
distribution system.

In Example 3, the subject matter of Examples 1-2
includes, wherein the receirving comprises receiving the
voltage measurements from a supervisory control and data
acquisition (SCADA) system.

In Example 4, the subject matter of Examples 1-3
includes, wherein the obtaining comprises retrieving the
distribution connectivity information from an electrical
power utility operating an electric distribution system.

In Example 5, the subject matter of Examples 1-4
includes, wherein the normalizing comprises applying one
or more of a linear dimensionality reduction technique and
a non-linear dimensionality reduction technique.

In Example 6, the subject matter of Example 5 includes,
wherein the linear dimensionality reduction technique com-
prises applying principal component analysis (PCA) to
extract key components from the plurality of customer
voltage time series.

In Example 7, the subject matter of Example 6 includes,
wherein extracting the key components comprises applying
PCA on normalized customer voltage time series to extract
the top n components as the key components.

In Example 8, the subject matter of Examples 5-7
includes, wherein the non-linear dimensionality reduction
technique comprises applying one or more of Sammon
mapping, curvilinear components analysis, Isomap, and
t-distributed stochastic neighbor embedding to extract key
features from the plurality of customer voltage time series.

In Example 9, the subject matter of Examples 1-8
includes, causing display of one or more of the identified
phase of the plurality of clusters on a display device.

Example 10 1s a system comprising: a computer-readable
medium having 1nstructions stored thereon, which, when
executed by a processor, cause the system to: receive voltage
measurements, the voltage measurements including a plu-
rality of customer voltage time series; obtain distribution
connectivity information; normalize the plurality of cus-
tomer voltage time series by their respective standard devia-
tions; define constraints for a clustering process by mspect-
ing the distribution connectivity information; apply
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constrained clustering to partition customers into a plurality
of clusters; and 1dentily a phase of each of the plurality of
clusters by solving a minimization problem.

In Example 11, the subject matter of Example 10 includes,
wherein the receirving comprises receiving the voltage mea-
surements from a plurality of smart meters associated with
respective customers of an electrical power utility.

In Example 12, the subject matter of Examples 10-11
includes, wherein the recerving comprises receiving the
voltage measurements from a supervisory control and data
acquisition (SCADA) system.

In Example 13, the subject matter of Examples 10-12
includes, wherein the obtaining comprises retrieving the
distribution connectivity information from an electrical
power utility operating an electric distribution system.

In Example 14, the subject matter of Examples 10-13
includes, wherein the normalizing comprises applying one
or more of a linear dimensionality reduction technique and
a non-linear dimensionality reduction technique.

Example 15 1s a non-transitory machine-readable storage
medium comprising instructions, which when implemented
by one or more machines, cause the one or more machines
to perform operations for phase identification topological
data analysis (TDA), the operations comprising: obtaining
data, the data including voltage measurements and training
data; building, based on the training data, a forest of random
trees; transforming each data point in the voltage measure-
ments 1nto a respective forest vector; running t-Distributed
Stochastic Neighbor Embedding (t-SNE) dimensionality
reduction algorithm to produce numerical results for each
data point; storing, on the non-transitory machine-readable
storage medium, the numerical results 1n a table representing
a lilter function; building a base simplicial complex by
inputting the training data into a Mapper algorithm; for each
data point 1n the voltage measurements: classifying new data
by filtering the data point; considering open sets 1n a
covering that the data point lands 1n; grouping the data point
to a nearest trained cluster; and labelling the nearest traimned
cluster.

In Example 16, the subject matter of Example 15
includes, wherein building the forest of random trees com-
prises forming a hamming metric to learn a distance metric.

In Example 17, the subject matter of Example 16
includes, wherein running the t-SNE dimensionality reduc-
tion algorithm comprises running the t-SNE algorithm with
the hamming metric.

In Example 18, the subject matter of Examples 15-17
includes, wherein bulding the base simplicial complex
comprises: filtering the training data; inverting open sets of
a covering through the filter function; clustering inverse
image subsets to form trained clusters; building a nerve of
the covering; and causing display of a visualization of the
base simplicial complex on a display device of one of the
one or more machines.

Example 19 1s an apparatus comprising memory and
processing circuitry coupled to the memory, the processing
circuitry configured to: obtain data, the data including volt-
age measurements and training data; build, based on the
training data, a forest of random trees; transform each data
point 1n the voltage measurements into a respective forest
vector; run a t-Distributed Stochastic Neighbor Embedding,
(t-SNE) dimensionality reduction algorithm to produce
numerical results for each data point; store, 1n the memory,
the numerical results 1n a table representing a filter function;
build a base simplicial complex by inputting the traiming,
data mto a Mapper algorithm; for each data point in the
voltage measurements: classity new data by filtering the data
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point; consider open sets in a covering that the data point
lands 1n; group the data point to a nearest trained cluster; and
label the nearest trained cluster.

In Example 20, the subject matter of Example 19
includes, wherein bulding the base simplicial complex
comprises: filtering the training data; inverting open sets of
a covering through the filter function; clustering inverse
image subsets to form trained clusters; building a nerve of
the covering; and causing display of a visualization of the
base simplicial complex on a display device.

Example 21 1s at least one machine-readable medium
including instructions that, when executed by processing
circuitry, cause the processing circuitry to perform opera-
tions to implement any of Examples 1-20.

Example 22 1s an apparatus comprising means to imple-
ment any of Examples 1-20.

Example 23 1s a system to implement any of Examples
1-20.

Example 24 1s a method to implement any of Examples
1-20.

What 1s claimed 1s:

1. A method of phase 1dentification, comprising:

recerving voltage measurements from a plurality of smart

meters installed to capture and automatically transier
data to a central database which oversees the smart
meters, the voltage measurements including a plurality
ol customer voltage time series data;

obtaining distribution connectivity information;

normalizing the plurality of customer voltage time series

data by their respective standard deviations;

defining constraints for a clustering process by 1specting

the distribution connectivity information;
applying constrained and unconstrained clustering to par-
tition customer data into a plurality of clusters;

identifying a phase of each of the plurality of clusters by
solving a minimization problem with a one-to-one
matching between the plurality of clusters and a set of
possible phase connections; and

generating a distribution circuit map wherein i1dentified

phases are separately coded; and

managing the distribution system using the generated map

for the three-phase power flow control, three-phase
optimal power flow control, distribution system resto-
ration and/or distribution network reconfiguration.

2. The method of claim 1, wherein the receiving com-
prises recerving the voltage measurements from a plurality
of smart meters 1 an electric distribution system.

3. The method of claim 1, wherein the receiving com-
prises receiving the voltage measurements from a supervi-
sory control and data acquisition (SCADA) system.

4. The method of claim 1, wherein the obtaining com-
prises retrieving the distribution connectivity information
from an electrical power utility company operating an
clectric distribution system.

5. The method of claim 1, wherein the normalizing
comprises applying one or more of a linear dimensionality
reduction technique and a non-linear dimensionality reduc-
tion technique.

6. The method of claim 5, wherein the linear dimension-
ality reduction technique comprises applying principal com-
ponent analysis (PCA) to extract key components from the
plurality of customer voltage time series data.

7. The method of claim 6, wherein extracting the key
components comprises applying PCA on normalized cus-
tomer voltage time series data to extract the top n compo-
nents as the key components.
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8. The method of claim 5, wherein the non-linear dimen-
sionality reduction technique comprises applying one or
more of Sammon mapping, curvilinear components analy-
s1s, Isomap, and t-distributed stochastic neighbor embedding
to extract key features from the plurality of customer voltage
time series data.

9. A system comprising:

a computer-readable medium having instructions stored
thereon, which, when executed by a processor, cause
the system to:

receive voltage measurements from a plurality of smart

meters installed to capture and automatically transfer
data to a central database which oversees the smart
meters, the voltage measurements including a plurality
ol customer voltage time series data;

obtain distribution connectivity information;

normalize the plurality of customer voltage time series
data by their respective standard deviations;

define constraints for a clustering process by inspecting,
the distribution connectivity imnformation;

apply constrained clustering to partition customer data
into a plurality of clusters;

identify a phase of each of the plurality of clusters by
solving a mimmization problem with a one-to-one
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matching between the plurality of clusters and a set of
possible phase connections;

generate a distribution circuit map wherein identified

phases are separately coded; and

manage the distribution system using the generated map

for the three-phase power flow control, three-phase
optimal power tlow control, distribution system resto-
ration and/or distribution network reconfiguration.

10. The system of claim 9, wherein the receiving com-
prises recerving the voltage measurements from a plurality
of smart meters associated with respective customers of an
clectrical power utility company.

11. The system of claim 9, wherein the receiving com-
prises recerving the voltage measurements from a supervi-
sory control and data acquisition (SCADA) system.

12. The system of claim 9, wherein the obtaining com-
prises retrieving the distribution connectivity information
from an electrical power utility company operating an
clectric distribution system.

13. The system of claim 9, wherein the normalizing
comprises applying one or more of a linear dimensionality
reduction technique and a non-linear dimensionality reduc-
tion technique.
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