12 United States Patent

Hassaan et al.

US011734059B2

US 11,734,059 B2
Aug. 22, 2023

(10) Patent No.:
45) Date of Patent:

(54) HARDWARE ASSISTED FINE-GRAINED
DATA MOVEMENT

(71)

(72)

(73)

(%)

(21)

(22)

(65)

(1)

(52)

Applicant:

Inventors:

Assignee:

Notice:

Appl. No.:

Filed:

US 2021/0294646 Al

ADVANCED MICRO DEVICES,
INC., Santa Clara, CA (US)

Muhammad Amber Hassaan, Austin,
TX (US); Anirudh Mohan Kaushik,

Austin, TX (US); Sooraj Puthoor,
Austin, TX (US); Gokul Subramanian
Ravi, Austin, TX (US); Bradford
Beckmann, Bellevue, WA (US);
Ashwin Aji, Santa Clara, CA (US)

Advanced Micro Devices, Inc., Santa
Clara, CA (US)

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 171 days.
16/824,601
Mar. 19, 2020

Prior Publication Data

Sep. 23, 2021

Int. CI.

GO6F 9/46 (2006.01)

GOo6F 9/48 (2006.01)

GO6F 9/52 (2006.01)

GO6F 16/901 (2019.01)

U.S. CL

CPC GO6F 9/4881 (2013.01); GO6GF 9/52

(2013.01); GO6F 16/9024 (2019.01); GOOF

2209/486 (2013.01)

(38) Field of Classification Search
CpPC ... GO6F 9/4881; GO6F 16/9024; GO6F 9/52;
GO6F 2209/486
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

9,286,119 B2
2012/0194525 Al

3/2016 Sevastiyanov et al.
8/2012 Hartog et al.

OTHER PUBLICATIONS

Satish, Nadathur, et al., “Optimizing the Use of GPU Memory in

Applications with Large Data Sets”, 16th International Conference
on High Performance Computing, HiPC, Dec. 16-19, 2009, 12

pages.
Primary Examiner — Gregory A Kessler

(57) ABSTRACT

A processor includes a task scheduling unit and a compute
unit coupled to the task scheduling unmit. The task scheduling
umt performs a task dependency assessment of a task
dependency graph and task data requirements that corre-
spond to each task of the plurality of tasks. Based on the task
dependency assessment, the task scheduling unit schedules
a first task of the plurality of tasks and a second proxy object
of a plurality of proxy objects specified by the task data
requirements such that a memory transier of the second
proxy object of the plurality of proxy objects occurs while
the first task 1s being executed.

18 Claims, 8 Drawing Sheets

910

RECEIVE A TASK DEPENDENCY GRAPH AND TASK DATA

900
e

REQUIREMENTS FOR A PLURALITY OF TASKS

DETERMINE THE PROXY OBJECTS AND CORRESPONDING
SUB-DATA ELOCKS THAT ARE REQUIRED BY EACH TASK 820
PRIOR TO BEING DISPATCHED FOR EXECUTION {E.G,,
GENERATE TASKS-TO-TASK DATA REQUIREMENTS
MAPPING 181)

930

TRAVERSE THE TASK DEPENDENCY GRAPH TO DETERMINE

THE TASK DEPENDENCIES OF EACH TASK (E.G., GENERATE
TASKS-TO-READMWRITE MAPHING 182)

940

DETERMINE ALL THE TASKS ACCESSING PROXY CBJECTS
(GENERATE A PROXY OBJECT TO TASKS-ACCESSING THE
PROXY OBJECT MAPPING 183)

USING THE TASKS-TO-BEEADYWRITE MAPPING, PLACE THE 950
TASKS WHOGE SUB-DATA BLOCKS ARE NEXT TQ-BE-
DISPATCHED IN THE TASK DISPATCH LIST

USING THE TASKS-TO-DATA REQUIREMENTS MAPPING, 960
CETERMINE THE SUB-DATA BLOCKS THAT MAP TO TASKS
NEXT TO-BE-DISPATCHED (CHILD TASKS) IN THE TASK
DISPATCHLIST

BASED ON THE TASK DEPENDENCY ASSESSMENT, 870
SCHEDULE THE EXECUTION OF THE TASKS AND THE
TRANSFER OF THE SUB-DATA BLOCKS SUCH THAT A
MEMORY TRANSFER OF THE SURB-DATA BLOCKS OCCURS
DURING THE EXECUTION OF THE TASKS OF THE TASK
DEPENDENCY GRAPH

GRAFH

TASKS ARE EXECUTED BY THE COMPUTE UNITS AND SUB- 980
DATA-BLOCKS ARE TRANSFERRED ACCORDING TO THE
TASKS-TO-PROXY OBJECT SCHEDULE GEPENDENCY

US 11,734,059 B2

Sheet 1 of 8

Aug. 22, 2023

U.S. Patent

oov\i

/81
218 | pp—
05T
ST ﬁ 9QL

91 LINOONIINAaHOS NSV

0ct
ALONEN NdO

11
LINM
A1LNdANOD

ol
QVHS

0G1
ANIONA VINAS

vl

Ndo

41
AdOWEHN NdO

U.S. Patent Aug. 22, 2023 Sheet 2 of 8 US 11,734,059 B2

231-2

@ 241-4 231-3 @
241-3 —~_ o

231-1

241-2 Vs

241-1

241-6

241-10

231 -6 @

M7 2418 2419

231-8 @ 231-9 @

241-11 241-12

® 231-10

FIG. 2A

22()
221
222

222-1 222-2 222-3 222-4

FIG. 2B

US 11,734,059 B2

Sheet 3 of 8

Aug. 22, 2023

U.S. Patent

181

€ VIid

A% A%S

B e i e e b T A K G G K K O L K K O KK

o N Y Yy Y Ry

"h"l-"l"h"ll-"h"l."h"l-'h"h"h
i irisn

:

TR R R R R YRR

gt

AL S L L L)L

TR RE R R R R R

|
|

M

M

¥ o wl ok ut of pi- b o of ot of o o o of pi-at o of oF O of mt o o of oi--oF oF oF oF oF ol O o of oF o 0 ol b ““‘tl.__l"l.l..l.‘-_-..l..‘l.__l..l.‘l.l..l.“..l..“l.."_‘..‘.‘l.-_-..l..‘l._l..l.‘l.l..‘l..‘.l.‘l.__l..l.‘l.l..l.“..“_‘.+‘l.‘.‘l.-_-..l,‘l._l..l.‘l.‘..l.“..“‘..l..‘l._ll..‘l.r‘..l.“..l:‘l.__l.l.“-_-..“““l

1) {10l

H A A N A A A R AR A e e e R A A A A e e A R kA A R A A R R Ak s A A N s A A RSN AAEAAANAEAASEEAsANAsARssaaEaasan

¢ -0y

..I...i-I-i...I-ﬂ-I-ﬂ.!-I-I..I..ﬁ-I-I...ﬂ-ﬂ-I-ﬂ.ﬂ-I-I...IH-i..-.._‘.ﬂ-I-ﬂH-I-I...ﬂH-I..-...ﬂ-ﬂ-Iqﬂ“-‘-I...ﬂ.ﬁ-i-'..‘.ﬁ-ﬂ-‘.“-t.ﬂ..ﬂﬂ-i..‘..ﬁ.ﬂ-‘ AN E I AF AL N F I AFE I AL AR EA RS EE AT EE S EERAFFERFEEREX AKX

hwthhhhhﬁthhh MW RN

LERR L R E RS R

JU R S PR PR PPN T PR PPN IS TR R P R P T P BT R g P R PR T Wl e e ol o of WA of o o of A o oF o o o O O

o e T e Y

FRAEELFEESF LI FALEELFELS FEX X AL E K ENXXSNE S QKL SFEKJBKEFH SAEELAEXIANE LA NXLLEE AN SIS LA AL S FEXSEAEELFEESKEKEKSHENEENKKENXESE KNS BN KX EAAEEXEFELFFLXESFXLTFEISFLIAFSFESAFELSEFBANEENRF

S

Hh‘n‘!ﬂlﬁr‘rﬁﬁﬁr‘n‘b‘*r‘lh\l“hﬁr‘r'\lhﬁrh

My

R rirhe e

L0l
£:0]
/0]
L0l

AR R R R E R R R R R R R R R R R R R R AR R E R R R A R R R R R R A R E R R R R R R R R R E R A R A R R R R A R R AT R R R R R R R R R R T R R R T R R

e e T e e e e e e

N L
NIWIY vornaaya & ¥SY

A W W B N A o N N o o W e o N N W ol W N N o i o o A N N N R W e N A e T W N e N A N o W o Nl o0 WD e T o N WD Al B W N il b b Ll Dk R R kb R R el) L e W e N A W o N N N N o W A N e A T NN o RN R A F R kS

113 0ct Ole

US 11,734,059 B2

Sheet 4 of 8

Aug. 22, 2023

U.S. Patent

A " T e T e e T e o e T e e T T e T T e o e e T e T T T e T T T T T T T T T T T T T T o e e e T T o T e e e T e ! ..-._.....ﬁ—_.u.._....._. o e T o e e e e e e e e e e e g B e e e e e e e T e T e e T o e e e e e e T R T B e T e e-...-........_..1..-._...."—.-. A ! T e T e e e

Lol @mm
mw mwmwN

" e e T R R e R e R
-
Ly

‘E‘t‘%‘t‘t‘k‘b‘t‘h‘h‘r‘b‘i‘i S e

b - e e e o o e e e e e e = e - - e e e e . . - e e e e e e e e e e = e e e e e e e e e e m e e e == = = e = e = = = = e = e m o B e e o e e e e e e e e e e e m e e = e = e e e = = = e e = e = e e = = e e = e m = m e = = e = = e = = o = = == = e ==

e e kI I g e g e e e B B B kI I e e g g e T T e e I Il B kI ol e e g e B e g g e e e e e L L]

o e

§ X m
ITEpT

e e e ey e e e e e mp o w mr mr oy e mp m mr m m mr wam mpe np Sl e ey e v ey ey e e e m m W B W Mmoo wp N M am mpr m g e e mr ram o wp m m s e g m mr mr s e mp e U A W mr W e mp N MmN am w mp ay o wp mp mp am e mp my gk W W M W W W mr m o W W M mp o wp wp m wp o wp mr ey am w wp o

8

FF rF s s T r T T rFrsTwTr T e E

................................ Lo pe ol o e o o ol ol o o e gt gt gl gt g

189710 sTi8lg ‘L0l £

LN | DO T Y S N YN NN VRN N YN Y O Y) TN T T o= [P U T T W N TR PN SN N (PN WO N O T S |

£ llevertb’lsvslgleolv 9
[s1:810 “[£°0l8 [, v S

o R e T N T T T T T T e e T T e T o T e T e N)

d« £

s

*

n\nﬂnnnmmnntnﬂnnnmn?nnwnnnmunmnmﬁnnnwnnnm
1
'I
II
L
3
L]
]
'
L3
L]
]
L
)
l-
y
)
1,
4,
:
1
.
4,
L]
]
1
k
L]
]
B
1
4
1
L]
]
L
1,
‘I
iI
II
L
1,
l-
L
1
;
'I
II
I,
:
y
)
l-
:'.
1
1
1
L]
i
L
1,
i,
.
5
1
1
1
i
'
L
4,
l-
i
)
lI
h
i
B
1
y
i
'
L]
L]
]
L
)
l-
:-.
)
1,
1,
:
'
5
1
]
B
'
L]
L]
]
B
'
L]
L]
]
1
L
3
L]
]
1
L
3
L]
]
1
L3
L}
]
L
)
l-
L
l
L

T T e

m
M
TR TR R R YRR TR e TN
.
N

e e ey ey ey e e e ey e am e mpam f w m w e g o g W W M g B MR Ry g W W N WS W N R R WS W W M mr o wp m m mp Wy e e ey g mr w wp mp mp e m n w wp [Jl my mp mp e mp m m s ey nr o q mp m mp W By R Ry M am g m M A e W mr m e e N M mp mp mr mp W M MR W M M R M M R W W W w wy am e my

4 2:00 "lezeatig "[ST8)

rFrE T rFFTTrTrswTwwe e

LS

wom T T Ear T

L T T P, Py T L T T T W g

" i T N N i e O e e e T T e e

LR L L LR Y
e
My T, W, L

e e e e i e e

[[SN S Y T S Y T TN U Y O YO WO Y N T U NN U) T N NN O Y W | o=

ruasserase'ress e s s n' e s s da s s s s r s A s s ra s e va s ey e e s e v s a s s s e e s sy s s s s e e e v e e e e +l. rFa s s s s s e s a s s s e ra s s e r s e s s e sy s s s s s e s s ' e’ .

e Ty

ol e

‘ﬂfﬁ"’*’&i‘

Mol L ™

R Tl T ol e T T e L T g R T

<
£

M
m m .
LER N 8 4 L L. N0 1. EE 0 8 R L N 2 R R R 2 0 R FEE N B L. EEJ N .LEN.Z_E. L LA LK LELELERELE LI .LELELLENN LARLELLERESLLRESS L LRSLEEEJSLEERJ EENRLLENRLLENRESERLES LRSS L LRI B L LLYLELELLET.] wherdww i irwewrrwwrr i

(O

SUFASNVL| o
O SILAMAYIY |

- A ESESaAASESEEALLESAUR SRS RS EEEEE.. . AN B B L R O S U B N O L U W N R LN R U RN N U B e AN E E O N S A A E L S L R B e A A NN RN e N R - ER R T e N T R R T e e T R N"

Oly

L Pl P P, T, T, R, W, P W, R, T

T T -y T Wy V- T N T T T e T T Wy
B g e L Y

™] {9

0%y
grend

3
3
>
i

LR N 8. B E N L b B L b R L e L EERRL LERNE LLER S L ERLE L L F R NI LR L LLRLLEELELEENRLLENRLLENLLEREYLLNES L L0 RN 2. L0 N 3 3.] LA L N N 3. R 3 2 FEREN 2 8.0 A 3 0 . N L. LRI 2 LR AL EREEJI.LERESELENRRELLENSLLENSILFRESILL.NI

iy Ty Tl g T, T, T

-

":‘lﬁ‘h"r‘h'ﬁ'ﬁ"-‘}'ﬁﬁ‘“ﬁ"h‘h

T Pl iy O, Y
I.F r §

-

Lt L e e U ol L e e e Y e e

TINNOYC | ammzwamm SHOSSIDIATNd

e L 28V ASVAAONON |

09F ObY

'
.
a1
T I A T]

-

- T T "Ny - Tl T T T e e e T e e N e TR e e N e Te e e

P P P P Pl T P P P P P T e Pl P, T P T P P, et Pl W, Py P P

™ e e L e

(8l

U.S. Patent Aug. 22, 2023 Sheet 5 of 8 US 11,734,059 B2

183

510 520 530

B e e T e R e L o o T o T i n ta T T T T T o o T o T T U G T T o 'h-‘h-ﬁ-‘n-‘h-‘h-‘-ﬁ-ﬁ-‘h-‘h-‘h-‘-‘n-‘-‘h-‘bﬁ-‘b‘bﬁ-‘h-‘n- e e e e e e e e e i e e e e e T i S e T S e S S e e e Y

PROXY TASKS
OBJECT ACCESSING DATA
i BLOCK

DrOXYATU] 1,4.3,4,5,06, 7
PrOXYALT
DIOXyAIZT

DIOXYALS)
proxyBi0 2, 4,5

! l‘l-‘I-‘I-‘I-‘I-‘I-‘I-‘I-‘I-‘I-‘I-‘I-‘I-‘I-‘l 1111111111111‘I-?‘I-111“11“1““11111111111111

DIOXYELT 3,6, 7

l.l.l.l.l.l.l.l.l.l.l.l.l.l.LLLLLLLLLLLLLLLLLLLLLLLL 24044048 04llldilililiilidiifililililifiliididdiflidilililfilildidiiflidliddlildfidfdidiflfldldldlfldidilfidldldddsddsdsdsdsss L N N R N N N N N N R N N N

IHSPATCHED

.-".-"‘.-"‘.-".-"‘.-"‘.-".-"‘.-"‘.-"."‘:" Rttt at sttt gt b gt ettt at b gt gt sttt

!
w
ol ol o B R

.:l".ﬂ"'.all".:l".ﬂ".:l".j if;;;;;;,-& i’.:l"'.ﬂ".:l".:l".i".!"

.

.
: @ @.
FREREEWEEEEEY Wy W Wy

N

 FIIIIIY | ﬁf;;;ﬁw}

L

R R NN W +'

;;;;;.-&

ot oF oF F o F o T T
a
.

F- - E N e N

 FIIIII 4

.:l"'.ﬂ"'.!"'.:l"'.i".j

g, 10

FoF o A
r
n -

ProxXyBid

+.-.-.-.-.-.-.-.-.-.-.-. R

Rl
£ 1O

f,

L FITIIIY. B VIPPIPY. |

m.p.'ll-.

proxyBii]
proxygit}, %8 N

proxyBl2 6
proxXyBia 7, 10

ot ol oF o o ot ot
v
-l . .
= '
n
'"'"'"'"'"'"'"'"'"'"'"'"""""""""""""

if;;;;;;.&! FIIIIPY

Eapteateat ottt ot at

US 11,734,059 B2

Sheet 6 of 8

Aug. 22, 2023

U.S. Patent

G81

21

L IId

SrryFrFFFFFFFrFFFFFFFrFrFFrFFFFrFFrFrr rrrrrrrrrrrrrrrrrrrrr rr

€ MSVL

WA AT AT E T T EEE T EEE T T TN EE T T Ty sy sy sy rssyr

2 MSY |
ITHOLVdSIA-NOILNO3X

LC 0 i ol b b b b b b gk b b b b b b b g b b b b b g b bt R g b b g bk b b b b b b b b b R b b b g bt b b g g R b g b b b b b b b b gt R b b b b b b g b g b b b b Rl g b g b g b b b gt b b b bl g b b b b b b g b b b b b b b b b b b g g

AR R SR

-q'n'n'n'n'n'n'n'n'n'n'n'n'n

9 OId

P R P R R R R R P R R P R e e e e

bt b o b ol b o b ol b ol b b ok b b b ol b bl ol bl b ol b b b ol b b ol b ol bl b ol b o b ol b b b ok ol bl ok b b b b ol b b ol b ol bl b bl bl bl o b b b ol ol bl bl b b b bl b b okl bl b bl ol b ol bl b b bl bl b b bl bl b bl b b ol b ol bl b bl b b bl b b b ol b bl b ol bl b bl b b bl b b bl b ol b ol bl bl bl bl b b bl ok b b bl b b ol b ol bl b o bl b b bl b b b bl b b ol bl bl bl b b bl b b b bl b b b ol b ol bl bl bl b b b b b bl b o o b o

A R EE e e

1-0¢¢

¢"CCC b=l CC

£-0¢¢ ¢-0¢¢) 1-22C
c1gg [| vl

v-1eC ¢lee
11 % 0

v-022 vece

US 11,734,059 B2

Sheet 7 of 8

-

5

o

cn

|
N
:o:l.»,
ﬁl_ﬂﬂ L R
o

O\

- [1evzlv
[eZ:9LlV .
evela |

;
[Le:pzlo .
[eZ:911D :

b

| [si:8ld

| [z:0lg

Aug. 22, 2023

ome\

U.S. Patent

U.S. Patent

GENERATE TASKS-TO-

RAVERSE

ECEIVE A TASK
REQUIR

Aug. 22, 2023

Sheet 8 of 8

ERMINE
B-DATAB

TASKS-TO-R

ASK DATAR

MAPPING 181)

HE TASK DEPENDENCY G
THE TASK DEPENDENCIES OF EACH TASK (E
-AD/WRITE MAPPING 182)

HE PROXY OBJECTS AND CORR
| OCKS THAT ARE REQUIRED BY EACH TASK 920
RIOR TO BEING DISPATCHED FOR EX

US 11,734,059 B2

910

DEPENDENCY GRAPH AND TASK DATA Ve J00
EMENTS FOR A PLURALITY OF TASKS

=SPONDING

—ECUTION (E.G,,

RAPH TO DE
=.G., GENERATE

EQUIREMENTS

930

ERMINE

940

DETERMINE ALL THE TASKS ACCESSING PROXY OBJECTS
(GENERATE APROXY OBJECT TO TASKS-ACCESSING THE

USING TH

USING

DETERM
NEXT TO-B

BAS

DISPATCH

PROXY OBJECT MAPPING 183)

HE

[ASKS-TO-DATA REQUIREM
NE THE SUB-DATA BLOCKS THAT MAP TO TASKS

EN

= TASKS-TO-READ/MWRITE MAPPING, PLACE THE 950
TASKS WHOSE SUB-DATA BLOCKS A
ED IN THE TASK DISPATCH LIST

RE NEXT TO-BE-

S MAPPING, 960

=-DISPATCHED (CHILD TASKS) IN THE TASK

DISPATCH LI

=D ON THE TASK DEPEND

SCHEDU
TRANSFER OF THE SUB-DATA BLOCKS SUCH THAT A

TASKS ARE
DATA-BLOCKS ARE TRANSFERRED ACCORDING

—-MORY TRANSFER OF THE
DURING THE EXECUTION OF THE
DEPENDENCY GRAPH

ST

EXECUTED BY THE COMPUTE

TASKS-TO-PROXY OBJECT SCH

GRAPH

—DULE

D

=P

END

-NCY ASSESSMENT, 970
LE THE EXECUTION OF THE TASKS AND THE

E SUB-DATA BLOCKS OCCURS

E TASKS OF THE TASK

= UNITS AND SUB-

ore | FIG. 9

=NCY

US 11,734,059 B2

1

HARDWARE ASSISTED FINE-GRAINED
DATA MOVEMENT

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT 5

This imnvention was made with Government support under
PathForward Project with Lawrence Livermore National

Security (Prime Contract No. DE-AC52-07NA27344, Sub-
contract No. B620717) awarded by DOE. The Government

has certain rights 1n this invention.

10

BACKGROUND

Memory management techniques that are used in data
processing systems to transfer data structures from graphical 1°
processing units (GPUs) to central processing units (CPUs)
allect application performance. Traditionally, programmers
copy the entire data structures to GPU memory outright,
execute compute kernels that manipulate the data structures,
and copy the data structures back to the host CPU. The time 20
spent copying data from CPU memory to GPU memory and
vice versa can significantly impact processing overhead, as
the memory bandwidth provided by the interconnect
between the CPU and the GPU 1s significantly slower than
the GPU memory bandwidth available to the GPU compute
cores.

25

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure may be better understood, and its
numerous features and advantages made apparent to those
skilled 1n the art by referencing the accompanying drawings.
The use of the same reference symbols in different drawings
indicates similar or identical items.

FIG. 1 1s a block diagram of a processing system that
implements task-to-proxy-object scheduling 1n accordance 35
with some embodiments.

FIG. 2A 1s a task dependency graph used for task-to-
proxy-object scheduling in the processing system of FIG. 1
in accordance with some embodiments.

FIG. 2B 1s an illustration of task data blocks used for 4¢
task-to-proxy-object scheduling in the processing system of
FIG. 1 1n accordance with some embodiments.

FIG. 3 1s a tasks-to-data-requirements mapping used for
task-to-proxy-object scheduling in the processing system of
FIG. 1 1n accordance with some embodiments.

FIG. 4 1s a tasks-to-read/write sets mapping used for
task-to-proxy-object scheduling in the processing system of
FIG. 1 1n accordance with some embodiments.

FIG. 5 1s a proxy-object-to-tasks mapping used for task-
to-proxy-object scheduling in the processing system of FIG.
1 in accordance with some embodiments.

FIG. 6 1s a task-dispatch list used for task-to-proxy-object
scheduling 1n the processing system of FIG. 1 1n accordance
with some embodiments.

FIG. 7 1s an execution-dispatch list used for task-to-
proxy-object scheduling in the processing system of FIG. 1 55
in accordance with some embodiments.

FIG. 8 1s a tasks-to-data block schedule generated using

the processing system of FIG. 1 1n accordance with some
embodiments.

FIG. 9 1s a flow diagram illustrating a method for per- 60
forming task-to-proxy-object scheduling in the processing
system of FIG. 1 1n accordance with some embodiments.

30

45

50

DETAILED DESCRIPTION

63
FIGS. 1-9 illustrate systems, mappings, and techniques
tor asynchronously scheduling tasks and proxy objects 1n a

2

graphics processing unit (GPU). A task scheduling unit
schedules tasks and the transier of data blocks using a
task-to-proxy-object scheduling technique that schedules the
tasks such that the transier of proxy objects representative of
sub-data-blocks (a portion of the data block) from CPU
memory to GPU memory occurs during the execution of a
predecessor task. In order to schedule the tasks using the
task-to-proxy-object scheduling techmque, the task sched-
uling unit traverses a task dependency graph that 1s repre-
sentative of the tasks that are to be executed by the GPU and
the dependency of each task on predecessor tasks. The task
scheduling unit then schedules the tasks and corresponding,
proxy objects based on the dependency relationship of the
tasks ascertained from the task dependency graph and the
data block requirements of each task. For example, when a
task does not have a predecessor (that 1s, the task has no
dependency on another task), the proxy objects for the task
not having a predecessor are scheduled for immediate trans-
fer to the compute units prior to the execution of the
non-predecessor task. When a task does have a predecessor,
the proxy objects representative of sub-data blocks required
for the task’s execution are scheduled for transier during the
predecessor task’s execution, thereby overlapping memory
transiers with task executions. The task scheduling unit 1s
thus able to reduce the amount of time taken for memory
transfers compared to non-overlapping memory transier
techniques, thereby improving the etliciency of the GPU.

FIG. 1 illustrates a processing system 100 that performs
asynchronous task and data block scheduling 1n accordance
with some embodiments. Processing system 100 includes a
CPU 130, a GPU 140, a GPU memory 120, and a CPU
memory 112. GPU 140 includes a system direct memory
access (SDMA) engine 150, and a shader 110. Shader 110
includes a compute unit 170, a compute unit 171, a compute
unit 172, and a compute unit 173. In some embodiments, the
shader 110 includes additional compute units not illustrated
at F1G. 1. GPU 140 includes a task scheduling unit 165. In
some embodiments, the GPU 1s another type of processor,
such as a, vector processor, general-purpose GPU (GPG-
PUs), non-scalar processor, highly-parallel processor, arti-
ficial 1ntelligence (AI) processor, 1inference engines,
machine learning processor, other multithreaded processing
unit, and the like. In some embodiments, GPU 140 includes
a coprocessor (not shown), wherein asynchronous task and
data block scheduling 1s implemented utilizing the copro-
cessor. In some embodiments, the coprocessor includes task
scheduling unit 165. Task scheduling unit 1635 includes a
task dependency graph 180, a tasks-to-task-data-require-
ments mapping 181, a tasks-to-task-dependency mapping
182, a proxy-object-to-tasks mapping 183, a task-dispatch
list 184, an execution-dispatch list 185, and a task-to-proxy-
object schedule 186. In some embodiments, task-to-proxy
object schedule 186 i1s a dynamic schedule or a static
schedule. In some embodiments, task scheduling unit 165 1s
hardware or software (a soltware program or algorithm)
executing on GPU 140. In some embodiments, task sched-
uling unit 165 1s configured to utilize the task dependency
graph 180, the tasks-to-task-data-requirements mapping
181, the tasks-to-task-dependency mapping 182, the proxy-
object-to-tasks mapping 183, the task-dispatch list 184, and
the execution-dispatch list 185 to schedule the plurality of
tasks and corresponding data blocks for execution on com-
pute units 170-173, as described further herein.

During operation of processing system 100, CPU 130
1ssues commands or 1structions to GPU 140 to 1nitiate data
transier and the scheduling of a plurality of tasks (or kernels)
in a task dependency graph 180. In some embodiments, as

US 11,734,059 B2

3

1s known 1n the art, a task 1s a unit of execution that
represents program instructions that are to be executed by
GPU 140. For example, 1n some embodiments, a task may
be a thread or query of work to be executed by GPU 140. In
some embodiments, the task dependency graph 180 1s gen-
crated by the task scheduling unit 165 using tasks and task
dependencies provided by CPU 130. In some embodiments,
the plurality of tasks are represented as a task dependency
graph 180, where each node of the graph represents a task
and each edge connecting the nodes represents the depen-
dency of each task on a subsequent or previous task. In some
embodiments, the plurality of tasks of the task dependency
graph 180 are to be executed according to single-1nstruction-
multiple-data (SIMD) protocols such that each task of task
dependency graph 180 has associated task data requirements
(1.e., data blocks required for execution of each task). Each
task of the task dependency graph 180 1s executed on a
single or multiple compute units of compute units 170-173.
In some embodiments, the task dependency graph 180 is
provided to task scheduling unit 165 from CPU 130 for
scheduling of the plurality of tasks and the data blocks (or
sub-data blocks) required for each task.

Task scheduling unit 165 receives the task dependency
graph 180, and the task data requirements for each task in the
task dependency graph 180 (1.e., the proxy objects that map
to the sub-data blocks required by each task) from CPU 130.
In some embodiments, the task data requirements provided
by CPU 130 to the GPU 140 are specified in terms of a data
read set and a data write set (read/write sets). The read/write
sets are indicative of data blocks or sub-data blocks (a data
block partitioned 1nto subsets) required for each task of the
tasks represented 1n the task dependency graph 180. In some
embodiments, a compiler used to compile solitware pro-
grams 1n processing system 100 can reduce the read/write
sets to data blocks (or sub-data blocks) that correspond to
cach task when, for example, the soltware programs operate
on arrays of data provided from, for example, GPU memory
120 or CPU memory 112.

In some embodiments, the data blocks 1n each read/write
set required by each task are represented by proxy objects.
A proxy object 1s an object that contains information of a
data block or sub-data block of a specific size, 1.e., the start
address and the end address of a data block or sub-data
block. In some embodiments, a proxy object also contains
list fields used by runtime to store the tasks that read from
or write to the proxy object. In some embodiments, a proxy
object 1s responsible for exactly one data block or sub-data
block of a specific size such that no two proxy objects refer
to the same data block and the data blocks of two proxy
objects do not overlap.

In some embodiments, a soltware program provided by,
for example, a programmer of processing system 100,
specifies the tasks, the tasks iter-dependencies each task of
the task dependency graph 180, the proxy objects, and the
read/write sets using a library, such as a runtime framework
and programming model for heterogencous CPU-GPU sys-
tems. In some embodiments, the programmer specifies the
proxy objects read or written by a task, while the runtime
(executing on, for example, GPU 140) determines the
dependencies between tasks using the read-set (1.e., proxy
objects read by the task) and write-set (1.e., proxy objects
written by the task) of each task. By intersecting the read and
write sets with the tasks, task scheduling unit 165 1s con-
figured to compute the dependency edges between the tasks.
An example of such an application programming interface
(API) 1s the OpenMP’s (Open Multi-Processing) depend

clause, which 1s an opensource API that 1s used to build a

10

15

20

25

30

35

40

45

50

55

60

65

4

series ol task dependencies and supports multi-platform
shared-memory multiprocessing programming in C, C++,
and Fortran, on most platforms, mstruction set architectures

and operating systems, including, for example, Solaris, AIX,
HP-UX, Linux, macOS, and Windows.

An example of a program provided by CPU 130 to GPU
140 specitying the read/write sets of each task 1s depicted 1n
the pseudocode below:

proxyA[0] = make proxy_obj(&A[O], &A[R]); // proxy for A[0:7]
proxyA[l] = make proxy_obj(&A[8], &A[16]; // proxy for A[&:13]
proxyA[2] = make proxy_obj(&A[16], &A[24]);

proxyA[3] = make proxy_obj(&A[24], &A[32]);

proxyB = ...; // similar to proxyA

proxyC = ...; // similar to proxyA

task 1 = createTask(args...);
read(task_1, proxyA[0]);
write(task 1, proxyA[O]);
task 2 = createTask(args...);
read(task_2, proxyA[0]);
write(task 2, proxyB[0]);
task_3 = createTask(args...);
read(task_3, proxyA[0]);
write(task 3, proxyB[1]);

... // repeat for other tasks

In the example pseudocode provided above, 1n some
embodiments, the entire computation reads and updates a
fixed number of data arrays or data blocks, in this case, data
block A, B, C each having a total of thirty-two elements
[0:31]. The proxy objects for a first data block A (e.g., a data
block or array of 32 elements) are exemplified as proxy A[0],
proxyA[1], proxyA|2], proxyA|3], the proxy objects for a
second data block B (e.g., a data block or array of 32
clements) are exemplified as proxyB[0], proxyBJ[1], proxyB
[2], proxyB[3], and the proxy objects for a third data block
C (e.g., a data block or array of 32 elements) are exemplified
as proxyC|0], proxyC|[1], proxyC|2], proxy(C|[3].

For proxy object proxyA[0], the start address 1s A[0] and
the end address 1s A[7]. For proxy object proxyAJ[1], the start
address 1s A[8] and the end address 1s A[15]. For proxy
object proxyA|2], the start address 1s A[16] and the end
address 1s A[23]. For proxy object proxyA[3], the start
address 1s A[24] and the end address 1s A[31]. In some
embodiments, each task has a read set and a write set that 1s
populated with proxy objects, e.g., TASK 1 has a proxyA[O]
and a proxyA[0] as read and write sets respectively. In some
embodiments, the read/write sets are defined in terms of
specific tasks specified in task dependency graph 180 and
proxy objects representative of specific sub-data blocks. For
example, for a TASK 1, the read/write sets are read(task_1,
proxyA[0]) and write(task_1, proxyA[0O]). For a TASK 2, the
read/write sets are read(task_2, proxyA[0]) and write
(task_2, proxyB[0]). For a TASK 3, the read/write sets are
read(task_3, proxyA[O]) and write(task_3, proxyBJ[1]). The
pseudocode then repeats 1n defining the read/write sets for
the remaining tasks in the task dependency graph 180. The
task data requirements (read/write sets for each task) and the
task dependency graph 180 are provided to task scheduling
unit 165.

After recerving the task dependency graph 180 and task
data requirements from CPU 130, task scheduling unit 165
traverses the task dependency graph 180, and maps the tasks
and related task data requirements into tasks-to-task-data-
requirements mapping 181 (described turther 1n detail below
with respect to FIG. 3), task-to-read/write set mapping 182
(described further in detail below with respect to FIG. 4) and
a proxy-object-to-task mapping 183 (described further in

US 11,734,059 B2

S

detail below with respect to FIG. 5). Tasks-to-task-data-
requirements mapping 181 1s a mapping of the tasks of the
task dependency graph 180 to the task data requirements
associated with each task. The tasks-to-task-dependency
mapping 182 1s a mapping of the task dependency of the
plurality of tasks represented in the task dependency graph
180 and the plurality of read-write sets associated with the
plurality of tasks. The proxy-object-to-task mapping 183 1s
a mapping of the plurality of proxy objects to the plurality
of tasks that access the proxy objects. Each of the mappings
(tasks-to-task-data-requirements mapping 181, tasks-to-
task-dependency mapping 182, and proxy-object-to-task
mapping 183) are used by task scheduling unit 165 to
schedule the tasks of task dependency graph 180 and the
required sub-data blocks.

In order to schedule the initial task of task dependency
graph 180 and the required proxy objects, task scheduling
unit 165 determines which task or tasks of the plurality of
tasks does not have a predecessor task and schedules the
non-predecessor task as the initial task. In some embodi-
ments, task scheduling unit 165 determines which task 1s the
non-predecessor task by using the tasks-to-task-dependency
mapping 182 to determine whether the number of predeces-
sor tasks 1s nil or zero. A task whose number of predecessors
1s zero 1s the first task that 1s to be scheduled by task
scheduling unit 165. Task scheduling unit 165 places the
task to be scheduled for immediate execution 1 a task-
dispatch list (described further in detail with reference to
FIG. 6). Task scheduling unit 165 than determines the
read/write sets required for the mnitial task by traversing the
tasks-to-task-data-requirements mapping 181 which pro-
vides the proxy objects indicative of the sub-data blocks
required for each task. Task scheduling unit 163 then sched-
ules the transier of the read/write sets for transier prior to the
execution of the mitial task by generating the task-to-proxy-
object schedule 186.

In order to schedule the tasks that are subsequent to the
initial task (and similarly, all other subsequent tasks) of task
dependency graph 180, task scheduling unit 1635 determines
which tasks are immediately dependent on the preceding
task (referred to as the successor tasks of the mitial task). In
some embodiments, task scheduling unit 165 determines
which tasks are immediately dependent on the preceding
task by traversing the tasks-to-task-dependency mapping
182 and ascertaining the task dependency from the task
dependency portion of tasks-to-task-dependency mapping
182. Task scheduling unit 165 determines the read/write sets
required for the subsequent tasks by traversing the tasks-to-
task-data-requirements mapping 181 and ascertaiming the
sub-data blocks required for the subsequent tasks. Task
scheduling unit 165 schedules the successor tasks of the
initial task for execution after recerving an interrupt from,
for example, SDMA engine 150 or shader 150. That 1s, task
scheduling unit 165 schedules the tasks and proxy objects
based on an interrupt signal from SDMA engine 150 when,
for example, data transfers are complete, or an interrupt
signal from shader 150 when a task completes. In some
embodiments, task scheduling unit 1635 schedules the suc-
cessor tasks of the 1nitial task for execution after the execu-
tion of the mitial task. In some embodiments, although not
necessary for scheduling, the execution time 1s provided for
in tasks-to-task-data-requirements mapping 181. Task
scheduling unit 165 schedules the transier of proxy objects
that map to sub-data blocks (1.e., read/write sets) required for
execution of the successor of the initial task for transfer
during the execution of the preceding task (in this case, the
initial task). Task scheduling unit 165 repeats the task

5

10

15

20

25

30

35

40

45

50

55

60

65

6

scheduling process for each task of the task dependency
graph 180 and the required proxy objects until there are no
more remaining tasks and all proxy objects have been
scheduled. That 1s, task scheduling unit 165 repeats this
process until all tasks and read-write sets have been sched-
uled 1n task-to-proxy-object schedule 186.

In some embodiments, SDMA engine 1350, which 1s
configured to transier data blocks from GPU memory 120 to
shader 110, transiers the data blocks according to task-to-
proxy-object schedule 186. That is, the tasks and read/write
sets are dispatched from GPU memory 120 to shader 110 for
execution by compute units 170-173 according to the task-
to-proxy-object schedule 186 generated by task scheduling
umt 165. Execution of the task-to-proxy-object scheduling
technique utilized in FIG. 1 above 1s described further in
detail with reference to the example depicted in FIGS. 2-7.

FIG. 2A 1llustrates a task dependency graph 180 utilized
to asynchronously schedule tasks and data blocks in the
processing system 100 of FIG. 1 according to some embodi-
ments. Task dependency graph 180 includes nodes 231-1-
231-10, each representing a corresponding task, and edges
241-1-241-12. In various embodiments, as stated previously,
task dependency graph 180 represents the tasks that a
programmer of processing system 100 1s attempting to
execute on, for example, GPU 140. Each node or task
231-1-231-10 are kernel invocations, whereas edges 241-1-
241-12 represent dependencies due to sharing of the data
blocks that are to be executed by compute units 170-173. In

one embodiment, for example, tasks 231-1-231-10 represent
enumerated TASKS 1-10 and edge 241-3 indicates that

TASK 4 shares at least a data block or sub-data block with
TASK 2. The TASKS 1-10 of task dependency graph 180
map to the data blocks and the task data requirements
described below with reference to FIG. 2B and FIG. 3.
FIG. 2B 1llustrates task data blocks 280 used for task and
data block scheduling 1n the processing system of FIG. 1 1n

accordance with some embodiments. Task data blocks 280
includes a data block 220, a data block 221, and a data block

222. Data block 220 includes a sub-data block 220-1, a
sub-data block 220-2, a sub-data block 220-3, and a sub-data
block 220-4. Data block 221 includes a sub-data block
221-1, a sub-data block 221-2, a sub-data block 221-3, and
a sub-data block 221-4. Data block 222 includes a sub-data
block 222-1, a sub-data block 222-2, a sub-data block 222-3,
and a sub-data block 222-4. In some embodiments, data
block 220, data block 221, and data block 222 are repre-
sentative of blocks of data elements that are to be transterred
to shader 110 for use by compute units 170-173 for execu-
tion of tasks 231-1-231-10. In some embodiments, there
may be a greater or lesser number of data blocks 1n task data
blocks 280 depending on, for example, the number of tasks
or number of data blocks required for execution of the tasks
by compute units 170-173.

For the example provided for illustration purposes in FIG.
2B, 1n some embodiments, data blocks 220, 221, and 222
map to data blocks A, B, C described with reference to FIG.
1, each data block having a total of thirty-two elements
[0:31]. In some embodiments, sub-data block 220-1 repre-
sents sub-data block A[0:7]. Sub-data block 220-2 repre-
sents sub-data block A[8:13]. Sub-data block 220-3 repre-
sents sub-data block A[16:23]. Sub-data block 220-4

represents sub-data block A[24:31]. Sub-data block 221-1
represents sub-data block BJ[0:7]. Sub-data block 221-2
represents sub-data block B[8:15]. Sub-data block 221-3
represents sub-data block B[16:23]. Sub-data block 221-4
represents sub-data block B[24:31]. Sub-data block 222-1
represents sub-data block CJ0:7]. Sub-data block 222-2

US 11,734,059 B2

7

represents sub-data block C[8:15]. Sub-data block 222-3
represents sub-data block C[16:23]. Sub-data block 222-4
represents sub-data block C[24:31]. As described previously
with respect to FIG. 1, each of the sub-data blocks are
represented as proxy objects proxyA[0], proxyA[1], proxyA
[2], and proxyA[3] for data block 220, proxyB[0], proxyB
[1], proxyB[2], and proxyB[3] for data block 221, and
proxyC[0], proxy(C[1], proxy(C[2], and proxyC[3] for data
block 222. Further, each data block 220, 221, and 222 and
corresponding sub-data blocks 220-1-220-4, 221-1-221-4,
and 222-1-222-4, represent blocks of data elements that are
required by tasks 231-231-10 and specified by the task data
requirements provided to, for example, GPU 140 by CPU
130.

FIG. 3 illustrates a tasks-to-task-data-requirements map-
ping 181 that 1s used to schedule tasks and sub-data blocks
in the processing system of FIG. 1 according to some
embodiments. Tasks-to-task-data-requirements mapping
181 1ncludes a task ID 310 column, an execution time 320
column, and a task data requirements 330 column. Task ID
310 1s an identification number given to each task that
represents the tasks 231-1-231-10 depicted 1n task depen-
dency graph 180. Execution time 320 is the total execution
time that each task requires to execute provided by, for
example, CPU 130. First data block column 331, second
data block column 332, and third data block column 333 of
tasks data requirements 330 each represent the data blocks
that are required for the corresponding task in tasks 231-1-
232-10. In some embodiments, the task data requirements
330 and the execution times 320 are provided by, for
example, a programmer that specifies the tasks and the data
blocks required i GPU memory 120 before the task 1s
dispatched for execution in shader 110. In some embodi-
ments, the task data requirements 330 and execution times
320 are provided using a library that includes, for example,
a runtime framework and programming model for hetero-
geneous CPU and GPU systems.

For the example depicted 1in FIG. 3, TASK 1 has a task 1D
of 1 and has an execution time of four seconds and requires
sub-data block AJ0:7] 1n order to execute. TASK 2 has a task
ID of 2, an execution time of six seconds, and requires
sub-data blocks A[0:7] and B[0:7] 1n order to execute. TASK
3 has a task ID of 3, an execution time of six seconds, and
requires sub-data blocks A[0:7] and B[8:15] in order to
execute. TASK 4 has a task ID of 4, an execution time of
three seconds, and requires sub-data blocks A[0:7], B[0:7],
and C[0:7] 1n order to execute. TASK 35 has a task ID of 3,
an execution time ol one second, and requires sub-data
blocks A[0:7], B[0:7], and C|8:15] 1n order to execute.
TASK 6 has a task ID of 6, an execution time of three
seconds, and requires sub-data blocks A[0:7], B[8:13], and
C[16:23] 1n order to execute. TASK 7 has a task ID of 7, an
execution time ol one second, and requires data blocks
A[0:7], B[8:15], and C|24:31] mn order to execute. TASK 8
has a task ID of 8, an execution time of eight seconds, and
requires data blocks A[8:15], B[16:23], and C[0:7] 1n order
to execute. TASK 9 has a task ID of 9, an execution time of
eight seconds, and requires sub-data blocks A[8:15], B[24:
31], and C[8:15] 1n order to execute. TASK 10 has a task ID
of 10, an execution time of ten seconds, and requires
sub-data blocks A[16:31], B[24:31], and C[24:31] 1n order
to execute.

FI1G. 4 1llustrates a task-to-read/write set mapping 182 in
accordance with some embodiments. Task-to-read/write set
mapping 182 includes a task ID column 410, a read/write
sets column 420 (read/write sets 420), a number of sub-data
block transfers (num transfers column 430), a number of

10

15

20

25

30

35

40

45

50

55

60

65

8

task predecessors column 440 (num of task predecessors
440), a task dependency column 450, and a D-counter 460.
Task ID of task ID column 410 1s the identification

number assigned to each task of task dependency graph 180.
Num transfers 430 1s the number sub-data blocks required
by the task that are to be transierred to shader 110. Num of
task predecessors 440 1s the number of task predecessors of
a task. D-counter 460 1s an atomic counter whose value 1s
equal to the number of transters 430 plus the number of task
predecessors 440. GPU 140 calculates the value of the
counter in D-counter 460 by adding number of sub-data
block transfers (num transiers 430) to the number of task
predecessors (num of task predecessors 440).

In order to populate task-to-read/write set mapping 182,
task scheduling unit 165 commences by traversing task
dependency graph 180 and determining the task dependency
of each task, 1.e., mapping the task dependency of each task
into the task dependency column 4350 of task-to-read/write
set mapping 182 depicted 1in FIG. 4. For example, traversing,
task dependency graph 180 depicted 1n FIG. 2, task sched-
uling unit 165 determines that TASK 1 1s not dependent on
any tasks and 1s the predecessor of TASK 2 and TASK 3.
TASK 2 1s dependent on or the successor of TASK 1 and 1s
the predecessor of TASK 4 and TASK 5. TASK 3 is the
successor of TASK 1 and the predecessor of TASK 6 and
TASK 7. TASK 4 1s the successor of TASK 2 and the
predecessor of TASK 8. TASK 5 1s the successor of TASK
2 and the predecessor of TASK 8. TASK 6 1s the successor
of TASK 3 and the predecessor of TASK 9. TASK 7 1s the
successor o TASK 3 and the predecessor of TASK 9. TASK
8 15 the successor of TASK 4 and TASK 5 and the prede-
cessor of TASK 10. TASK 9 i1s the successor of TASK 6 and

TASK 7 and the predecessor of TASK 10. TASK 10 1s the
successor of TASK 8 and TASK 9. GPU 140 places the task
dependencies in the task dependency column 450 of the
tasks-to-task-dependency mapping 182.

In addition to traversing task dependency graph 180 to
determine the task dependencies placed in task dependency
column 450, GPU 140 traverses task dependency graph 180
to ascertain the number of predecessors of each task 231-
1-231-10, as well as the required task sub-data blocks
provided in the read/write sets and the number of sub-data
block transfers, and maps each to each task represented by
task ID of task ID column 410. From the read/write sets 420,
the task dependency 450, and num of task predecessors 440,
task scheduling unit 165 determines the number of sub-data
block transfers required (num transiers 430) as well as the
value of the D-counter 460 (¢.g., number of sub-data block
transiers plus the number of task predecessors).

For the tasks depicted in task dependency graph 180, task
scheduling unit 165 determines that TASK 1 does not have
a predecessor (1.e., number of task predecessors 460 1s 0)
and requires a single sub-data block (1.e., A[0:7]) 1n the
read/write sets 420). Thus, the number of sub-data block
transfers (num transiers 430) 1s 1 and the D-counter 460
value 1s 1. Task scheduling unit 165 determines that TASK
2 has a single predecessor (1.e., num of task predecessors
440 1s 1) and requires two proxy objects, 1.e., A[0:7] and
B[0:7] 1n the read/write sets 420), and thus the number of
sub-data block transfers (num of transfers 430) 1s 2 and the
D-counter 460 1s 3. TASK 3 has a single predecessor (i.e.,
num of task predecessors 440 1s 1) and requires two proxy
objects, 1.e., A[0:7] and B[8:15] 1n the read/write sets 420),
and thus num transiers 430 1s 2 and the D-counter 460 1s 3.
TASK 4 has a single predecessor (1.e., num of task prede-
cessors 440 1s 1) and requires three proxy objects, 1.e.,

US 11,734,059 B2

9

AJ0:7], B[0:7], and C[0:7] in the read/write sets 420), and
thus num transiers 430 1s 3 and the D-counter 460 1s 4.

TASK 5 has a single predecessor (1.e., num of task
predecessors 440 1s 1) and requires three proxy objects, 1.¢.,
AJ0:7], B[0:7], and C[8:13] 1n the read/write sets 420), and
thus num transfers 430 1s 3 and the D-counter 460 1s 4. Task
6 has a single predecessor (i.e., num of task predecessors
440 1s 1) and requires three proxy objects, 1.e., A[0:7],
B[8:15], and C[16:23] 1n the read/write sets 420), and thus
num transiers 430 1s 3 and the D-counter 460 1s 4. TASK 7
has a single predecessor (i.e., num of task predecessors 440
1s 1) and requires three proxy objects, 1.e., A[0:7], B[8:15],
and C[24:31] 1n the read/write sets 420), and thus num
transiers 430 1s 3 and the D-counter 460 1s 4. TASK 8 has
a two predecessors (1.e., num of task predecessors 440 1s 2)
and requires three proxy objects, 1.e., A[8:15], B[16:23], and
C[0:7] 1n the read/write sets 420), and thus num transiers
430 1s 3 and the D-counter 460 1s 5.

TASK 9 has a two predecessors (1.e., num of task prede-
cessors 440 1s 2) and requires three proxy objects, 1.e.,
A[8:15], B[24:31], and C][8:15] 1n the read/write sets 420),
and thus num transfers 430 1s 3 and the D-counter 460 1s 5.
TASK 10 has two predecessors (1.e., num of task predeces-
sors 440 1s 2) and requires four proxy objects, 1.e., A[16:23],
Al24:31], B[16:23], and C[0:7] 1n the read/write sets 420),
and thus num transfers 430 1s 4 and the D-counter 460 1s 6.
Task scheduling unit 165 utilizes the results of the task-to-
read/write set mapping 182, and the task data requirements
and execution times provided in tasks-to-task-data-require-
ments mapping 181 of FIG. 3 to schedule the plurality of
tasks 231-1-231-10 and sub-data blocks of read/write sets
420.

FIG. 5 illustrates a proxy-object-to-tasks mapping 183
utilized 1n the processing system of FIG. 1 in accordance
with some embodiments. Proxy-object-to-tasks mapping
183 1s a mapping of the proxy objects to the plurality of tasks
of task dependency graph 180 accessing the proxy objects.
Proxy-object-to-tasks mapping 183 includes a proxy object
ID column 510 representative of the proxy object that maps
to the corresponding sub-data block, a tasks accessing data
block column 520 representative of the tasks accessing the
sub-data blocks represented in the proxy object ID column
510, and a dispatched column 530 that serves as a flag or
indicator of whether the transfer of the proxy object in the
proxy object ID column 510 has been scheduled on SDMA
engine 150.

The tasks accessing data block column 3520 1s populated
during the scheduling phase of the tasks 231-1-231-10. Task
scheduling unit 165 determines which tasks of task depen-
dency graph 180 access the sub-data blocks represented by
the proxy objects represented in proxy object ID column 510
by checking task data requirements 330 of the tasks-to-task-
data-requirements mapping 181 to determine which tasks
map to the TASK ID indicated by task ID 310. Task
scheduling unit 165 places the tasks that access each sub-
data block 1n the tasks access data block column 520.

The dispatched column 530 1s populated during the sched-
uling phase of the tasks 231-231-10. Prior to the scheduling
of the mitial task scheduled by the task scheduling unit 165,
all sub-data blocks have not been scheduled for transter to
SDMA engine 150, as indicated by the default value N.
When a sub-data block represented by the proxy-object 1D
in 510 has been scheduled for transfer to SDMA engine 150,
the default value N 1n dispatched column 330 1s populated
with the value Y, indicative of the sub-data blocks corre-
sponding to the proxy objects of proxy object ID column 510
having been scheduled for transfer. As a result, at any point

10

15

20

25

30

35

40

45

50

55

60

65

10

during the scheduling process of tasks 231-1-231-10 and the
proxy objects, task scheduling unit 165 1s privy to whether
a specific sub-data block required by a task for execution has
been scheduled for transfer to SDMA engine 150.

FIG. 6 1llustrates a task-dispatch list 184 that 1s generated
by task scheduling unit 165 of FIG. 1 1 accordance with
some embodiments. Task-dispatch list 184 1s a list that
contains the immediate subsequent task or tasks for which
GPU 140 1s to next initiate data transfers (1.e., tasks whose
data transiers occur next in the task dependency graph 180).
Initially, for the example illustrated in FIG. 2, since TASK
1 1s the task whose data transfers occur first (the task with
no predecessors), TASK 1 1s placed 1n task-dispatch list 184.
After the imitial task (1.e., TASK 1) and the corresponding
sub-data blocks have been scheduled for transfer, the task 1s
removed and the tasks that are next 1n line for sub-data block
transfer, 1.e., TASK 2 and TASK 3, are placed in the
task-dispatch list 184. The process of placing the subsequent
task or tasks whose data transfers are next to occur occurs
until all the data transiers have occurred.

FIG. 7 1llustrates an execution-dispatch list 1835 generated
by task scheduling unit 165 of FIG. 1 1 accordance with
some embodiments. Execution-dispatch list 185 includes the
tasks of task dependency graph 180 that are ready to be
dispatched for execution by compute units 170-173 of
shader 110. Execution-dispatch list 185 1s populated with the
tasks of tasks-to-task-dependency mapping 182 whose
D-counter value 1n D-counter column 460 1s zero, which 1s
indicative of the tasks that are next in line to be executed by
compute units 170-173. For the example illustrated 1n FIG.
7, TASK 2 and TASK 3 are the tasks that are next 1n line to
be executed by compute units 170-173. In various embodi-
ments, execution-dispatch list 185 may be implemented

using, for example, a heterogeneous system architecture
(HSA) queue as 1s known in the art.

FIG. 8 illustrates a task-to-proxy-object schedule 186
generated by task scheduling unit 165 of FIG. 1 1n accor-
dance with some embodiments. In order to generate the
task-to-proxy-object schedule 186, GPU 140 receives the
task dependency graph 180 and task data requirements from
CPU 130. Task scheduling unit 165 traverses the task
dependency graph 180 which populates and 1nitializes the
tasks-to-task-data-requirements mapping 181, the tasks-to-
task-dependency mapping 182, the proxy-object-to-tasks
mapping 183, the task-dispatch list 184, and the execution-
dispatch list 185. As stated previously, GPU 140 traverses
task dependency graph 180 in order to determine which
tasks of the plurality of tasks do not have a predecessor task.
GPU 140 places the tasks that do not have a predecessor task
in task-dispatch list 184. For example, for the embodiment
illustrated 1n FIG. 2, task scheduling unit 165 traverses task
dependency graph 180 and determines that TASK 1 does not
have a predecessor task. GPU 140 places TASK 1 as the
initial task to be scheduled in task-dispatch list 184.

After populating the task-dispatch list 184 with the mitial
TASK 1, GPU 140 removes the task (e.g., TASK 1) from
task-dispatch list 184 and schedules the task and all the
proxy object transiers (mapping to the corresponding sub-
data blocks) required for the task, in this case, sub-data block
220-1, depicted m FIG. 8. As depicted 1n task-to-proxy-
object schedule 186, sub-data block 220-1 1s scheduled for
transier prior to the execution of TASK 1. GPU 140 does not
schedule the subsequent tasks until all proxy object transfers
for the current task have been scheduled by task scheduling
unit 165.

In some embodiments, when all data-transfers for the
removed task have been scheduled by task scheduling unit

US 11,734,059 B2

11

165, GPU 140 adds the successor tasks of the predecessor
task to the task-dispatch list 184. That 1s, the task’s succes-
sors (TASK 2 and TASK 3) in the task dependency graph
180 are added to the task-dispatch list 184. GPU 140 then
schedules the proxy object transfers for the successor tasks
that have not already been scheduled for transfer to occur
during the execution of the preceding task (e.g., TASK 1). In
some embodiments, task scheduling unit 165 repeatedly
removes tasks from task-dispatch list 184 for the subsequent

tasks and schedules all of the tasks proxy object transiers on
the SDMA engine 150 until either all the data transfers have

been scheduled or the SDMA engine 150 has been fully
loaded with the scheduled data transfers. In the case where
the SDMA engine 150 has been fully loaded, GPU 140 does

not process a new task from task-dispatch list 184 until all

the transiers for a previous task have been scheduled.
Upon completion of the scheduling of the proxy objects of

cach task, the GPU 140 marks a flag in the dispatched

column 530 of the proxy-object-to-task mapping 500 for
cach proxy object corresponding to the proxy object (1.e., the

corresponding sub-data block) whose transfer has been
scheduled on the SDMA engines 150.
In some embodiments, after the task scheduling unit 165

has scheduled the mitial proxy object transfer (e.g., mapping,
to sub-data block 220-1), the mitial task (e.g., TASK 1), and
the sub-data blocks (e.g., sub-data block 220-1, sub-data
block 221-1, sub-data block 221-2) that are required for the
subsequent tasks (e.g., TASK 2 and TASK 3), SDMA engine
150 performs the data transfer required for the scheduled
tasks. When the SDMA engine 150 completes a data trans-
ter, the SDMA engine 150 interrupts, for example, a copro-
cessor (not shown), with the proxy object ID associated with
the sub-data block transferred in the interrupt payload. In
some embodiments, when a sub-data block of a task has
been transierred, task scheduling unit 165 decrements the
D-counter value in D-counter column 460 of all the tasks
that require the sub-data block. In some embodiments, an
interrupt handling routine executed on GPU 140 atomically
decrements the D-counter value in D-counter column 460 of
all the tasks that require the sub-data block by using the tasks
accessing data block column 520 of proxy-object-to-tasks
mapping 183.

In some embodiments, when task scheduling unit 165
determines that the D-counter value in D-counter column
460 of a task reached zero, GPU 140 places the task 1n the
execution-dispatch list 185 of FIG. 7, which, as stated
previously, includes the tasks of task dependency graph 180
that are ready to be dispatched for execution by compute
units 170-173. SDMA engine 150 repeatedly removes the
tasks from the execution-dispatch list 1835 and dispatches the
tasks for execution to shader 110 for execution by compute
units 170-173. In some embodiments, as stated previously,
when a task completes execution on compute units 170-173
of shader 110, the task generates an interrupt that 1s provided
to, for example, a coprocessor (not shown) that 1s interrupted
with the task ID of the completed task in the payload of the
interrupt.

Thus, 1n some embodiments, GPU 140 mnitially moves the
tasks of task dependency graph 180 into task-dispatch list
184 to schedule the tasks’ required data transfers. Once the
data transfers of a task and the task’s dependencies due to
predecessors have been resolved, the corresponding D-coun-
ter value 1n D-counter column 460 reaches zero and the GPU
140 moves the task into execution-dispatch list 185. As
illustrated 1n FIGS. 1-8 above, scheduling of both data

transfers and task-execution occurs asynchronously while

10

15

20

25

30

35

40

45

50

55

60

65

12

ensuring that dependencies due to both the data transfers and
predecessor tasks in the task dependency graph 180 are
respected.

FIG. 9 1llustrates a method 900 for performing task-to-
proxy-object scheduling in the processing system of FIG. 1
in accordance with some embodiments. Method 900 com-
mences at start block 905. At block 910, GPU 140 receirves
a task dependency graph 180 and task data requirements
corresponding to the plurality of tasks of task dependency
graph 180. At block 920, task scheduling unit 165 generates
tasks-to-task-data-requirements mapping 181 and deter-
mines which proxy objects and corresponding sub-data
blocks that are required by each task prior to being dis-
patched for execution by compute units 170-173. At block
930, task scheduling unit 165 traverses the task dependency
graph 180 to determine the task dependences of each task
(task dependency 450), along with the number of predeces-
sors of each task (number of task predecessors 440), the
number of sub-data block transfers required of each task
(num transiers 430), the read-write sets required by each
task (read/write sets 420), and the number sub-data block
transiers added to the number of predecessors of each task
(D-counter 460) to generate tasks-to-task-dependency map-
ping 182. At block 940, task scheduling unit 165 determines
all the tasks accessing proxy objects. That 1s, task scheduling
umt 165 generates proxy-object-to-task mapping 183 that
indicates all the proxy objects (proxy object ID 510) used by
the tasks of task dependency graph 180, the tasks that access
cach proxy object (tasks accessing data block 520) and a flag
(dispatched 530) that indicates whether the transier of the
proxy object (1.e., corresponding sub-data block) has been
scheduled for transfer. At block 950, task scheduling unit
165 uses the task-to-read/write mapping 182 to place the
tasks whose sub-data blocks are next to be dispatched in
task-dispatch list 184. At block 960, based on the task
dependency assessment conducted in the previous blocks
(e.g., blocks 920-960), task scheduling umt 165 schedules
the execution the tasks and the transfer of the sub-data
blocks such that the memory transier of the sub-data blocks
occurs during the execution of the tasks of the task depen-
dency graph 180. At block 980, the tasks are executed by
compute units 170-173 and the sub-data-blocks are trans-
terred from CPU memory 112 to GPU memory 120 accord-
ing to the tasks-to-proxy-object schedule.

In some embodiments, tasks that have been placed 1n the
task-dispatch list 184 are prioritized based on various criti-
cality metrics, such as, for example, the height of a node 1n
the task dependency graph 180, the height of a node in the
task dependency graph 180. In some embodiments, heuris-
tics, such as depth, height or other metrics, are used because
determining, for example, the most critical task 1 a
directed-acyclic task graph, such as the task dependency
graph, can be determined to be NP-complete, where no
polynomial time algorithms are known for the general case.

In some embodiments, task scheduling unit 165 schedules
the tasks 1n the task dependency graph 180 by task depen-
dency graph order. In the task dependency graph order
approach, the task scheduling unit 165 prioritizes tasks by
the order of the tasks in the task dependency graph 180,
which can be, for example, a topological order on the task
dependency graph. In some embodiments, the goal 1n the
task dependency graph order approach 1s to prioritize the
data-transiers of tasks that are likely to be scheduled fo
execution first because the tasks are elevated in the graph. In
some embodiments, the task dependency graph order

US 11,734,059 B2

13

approach 1s implemented by processing the task-dispatch list
184 and the execution-dispatch list a85 in first-in-first-out
(FIFO) order.

In some embodiments, task scheduling unit 165 schedules
the tasks of task dependency graph 180 using a task-by-
data-size order approach. In the task-by-data size approach,
task scheduling unit 165 orders the task-dispatch list by the
s1ze ol data-transiers needed by each task. In one embodi-
ment, when tasks are processed in increasing order of the
size ol data transfers (data transfer size), more tasks are
enabled for execution. In another embodiment, when tasks
are processed in decreasing order of transier size, the
elliciency of SDMA engine 150 1s improved by scheduling
larger sized transfers at the beginning of the computation
when, for example, fewer kernels are executing.

In some embodiments, task scheduling unit 165 schedules
the tasks of task dependency graph 180 using a schedule by
data-reuse. In the schedule by-reuse approach, the task-
C
C

ispatch list 184 1s prioritized by selecting tasks whose
ata-blocks are used most by other tasks, 1.e., the priority
metric 1s a function of the number of tasks that access the
data blocks. In the schedule by data-reuse, the goal 1s to
prioritize the transiers for the most used data-blocks.

In some embodiments, the proxy objects imnclude a data-
block’s CPU pointer, a GPU pointer, and the size of the
data-block or sub-data-block. In some embodiments, when,
for example, a task 1s drawn from task-dispatch list 184 (i.e.,
the list of tasks whose SDMA requests have not yet 1ssued),
an SDMA packet 1s placed into an SDMA queue (not shown)
that 1s either in CPU 112 or GPU memory 120. The SDMA
packet includes a source pointer, a destination pointer, a size
of the data-block, and a proxy object 1D, where the source
pointer and destination pointer point to data-blocks in GPU
memory 120 or CPU memory 112. The SDMA engine 150
consumes the SDMA packets from the SDMA queue and
carries out the copy operation indicated by each packet. In
some embodiments, for example, a coprocessor can 1mme-
diately return to other work after putting an SDMA packet
in the SDMA queue. In some embodiments, a coprocessor
may have to wait if the SDMA queue fills up to 1ts maximum
capacity. In some embodiments, the SDMA engine 150,
upon completing a data transfer, interrupts coprocessor 160
with the proxy object ID in the SDMA packet sent via the
SDMA queue.

In some embodiments, the apparatus and techniques
described above are implemented 1n a system including one
or more 1ntegrated circuit (IC) devices (also referred to as
integrated circuit packages or microchips), such as the GPU
described above with reference to FIGS. 1-9. Electronic
design automation (EDA) and computer aided design (CAD)
soltware tools may be used in the design and fabrication of
these IC devices. These design tools typically are repre-
sented as one or more software programs. The one or more
soltware programs include code executable by a computer
system to mampulate the computer system to operate on
code representative of circuitry of one or more IC devices so
as to perform at least a portion of a process to design or adapt
a manufacturing system to fabricate the circuitry. This code
can include instructions, data, or a combination of instruc-
tions and data. The software instructions representing a
design tool or fabrication tool typically are stored 1n a
computer readable storage medium accessible to the com-
puting system. Likewise, the code representative of one or
more phases of the design or fabrication of an IC device may
be stored 1n and accessed from the same computer readable
storage medium or a different computer readable storage
medium.

10

15

20

25

30

35

40

45

50

55

60

65

14

A computer readable storage medium may include any
non-transitory storage medium, or combination of non-
transitory storage media, accessible by a computer system
during use to provide instructions and/or data to the com-
puter system. Such storage media can include, but 1s not
limited to, optical media (e.g., compact disc (CD), digital
versatile disc (DVD), Blu-Ray disc), magnetic media (e.g.,
floppy disc, magnetic tape, or magnetic hard drive), volatile
memory (e.g., random access memory (RAM) or cache),
non-volatile memory (e.g., read-only memory (ROM) or
Flash memory), or microelectromechanical systems
(MEMS)-based storage media. The computer readable stor-
age medium may be embedded in the computing system
(e.g., system RAM or ROM), fixedly attached to the com-
puting system (e.g., a magnetic hard drive), removably
attached to the computing system (e.g., an optical disc or
Universal Serial Bus (USB)-based Flash memory), or
coupled to the computer system via a wired or wireless
network (e.g., network accessible storage (NAS)).

In some embodiments, certain aspects of the techniques
described above may implemented by one or more proces-
sors of a processing system executing software. The soft-
ware includes one or more sets of executable instructions
stored or otherwise tangibly embodied on a non-transitory
computer readable storage medium. The software can
include the 1nstructions and certain data that, when executed
by the one or more processors, manipulate the one or more
processors to perform one or more aspects of the techniques
described above. The non-transitory computer readable stor-
age medium can include, for example, a magnetic or optical
disk storage device, solid state storage devices such as Flash
memory, a cache, random access memory (RAM) or other
non-volatile memory device or devices, and the like. The
executable instructions stored on the non-transitory com-
puter readable storage medium may be 1n source code,
assembly language code, object code, or other instruction
format that 1s interpreted or otherwise executable by one or
more processors.

Note that not all of the activities or elements described
above 1n the general description are required, that a portion
ol a specific activity or device may not be required, and that
one or more further activities may be performed, or elements
included, 1n addition to those described. Still further, the
order 1n which activities are listed are not necessarily the
order in which they are performed. Also, the concepts have
been described with reference to specific embodiments.
However, one of ordinary skill in the art appreciates that
vartous modifications and changes can be made without
departing from the scope of the present disclosure as set
forth 1n the claims below. Accordingly, the specification and
figures are to be regarded in an 1illustrative rather than a
restrictive sense, and all such modifications are intended to
be mcluded within the scope of the present disclosure.

Benefits, other advantages, and solutions to problems
have been described above with regard to specific embodi-
ments. However, the benefits, advantages, solutions to prob-
lems, and any feature(s) that may cause any benefit, advan-
tage, or solution to occur or become more pronounced are
not to be construed as a critical, required, or essential feature
of any or all the claims. Moreover, the particular embodi-
ments disclosed above are 1llustrative only, as the disclosed
subject matter may be modified and practiced in different but
equivalent manners apparent to those skilled in the art
having the benefit of the teachings herein. No limitations are
intended to the details of construction or design herein
shown, other than as described in the claims below. It 1s
therefore evident that the particular embodiments disclosed

US 11,734,059 B2

15

above may be altered or modified and all such variations are
considered within the scope of the disclosed subject matter.

Accordingly, the protection sought herein 1s as set forth
the claims below.

1n

What 1s claimed 1s:

1. A method implemented at a processor, comprising:

receiving, a task dependency graph representative of a
plurality of tasks;

receiving task data requirements that correspond to each
task of the plurality of tasks;

performing a task dependency assessment of the task
dependency graph and the task data requirements; and

based on the task dependency assessment, scheduling for
execution a first task of the plurality of tasks and a
proxy object of a plurality of proxy objects specified by
the task data requirements such that a memory transier
of the proxy object occurs while the first task i1s being
executed.

2. The method of claim 1, wherein:

the task dependency assessment indicates a task depen-
dency of each task 1n the plurality of tasks and a set of
the plurality of proxy objects that are required for each
task to execute.

3. The method of claim 2, turther comprising;:

using the task dependency of each task in the plurality of
tasks to schedule the plurality of tasks such that a
memory transier of proxy objects representative of
data-blocks from a central processing unit (CPU)
memory to a graphics processing unit (GPU) memory
occurs during the execution of a predecessor task.

4. The method of claim 1, further comprising:

generating a first mapping of the plurality of tasks repre-
sented 1n the task dependency graph to a plurality of
data blocks required for each task of the plurality of
tasks.

5. The method of claim 4, further comprising;:

using the first mapping to schedule the plurality of proxy
objects required for each task of the plurality of tasks
according to a first order of the proxy objects 1n the first
mapping.

6. The method of claim 3, further comprising:

generating a second mapping of the plurality of tasks
represented in the task dependency graph to a task
dependency of each task and a total number of prede-
cessors of each task.

7. The method of claim 6, further comprising:

using the second mapping of the plurality of tasks repre-
sented 1n the task dependency graph to schedule the
plurality of tasks such that each successor task of the
plurality of tasks 1s scheduled after a corresponding
predecessor task.

8. The method of claim 7, turther comprising;:

generating a third mapping of a plurality of proxy objects
to a plurality of tasks that access the plurality of data
blocks.

9. The method of claim 8, turther comprising;:

using the third mapping of the plurality of tasks repre-
sented 1n the task dependency graph to schedule the
plurality of tasks and the plurality of data blocks.

16

10. The method of claim 1, further comprising;:

generating a task-dispatch list that includes a first task of
the plurality of tasks to be scheduled, the plurality of
tasks being placed 1n the task-dispatch list based on an
execution order; and

scheduling the plurality of tasks and a plurality of data
blocks based on the execution order of the task-dis-
patch list.

11. The method of claim 1, wherein a proxy object 1s an

1o Object that contains information of a data block of a specific

15

20

25

30

35

40

45

50

55

S17e.

12. A processing system including at least one processor,

comprising;

a task scheduling unit; and

a compute unit coupled to the task scheduling unit,
wherein the task scheduling unit performs a task depen-
dency assessment of a task dependency graph and task
data requirements that correspond to each task of a
plurality of tasks of the task dependency graph, and

based on the task dependency assessment, schedules a

first task of the plurality of tasks and a second data

block of a plurality of data blocks specified by the task
data requirements such that a memory transfer of the
second data block of the plurality of sub-data blocks
occurs while the first task 1s being executed.

13. The processing system of claim 12, wherein:

the task dependency assessment reveals a task depen-
dency of each task in the plurality of tasks and which
plurality of data blocks of the plurality of data blocks
are required for each task to execute.

14. The processing system of claim 13, wherein:

the task dependency of each task in the plurality of tasks
1s used to to schedule the plurality of tasks such that a
memory transfer of proxy objects representative of
data-blocks from a central processing unit (CPU)
memory to a graphics processing unit (GPU) memory
occurs during the execution of a predecessor task.

15. The processing system of claim 14, further comprises:

a task scheduling unit that generates a first mapping of the
plurality of tasks represented in the task dependency
graph to a plurality of data blocks required for each task
of the plurality of tasks.

16. The processing system of claim 15, wherein:

the first mapping 1s used to schedule the plurality of data
blocks required for each task of the plurality of tasks
according to a first order of the data blocks 1n the first
mapping.

17. The processing system of claim 16, wherein:

the task scheduling unit generates a second mapping of
the plurality of tasks represented in the task depen-
dency graph to the task dependency of each task and a
total number of predecessors of each task.

18. The processing system of claim 17, wherein:

the second mapping of the plurality of tasks represented
in the task dependency graph 1s used to schedule the
plurality of tasks such that each successor task of the
plurality of tasks 1s scheduled after a corresponding
predecessor task.

¥ o # ¥ ¥

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 11,734,059 B2 Page 1 of 1
APPLICATION NO. : 16/824601

DATED : August 22, 2023
INVENTOR(S) : Muhammad Amber Hassaan et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims

At Column 16 Line 33, please correct “is used to to schedule” to be --1s used to schedule--

Signed and Sealed this
o Tenth Day of ctober, 2023

TN O R i L ¥ % WEg ET AN BN I W 29 s oy | r4 2 3

Katherine Kelly Vidal
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

