12 United States Patent

US011726918B2

(10) Patent No.: US 11,726,918 B2

Alsop et al. 45) Date of Patent: Aug. 15, 2023
(54) DYNAMICALLY COALESCING ATOMIC (56) References Cited
MEMORY OPERATIONS FOR U.S PATENT DOCUMENTS
MEMORY-LOCAL COMPUTING T -
_ 8,838,900 B2* 9/2014 Linccooevrrinnnnn, GO6F 12/00
(71) Applicant: ADVANCED MICRO DEVICES, 711/124
INC., Santa Clara, CA (US) 2010/0318741 Al* 12/2010 ScOtt ..oovvevvereae.. GOGF 12/0817
711/E12.001
(72) Inventors: Johnathan Alsop, Bellevue, WA (US); 2014/0006685 Al* 1/2014 Peterson GOOL 12/0238
Alexandru Dutu, Bellevue, WA (US); 2014/0181421 Al* 6/2014 O°C GOEEIFI?JI/(S%
Shaizeen Aga, Santa Clara, CA (US); DIAOT e
711/148
Nuwan Jayasena, Santa Clara, CA Continued
(US) (Continued)
(73) Assignee: ADVANCED MICRO DEVICES, FOREIGN PAIENT DOCUMENTS
INC., Santa Clara, CA (US) GB 2527529 A 12/2015
(*) Notice: Subject. to any dlsclalmer,,. the term of this OTHER PURI ICATIONS
patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days. Boroumand et al., “LazyPIM: an Efficient Cache Coherence Mecha-
nism for Processing-in-Memory,” IEEE Computer Architecture
(21) Appl. No.: 17/361,145 Letters, vol. 16, Issue 1, DOI: 10.1109/L.CA.2016.2577557, Date of
_ Publication: Jun. 7, 2016, 4 pages.
(22) Filed: Jun. 28, 2021 (Continued)
(65) Prior Publication Data Primary Examiner — Aracelis Ruiz
US 2022/0414013 Al Dec. 29, 2022
(37) ABSTRACT
(1) Int. Cl. H Dynamically coalescing atomic memory operations for
GOOL 12/0871 (2016'03‘) memory-local computing 1s disclosed. In an embodiment, 1t
GOol 12/02 (2006'03‘) 1s determined whether a first atomic memory access and a
GO6l 12/084 (201 6'03*) second atomic memory access are candidates for coalescing.
GOOF 12/0846 (2016.01) In response to a triggering event, the atomic memory
(52) US. CL accesses that are candidates for coalescing are coalesced 1n
CPC ... Goor 12/0871 (2013.01); GO6F 12/0238 a cache prior to requesting memory-local processing by a
(2013.01); GOOF 12/084 (2013.01); GOGF memory-local compute unit. The atomic memory accesses
12/0846 (2013.01) may be coalesced 1n the same cache line or atomic memory
(58) Field of Classification Search accesses 1n different cache lines may be coalesced using a

CPC GO6F 12/0238; GO6F 12/084; GO6F
12/0846; GO6F 12/0871
See application file for complete search history.

iHnst Device 130
1

multicast memory-local processing command.

20 Claims, 10 Drawing Sheets

i+ [Host Execution Engine 102
]

Scheduler 108

|
P

SIMD Core 104
pE JPE [PE [PE |-/ 106

Register File 134 |

L B N
PEJPE[PE|PE| oo |0 C0re 130 Engine 102

Host
Execution

First Level Cache 136

|
i [Cache 140

Cache Confral Cache Compute
144 Logic Lagic
" 142 14
:
Memory Controlier 112 :
]
__
180
:
:
System Memory 120 :
£
PIM Unt PIM Unit PIM Unit PIM Unit ,
aw i
DRAM Bank DRAM Bank DRAM Bank DRAM Bank

rminER FY pEET N Y FY R FERY F IO Y F I Y ARy FACRrer FER I PR o P T R iy .

US 11,726,918 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2014/0366033 Al* 12/2014 Nystad GO6F 12/0284
718/104

2015/0046655 Al 2/2015 Nystad et al.
2018/0300846 Al 10/2018 Ray et al.
2019/0324905 Al 10/2019 Ros et al.

OTHER PUBLICATIONS

Mukkara et al., “Phi: Architectural Support for Synchronization-
and Bandwidth-Efficient Commutative Scatter Updates,” In Pro-
ceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, (MICRO-52), Oct. 12-16, 2019, Columbus,

OH, USA, pp. 1009-1022.

Nai et al., “GraphPIM: Enabling Instruction-Level Pim Offloading
in Graph Computing Frameworks,” In 2017 IEEE International
Symposium on High Performance Computer Architecture (HPCA),
2017, pp. 457-468.

Ahn et al., PIM-Enabled Instructions: a Low-Overhead, Locality-
Aware Processing-in-Memory Architecture, XP058511828, Proceed-
ings of the 2015 ACM International Joint Conference on Pervasive
and Ubiquitous Computing, Jun. 13, 2015, pp. 336-348, ACMPUB27,
USA.

Hadidi et al., CAIRO: a Compiler-Assisted Technique for Enabling
Instruction-Level Offloading of Processing-in-Memory, XP058672917,
ACM Transactions on Architecture and Code Optimization, Dec.
20, 2017, 25 pages, vol. 14, No. 4, Article 48, US.

International Search Report and Written Opinion, PCT/US2022/
035142, dated Oct. 26, 2022, 14 pages.

* cited by examiner

U.S. Patent Aug. 15, 2023 Sheet 1 of 10 US 11,726,918 B2

ﬂﬂﬂ

Host Device 130

Host Execution Engine 102

Scheler 108

SIMD Cor _Q_ Host

06 eoe Execution
-- oo | M0 LOrRLY Engine 102

Reglster File 134

STRIET

First Level Cache 136

Cache 140

Cache Control Cache Compute
144 Logic Logic

\ 142 148

il g ok dhh by e S i g S g i v i g i e b M e A b e G e G el e g G e ek W G e G g Gl e b S gy e B iy b G g G g G i aig b digh dehk el d e Ve ahle da degh i dg i i b e

System Memory 120

PIM Unit PIM Unit PIM Unit
126 126 126

PIM Unit
126

DRAM Bank DRAM Bank DRAM Bank
128 126 128

DRAM Bank
128

U.S. Patent Aug. 15, 2023 Sheet 2 of 10 US 11,726,918 B2

Determine Whether A First Atomic Memory Access And A Second Atomic
Memory Access Are Candidates For Coalescing 210

Coalesce The First Atomic Memory Access And The Second Atomic Memory
Access In A Cache Prior To Requesting Memory-Local Processing By A Memory-
Local Compute Unit 220

FIG. 2

U.S. Patent Aug. 15, 2023 Sheet 3 of 10 US 11,726,918 B2

Determine That The First Atomic Memory Access Is A Candidate For Coalescing
310

Allocate A Cache Line In A Special State Without Loading Data From Memory
320

Store An Operand Of The First Atomic Memory Access In The Cache Line At A
Location Targeted By The First Atomic Memory Access 330

Determine Whether A First Atomic Memory Access And A Second Atomic
Memory Access Are Candidates For Coalescing 210

Determine That The Second Atomic Memory Access Is A Candidate For
Coalescing With The First Atomic Memory Access 340

Coalesce The First Atomic Memory Access And The Second Atomic Memory
Access In A Cache Prior To Requesting Memory-Local Processing By A Memory-
Local Compute Unit 220

FIG. 3

U.S. Patent Aug. 15, 2023 Sheet 4 of 10 US 11,726,918 B2

Determine That The First Atomic Memory Access Is A Candidate For Coalescing
310

Allocate A Cache Line In A Special State Without Loading Data From Memory
320

Store An Operand Of The First Atomic Memory Access In The Cache Line At A
Location Targeted By The First Atomic Memory Access 330

Determine Whether A First Atomic Memory Access And A Second Atomic
Memory Access Are Candidates For Coalescing 210

Determine That The Second Atomic Memory Access Is A Candidate For

Coalescing With The First Atomic Memory Access 340

Coalesce The First Atomic Memory Access And The Second Atomic Memory
Access In A Cache Prior To Requestmg Memory-Local Processing By A Memory-

Coalesce The First Atomic Memsry Access And The Second Atomic Memory
Access By Performing An Operation Of The Second Atomic Memory Access,
Using An Operand Of The Second Atomic Memory Access, On Data At A

Location In The Cache Line Targeted By The Second Atomic Memory
Access,wherein The First Atomic Memory Access And The Second Atomic
Memory Access Target One Or More Locations In The Same Cache Line 410

FIG. 4

U.S. Patent Aug. 15, 2023 Sheet 5 of 10 US 11,726,918 B2

Determine That The First Atomic Memory Access Is A Candidate For Coalescing
310

Allocate A Cache Line In A Special State Without Loading Data From Memory
320

Store An Operand Of The First Atomic Memory Access In The Cache Line At A
Location Targeted By The First Atomic Memory Access 330

Determine Whether A First Atomic Mery Access And A Second Atomic
Memory Access Are Candidates For Coalescing 210

Determine That The Second Atomic Memory Access Is A Candidate For

Coalescing With The First Atomic Memory Access 340

Coalesce The First Atomic Memory Access And The Second Atomic Memory
Access In A Cache Prior To Requesting Memory-Local Processing By A Memory-

Coalesce The First Atomic Memory Access And The Second Atomic Memory
Access By Performing An Operation Of The Second Atomic Memory Access,
Using An Operand Of The Second Atomic Memory Access, On Data At A
Location In The Cache Line Targeted By The Second Atomic Memory
Access, Wherein The First Atomic Memory Access And The Second Atomic
Memory Access Target One Or More Locations In The Same Cache Line 410

Send, To A Memory Controller In Response To A Triggering Event, One Or More
Memory-Local Processing Commands For The First Atomic Memory Access And
The Second Atomic Memory Access 510

FIG. 5

U.S. Patent Aug. 15, 2023 Sheet 6 of 10 US 11,726,918 B2

Determine That The First Atomic Memory Access Is A Candidate For Coalescing
310

Determine, Based On One Or More Metrics, Whether To Allocate The Cache
Line In The Special State For The First Atomic Memory Access 610

Allocate A Cache Line In A Special State Without Loading Data From Memory

320

Store An Operand Of The First Atomic Memory Access In The Cache Line At A
Location Targeted By The First Atomic Memory Access 330

Determine Whether A First Atomic emoryccess And A Second Atomic
Memory Access Are Candidates For Coalescing 210

Determine That The Second Atomic Memory Access Is A Candidate For
Coalescing With The First Atomic Memory Access 340

Coalesce The First Atomic Memory Access And The Second Atomic Memory
Access In A Cache Prior To Requesting Memory-Local Processing By A Memory-
Local Compute Unit 220

FIG. 6

U.S. Patent Aug. 15, 2023 Sheet 7 of 10 US 11,726,918 B2

Determine Whether A First Atomic Memory Access And A Second Atomic
Memory Access Are Candidates For Coalescing 210

Determine Whether The First Atomic Memory Access Can Be Coalesced
With The Second Atomic Memory Access Based On A Symmetric Access To
Different Memory Modules 710

Coalesce The First Atomic Memory Access And The Second Atomic Memory
Access In A Cache Prior To Requesting Memory-Local Processing By A Memory-
Local Compute Unit 220

FIG. 7

U.S. Patent Aug. 15, 2023 Sheet 8 of 10 US 11,726,918 B2

Determine Whether A First Atomic Memory Access And A Second Atomic
Memory Access Are Candidates For Coalescing 210

Determine Whether The First Atomic Memory Access Can Be Coalesced
With The Second Atomic Memory Access Based On A Symmetric Access To
Different Memory Modules 710

Determine, In Response To A Triggering Event, Whether A First Cache
Line That Includes The First Atomic Memory Access Can Be Coalesced
With A Second Cache Line That Includes The Second Atomic Memory
Access, Wherein The First Cache Line And The Second Cache Line Are
In A Special Cache State 810

Coalesce The First Atomic Memory Access And The Second Atomic Memory
Access In A Cache Prior To Requesting Memory-Local Processing By A Memory-
Local Compute Unit 220

FIG. 3

U.S. Patent Aug. 15, 2023 Sheet 9 of 10 US 11,726,918 B2

Determine Whether A First Atomic Memory Access And A Second Atomic
Memory Access Are Candidates For Coalescing 210

Determine Whether The First Atomic Memory Access Can Be Coalesced
With The Second Atomic Memory Access Based On A Symmetric Access To
Different Memory Modules 710

Determine, In Response To A Triggering Event, Whether A First Cache
Line That Includes The First Atomic Memory Access Can Be Coalesced
With A Second Cache Line That Includes The Second Atomic Memory
Access, Wherein The First Cache Line And The Second Cache Line Are
In A Special Cache State 810

Track Cache Lines That Are Candidates For Coalescing 910

Coalesce The First Atomic Memory Access And The Second Atomic Memory

Access In A Cache Prior To Requesting Memory-Local Processing By A Memory-
Local Compute Unit 220

FIG. 9

U.S. Patent Aug. 15, 2023 Sheet 10 of 10 US 11,726,918 B2

Determine Whether A First Atomic Memory Access And A Second Atomic

Memory Access Are Candidates For Coalescing 210

Coalesce The First Atomic Memory Access And The Second Atomic Memory
Access In A Cache Prior To Requesting Memory-Local Processing By A Memory-
Local Compute Unit 220

Coalesce The First Atomic Memory Access And The Second Atomic Memory

Access Using A Multi-Module Memory-Local Processing Command 1010

FIG. 10

US 11,726,918 B2

1

DYNAMICALLY COALESCING ATOMIC
MEMORY OPERATIONS FOR
MEMORY-LOCAL COMPUTING

BACKGROUND

Computing systems often include a number of processing
resources (€.g., one or more processors), which may retrieve
and execute 1mstructions and store the results of the executed

istructions to a suitable location. A processing resource
(e.g., central processing unit (CPU) or graphics processing
unit (GPU)) can comprise a number of functional units such
as arithmetic logic unit (ALU) circuitry, tloating point unit
(FPU) circuitry, and/or a combinatorial logic block, for
example, which can be used to execute instructions by
performing arithmetic operations on data. For example,
functional unit circuitry may be used to perform arithmetic
operations such as addition, subtraction, multiplication, and/
or division on operands. Typically, the processing resources
(e.g., processor and/or associated functional unit circuitry)
may be external to a memory device, and data 1s accessed via
a bus or mterconnect between the processing resources and
the memory device to execute a set of 1instructions. To reduce
the amount of accesses to fetch or store data in the memory
device, computing systems may employ a cache hierarchy
that temporarily stores recently accessed or modified data
for use by a processing resource or a group ol processing
resources. However, processing performance may be further
improved by offloading certain operations to a memory-
based execution device 1in which processing resources are
implemented internal and/or near to a memory, such that
data processing 1s performed closer to the memory location
storing the data rather than bringing the data closer to the
processing resource. A near-memory or in-memory compute
device may save time by reducing external communications

(1.e., host to memory device communications) and may also
CONSErve power.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 sets forth a block diagram of an example system
for dynamically coalescing atomic memory operations for
memory-local computing in accordance with some embodi-
ments ol the present disclosure.

FIG. 2 sets forth a flow chart illustrating an example
method of dynamically coalescing atomic memory opera-
tions for memory-local computing 1n accordance with some
embodiments of the present disclosure.

FIG. 3 sets forth a flow chart illustrating an example
method of dynamically coalescing atomic memory opera-
tions for memory-local computing 1n accordance with some
embodiments of the present disclosure.

FIG. 4 sets forth a flow chart illustrating an example
method of dynamically coalescing atomic memory opera-
tions for memory-local computing 1n accordance with some
embodiments of the present disclosure.

FIG. 5 sets forth a flow chart 1llustrating another example
method of dynamically coalescing atomic memory opera-
tions for memory-local computing 1n accordance with some
embodiments of the present disclosure.

FI1G. 6 sets forth a flow chart 1llustrating another example
method of dynamically coalescing atomic memory opera-
tions for memory-local computing 1n accordance with some
embodiments of the present disclosure.

FI1G. 7 sets forth a flow chart 1llustrating another example
method of dynamically coalescing atomic memory opera-

10

15

20

25

30

35

40

45

50

55

60

65

2

tions for memory-local computing in accordance with some
embodiments of the present disclosure.

FIG. 8 sets forth a flow chart illustrating another example
method of dynamically coalescing atomic memory opera-
tions for memory-local computing 1n accordance with some
embodiments of the present disclosure.

FIG. 9 sets forth a flow chart illustrating another example
method of dynamically coalescing atomic memory opera-
tions for memory-local computing 1n accordance with some
embodiments of the present disclosure.

FIG. 10 sets forth a tlow chart illustrating another
example method of dynamically coalescing atomic memory
operations for memory-local computing 1n accordance with
some embodiments of the present disclosure.

DETAILED DESCRIPTION

As compute throughput scales faster than memory band-
width, many techniques have been proposed to keep the
growing compute capacity fed with data. In particular,
memory-local processing hardware such as processing-in-
memory (PIM) hardware moves compute close to memory,
availing logic close to memory the benefit of higher memory
bandwidth than that available to the host.

Atomic memory accesses such as read-modify-write
(RMW) operations, commonly used 1in many sparse/1rregu-
lar applications, exhibit potential for PIM acceleration.
These operations take an operand, perform some operation
with 1t and a target piece of data in memory, and store the
result to the same location in memory. In a non-PIM system,
this requires two transfers across the memory interface: one
to load the data from memory to host where 1t 1s operated on
with the input operand, and one to store the result from the
host to memory. In a PIM system, performing the operation
in PIM would reduce the number of transiers from 2 to 1:
sending the host operand from host to memory, where a load
and store to the target location data can be performed locally
in memory. The resulting 2x throughput increase has the
potential to greatly improve performance for atomic-heavy
workloads, which are often limited by memory bandwidth.

However, atomic-heavy workloads are often sparse or
irregular, which poses a problem for PIM implementations
in at least two ways. First, irregularity makes 1t difhicult to
predict whether a given access will hit in the cache for some
applications (e.g., graph analytics, sparse machine learning).
Because PIM only provides benefit for RMW accesses that
miss 1n the caches and must go to memory (it can degrade
performance 11 the access would otherwise hit in the cache),
using PIM for all RMW accesses can end up degrading
performance for applications with high locality. That 1s, PIM
loses any cache locality that may have been possible 1n a
host-based implementation (1.e., the host access may be
cheaper than the PIM access). For many wrregular atomics
accesses, statically identifving the accesses that hit in the
cache would be infeasible. Thus, 1t would be advantageous
to decide dynamically at runtime whether or not to use PIM
for these 1rregular atomics.

In addition, 1n some PIM 1implementations, a fine-grained
PIM command occupies the same amount of command bus
bandwidth as a standard memory operation. As a result,
improving throughput with PIM requires that a PIM opera-
tion 1s multicast to multiple memory modules simultane-
ously (e.g., via a shared command bus). This can be diflicult
for atomic-heavy applications, which often exhibit high
irregularity (e.g., push-based graph analytics, sparse
machine learning, etc.). For a bank-local PIM implementa-
tion, a multicast PIM command must perform the same

US 11,726,918 B2

3

operation on the same column index 1n all target banks from
the row bufler, and if 1t contains an immediate data operand,
that operand must be the same for all banks. It 1s infeasible
to statically detect multicast opportunities 1n irregular work-
loads; and 1n fact, most multicast command opportunities
may come from disparate threads concurrently sending
updates to addresses with the same column 1ndex.

Embodiments 1n accordance with the present disclosure
are directed to dynamically coalescing atomic memory
operations for memory-local computing. Embodiment 1n
accordance with the present disclosure include cache line
coalescing, which 1s a mechanism for dynamically coalesc-
ing multiple pending atomics to the same cache line 1n order
to exploit atomic cache locality and reuse before implement-
Ing any operation in memory-local computing. Embodi-
ments 1n accordance with the present disclosure also include
multi-module coalescing, which 1s a mechanism for dynami-
cally coalescing pending atomics to different cache lines into
a single multicast memory-local processing command.

An embodiment 1s directed to a method of dynamically
coalescing atomic memory operations for memory-local
computing. The method includes determining whether a first
atomic memory access and a second atomic memory access
are candidates for coalescing. The method also includes
coalescing the first atomic memory access and the second
atomic memory access 1n a cache prior to requesting
memory-local processing by a memory-local compute unait.
In some cases, the memory local compute unit 1s a process-
ing-in-memory (PIM) umit. Coalescing the first atomic
memory access and the second atomic memory access 1n a
cache may be carried out prior to issuing a coalesced
multicast request (e.g., 1n order to request memory-local
processing by memory-local compute units).

In some 1mplementations, the method further includes
determining that the first atomic memory access 1s a candi-
date for coalescing, allocating a cache line 1n a special state
without loading data from memory, storing an operand of the
first atomic memory access in the cache line at a location
targeted by the first atomic memory access. In these 1mple-
mentations, determining whether a first atomic memory
access and a second atomic memory access are candidates
for coalescing may include determining that the second
atomic memory access 1s a candidate for coalescing with the
first atomic memory access. In these implementations,
coalescing the first atomic memory access and the second
atomic memory access 1n a cache prior to requesting
memory-local processing by a memory-local compute unit
may include coalescing the first atomic memory access and
the second atomic memory access by performing an opera-
tion of the second atomic memory access, using an operand
of the second atomic memory access, on data at a location
in the cache line targeted by the second atomic memory
access.

In some implementations, the method also 1includes send-
ing, to a memory controller 1n response to a triggering event,
one or more memory-local processing commands for the
first atomic memory access and the second atomic memory
access. In some implementations, the method also includes
determining, based on one or more metrics, whether to
allocate the cache line 1n the special state for the first atomic
memory access.

In some i1mplementations, determining whether a first
atomic memory access and a second atomic memory access
are candidates for coalescing includes determining whether
the first atomic memory access can be coalesced with the
second atomic memory access based on a symmetric access
to different memory modules. In these implementations,

10

15

20

25

30

35

40

45

50

55

60

65

4

determining whether the first atomic memory access can be
coalesced with the second atomic memory access based on
a symmetric access to diflerent memory modules may
include determining, 1n response to a triggering event,
whether a first cache line that includes the first atomic
memory access can be coalesced with a second cache line
that includes the second atomic memory access, where the
first cache line and the second cache line are in a special
cache state. In some cases, the cache lines that are candidates
for coalescing may be tracked 1n a separate physical struc-
ture.

In some implementations, coalescing the first atomic
memory access and the second atomic memory access 1n the
cache prior to requesting memory-local processing by the
memory-local compute unit includes coalescing the first
atomic memory access and the second atomic memory
access using a multi-module memory-local processing com-
mand.

Another embodiment 1s directed to a computing device
for dynamically coalescing atomic memory operations for
memory-local computing. The computing device includes
logic circuitry configured to determine whether a first atomic
memory access and a second atomic memory access are
candidates for coalescing and coalesce the first atomic
memory access and the second atomic memory access 1n a
cache prior to requesting memory-local processing by a
memory-local compute unit. In some cases, the memory-
local compute unit 1s a PIM unit.

In some implementations, the logic circuitry 1s further
configured to determine that the first atomic memory access
1s a candidate for coalescing, allocate a cache line in a
special state without loading data from memory, and store an
operand of the first atomic memory access in the cache line
at a location targeted by the first atomic memory access. In
some 1mplementations, determiming whether a first atomic
memory access and a second atomic memory access are
candidates for coalescing includes determining that the
second atomic memory access 1s a candidate for coalescing
with the first atomic memory access. In these implementa-
tions, coalescing the first atomic memory access and the
second atomic memory access 1n a cache prior to requesting,
memory-local processing by a memory-local compute unit
may include coalescing the first atomic memory access and
the second atomic memory access by performing an opera-
tion of the second atomic memory access, using an operand
of the second atomic memory access, on data at a location
in the cache line targeted by the second atomic memory
access. These implementations may further include sending,
to a memory controller in response to a triggering event, one
or more memory-local processing commands for the first
atomic memory access and the second atomic memory
access.

In some implementations, determining whether a first
atomic memory access and a second atomic memory access
are candidates for coalescing includes determining whether
the first atomic memory access can be coalesced with the
second atomic memory access based on a symmetric access
to different memory modules. In these implementations,
determining whether the first atomic memory access can be
coalesced with the second atomic memory access based on
a symmetric access to diflerent memory modules may
include determining, 1 response to a triggering event,
whether a first cache line that includes the first atomic
memory access can be coalesced with a second cache line
that includes the second atomic memory access, where the
first cache line and the second cache line are in a special
cache state. In some implementations, coalescing the first

US 11,726,918 B2

S

atomic memory access and the second atomic memory
access 1n the cache prior to requesting memory-local pro-
cessing by the memory-local compute unit may include
coalescing the first atomic memory access and the second
atomic memory access using a multi-module memory-local
processing command.

Yet another embodiment 1s directed to a system for
dynamically coalescing atomic memory operations for
memory-local computing. The system includes a memory
device including at least one memory-local compute unait.
The system also includes a computing device configured to
determine whether a first atomic memory access and a
second atomic memory access are candidates for coalescing
and coalesce the first atomic memory access and the second
atomic memory access 1n a cache prior to requesting
memory-local processing by a memory-local compute unait.

In some 1implementations, the computing device 1s further
configured to determine that the first atomic memory access
1s a candidate for coalescing, allocate a cache line in a
special state without loading data from memory, and store an
operand of the first atomic memory access in the cache line
at a location targeted by the first atomic memory access. In
these implementations, determining whether a first atomic
memory access and a second atomic memory access are
candidates for coalescing includes determining that the
second atomic memory access 1s a candidate for coalescing
with the first atomic memory access. In these implementa-
tions, coalescing the first atomic memory access and the
second atomic memory access 1n the cache prior to request-
ing memory-local processing by the memory-local compute
unit includes coalescing the first atomic memory access and
the second atomic memory access by performing the opera-
tion of the second atomic memory access, using an operand
of the second atomic memory access, on data at a location
in the cache line targeted by the second atomic memory
access.

In some i1mplementations, determining whether a first
atomic memory access and a second atomic memory access
are candidates for coalescing includes determining whether
the first atomic memory access can be coalesced with the
second atomic memory access based on a symmetric access
to different memory modules. In these implementations,
coalescing the first atomic memory access and the second
atomic memory access in the cache prior to requesting
memory-local processing by the memory-local compute unit
includes coalescing the first atomic memory access and the
second atomic memory access using a multi-module
memory-local processing command.

Embodiments 1n accordance with the present disclosure
will be described in further detail beginning with FIG. 1.
Like reference numerals refer to like elements throughout
the specification and drawings. FIG. 1 sets forth a block
diagram of an example system 100 for dynamically coalesc-
ing atomic memory operations for memory-local computing
in accordance with some embodiments of the present dis-
closure. The example system 100 of FIG. 1 includes a host
device 130 (e.g., a system-on-chip (SoC) device or system-
in-package (Si1P) device) that includes at least one host
execution engine 102. Although not depicted, the host
device 130 may include multiple host execution engines
including multiple different types of host execution engines.
In various examples, a host execution engine 102 may be a
central processing unit (CPU), a graphics processing unit
(GPU), an accelerated processing unit (APU), an applica-
tion-specific processor, a configurable processor, or other
such compute engine capable of supporting multiple con-
current sequences of computation. The host device 130 hosts

10

15

20

25

30

35

40

45

50

55

60

65

6

one or more applications on the host execution engine 102.
The hosted applications may be multithreaded applications,
such that a host execution engine 102 may execute multiple
concurrent threads of an application and/or multiple execu-
tion engines 102 may concurrently execute threads of the
same application.

In the example of FIG. 1, the host execution engine 1s a
GPU compute unit that includes multiple single instruction
multiple data (SIMD) cores 104 having multiple processing
clements 106, a register file 134, and a first level cache 136.
A scheduler 108 loads 1nstructions from an 1nstruction pool
and deploys them on the SIMD core 104 for execution.
When a memory access to system memory 120 1s required,
the SIMD core 104 1ssues a memory access request to a
cache hierarchy, a local data store, a global data store, or
other transient storage component. For the purpose of this
discussion, 1t assumed that each memory request passes
through a cache 140 that 1s shared by multiple SIMD cores
and may be shared by multiple host execution engines 102
(1.e., a lowest level cache). In some cases, the memory
access request may be serviced by the cache, 1.e., by cache
control logic 142. In other cases, where the cache control
logic 142 cannot service the memory access request 1n the
cache 140, the cache control logic 142 1ssues a memory
access request to a memory controller 112 for data targeted
by the request. The memory controller 112, 1n turn, 1ssues
commands to the system memory 120 that cause the data
stored at the memory location targeted by the request to be
loaded from system memory 120 into a cache line 144 of the
cache 140.

In the example of FIG. 1, the system memory 120
includes multiple modules such as DRAM banks 128. The
set of memory modules that are connected to the memory
controller 112 over an interconnect 180 represents a memory
channel. Thus, FIG. 1 depicts one memory channel,
although a memory channel may include multiple memory
controllers. Further, the system memory 120 may include
multiple memory channels. The system memory 120
includes or 1s coupled to one or more memory-local compute
units. A memory-local compute unit includes registers, an
ALU or simple compute core, and control logic for carrying
out stmple arithmetic operations on data stored 1n the system
memory 120. In some examples, the memory-local compute
unmit may be a near-memory compute unit that 1s coupled to
a memory device (e.g., memory die or chip). For example,
a near-memory compute unit may be implemented 1n a logic
die of a 3D stacked memory, in a memory accelerator
coupled to a memory device, or on an interposer between the
host device 130 and the system memory 120. In other
examples, the memory-local compute unit may be a pro-
cessing-in-memory (PIM) unit that 1s implemented in the
memory die or, particularly, within a DRAM bank (1.e., a
bank-local PIM unit). For purposes of illustration and not
limitation, the system memory 120 in FIG. 1 includes
multiple bank-local PIM units 126 that are memory-local
compute units.

The cache 140 further includes a cache compute logic 146
that can perform atomic operations on data in the cache. For
example, when an atomic memory access request (1.e., a
memory access request that includes an atomic operation) 1s
received at the cache, the data targeted by an atomic memory
access request may already be stored 1n the cache 140. In this
example, the cache compute logic 146 performs the atomic
operation (e.g., a read-modify-write (RMW) operation) of
the atomic memory access request using the operand sup-
plied 1n the request and the data 1n the cache corresponding
to the location (e.g., memory address) targeted by the

US 11,726,918 B2

7

request. If the data targeted by the atomic memory access
request 1s not already stored in the cache, the cache control
logic 142 allocates a cache line 144 and loads data from
system memory that includes the data targeted by the atomic
RMW access request. The cache compute logic 146 per-
forms the atomic operation using the loaded data and the

operand supplied by the request and stores the result to the

allocated cache line. In either case, when a writeback of the
dirty data 1s triggered (e.g., when the cache line 1s evicted),
the updated cache line 1s written to system memory 120.

When an atomic memory access request misses the cache
140, the cache control logic 142 may reduce data transier by
1ssuing a request for the atomic operation to be performed at
the memory-local compute unit (1.e., the PIM unit 126),
rather than loading the data into the cache 140 for execution
in the host device 130. However, while this technique
exploits the benefits of memory-local computing and PIM,
it 1gnores cache locality and reuse because the targeted data
1s never loaded nto the cache 140. Thus, multiple hits to the
same cache line will continue to trigger the same number of
PIM requests.

To balance these techmiques, a special cache state 1s

utilized to allow atomic memory accesses to coalesce in a
cache line before sending the atomic memory accesses to the
memory-local compute unmit for execution. This atomic
coalescing (AC) state may be used to delay atomic opera-
tions 1n the cache that can be performed by the PIM unit 126
and coalesce them with subsequent atomics of the same type
to the same cache line. Use of the AC state requires that the
atomic operations involved are commutative and associative
(e.g., add, multiply, MAX, MIN) and do not return a data
value. However, some non-commutative operations may be
converted to commutative at the cache (e.g., atomic subtract
may be converted to atomic add by negating the operand).
When the cache control logic 142 allocates the cache line 1n
the AC state, the cache line 1s not populated with data loaded
from system memory. Rather, the operand of the atomic
memory access request 1s stored in the cache line. A subse-
quent atomic memory access of the same type that does not
return a data value will be allowed to hit the cache line, and
the corresponding operand will be stored 1n the cache line at
the targeted location. A standard read or write operation, or
an atomic operation that returns a data value, will not be
allowed to hit the cache. In this case, the case miss will
trigger a load of data into the cache line from memory, the
pending atomic operation will be performed on the loaded
data, and the result will be written to the cache line and
marked dirty valid. Assuming that no such non-coalescing,
memory access request 1s received, the atomic operations
will continue to coalesce 1n the cache line until a writeback
of the data 1s triggered, at which time the cache control logic
142 will 1ssue PIM commands for the atomic operations
represented in the cache line.
In some examples, there may be diflerent AC states for
different types of atomic operations. For example, there may
be one AC state for atomic add and another AC state for
atomic multiply, although only one type of atomic may be
stored per cache line. In other examples, the AC state may
be tracked at a coarser granularity such as a cache bank. For
example, a given cache bank may only allow one type of
atomic to be used for AC state at any time. In still further
examples, the AC state tracked by the cache controller may
be hardwired or set in advance by software based on
expected use cases. For example, a system may only support
coalescing for atomic RMW accesses that use an atomic add
operation.

10

15

20

25

30

35

40

45

50

55

60

65

8

The cache control logic 142 may also exploit the paral-
lelism of access to multiple DRAM modules by 1ssuing
multi-module PIM commands that coalesce PIM operations.
For a bank-local PIM implementation, a multicast PIM
command performs the same operation on the same column
index 1n all target DRAM banks from the row budli

er. In one
example, the cache control logic 142 uses the AC states of
cache lines to identify cache lines that may be coalesced by
combining PIM requests into multicast PIM commands to
multiple DRAM banks.

For further explanation, FIG. 2 sets forth a tlow chart
illustrating an example method of dynamically coalescing
atomic memory operations for memory-local computing in
accordance with some embodiments of the present disclo-
sure. The method includes determining 210 whether a first
atomic memory access and a second atomic memory access
are candidates for coalescing. In some examples, determin-
ing 210 whether a first atomic memory access and a second
atomic memory access are candidates for coalescing 1is
carried out by cache control logic (e.g., the cache control
logic 142 of FIG. 1) determining whether the two or more
atomic memory accesses such as atomic read-modify write
(RMW) accesses could be coalesced by sending near-
memory processing commands for those two or more atomic
RMW accesses together based on the same triggering event.
For example, the triggering event may be writeback, a cache
line eviction, or a cache line 1nsertion that aflects at least one
of the two or more RMW accesses. In one example, two
atomic RMW accesses that hit the same cache line may be
candidates for coalescing 11 they use the same type of modity
operation. In another example, two atomic RMW accesses
may be candidates for coalescing 11 they target the memory
location of different memory modules.

In some examples, determining 210 whether a first atomic
memory access and a second atomic memory access are
candidates for coalescing may include determiming whether
two atomic RMW access are candidates for cache line
coalescing. In these examples, determiming whether two
atomic RMW access are candidates for cache line coalescing
may include determining whether the two atomic RMW
accesses target the same cache line, determining whether the
two atomic RMW accesses use the same atomic operation,
determining whether those operations are communitive and
associative, and determining whether the operations require
a return value. In such examples, when two atomic RMW
accesses hit the same cache line, use the same type of atomic
operation (e.g., both operations are addition operations, both
operations are multiplication operations, etc.) that are com-
munitive and associative operations, and when neither
access requires a return value, then the two atomic RMW
accesses are candidates for cache line coalescing, as will be
explained 1n more detail below.

In some examples, determining 210 whether a first atomic
memory access and a second atomic memory access are
candidates for coalescing may include determining whether
the two atomic RMW access are candidates for multi-
module coalescing. In these examples, determining whether
the two atomic RMW access are candidates for multi-
module coalescing may include determining whether two
atomic RMW accesses that are placed in different cache
lines use the same type of near-memory compute operations
and whether the accesses are to diflerent banks of the same
channel with the same column oflset in the DRAM row. In
such examples, when two atomic RMW accesses are placed
in different cache lines and use the same type ol near-
memory compute operation(s), and when those atomic
RMW access target different banks of the same channel

US 11,726,918 B2

9

using the same column oflset 1n the DRAM row, the two
atomic RMW accesses are candidates for multi-module
coalescing, as will be explained 1n more detail below.

For further explanation, FIG. 3 sets forth a flow chart
illustrating an example method of dynamically coalescing
atomic memory operations for memory-local computing 1n
accordance with some embodiments of the present disclo-
sure. Like the example method of FIG. 2, the example
method of FIG. 3 also includes determining 210 whether a
first atomic memory access and a second atomic memory
access are candidates for coalescing; and coalescing 220 the
first atomic memory access and the second atomic memory
access 1n a cache prior to requesting memory-local process-
ing by a memory-local compute unit.

As previously mentioned, coalescing 1n accordance with
some embodiments includes cache line coalescing. To facili-
tate cache line coalescing, the example method of FIG. 3
also includes determining 310 that the first atomic memory
access 1s a candidate for coalescing. In some examples,
determining 310 that the first atomic memory access 1s a
candidate for coalescing 1s carried out by a cache controller
(e.g., the cache control logic 142) recerving or 1dentifying a
memory request for a first atomic RMW access, for example,
from a host compute unit (e.g., the host compute engine 102
of FIG. 1). In these examples, determining 310 that the first
atomic memory access 1s a candidate for coalescing also
includes determining that the first atomic RMW access uses
a communitive and associative operation that could be
performed at a near-memory compute umt. In some
examples, determining 310 that the first atomic memory
access 15 a candidate for coalescing further includes deter-
mimng that the memory location targeted by the request for
the first atomic RMW request hits an invalid cache line or
misses the cache.

The example method of FIG. 3 also includes allocating
320 a cache line 1n a special state without loading data from
memory. In some examples, allocating 320 a cache line 1n a
special state without loading data from memory 1s carried
out by the cache controller allocating the cache line in the
atomic coalescing (AC) state described above. Moreover,
the cache line 1s allocated 1n the AC state without populating
the cache line with data loaded from system memory. In
some examples, there may be different AC states for ditler-
ent types of atomic operations. For example, there may be
one AC state for atomic add and another AC state for atomic
multiply, although only one type of atomic may be stored per
cache line. In other examples, the AC state may be tracked
at a coarser granularity such as a cache bank. For example,
a given cache bank may only allow one type of atomic to be
used for AC state at any time. In still further examples, the
AC state tracked by the cache controller may be hardwired
based on support restrictions. For example, a system may
only support coalescing for atomic RMW accesses that use
an atomic add operation.

When a cache line 1s 1n the AC state, another request for
an atomic RMW access that 1s a candidate for coalescing
with the first atomic RMW will result in a cache hat.
Whereas another request that 1s not a candidate for coalesc-
ing with the first atomic RMW access will result 1n a cache
miss. For example, another memory request such as a
request for a read memory access, write memory access, a
memory access that includes non-commumnitive or non-
associative atomic operation, or a memory access that
includes an atomic operation with a return value will result
in a cache miss. Furthermore, the receipt of another memory
request that 1s not a candidate for coalescing will trigger a

"y

10

15

20

25

30

35

40

45

50

55

60

65

10

load of data from system memory into the cache line, and the
AC state will be transitioned to a dirty valid state.

The example method of FIG. 3 also includes storing 330
an operand of the first atomic memory access in the cache
line at a location targeted by the first atomic memory access.
In some examples, storing 330 an operand of the first atomic
memory access 1n the cache line at a location targeted by the
first atomic memory access 1s carried out by the cache
controller storing the operand included 1n the request for the
first atomic RMW access in the cache line at the location
(e.g., oflset or address) targeted by the access. In these
examples, storing 330 an operand of the first atomic memory
access 1n the cache line at a location targeted by the first
atomic memory access may also include storing NULL
values (e.g., ‘0’ for atomics add/subtract, ‘1” for atomic
multiply, MAX INT for atomic MIN, etc.) in the rest of the
cache line. Consider an example of an atomic RMW access
that 1s an atomic add operation targeting an address corre-
sponding to oflset location M 1n a cache line with an operand
value of N. When the atomic RMW access request hits an
invalid cache line, a cache line 1s allocated 1n an AC state for
atomic add operations. The operand value N of the atomic
add operation (from the atomic RMW access request) 1s
stored at oflset location M 1n the cache line. All other offsets
in the cache line are set to ‘0.” For any subsequent atomic
RMW access request that hits the cache line 1n the AC state
and 1s candidate for coalescing, the atomic operation of that
atomic RMW access 1s performed 1n place using the operand
from the subsequent request and the operand value N (if the
subsequent request targets ollset location M of the pending
atomic) or operand value ‘0° (1f the subsequent request target
any other location 1n the cache line).

In the example method of FIG. 3, determining 210
whether a first atomic memory access and a second atomic
memory access are candidates for coalescing includes deter-
mining 340 that the second atomic memory access 1s a
candidate for coalescing with the first atomic memory
access. In some examples, determining 340 that the second
atomic memory access 1s a candidate for coalescing with the
first atomic memory access 1s carried out by the cache
controller determining that a request for a second atomic
RMW access hits the cache line in the AC state and
inspecting the properties of the second atomic RMW access.
If the second RMW access 1s the same type ol atomic
operation as the first RMW access and that operation 1s
communitive and associative (e.g., atomic add), and the
second RMW access does not require a return value, the
second RMW access may be determined to be a candidate
for coalescing with the first atomic RMW access.

For further explanation, FIG. 4 sets forth a flow chart
illustrating an example method of dynamically coalescing
atomic memory operations for memory-local computing 1n
accordance with some embodiments of the present disclo-
sure. Like the example method of FIG. 3, the example
method of FIG. 4 also includes determiming 310 that the first
atomic memory access 1s a candidate for coalescing; allo-
cating 320 a cache line 1n a special state without loading data
from memory; storing 330 an operand of the first atomic
memory access 1n the cache line at a location targeted by the
first atomic memory access; determining 210 whether a first
atomic memory access and a second atomic memory access
are candidates for coalescing including determining 340 that
the second atomic memory access 1s a candidate for coalesc-
ing with the first atomic memory access; and coalescing 220
the first atomic memory access and the second atomic
memory access in a cache prior to requesting memory-local
processing by a memory-local compute unit.

US 11,726,918 B2

11

In the example method of FIG. 4, coalescing 220 the first
atomic memory access and the second atomic memory
access 1n a cache prior to requesting memory-local process-
ing by a memory-local compute unit includes coalescing 410
the first atomic memory access and the second atomic
memory access by performing an operation of the second
atomic memory access, using an operand of the second
atomic memory access, on data at a location 1n the cache line
targeted by the second atomic memory access, wherein the
first atomic memory access and the second atomic memory
access target one or more locations in the same cache line.
In some examples, coalescing 410 the first atomic memory
access and the second atomic memory access by performing
an operation of the second atomic memory access, using an
operand of the second atomic memory access, on data at a
location 1n the cache line targeted by the second atomic
memory access 1s carried out by the cache controller delay-
ing the sending one or more near-memory processing com-
mands (e.g., PIM commands), corresponding to the first
RMW access, to the memory controller. That 1s, subsequent
RMW accesses (e.g., the second atomic RMW access) that
are candidates for coalescing are allowed to coalesce by
performing those atomic operations in the cache line until a
triggering event occurs. The modily operation (e.g., atomi-
cAdd, atomicMultiply) of the second or subsequent RMW
access 1s performed, using the operand of the second RMW
access, on the data in the cache line that include operand(s)
of the first RMW access or prior RMW accesses.

For example, 11 a first RMW access includes an atomi-
cAdd operation targeting a particular cache line offset, and
the operand of the first RMW access 1s 57, then ‘5’ 1s stored
at the particular cache line offset (assuming that the mitial
value 1s NULL). When a second RMW access having an
operand of ‘3’ targets the same cache line oflset as the first
RMW access and the second RMW access also includes an
atomicAdd operation, then the atomicAdd operation of the
second RMW access (using the operand ‘3’) 1s performed on
the data (the operand °5 of the first RMW access) stored at
that offset. The resulting value of the operation (that 1s, *8”)
1s stored at the same oflset targeted by the first RMW access.
However, if the second RMW access targets the same cache
line as the first RMW access but at a different second
location (i1.e., a diflerent oflset), and the value of that
location 1s NULL from the original cache line allocation,
then the operand of the second RMW access 1s stored at the
second location. Thus, RMW access are coalesced 1n the
cache line either by storing their operands in the cache line
if the value at the targeted location 1s NULL, or by per-
tforming the corresponding operation in the cache line when
they target the same location (i.e., oflset) in the cache line.

In some examples, coalescing 1s carried out by a cache
compute unit (e.g., the cache compute logic of FIG. 1)
performing the atomic operation in place based on the
operand of the subsequent atomic RMW access and the data
stored at the target location 1n the cache line. For example,
the data 1n the cache line at the target location may be a
NULL value initialized during the allocation of the cache
line 1n the AC state. The data 1n the cache line at the target
location may operand value from a prior pending atomic
RMW access. The data in the cache line at the target location
may be a computed result of two or more prior pending
atomic RMW accesses. In some examples, the triggering
event that terminates the coalescing may be a writeback
(e.g., due to an eviction of the cache line 1n the AC state), at
which time the coalesced atomic RMW accesses are 1ssued
for execution by the memory-local compute unit. In other
examples, the triggering event that terminates the coalescing

10

15

20

25

30

35

40

45

50

55

60

65

12

may be a memory access that 1s not a candidate for coalesc-
ing and that targets a location 1n the cache line. In these
examples, the memory access misses the cache causing data
to be loaded from system memory into the cache line. In
such an example, the pending atomic RMW access are
performed on the loaded data, and the cache line contaiming
the modified data 1s transitioned form the AC state to the
dirty valid state.

For further explanation, FIG. 5 sets forth a flow chart
illustrating an example method of dynamically coalescing
atomic memory operations for memory-local computing 1n
accordance with some embodiments of the present disclo-
sure. Like the example method of FIG. 4, the example
method of FIG. § also includes determiming 310 that the first
atomic memory access 1s a candidate for coalescing; allo-
cating 320 a cache line 1n a special state without loading data
from memory; storing 330 an operand of the first atomic
memory access 1n the cache line at a location targeted by the
first atomic memory access; determining 210 whether a first
atomic memory access and a second atomic memory access
are candidates for coalescing including determining 340 that
the second atomic memory access 1s a candidate for coalesc-
ing with the first atomic memory access; and coalescing 220
the first atomic memory access and the second atomic
memory access in a cache prior to requesting memory-local
processing by a memory-local compute unit including
coalescing 410 the first atomic memory access and the
second atomic memory access by performing an operation
of the second atomic memory access, using an operand of
the second atomic memory access, on data at a location in
the cache line targeted by the second atomic memory access,
wherein the first atomic memory access and the second
atomic memory access target one or more locations in the
same cache line.

The example method of FIG. 5 also includes sending 510,
to a memory controller in response to a triggering event, one
or more memory-local processing commands for the first
atomic memory access and the second atomic memory
access. In some examples, sending 510, to a memory con-
troller 1n response to a triggering event, on¢ or more
memory-local processing commands for the first atomic
memory access and the second atomic memory access 1s
carried out by the cache controller generating memory-local
processing commands (e.g., PIM commands) for each
atomic RMW access that has been coalesced in the cache
line 1n the AC state. In some cases (e.g., where the host
compute unit 1s a GPU), the stream of memory-local pro-
cessing commands corresponding to each atomic RMW
access may be transmitted using a single instruction over
multiple SIMD data lanes. Memory-local compute opera-
tions will likely be at coarser granularity than individual
atomic accesses (although still potentially at a finer granu-
larity than a full cache line). If a memory-local processing
command 1s used for a single atomic, this may be wasteful
since all SIMD lanes except one need to be disabled.
However, 1f multiple atomics accesses fall in the same
memory-local processing chunk, the PIM SIMD operation
can perform them all with a single operation. For example,
a single load+Add' memory-local processing command may
be used for all of the coalesced atomic RMW accesses 1n the
cache line, while the operands that target different memory
locations may be provided independently through multiple
SIMD data lanes. Even 1T atomic RMW accesses to the same
cache line address fall in different memory-local processing
chunks, they still enjoy the benelit of improved row locality.
That 1s, without coalescing, a DRAM row activation may
need to be performed twice belore performing each

US 11,726,918 B2

13

memory-local compute operation. With coalescing, multiple
PIM commands may be required, but the DRAM row once
only needs to be activated once. In some examples, the
triggering event may be a cache line writeback (e.g., due to
an eviction of the cache line).

For further explanation, FIG. 6 sets forth a flow chart
illustrating an example method of dynamically coalescing
atomic memory operations for memory-local computing 1n
accordance with some embodiments of the present disclo-
sure. Like the example method of FIG. 3, the example
method of FIG. 6 also includes determining 310 that the first
atomic memory access 1s a candidate for coalescing; allo-
cating 320 a cache line 1n a special state without loading data
from memory; storing 330 an operand of the first atomic
memory access in the cache line at a location targeted by the
first atomic memory access; determining 210 whether a first
atomic memory access and a second atomic memory access
are candidates for coalescing including determining 340 that
the second atomic memory access 1s a candidate for coalesc-
ing with the first atomic memory access; and coalescing 220
the first atomic memory access and the second atomic
memory access 1n a cache prior to requesting memory-local
processing by a memory-local compute unit.

The example method of FIG. 6 also includes determining,
610, based on one or more metrics, whether to allocate the
cache line 1n the special state for the first atomic memory
access. In some examples, determining 610, based on one or
more metrics, whether to allocate the cache line i1n the
special state for the first atomic memory access 1s carried out
by the cache controller tracking a set of metrics to determine
when coalescing should be performed. While coalescing
atomic RMW access that can be performed by memory-local
compute units does not introduce any memory transiers
relative to a memory-local compute implementation or a
host-based compute implementations, 1t can move a memory

transier onto the critical path. That 1s, an atomic RMW
access to an AC line that cannot be coalesced needs to
trigger a memory load before returning, while it would have
otherwise hit the cache in a host-based implementation.
Therefore, it may be desirable to dynamically decide
whether to use the AC state based on the likelihood of such
a scenar1o. In particular, the cache controlled uses one or
more metrics to assess the likelihood that there will be a
non-coalesce-able access to a line 1n AC state before the AC
line 1s applied to memory.

In some examples, this likelihood that an atomic RMW
access will trigger a load of data from system memory can
be approximated by ftracking the proportion of recent
accesses that could not be coalesce and that target lines 1n
AC state. For example, if few cache lines are in the AC state,
a dirty valid state can be used since this could indicate a
recent atomic access. If this proportion 1s low, a transition to
AC state 1s unlikely to hurt performance because non-
coalesce-able accesses are unlikely to hit on an AC cache
line.

In some examples, this likelihood that an atomic RMW
access will trigger a load of data from system memory can
be approximated by tracking what proportion of recent
accesses are atomic accesses that can be coalesced. When an
AC cache line allocation 1s possible, the proportion of
corresponding atomic types 1s checked. If this 1s high, use of
the AC state 1s less likely to hurt performance because 1t 1s
more likely that future accesses may be coalesced.

In some examples, this likelihood that an atomic RMW
access will trigger a load of data from system memory can
be approximated based on additional information supplied

10

15

20

25

30

35

40

45

50

55

60

65

14

by software (e.g., by writing to a memory-mapped register)
about atomic access locality and the likelihood that atomic
accesses can be coalesced.

For further explanation, FIG. 7 sets forth a flow chart
illustrating an example method of dynamically coalescing
atomic memory operations for memory-local computing 1n
accordance with some embodiments of the present disclo-
sure. Like the example method of FIG. 2, the example
method of FIG. 7 also includes determining 210 whether a
first atomic memory access and a second atomic memory
access are candidates for coalescing; and coalescing 220 the
first atomic memory access and the second atomic memory
access 1n a cache prior to requesting memory-local process-
ing by a memory-local compute unit.

In the example method of FIG. 7, determining 210
whether a first atomic memory access and a second atomic
memory access are candidates for coalescing includes deter-
mining 710 whether the first atomic memory access can be
coalesced with the second atomic memory access based on
a symmetric access to diflerent memory modules. In some
examples, determining 710 whether the first atomic memory
access can be coalesced with the second atomic memory
access based on a symmetric access to different memory
modules 1s carried out by the cache controller mnspecting the
properties of incoming atomic memory accesses and deter-
mining whether any of those atomic memory accesses use
the same atomic operation and thus the same memory-local
processing commands. For example, the cache controller
determines whether a first atomic RMW access and a second
atomic RMW access use the same atomic operation and thus
the same memory-local processing commands.

In some examples, whether two RMW access are sym-
metric may be based on conditions required of a multicast
command such as being of compatible atomic operator types
(e.g., two adds) and/or targeting addresses that meet some
condition (e.g., they target the same DRAM column 1n
different DRAM banks in the same memory channel). Thus,
in these examples, determining 710 whether the first atomic
memory access can be coalesced with the second atomic
memory access based on a symmetric access to different
memory modules 1s also carried out by determining, for
accesses that use the same atomic operation, whether those
atomic RWM accesses symmetrical target memory locations
in different memory modules. For example, the cache con-
troller determines whether a memory location targeted by
the first atomic RMW access and a memory location targeted
by the second atomic RMW access are located 1n different
banks of the same memory channel and share the same
column offset in the DRAM row (1.e., the memory accesses
are symmetrical between two modules). In such examples,
these atomic RMW accesses are candidates for coalescing,
because the memory-local processing commands that per-
form the load or store from the memory regions may be
implemented by a single multimodule command. That 1s, a
single memory-local processing command that 1s multicast
to multiple modules may be used to implement, for example,
the ‘store’ command of both the first atomic RMW access
and the second atomic RMW access because they target
different banks 1n the same memory channel and share the
same column offset in the DRAM row.

For further explanation, FIG. 8 sets forth a flow chart
illustrating an example method of dynamically coalescing
atomic memory operations for memory-local computing 1n
accordance with some embodiments of the present disclo-
sure. Like the example method of FIG. 7, the example
method of FIG. 8 also includes determining 210 whether a
first atomic memory access and a second atomic memory

US 11,726,918 B2

15

access are candidates for coalescing; and coalescing 220 the
first atomic memory access and the second atomic memory
access 1n a cache prior to requesting memory-local process-
ing by a memory-local compute unit including determining
710 whether the first atomic memory access can be
coalesced with the second atomic memory access based on
a symmetric access to different memory modules.

In the example method of FIG. 8, determining 710
whether the first atomic memory access can be coalesced
with the second atomic memory access based on a symmet-
ric access to different memory modules includes determin-
ing 810, 1n response to a triggering event, whether a first
cache line that includes the first atomic memory access can
be coalesced with a second cache line that includes the
second atomic memory access, wherein the first cache line
and the second cache line are i a special cache state. In
some examples, the AC cache state 1s leveraged to determine
whether atomic RMW accesses are candidates for multi-
module coalescing. In these examples, determining 710
whether a first cache line can be coalesced with a second
cache line 1s carried out by the cache controller determining
whether a first cache line in the AC state can be coalesced
with a second cache line 1n the AC state. Where both cache
lines share the same type of AC state, or 1t 1s otherwise
provided that both cache lines include the same type of
atomic operations, the atomic RMW accesses may be can-
didates for multi-module coalescing. In the case of a bank-
local compute units such a PIM, two cache lines can be
coalesced if they use the same type of memory-local com-
pute operation and they are to diflerent banks of the same
channel and use the same column offset in the DRAM row.
In other words, by leveraging the AC states of cache lines,
atomic RMW accesses may be coalesced 1n the cache lines,
and further coalesced by a multi-module, multicast memory-
local processing command.

In some examples, the address bits that determine this
placement 1n system memory indicate which cache indices
may cache lines that can be potentially coalesced, and some
or all of these may be searched when a memory-local
processing command 1s about to be 1ssued. For example,
when the address bits used to determine DRAM column
index and memory channel index completely overlap the
address bits used to determine cache set index, then any
cache lines that can be coalesced are guaranteed to fall 1n the
same cache set. Thus, only that cache set needs to be
inspected when the triggering event occurs.

In some examples, the triggering event may be a cache
line eviction, such that when one cache line in the AC state
1s evicted, the cache controller searches the cache for other
cache lines 1n the same AC state and determines whether
those cache lines can be coalesced. Additionally or alterna-
tively, 1n some examples, the triggering event may be the
allocation of a new cache line 1 the AC state, for example,
il 1t can be determined that there 1s some threshold number
of atomic RMW accesses that can be coalesced (since the
cache set 1s already being accessed).

For further explanation, FIG. 9 sets forth a flow chart
illustrating an example method of dynamically coalescing
atomic memory operations for memory-local computing 1n
accordance with some embodiments of the present disclo-
sure. Like the example method of FIG. 8, the example
method of FIG. 9 also includes determining 210 whether a
first atomic memory access and a second atomic memory
access are candidates for coalescing; and coalescing 220 the
first atomic memory access and the second atomic memory
access 1n a cache prior to requesting memory-local process-
ing by a memory-local compute umt including determining

10

15

20

25

30

35

40

45

50

55

60

65

16

710 whether the first atomic memory access can be
coalesced with the second atomic memory access based on
a symmetric access to different memory modules including
determining 810 whether a first cache line can be coalesced
with a second cache line.

In the example of FIG. 9, determining 810 whether a first
cache line can be coalesced with a second cache line also
includes tracking 910 cache lines that are candidates for
coalescing. In some examples, tracking 910 cache lines that
are candidates for coalescing is carried out by the cache
controller maintain a structure for tracking cache lines 1n the
AC state that have the potential for coalescing. In some
implementations, each entry in the structure correspond to a
single column index and channel combination. In such
implementations, the structure may contain only the bits
needed to look up the corresponding AC cache lines 1n the
cache. For example, an entry could be imserted or updated
whenever a cache line 1s allocated 1n the AC state in the
cache, and removed or updated whenever an AC cache line
1s removed. Because multi-module coalescing 1s an optimi-
zation that does not impact functionality, and thus does not
need to track every AC cache line 1n the cache, 1n some
implementations a replacement policy 1s used that prioritizes
recently accessed entries, frequently accessed entries, or
entries that track more AC cache lines.

For further explanation, FIG. 10 sets forth a flow chart
illustrating an example method of dynamically coalescing
atomic memory operations for memory-local computing 1n
accordance with some embodiments of the present disclo-
sure. Like the example method of FIG. 7, the example
method of FIG. 10 also includes determining 210 whether a
first atomic memory access and a second atomic memory
access are candidates for coalescing; and coalescing 220 the
first atomic memory access and the second atomic memory
access 1n a cache prior to requesting memory-local process-
ing by a memory-local compute unit including determining
710 whether the first atomic memory access can be
coalesced with the second atomic memory access based on
a symmetric access to different memory modules.

In the example method of FIG. 10, coalescing 220 the first
atomic memory access and the second atomic memory
access 1n a cache prior to requesting memory-local process-
ing by a memory-local compute unit includes coalescing
1010 the first atomic memory access and the second atomic
memory access using a multi-module memory-local pro-
cessing command (e.g., a multicast PIM command). In some
examples, coalescing 1010 the first atomic memory access
and the second atomic memory access using a multi-module
memory-local processing command 1s carried out by the
cache controller generating a multicast memory-local pro-
cessing command for at least one memory-local processing
operation (e.g., PIM operation) that 1s common to both
atomic memory accesses. For example, when two or more
atomic memory accesses include the same memory-local
processing operations (e.g., load, store, atomicAdd, atomic
multiply, etc.), those memory-local processing operations
may be coalesced 1n a single coalesced memory-local pro-
cessing command that 1s multicast to multiple memory-local
processing units. Consider an example PIM code segment
for two atomic RMW accesses where bank-local PIM units
are utilized. Each atomic RMW access may be broken down
into a load+add' operation and a ‘store’ operation. In this
example, assume one load+add operation stores the result of
an addition of a first operand and data at memory location A
in registerl of a first DRAM bank (e.g., ‘PIM Ld+add
R1<—[a]+opl’), and another one load+add operation stores
the result of an addition of a second operand and data at

US 11,726,918 B2

17

memory location B 1n registerl of a second DRAM bank
(e.g., ‘PIM Ld+add R1<[b]+op2’). The result from regis-

ter]l in the first DRAM bank 1s then stored at memory
location A in the first DRAM bank (e.g., ‘PIM St R1—=[a]’)
and the result from registerl 1n the second DRAM bank 1s
then stored at memory location B (e.g., ‘PIM St R1—=[b]).
Thus, the code segment uses four command slots and two
data slots (for the operands). The two load+add' operations
cannot be coalesced, as each element requires a different
operand to be transmitted across the data bus. However,
assuming that memory location A and memory location B
are 1n the same memory channel and use the same column
offset mm the DRAM row, the ‘store’ operations can be
coalesced into a multi-module command received by the

PIM unit in the first DRAM bank and the PIM unit in the
second DRAM bank (e.g., ‘PIM St—[alb]’). The coalesced
PIM command occupies one command slot, and thus
reduces the number of command slots needed to effect the
same number of store operations. Further optimizations to
the PIM architecture may make these coalesced operations
more eflicient, or enable coalescing more flexible coalescing,
(e.g., A and B do not need to be to the same column).

Coalescing into multicast operations can also be valuable
for multicast operations that do not require using different
operands for each element. For example, some graph algo-
rithms store the same value to a sparse set of neighbor nodes,
rather than performing a RMW (e.g., breadth first search,
graph coloring). Such an operation can exploit the multi-
module operation enabled by bank-local compute units (1.¢.,
bank-local PIM units) to improve memory bandwidth. To
dynamically coalesce these operations, it 15 only necessary
to track the type of command along with information
identifying the aflected lines, then apply the same command
in parallel for any coalesced targets via memory-local pro-
cessing command multicast. Although each memory module
may require a diflerent mask, these can be pre-stored near
the memory-local compute unit).

Furthermore, the likelihood of multi-module coalescing
can also be used to inform how atomic operations are
handled by extending the decision methodology described
for cache line coalescing above. When an atomic operation
misses 1n the cache, the cache can use the metrics informa-
tion to approximate whether multi-module coalescing 1s
likely, and thus whether allocating an AC cache line 1s likely
to be beneficial. For example, the cache controller may
examine the cache for other AC cache lines that could be
coalesced with an mmcoming atomic operation. If such cache
lines exist, then the potential for multi-module coalescing
potential 1s present. In another example, the cache controller
may track the average number of lines that have been
coalesced for recent dynamically coalesced memory-local
processing operations. If this 1s high, then the potential for
multi-module coalescing i1s higher.

Similarly, 1f the cache controller determines that an AC
cache line should not be used for an atomic miss based on
any of the above conditions, then 1t must decide whether to
perform the atomic operation at the memory-local compute
unit or 1n the cache. If there are multiple AC cache lines in
the cache that can be coalesced with the mmcoming request
and locality and reuse for atomics 1s expected to be rare, then
oflloading the operation to the memory-local compute unit 1s
likely to be more beneficial. If there are no AC cache lines
in the cache that can be coalesced and atomic locality/reuse
1s expected to be likely, then allocating a cache line and
performing the atomic operation in the cache 1s preferred.
These conditions may be calculated in multiple ways,

10

15

20

25

30

35

40

45

50

55

60

65

18

including via simple counters for tracking relevant cache
event frequency and/or occupancy.

In view of the foregoing, readers of skill in the art waill
appreciate that embodiments in accordance with the present
disclosure offer a number of advantages. Embodiments may
dynamically exploit cache locality when 1t i1s available
before sending operations for memory-local processing
(e.g., by a PIM unit). These embodiments offer a wider
coalescing window and operations can be delayed indefi-
nitely 1n the cache, providing more coalescing opportunities.
Furthermore, due to the static and deterministic indexing of
a cache based on a target address (1n contrast with a queue
in a memory controller), embodiments make 1t easier to
track coalesce-able operations based on target address,
which lends 1tself to a simpler and more eflicient tracking
mechanism for using multi-module, multicast memory-local
processing commands. Moreover, the hardware and cache
logic overhead introduced by the embodiments 1s minimal.

Embodiments allow memory-local computing to be used
clliciently for atomic operations, which can improve perfor-
mance for a range of important workloads (e.g., graph
analytics, sparse matrix algebra, machine learning, etc.).
Such applications may take advantage of cache locality
when available, and dynamically 1dentity coalescing oppor-
tunities to enable more eflicient multi-module memory-local
processing operations.

Embodiments can be a system, an apparatus, a method,
and/or logic circuitry. Computer readable program instruc-
tions in the present disclosure may be assembler instruc-
tions, 1instruction-set-architecture (ISA) 1nstructions,
machine 1nstructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written 1n any combination
of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. In some embodiments, electronic
circuitry including, for example, programmable logic cir-
cuitry, field-programmable gate arrays (FPGA), or program-
mable logic arrays (PLA) may execute the computer read-
able program instructions by utilizing state information of
the computer readable program 1nstructions.

Aspects of the present disclosure are described herein
with reference to flowchart illustrations and/or block dia-
grams ol methods, apparatus (systems), and logic circuitry
according to some embodiments of the disclosure. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart 1llustrations and/or block diagrams, can be 1mple-
mented by logic circuitry.

The logic circuitry may be implemented 1n a processor,
other programmable data processing apparatus, or other
device to cause a series of operational steps to be performed
on the processor, other programmable apparatus or other
device to produce a computer implemented process, such
that the instructions which execute on the computer, other
programmable apparatus, or other device implement the
functions/acts specified 1n the flowchart and/or block dia-
gram block or blocks.

The flowchart and block diagrams 1n the figures 1llustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and logic circuitry
according to various embodiments of the present disclosure.
In this regard, each block 1n the flowchart or block diagrams
may represent a module, segment, or portion of 1nstructions,
which includes one or more executable instructions for

US 11,726,918 B2

19

implementing the specified logical function(s). In some
alternative implementations, the functions noted 1n the block
may occur out of the order noted in the figures. For example,
two blocks shown 1n succession may, 1n fact, be executed
substantially concurrently, or the blocks may sometimes be
executed 1n the reverse order, depending upon the function-
ality involved. It will also be noted that each block of the
block diagrams and/or flowchart illustrations, and combina-
tions of blocks in the block diagrams and/or flowchart
illustrations, can be implemented by special purpose hard-
ware-based systems that perform the specified functions or
acts or carry out combinations of special purpose hardware
and computer instructions.

While the present disclosure has been particularly shown
and described with reference to embodiments thereot, 1t will
be understood that various changes in form and details may
be made therein without departing from the spirit and scope
of the {following claims. Therefore, the embodiments
described herein should be considered 1n a descriptive sense
only and not for purposes of limitation. The present disclo-
sure 1s defined not by the detailed description but by the
appended claims, and all differences within the scope will be
construed as being included in the present disclosure.

What 1s claimed 1s:
1. A method of dynamically coalescing atomic memory
operations for memory-local computing comprising:

determining whether a first atomic memory access and a
second atomic memory access are candidates for
coalescing; and

coalescing the first atomic memory access and the second
atomic memory access in a cache line allocated 1n an
atomic coalescing state prior to requesting memory-
local processing by a memory-local compute unat.

2. The method of claim 1 further comprising;:

determining that the first atomic memory access 1s a

candidate for coalescing;

allocating a cache line in the atomic coalescing state

without loading data from memory; and

storing an operand of the first atomic memory access 1n

the cache line at a location targeted by the first atomic
memory access; and

wherein determining whether the first atomic memory

access and the second atomic memory access are
candidates for coalescing includes:

determining that the second atomic memory access 1s a

candidate for coalescing with the first atomic memory
access based on the operand of the first atomic memory
access and an operand of the second atomic memory
access.

3. The method of claim 2, wherein coalescing the first
atomic memory access and the second atomic memory
access 1n the cache line prior to requesting memory-local
processing by a memory-local compute unit includes:

coalescing the first atomic memory access and the second

atomic memory access by performing an operation of
the second atomic memory access, using the operand of
the second atomic memory access, on data at a location
in the cache line targeted by the second atomic memory
access.

4. The method of claim 3 further comprising sending, to
a memory controller in response to a triggering event, one or
more memory-local processing commands for the first
atomic memory access and the second atomic memory
access.

10

15

20

25

30

35

40

45

50

55

60

65

20

5. The method of claim 2 further comprising determining,
based on one or more metrics, whether to allocate the cache
line 1 the atomic coalescing state for the {first atomic
memory access.

6. The method of claim 1, wherein determining whether
the first atomic memory access and the second atomic
memory access are candidates for coalescing includes:

determiming whether the first atomic memory access can

be coalesced with the second atomic memory access

based on a symmetric access to diflerent memory
modules.

7. The method of claim 6, wherein determining whether
the first atomic memory access can be coalesced with the
second atomic memory access based on a symmetric access
to different memory modules includes:

determining, 1n response to a triggering event, whether a

first cache line that includes the first atomic memory
access can be coalesced with a second cache line that

includes the second atomic memory access, wherein
the first cache line and the second cache line are 1n the
atomic coalescing state.

8. The method of claim 7, wheremn determiming, 1n
response to a triggering event, whether a first cache line that
includes the first atomic memory access can be coalesced
with a second cache line that includes the second atomic
memory access, wherein the first cache line and the second
cache line are in the atomic coalescing state, includes:

tracking cache lines that are candidates for coalescing.

9. The method of claim 6, wherein coalescing the first
atomic memory access and the second atomic memory
access 1n the cache line prior to requesting memory-local
processing by the memory-local compute unit includes:

coalescing the first atomic memory access and the second

atomic memory access using a multi-module memory-
local processing command.

10. The method of claim 1, wherein the memory-local
compute unit 1s a processing-in-memory (PIM) unit.

11. A computing device for dynamically coalescing
atomic memory operations for memory-local computing, the
computing device comprising;:

a cache including a plurality of cache lines; and

cache logic configured to:

determine whether a first atomic memory access and a

second atomic memory access are candidates for
coalescing; and

coalesce the first atomic memory access and the second

atomic memory access in a cache line allocated 1n an
atomic coalescing state prior to requesting memory-
local processing by a memory-local compute unit.

12. The computing device of claim 11, wherein the cache
logic 1s further configured to:

determine that the first atomic memory access 1s a can-

didate for coalescing;

store an operand of the first atomic memory access in the

cache line at a location targeted by the first atomic
memory access; and

wherein determining whether the first atomic memory

access and a second atomic memory access are candi-
dates for coalescing includes:

determining that the second atomic memory access 1s a

candidate for coalescing with the first atomic memory
access based on the operand of the first atomic memory
access and an operand of the second atomic memory
access.

13. The computing device of claim 12, wherein coalesc-
ing the first atomic memory access and the second atomic

US 11,726,918 B2

21

memory access in the cache line prior to requesting
memory-local processing by the memory-local compute unit
includes:

coalescing the first atomic memory access and the second

atomic memory access by performing an operation of 5

the second atomic memory access, using an operand of

the second atomic memory access, on data at a location
in the cache line targeted by the second atomic memory
access.

14. The computing device of claim 13, wherein the cache
logic 1s further configured to: send, to a memory controller
in response to a triggering event, one or more memory-local
processing commands for the first atomic memory access
and the second atomic memory access.

15. The computing device of claim 11, wherein determin-
ing whether the first atomic memory access and the second
atomic memory access are candidates for coalescing
includes:

determining whether the first atomic memory access can

be coalesced with the second atomic memory access
based on a symmetric access to diflerent memory
modules.

16. The computing device of claim 135, wherein determin-
ing whether the first atomic memory access can be coalesced
with the second atomic memory access based on a symmet-
ric access to different memory modules includes:

determining, in response to a triggering event, whether a

first cache line that includes the first atomic memory
access can be coalesced with a second cache line that
includes the second atomic memory access, wherein
the first cache line and the second cache line are 1n the
atomic coalescing state.

17. The computing device of claim 16, wherein coalesc-
ing the first atomic memory access and the second atomic
memory access 1n the cache line prior to requesting
memory-local processing by the memory-local compute unit
includes:

coalescing the first atomic memory access and the second

atomic memory access using a multi-module memory-
local processing command.

18. A system for dynamically coalescing atomic memory
operations for memory-local computing, the system com-
prising;:

a memory device including at least one memory-local

compute unit;

one or more processor cores configured to 1ssue memory

access requests; and

a cache coupled to the one or more processor cores, the

cache including a plurality of cache lines and cache
logic, wherein the cache logic 1s configured to:

10

15

20

25

30

35

40

45

22

determine whether a first atomic memory access and a
second atomic memory access are candidates for
coalescing; and

coalesce the first atomic memory access and the second
atomic memory access 1 a cache line allocated 1n an
atomic coalescing state prior to requesting memory-
local processing by a memory-local compute unait.

19. The system of claim 18, wherein the cache logic 1s
further configured to:

determine that the first atomic memory access 1s a can-
didate for coalescing;

allocate a cache line 1n the atomic coalescing state without
loading data from memory; and

store an operand of the first atomic memory access 1n the
cache line at a location targeted by the first atomic
memory access;

wherein determining whether the first atomic memory
access and the second atomic memory access are
candidates for coalescing includes:

determining that the second atomic memory access 1s a
candidate for coalescing with the first atomic memory
access; and

wherein coalescing the first atomic memory access and
the second atomic memory access 1n a cache prior to
requesting memory-local processing by a memory-
local compute unit includes:

coalescing the first atomic memory access and the second
atomic memory access by performing an operation of
the second atomic memory access, using an operand of
the second atomic memory access, on data at a location
in a cache line targeted by the second atomic memory
access.

20. The system of claim 18, wherein determining whether
the first atomic memory access and the second atomic
memory access are candidates for coalescing includes:

determining whether the first atomic memory access can
be coalesced with the second atomic memory access
based on a symmetric access to diflerent memory
modules; and

wherein coalescing the first atomic memory access and
the second atomic memory access 1n the cache line
prior to requesting memory-local processing by the
memory-local compute unit includes:

coalescing the first atomic memory access and the second
atomic memory access using a multi-module memory-
local processing command.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

