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INSTANCE SEGMENTATION IMAGING
SYSTEM

CROSS REFERENCE TO RELATED
APPLICATIONS

The present application claims the benefit of and priority
to U.S. provisional application No. 62/832,805, filed on Apr.
11, 2019, the entire disclosure of which 1s hereby incorpo-
rated by reference as if set forth in 1ts entirety herein.

TECHNICAL FIELD

The present invention generally relates to instance seg-
mentation of an 1image, and more specifically, to systems and
methods using iterative processing to identily pixels i an
image to form polylines.

BACKGROUND

Traditional methods for identifying pixels 1n an image,
specifically those modeling lane detection, rely on a three-
step template. First, a tramned classifier within a system
estimates the likelihood that each pixel 1n an 1mage 1s part
of a lane. Then, the system collects pixels that exceed a
certain threshold probability of being part of a lane. Finally,
the system clusters the thresholded pixels mto individual
lanes. For example, a system may use random sample
consensus (RANSAC) to fit a parametric lane curve to a set
of pixels. Random sample consensus 1s described in M. A.
Fischler, R. C. Bolles, “Random Sample Consensus: A
Paradigm for Model Fitting with Applications to Image
Analysis and Automated Cartography,” Comm. of the ACM,
Vol. 24, pp. 381-395, 1981, which is hereby incorporated by
reference as 1f set forth 1n 1ts entirety herein.

In the three-step template, the inference of lane structure
in the latter two steps 1s not part of the learning objective
used to train the classifier in the first step. This hurts system
performance. Furthermore, the clustering process in the third
step may be resource intensive. In some embodiments, the
frame rate at which the system can execute the approach
may be limited by processor capacity or rate. Moreover,
some models are only configured to use pre-labeled training
data and cannot translate information from labeled data 1n
one environment to unlabeled data in another environment.

Accordingly, there 1s a need for improved methods and
systems to 1dentily objects 1n an 1mage.

SUMMARY

This summary 1s provided to introduce a selection of
concepts 1 a sumplified form that are further described
below 1n the Detailed Description section. This summary 1s
not mtended to identily or exclude key features or essential
teatures of the claimed subject matter, nor 1s 1t intended to
be used as an aid in determining the scope of the claimed
subject matter.

According to one aspect, embodiments relate to a method
of instance segmentation in an image. In some embodi-
ments, the method includes (a) identifying, with a processor,
a starting pixel associated with an object 1n an 1mage, the
image having a plurality of rows of pixels, the starting pixel
located 1n a row of the plurality of rows; (b) 1dentifying, with
the processor, at least one pixel located 1n an adjacent row
to the row 1n which the starting pixel i1s located, the at least
one pixel being part of the object; (¢) iterating steps (a)-(b)
using the at least one 1dentified adjacent row pixel as a start
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2

pixel for a next iteration of steps (a)-(b); and (d) forming,
with the processor, a line through the at least one 1dentified
adjacent row pixel to represent the object.

In some embodiments, the method further includes form-
ing a line segment between each identified adjacent row
pixel. In some embodiments, the method further includes
forming a line by fitting a curve through the identified
adjacent row pixels i the image. The curve may be fitted
through the 1dentified adjacent row pixels instead of drawing
line segments from each pixel 1n an 1mage. In some embodi-
ments, the object 1s a lane object and the 1image 1s an 1image
ol a road surface. In some embodiments, 1dentifying the at
least one adjacent row pixel comprises: (b-1) assigning, with
the processor, a probability value to each pixel 1n a plurality
of pixels 1n a window 1n a row adjacent to the row of pixels
in which the start pixel 1s located, wherein the probability
value 1s the likelthood that each pixel in the plurality of
pixels 1s part of the same object as the start pixel; and (b-2)
identifying, with the processor, the at least one adjacent row
pixel as being 1n the same object as the start pixel when the
assigned probability value of the at least one adjacent row
pixel exceeds a threshold. In some embodiments, identifying
the at least one adjacent row pixel comprises: (b-1) assign-
ing, with the processor, a probability value to each pixel 1n
a plurality of pixels 1n a window 1n a row adjacent to the start
pixel, wherein the probability value 1s the likelihood that
cach pixel in the plurality of pixels 1s part of the same object
as the start pixel; and (b-2) identifying, with the processor,
the at least one adjacent row pixel with the highest prob-
ability of being part of the object as being in the same lane
as the start pixel. In some embodiments, identifying the start
pixel for the image of a road surface comprises: estimating,
for each pixel in the 1image, a probability that each pixel 1s
part of the lane object; masking the 1mage pixels to retain
pixels located 1n a border around the edges of the image and
discarding pixels in a middle portion of the image; thresh-
olding the probabilities of each pixel 1n the image to classity
cach pixel in the image into whether or not each pixel 1n the
image 1s part of the lane object; and spatially clustering the
pixels 1nto a finite set of mitial object pixels from which the
initial starting pixel can be selected. In some embodiments,
identifving the at least one adjacent row pixel comprises
identifving the at least one adjacent row pixel using a trained
classifier. In some embodiments, (d) 1s performed after the
processor 1dentifies an endpoint of the object 1n a row
adjacent to the previous iteration start pixel. In some
embodiments, training for the trained classifier comprises
perturbing the identified starting pixel as part of the training.

In another aspect, embodiments relate to a system for
instance segmentation of an i1mage. In embodiments, the
system 1ncludes a processor configured to: (a) identily a
starting pixel 1n an 1image associated with a lane object 1n the
image; the image having a plurality of rows of pixels, the
starting pixel located 1n a first row of the plurality of rows;
(b) identily at least one adjacent row pixel 1n the lane object;
(c) iterate steps (a)-(b) using the at least one 1dentified
adjacent row pixel as a start pixel for a next iteration of steps
(a)-(b); and (d) form a line through the at least one 1dentified
adjacent row pixel to represent the lane object.

In some embodiments, the processor 1s configured to
identify the at least one adjacent row pixel by: assigning,
with the processor, a probability value to each pixel 1n a
plurality of pixels in a window 1n a second row adjacent to
the first row, wherein the probability value 1s the likelithood
that each pixel 1n the plurality of pixels 1s part of the lane
object; and identifying, with the processor, the at least one
adjacent row pixel as being 1n the same lane object as the
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start pixel when the assigned probability value of the at least
one adjacent row pixel exceeds a threshold. In some embodi-
ments, the system 1s configured to assign a probability of
being part of the lane object to each pixel 1n a row adjacent
to the first row; and the adjacent row pixel has the highest
probability of being part of the lane object. In some embodi-
ments, 1dentilying the at least one adjacent row pixel com-
prises 1dentifying the at least one adjacent row pixel using a
trained classifier. In some embodiments, the processor 1s
configured to connect the at least one 1dentified adjacent row
pixel to the start pixel to form a lane object representing the
lane after 1dentifying an endpoint in a row adjacent to the
start pixel. In some embodiments, the 1mage 1s received
from at least one of a camera attached to a moving vehicle,
a camera providing an aerial view of a roadway, a satellite
imager, and a source of two-dimensional map data. In some
embodiments, the classifier 1s tramned with a set of training
images; a lirst subset of the set of training 1mages used to
train the classifier are annotated; a second subset of the
training 1mages are synthetic; the synthetic images are
generated by extracting content including annotations and
style information from the first subset of 1images, discarding
the extracted style information and replacing the extracted
style information with new style information; and the new
style information 1s extracted from a dataset of camera
images, wherein the annotations from the first subset of
images are preserved in the synthesized 1mages.

In another aspect, embodiments relate to an autonomous
driving system for a vehicle. In some embodiments, the
system 1ncludes a motion planning subsystem; a lane object
detection system; and an uncertainty measure for lane
objects identified by the lane object detection system,
wherein the motion planning subsystem alters parameters
associated with safe operation of the autonomous vehicle as
a Tunction of the uncertainty measure of the detected lane
objects.

In some embodiments, the autonomous driving system
turther includes a subsystem for sensing the presence of
objects surrounding the vehicle, wherein the motion plan-
ning subsystem increases a first weight applied to a first
output of the subsystem for detecting surrounding objects
relative to a second weight applied to a second output of the
lane object detection system in order to plan a lateral
position of the vehicle, when an uncertainty of a lane object
detected by the lane object detection system 1s above a
threshold. In some embodiments, the motion planning sub-
system 1ncreases follow distance, decreases speed, or inhib-
its lane changes of the vehicle, singly or 1n any combination,
when an uncertainty for a lane object detected by the lane
object detection system 1s above a threshold.

In yet another aspect, embodiments relate to a method for
unsupervised generation of annotated 1mage training data-
sets. In some embodiments, the method includes extracting
content data comprising annotations and style data from a
first annotated dataset; preserving the content data and
annotations and discarding the style data; extracting new
style data from second non-annotated image dataset; and
synthesizing a third dataset by combiming the content data,
the annotations from the first dataset, and the style data
extracted from the second dataset.

These and other features and advantages, which charac-
terize the present non-limiting embodiments, will be appar-
ent from a reading of the following detailed description and
a review of the associated drawings. It 1s to be understood
that both the foregoing general description and the following,
detailed description are explanatory only and are not restric-
tive of the non-limiting embodiments as claimed.
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4
BRIEF DESCRIPTION OF DRAWINGS

Non-limiting and non-exhaustive embodiments are
described with reference to the following figures 1n which:

FIG. 1 1s a block diagram of prior art lane detection
approaches;

FIG. 2 1s a block diagram of a lane detection approach 1n
accordance with one embodiment;

FIG. 3 1s a block diagram of steps for identifying a lane
in an 1mage 1n accordance with one embodiment;

FIG. 4 1s a block diagram of a data pipeline useful for
augmenting an annotated dataset in accordance with one
embodiment;

FIG. 5 1s a block diagram of unsupervised style transfer
in accordance with one embodiment;

FIG. 6 1s a block diagram of a method of training a neural
network 1n accordance with one embodiment;

FIG. 7 1s a diagram representing system prediction of
pixels that are part of a detected object and end tokens in
accordance with one embodiment;

FIG. 8 depicts a method for detecting 1nitial lane points 1n
an 1mage in accordance with one embodiment;

FIG. 9 depicts a method of masking image and analyzing
the region of interest 1n accordance with one embodiment;

FIG. 10 depicts hardware for the system in accordance
with one embodiment; and

FIGS. 11A-D depict the behavior of an example object
detection system on four different images included as part of
a testing dataset used to evaluate performance of the object
detection system 1n accordance with one embodiment.

In the drawings, like reference characters generally refer
to corresponding parts throughout the different views. The
drawings are not necessarily to scale, emphasis instead
being placed on the principles and concepts of operation.

DETAILED DESCRIPTION

Various embodiments are described more fully below
with reference to the accompanying drawings, which form a
part hereof, and which show specific exemplary embodi-
ments. However, embodiments may be implemented in
many different forms and should not be construed as limited
to the embodiments set forth herein; rather, these embodi-
ments are provided so that this disclosure will convey the
scope of the embodiments to those skilled in the art.
Embodiments may be practiced as methods, systems or
devices. Accordingly, embodiments may take the form of a
hardware implementation, an entirely software implemen-
tation or an implementation combining software and hard-
ware aspects. The following detailed description 1s, there-
fore, not to be taken 1n a limiting sense.

Reference in the specification to “one embodiment™ or to
“an embodiment” means that a particular feature, structure,
or characteristic described in connection with the embodi-
ments 1s mcluded 1n at least one embodiment of the mven-
tion. The appearances of the phrase “in one embodiment™ in
various places 1n the specification are not necessarily all
referring to the same embodiment.

Reference 1n the specification to a “time” should be
understood to refer to a value similar to a UNIX® time
value, 1.¢., a numerical value (such as an integer) that may
be understood as referring to a particular time occurring on
a particular day. The numerical value 1s typically incre-
mented 1n an ascending order, such that a larger value relates
to a later time than a smaller value.

Some portions of the description that follow are presented
in terms of symbolic representations of operations on non-




US 11,718,324 B2

S

transient signals stored within a computer memory. These
descriptions and representations are the means used by those
skilled 1n the data processing arts to convey the substance of
their work to others skilled in the art. Such operations
typically require physical manipulations of physical quan-
tities. Usually, though not necessarily, these quantities take
the form of electrical, magnetic or optical signals capable of
being stored, transferred, combined, compared and other-
wise manipulated. It 1s convenient at times, principally for
reasons of common usage, to refer to these signals as bits,
values, elements, symbols, characters, terms, numbers, or
the like. Furthermore, 1t 1s also convenient at times to reler
to certain arrangements of steps requiring physical manipu-
lations of physical quantities as modules or code devices,
without loss of generality.

However, all of these and similar terms are to be associ-
ated with the appropriate physical quantities and are merely
convenient labels applied to these quantities. Unless spe-
cifically stated otherwise as apparent from the following
discussion, 1t 1s appreciated that throughout the description,
discussions utilizing terms such as “processing” or “com-
puting” or “calculating” or “determiming” or “displaying™ or
the like refer to the action and processes of a computer
system, or similar electronic computing device, that manipu-
lates and transtorms data represented as physical (electronic)
quantities within the computer system memories or registers
or other such information storage, transmission or display
devices.

Certain aspects of the present invention include process
steps and 1nstructions that could be embodied in software,
firmware or hardware, and when embodied 1n software,
could be downloaded to reside on and be operated from
different platforms used by a variety of operating systems.

The present mvention also relates to an apparatus for
performing the operations herein. This apparatus may be
specially constructed for the required purposes, or it may
comprise a general-purpose computer selectively activated
or reconfigured by a computer program stored in the com-
puter. Such a computer program may be stored 1n a computer
readable storage medium, such as, but not limited to, any
type of disk including floppy disks, optical disks, CD-
ROMs, magnetic-optical disks, read-only memories
(ROMs), random access memories (RAMs), EPROMs,
EEPROMSs, magnetic or optical cards, application specific
integrated circuits (ASICs), or any type of media suitable for
storing electronic 1nstructions, and each coupled to a com-
puter system bus. Furthermore, the computers referred to in
the specification may include a single processor or may
employ multiple processor designs for increased computing
capability.

In addition, the present invention 1s not described with
reference to any particular programming language. It will be
appreciated that a variety of programming languages may be
used to implement the teachings of the present mnvention as
described heremn, and any references below to specific
languages are provided for disclosure of enablement and
best mode of the present invention. The embodiments of the
systems, methods, and apparatuses described herein may be
implemented 1n a number of different types of computing
environments. These computing environments may include,
but are not limited to, single-file systems, distributed f{ile
systems, software-defined storage environments, or the like.
In some embodiments, the systems, methods, and appara-
tuses described herein may be implemented as a soltware-
defined logic file storage layer.

In addition, the language used in the specification has
been principally selected for readability and instructional
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purposes and may not have been selected to delineate or
circumscribe the inventive subject matter. Accordingly, the
disclosure of the present invention 1s intended to be 1llus-
trative, but not limiting, of the scope of the invention, which
1s set forth 1n the claims.

Some embodiments described herein are directed to a
tully convolutional model of object detection. Methods may
be used to facilitate end-to-end learning of lane structure
detection for autonomous vehicles. Methods may be imple-
mented 1n autonomous vehicle navigation and navigational
warning systems. In some embodiments, the model may
learn to decode objects such as lane structures instead of
delegating structure inference to post-processing. The con-
volutional decoder may be configured to represent an arbi-
trary number of lanes per image, preserve the polyline
representation of lanes without reducing lanes to polynomi-
als, and draw lanes 1teratively without requiring the com-
putational and temporal complexity of recurrent neural
networks. The model may include an estimate of the joint
distribution of neighboring pixels belonging to the same lane
and a natural and computationally inexpensive definition of
uncertainty. In some embodiments, the network may be
autoregressive and may include a default definition of uncer-
tainty. The model may be adaptable to new environments
using unsupervised style transter.

A polyline may refer to a series of line segments drawn
with algorithmic assistance. In some embodiments, a pro-
cessor may draw a polyline by drawing a first line segment
from a starting pixel to an adjacent row pixel (second pixel)
and then drawing a second line segment from the second
pixel to a pixel adjacent to the second pixel (third pixel). The
processor may qualily each pixel as a pixel i the polyline
by evaluating certain qualities of the pixel. For example, the
processor may evaluate the color and location of the pixel in
the image to determine the likelithood that the pixel is part of
an object, such as a roadway lane, roadside feature, lamp-
post, or road obstacle. The processor may assign an uncer-
tainty value to the pixel and, 11 the uncertainty value 1s lower
than a predetermined threshold, the pixel may quality. The
processor may continue this evaluation and line segmenta-
tion process until the processor stops 1dentifying qualifying
adjacent row pixels. The result may be considered a
polyline.

Embodiments described herein may be able to draw
polylines representing any number ol lane objects of any
length within a captured image. Lane objects may be lane
markings, lane boundaries or any other physical construct
representing a lane or portion thereof. Embodiments may
detect objects such as roadway lanes 1n real time and quickly
identily an object after initial image capture. Some embodi-
ments may use local recursion over a portion of an 1mage to
draw polylines faster than a commercially available proces-
sor analyzing every pixel in an 1image.

Embodiments may be trained to improve drawing of
polylines in 1mages from domains which differ from the
domains 1n an initial set of annotated 1mages. For example,
embodiments may improve their ability to detect lanes on
iIcy or snow-covered roads by training on additional 1mages
synthesized from available annotated 1mages of clear roads
and extracted style information from un-annotated images of
the 1cy or snow-covered roads. Similarly, embodiments may
exhibit improved detection of roadway lanes from mghttime
images alter training on a dataset of 1images synthesized
from annotated daytime roadway lane images and non-
annotated nighttime roadway 1mages.

In some embodiments, the system may define lanes under
the assumption that lanes are curve segments that are
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functions of the height axis of an 1mage. In some embodi-
ments, the system may assume that a lane can be drawn
iteratively by conditioning exclusively on the previous pixel
that was determined to be part of the lane.

As previously discussed and as shown in FIG. 1, com-
mercially available lane detection systems may capture an
image and supply the captured image to a processor 105.
Then, the processor may analyze each pixel in the image and
estimate the likelihood that each pixel 1n the image 1s part of
a lane 110. The processor may engage 1n supervised training
125 to increase the accuracy of the likelihood estimate 110.
The supervised training may include images that incorporate
pixelwise lane annotations.

The commercially available lane detection system then
classifies the pixels that match or exceed a threshold prob-
ability estimate 115. For example, each pixel that i1s classi-
fied as 95% likely to be part of a lane or higher would exceed
a set threshold probability estimate 115 of 95% certainty.
Lane detection systems may then spatially cluster the pixels
exceeding the probability estimate into separate lane
instances 120. From these spatial clusters, the lane detection
system may determine the boundaries of a lane.

FIG. 2 shows a block diagram of an improved lane
detection approach in accordance with one embodiment. In
some embodiments, a system may capture and mput an
image 1nto a processor (step 205). The processor may
analyze part of the 1image to estimate one or more 1nitial lane
points 1 the image (step 210). For example, the processor
may apply a mask to the input 1mage, as detailed in FIG. 8.
The processor may then estimate initial lane points within
the masked region, with one starting pixel for each lane
object (step 210). In one non-limiting example, the proces-
sor may recognize that an 1image was taken at ground level
and, therefore, the lower half of the image would be more
likely to have pixels corresponding to a lane than the top half
of the image.

Having identified a starting pixel corresponding to an
object, such as a lane object, within the unmasked portion of
the image, the processor may then scan rows of pixels above
and below the starting pixel in some embodiments. The
processor may then recursively infer lane probabilities in the
scanned pixel rows adjacent to the starting pixel that pixels
are part of the lane object (step 215). In some embodiments,
the processor may recursively infer lane probabilities
upward and downward 1n an 1image by scanning one row at
a time (step 215). In some embodiments, the system may
predict the local lane shape at each pixel based on the pixels
in the adjacent rows.

In some embodiments, the processor may connect the
identified adjacent row pixels to form polylines (step 220).
In some embodiments, these polylines may represent an
object, such as a roadway lane. In some embodiments, the
processor may maximize the probabilities of polylines.

In some embodiments, the iterative steps 205-220 may be
run in real time and may be used by autonomous vehicle
systems.

In some embodiments, the processor may be configured to
detect an object to facilitate autonomous operation of a
vehicle by detecting roadway lane objects and other objects
in the roadway. Information or data representative of objects
detected by object detectors disclosed herein may be output
to a motion planning subsystem of an autonomous vehicle,
where the mformation 1s used by the motion planming
subsystem for use in determining autonomous vehicle
motion. The motion planning subsystem may cause the
lateral positioning of the vehicle within a lane or roadway to
be altered based on the information. The motion planming,
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subsystem may use the information to keep the autonomous
vehicle within a lane, to actuate a lane change operation or
to maneuver to avoid a detected object. The processor may
additionally use a map and/or speed limit data in some
embodiments. The iterated detection algorithm of FIG. 2
may allow real-time object detection to be used 1n combi-
nation with a map 1n some embodiments.

In some embodiments, the system may use the iterative
detection method of FIG. 2 to assist a driver of a non-
autonomous vehicle. For example, the system may receive
an 1mage from a camera 1n a car (step 205) and estimate
initial lane points 1n the image (step 210). The system may
recursively infer lane probabilities (step 215) and connect
lane points to form polylines (step 220) representing a lane.
The system may compare the polylines to the location of the
vehicle and may notify the driver if the vehicle exceeds the
bounds of the polyline lanes. The system may notily the
driver if the lanes cannot be detected beyond a threshold
uncertainty value 1 some embodiments.

In some embodiments, the system may analyze at least 45
images per second. In some embodiments, the system may
analyze at least 60 1mages per second. In some embodi-
ments, the system may analyze at least 75 1mages per
second. In some embodiments, the system may analyze at
least 90 1mages per second.

In some embodiments, the iterative detection method of
FIG. 2 may be used as an iterative annotation tool to
decrease the cost of building maps, including high definition
maps. In some embodiments, the algorithm may be used to
generate annotations for a raw data set without requiring
human intervention.

FIG. 3 1s a block diagram of steps for identifying a lane
in an 1mage in accordance with one embodiment. In some
embodiments, a system acquires an 1mage (step 305). The
system may acquire the image through a camera, video, or
other recording device. In some embodiments, the system
may acquire an 1mage ol a plurality of lanes (step 303).

In some embodiments, the system 1n steps 310 and 315
may select a set of starting pixels that are most likely to be
part of each lane object. In step 310, the system may mask
a region of the image and a trained neural network classifier
may calculate a probability that a pixel 1s part of a lane
object for each pixel in the unmasked area. In some embodi-
ments, the system 1dentifies an optimum region, or window,
in the 1image to mask. For example, 1f the camera acquiring
the image 1s at ground level, the system may mask a window
in the upper half of the image to identify at least one
roadway lane. In some embodiments, 11 the 1mage includes
a plurality of lanes, the system may mask a window 1n the
upper half of the image to 1dentily at least one pixel for each
roadway lane in the image. If the camera acquiring the
image 1s an aerial camera, the system may mask a different
region of the image more likely to include a line designating
a roadway lane. In some embodiments used with satellite
imagery, starting pixels for lane objects may be selected
manually or automatically. Since an individual satellite
image may typically cover a substantial area, the operation
of selecting a set of 1n1tial starting pixels does not need to be
performed very often making manual selection feasible.

In step 315, the system may perform clustering for pixels
with probabilities calculated 1 step 310 that exceed a
predetermined threshold, and the system may select a start-
ing pixel for each lane, as detailed in FIG. 9. In some
embodiments, system may apply the density-based spatial
clustering of applications with noise algorithm (DBSCAN)
as the data clustering algorithm (step 315). The system may
cluster pixels with a high likelihood of being part of a lane
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and then further analyze each pixel in that cluster to deter-
mine the most likely 1nitial lane pixel for each lane in the
image. The system may categorize a “high likelihood” as
meeting a predetermined probability threshold that the pixel
1s part of a lane or other object. In some embodiments, the
system may categorize a “high likelithood” as more likely
than a certain number of pixels in the image as being part of
a lane or object. In some embodiments, the system may
identify the pixel with the highest likelihood of all the pixels
or remaining pixels in the image as being part of a lane or
object.

The system may set a parameter specitying the radius of
a neighborhood cluster with respect to an 1nitial pixel. In
some embodiments, the radius of the neighborhood cluster
1s five pixels. In some embodiments, the radius 1s fewer than
ten pixels. In some embodiments, the radius 1s greater than
three pixels.

In some embodiments, the processor looks at a row of
pixels 1 the complete 1image that 1s adjacent to the row of
pixels 1n which the starting pixel was i1dentified. In some
embodiments, the neural network classifier may look at a
subset of pixels in the adjacent row and identity the prob-
ability that each subset pixel 1s part of the same lane object
as the starting pixel (step 320). The processor may select a
pixel 1n the adjacent row as a next pixel based on the
calculated probabilities. In some embodiments, the next
pixel selected may be the pixel within the subset of pixels in
the adjacent row of pixels with the highest probability of
being part of the lane object. In one non-limiting example,
a next pixel may be selected from a group of pixels within
the subset of pixels that has a probabaility that the pixel 1s part
of the lane object that exceeds a predetermined threshold. In
some embodiments, the system may draw a line from a
starting pixel to an 1dentified pixel in an adjacent row that
has a high likelihood of being part of the same object as the
starting pixel (step 320). The system my draw lines extend-
ing 1 an upward or downward direction to connect two
pixels 1 adjacent rows of the image.

In some embodiments, the neural network may estimate
an uncertainty value that the secondary pixel 1s part of at
least one lane associated with the first identified pixel of that
lane (step 320). In some embodiments, the neural network
may predict a sequence of pixels for each lane in the 1image
(step 320). The uncertainty measure may be based on the
distributions of calculated probabilities, as further detailed
below.

The system 1n step 325 may terminate lane drawing in the
current direction when the neural network outputs an “end
token” or “End”. The neural network can be tramed to
recognize the end of a lane object and output an end token
when the end of a lane object 1s recognized.

In some embodiments, the ability of the processor to
identify adjacent pixels associated with a lane or other object
ol interest may be facilitated or improved using a supervised
training process with a dataset having pixelwise lane anno-
tations 225. The training may help to improve the accuracy
of pixel i1dentification in the 1mage. In some embodiments
the neural network calculates the likelihood that a pixel
represents an object, such as a roadway lane line. The neural
network 1s trained on a dataset of annotated images, where
training i1nvolves adjusting weights of network nodes. As
part of training the neural network, a loss function may be
used to estimate the error in the weights of the neural
network and the system may adjust the weights of the neural
network to minimize the loss calculated by the loss function.

In some embodiments, the system may use a convolu-
tional neural network to extract a semantic representation of
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the mmput image. The semantic representation may be
decoded by at least three separate shallow convolutional
heads. Both the convolutional neural network and the shal-
low convolutional heads may have learned weights which
may be adjusted as part of the traiming of the system to
recognize objects of interest in some embodiments.

FIG. 4 shows a block diagram of a data pipeline usetul for
augmenting an annotated dataset 1n accordance with some
embodiments. Annotated datasets are useful for training
classifiers such as neural networks arranged to recognize
objects within images. The annotations provide ground truth
data for the system to compare to the neural network output
during training. Tramning the neural network 1n some
embodiments may involve supplying a training dataset to the
neural network and adjusting weights within the neural
network based on a comparison of the classification output
of the neural network to the ground truth data.

The content of an 1mage includes objects and relation-
ships among objects 1 an 1mage. The style of an 1mage
includes non-essential features of an 1mage such as how
objects appear. In an autonomous driving context, the con-
tent of roadway 1mages may comprise at least one of the
location of road markings, traflic signs and signals, road
boundaries, other vehicles, and all of the semantic informa-
tion necessary for driving. The style of roadway 1mages may
comprise at least one of the color and shape of road
markings and signs, or the lighting conditions (sunny, over-
cast, rainy, nighttime). Applying larger training datasets that
contain 1mages that cover larger variations in objects and
styles, improve the classification performance of the neural
network. However, human annotation of datasets 1s time
consuming and expensive. Embodiments disclosed herein
allow a system to synthesize new annotated 1mages covering
larger style spaces without human ntervention.

A processor may receive an initial data set. In some
embodiments, a system may collect an 1nitial dataset of
images 405. In some embodiments, these 1mages may be
roadway images. The images may be collected from a
camera or video recording device. The image recording
device may be located on a vehicle or may be aenal. The
image recording device may be located on a moving vehicle.
In some embodiments, the 1nitial dataset of images 405 may
include 1mages from both aerial and ground-level systems.
In some embodiments, the 1nitial dataset of images 405 may
be from a satellite 1imager. In some embodiments, a human
or computer may annotate objects such as lane objects 1n the
collected mitial data set 410. The collection of the 1initial data
set and the annotation of the initial data set may, together,
comprise a labeled data set 435. This set 435 may be limited
n size.

In some embodiments, a processor may use the labelled
set 435 1n addition to supplemental collected data 415. The
system may use comparisons between or perform other
operations on the collected additional data 415 and the mitial
data set 405 to create a larger data set and use that larger data
set 1n later analyses and classifier training. The collected
larger data set 425 may include data subsets, organized by
locales and conditions of interest.

The processor may collect additional data 415 and trans-
late 1mages from the initial data set 435 to match the data
style 420 of the additional data 415. For example, in some
embodiments, the labeled data 435 may comprise roadway
images during the daytime. The system may collect addi-
tional data 415 of roadway images during the might. The
system may collect additional data 415 of roadway 1mages
from different locales. The processor may translate the

labeled data 435 to match the additional data 4135 of might-
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time roadway 1mages and 1images from different locales. In
some embodiments, matching the data style 420 over con-
ditions and/or over locales are forms of domain adaptation.

In some embodiments, domain adaptation comprises
applying information in labeled data in one domain to
unlabeled data 1n a different domain. A domain may com-
prise, but 1s not limited to, image location, weather, and
terrain. For example, in some embodiments, the system may
translate labeled data from images of California roads to
images of Nevada roads. The system may be able to translate
data having at least one of diflerent paint colors, different
pavement colors, and different standardized lane marker
width. The system may translate labeled data from 1mages
with rain to sunny day images in some embodiments. The
system may translate labeled data from terrain, such as
desert terrain, to 1mages taken in a forest or field setting.

In some embodiments, domain adaptation comprises
applying information 1n labeled data 1n a first set of condi-
tions to unlabeled data in a diflerent set of conditions. A
condition may comprise road conditions, including weather
conditions, such as i1ce, rain, or snow on the road. A
condition may also include environmental conditions, such
as dirt, sand, or rocks on the road in some embodiments. In
some embodiments, the system may preserve the content of
the 1mitial data set when matching the data style 420.

In some embodiments, the system may create an aug-
mented dataset comprising the initial dataset and translated
images 425. The system may use the augmented data set as
additional training data. The system may repeat 430 the data
collection 415, translation 420, and augmentation 425 steps
to continue to improve the data set. A larger data set, in some
embodiments, may produce more accurate results when the
data set 1s used to develop or train object detection processes
such as a lane object detection process.

Some embodiments may use Multimodal Unsupervised
Image-to-Image Translation (MUNIT) to translate the 1nitial
data set 405 to match the style of the additional data 415.
MUNIT may be unsupervised and generative. In some
embodiments, MUNIT 1s used to generate training examples
ol environmental conditions from the additional data 415.

FIG. 5 1s a block diagram of unsupervised style transier
in accordance with one embodiment. Style transter modifies
a piece of data, such as the appearance of an image, to
exhibit a new style while preserving the original content.

Domain transfer (or domain adaptation) refers to trans-
ferring the set of styles present 1n one domain to the set of
styles 1n another domain. For example, a system may learn
to convert a scene observed under one set ol weather
conditions, such as summer conditions, to the same scene
under another set of weather conditions, such as winter
conditions. This conversion 1s a domain transier between
weather conditions.

In some embodiments, a system may receive an image
from an 1nitial domain 505. In some embodiments, the
system may receive the image from a camera. In some
embodiments, the system may receive the image from a
database. The system may extract 507 the content encoding
510 and the style encoding 515 from the image from the
initial domain 505. The system may then discard 520 the
style encoding 515 from the image 3505. The system ma
then use the content encoding 510 and new style decoding,
530 to translate 525 the image 503. In some embodiments,
this translation may result 1n an 1mage translated to a style
space ol a second domain 535.

The new style decoding may be learned from another
dataset. In some embodiments, the dataset may be stored on
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the memory of a system. In some embodiments, the dataset
may be a collection of other 1mages captured by the device.

The resulting translated 1mage may be a new 1mage with
the original content and a new style. For example, the
translated 1mage 535 may have the same road features as the
image from the mnitial domain 505, but may have different
conditions, colors, and weather than the image from the
initial domain. The translated 1image 535 may include rainy
conditions 1f the 1mitial 1mage 3505 included sunny condi-
tions. The translated image 535 may have white lane lines 11
the 1mitial 1image 505 had yellow lane lines, eftc.

FIG. 6 1s a block diagram of a method of training a neural
network in accordance with one embodiment. In some
embodiments, the processor may receive an annotated initial
data set 605. The processor may ftrain neural network
parameters on the 1nitial data set 610. In some embodiments,
the loss function 1n the neural network may decrease as the
processor continues to train neural network parameters. The
system may train the neural network by introducing an
additional data set 615" or a plurality of additional data sets
615", 615°. Although FIG. 6 shows two new additional data
sets 615, the system may train the neural network on any
number of data sets 613.

In some embodiments, the additional data set 615" may be
unannotated. The system may capture additional images and
enter the additional 1images 1nto the unannotated dataset. In
some embodiments the system may learn the style space
620" of the unannotated data set. The system may then take
sample 1mages from the initial data set 605 and translate
625" the images to the style of the unannotated data set 615" .
The system may use these translated images to augment
630" the initial data set 605. The larger the data set, the more
accurate the neural network in some embodiments. The
augmented data set may be used, 1n some embodiments, to
finetune the neural network 635",

In some embodiments, the system may repeat the process
of finetuming the neural network 635. The system may
continue to capture additional unannotated images 615~ and
learn the style space 620~ of the new unannotated images.
The system may then take new sample images from the
initial data set 605 and translate the sample 1mages 1nto the
style 620~ of the new unannotated dataset 625°. The system
may then augment the 1nitial data set with the new samples
630°. The system may then use the augmented data set to
finetune the neural network 635-. In some embodiments, the
translation process may be supervised to determine 1f the
processor 1s properly translating the 1nitial dataset images to
the style of the unannotated data set 6235. The use of properly
applied data 1n the training process will increase the data set
and increase the accuracy of the pixel identification process
in some embodiments.

The capture of unannotated datasets can be done while an
object detection or lane object detection system 1s operating
as imtended in real time to detect objects. In addition to
performing its object detection function, the system can
record 1images for later use 1n augmenting the initial training
dataset 6035. The system can periodically retrain object
classifiers based on the augmented ftraining datasets.
Retraining would typically occur offline. For the case of an
object detection system used within a vehicle system, such
as an autonomous driving system, many instances of the
same system may be operating in diflerent vehicles located
in different locales operated at different times. Image data
can be captured from multiple operating vehicle systems and
uploaded to a central server for processing. The central
server can perform the style transfer to synthesize new
annotated training data based on existing annotated datasets
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and extracted style information from the newly captured
data. The synthesized data can then be used to retrain a
representative neural network classifier and provide updated
network weights. The updated weights can be downloaded
to the individual 1nstances of the object detection systems
operating in vehicles in the field via an over the air software
update protocol. Over the air software updates for vehicle
are well known, one example of which being the over the air
software updates performed by Tesla, Inc. of: 3500 Deer
Creek Road, Palo Alto, Calif. 94304, for 1its fleet of electric
vehicles.

In some embodiments, an object detection system may
perform all the steps of data capture, image style transter and
updated training by 1tsell, without the need to use centralized
resources.

In some embodiments, the system may combat drifting
through training wvia reinforcement learning. In some
embodiments, the system may combat drifting through
training to denoise perturbed lane annotations. In some
embodiments, the system may augment datasets with syn-
thesized perturbations to the starting pixel from which the
next pixel 1s predicted by adding Gaussian noise to train the
network.

FIG. 7 1s a diagram representing system prediction of
pixels that are part of a detected object and end tokens in
accordance with one embodiment. In some embodiments,
the system may receive an image comprising a set of pixels
700 arranged 1n rows 703, 741, 742. In some embodiments,
the system 1s configured to assign a probability of being part
of a lane to each pixel 700. The probabilities are obtained
from a trained neural network classifier. The system may
select a starting pixel 705 and may evaluate pixels in the row
above 741 and the row below 742 the starting pixel 705.
Selection of a starting pixel 1s further illustrated by FIGS. 8
and 9. The evaluation process may include assigning prob-
ability values of being part of the lane to a subset of the
pixels residing 1n the rows above 741 and the row below 742
the row of starting pixel 705. By looking at rows above
and/or below the starting pixel, and by looking at a subset of
the pixels 1n each row, the size of the neural network
classifier may be substantially reduced compared to systems
configured to evaluate an entire 1mage at the same time. This
substantially increases the speed of object detection 1n some
embodiments.

The system may determine that pixel 708 in row 741 and
pixel 707 1 row 742 to be the pixels having the highest
probability of being part of the lane of any of the pixels in
the respective rows 741, 742. In some embodiments, the
system may determine which pixels 1n an adjacent row
exceed a probability threshold of being part of the object to
be detected. In some objects, the object to be detected 1s a
lane object. The system may select any of the pixels with
probabilities that exceed the threshold as the next pixel. The
system may select the pixel closest to the midpoint of the set
ol pixels with probabilities that exceed the threshold 1n the
adjacent row. The system may connect the pixels 708, 705,
707 with a curve 720. The system may then use the second
pixel 708 as a starting pixel to determine the pixel in the
adjacent row 703 most likely to be part of the lane. The
system may continue to iteratively use identified pixels to
identify adjacent row pixels as start pixels and secondary
pixels.

In some embodiments, during training the system may
similarly attempt to predict local object shape or detect an
object. During training, the system may compare the output
of pixels identified as being part of the object to the ground
truth data provided by the annotations in the training data.
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The system may use differences between the detector output
and the ground truth data to refine weights of the neural
network classifier in some embodiments.

The system may perform a synthetic perturbation of a
starting pixel 710 offset from annotated lanes and may
maintain the training label pointing back to the lane 720. In
some embodiments, the oflset pixel 710 may include upward
740 and downward 735 directions for the determined lane
shape, represented by curve 720. In some embodiments, a
synthetically perturbed pixel 7135 may signal the termination
of a lane, represented by curve 720 with an end token 745.
In some embodiments, the system may draw a lane, repre-
sented by curve 720 by sampling an mitial point 705 and
then greedily following arrows 733, 740 up and down until
the system reaches an end 715 1in either direction. The
system may then concatenate the results.

In some embodiments, a processor may draw a line
segment between each 1dentified adjacent row pixel. Draw-
ing polylines comprises drawing a set of connected line
segments. In some embodiments, a processor may {it a curve
720 through a set of adjacent row pixels to form a lane line.
The system may proceed as described above to identily
pixels throughout the image that are part of the object to be
identified, such as a lane object. In some embodiments,
rather than drawing a line from one pixel to the next at each
step 1n the 1terative process, each of the 1dentified pixels are
stored 1n memory. Once the system has proceeded through
cach row 1n the 1image that may contains pixels that may be
part of the object, the system may perform a curve fit
operation on the set of detected pixels.

FIG. 8 depicts a method for detecting 1nitial lane points 1n
an 1mage 1n accordance with one embodiment. While FIGS.
8 and 9 are illustrated 1n the context of detecting lane
objects, the object detection systems and methods disclosed
herein are not limited to the detection of lane objects and can
be used to detect other types of objects in 1mages (for
example, sign posts, traflic lights, body parts, etc.). As
discussed above, the system may consider a region of
interest of the 1image. For example, 1n some embodiments,
the region of interest 820 may be around the border of the
image. The region of interest 820 may be a function of the
height 805 and the width 810 of the image. The region of
interest may take a border 8135 of equal width around the
image to identify 1nitial lane points. For example, the system
may consider a region of width 0.15*w around the border of
the 1mage, where w 1s the width of the image. In other
embodiments, the system may consider a region of width
0.15%*h around the border of the 1mage, where h 1s the height
of the 1image. The system may consider regions in the center
of the 1mage 1n some embodiments.

FIG. 9 depicts a method of masking image and analyzing
the region of interest 902 1 accordance with some embodi-
ments. In some embodiments, a captured 1mage may com-
prise pixels arranged on a grid. The system may translate the
image into a probability heatmap 905, calculating the prob-
ability that each pixel 1s part of a lane. In some embodi-
ments, the system may calculate the probability heat map
905 for each pixel in the region of interest 902. For ease of
visualization, pixels with a higher probability may be
depicted as being larger, darker, or a diflerent color than
pixels with a lower probability. FIG. 9 represents pixels with
higher probabilities as dots of larger diameter.

In some embodiments, the system may apply a mask 907
to the image (step 910) and may generate a heat map
showing the pixel coordinates 909 in the unmasked region
902. The heat map of the unmasked region in step 910 may
be 1dentical to the heat map of the unmasked region 905 in
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some embodiments. The system may i1gnore the masked
region of the system 907 and separately analyze the pixels
in the region of interest 902 to determine a set of pixel
coordinates 909 1n some embodiments. Embodiments may
then cluster the pixels 915 from a cloud of pixels which are
most likely to be part of an object. Some embodiments may
use the DBSCAN algorithm disclosed 1n: “A density-based
algorithm for discovering clusters in large spatial databases
with noise,” Proceedings of the Second International Con-
terence on Knowledge Discovery and Data Mining (KDD-
96). AAAI Press. pp. 226-231, CiteSeerX 10.1.1.121.9220.
ISBN 1-57735-004-9, the entire disclosure of which 1s
hereby incorporated by reference as 1f set forth 1n 1ts entirety
herein, to cluster the pixels. In some embodiments, systems
may use other known clustering algorithms such as HDB-
SCAN, OPTICS, K-means, etc. In some embodiments,
clustering pixels may allow the system to 1gnore stray pixels
911 assigned high probabilities of being part of a lane object,
but not surrounded by other pixels with similarly high
probabilities.

In some embodiments, the system may determine a set of
starting pixels, one starting pixel in each cluster that are
most likely to be part of lane objects 920, to be selected as
the starting pixels for detecting objects within this 1mage.
The system may use these starting pixels to iteratively
determine pixels 1n other rows of the 1mage that are also part
of the objects to be detected, and lines that represent the
objects are drawn 925 as previously described. In some
embodiments, the pixels may be used as edges of a lane,
rather than the center of a lane. In these embodiments, the
system may use two pixels as borders of a lane, rather than
a system using one pixel as a center of a lane.

FIG. 10 depicts hardware for the system in accordance
with one embodiment. The system may receive an image
input 1001 from at least one source. In some embodiments,
the source may include a camera 1005, LiDAR 1010, GPS
1015, and IMUs 1020. In some embodiments, the system
may receive mputs from a plurality of sources. For example,
the system may receive position mput from a global posi-
tioming system and may receive measurement data from an
IMU. In some embodiments, the system may receive iputs
from multiple sensors simultaneously. The system may
process the sensor mputs and the computing system per-
forms object detection 1n real time (1.e., with sulliciently low
latency) such that object detection output may be available
for other vehicle systems, such as a motion planning system
of an autonomous driving system to beneficially use.

In some embodiments, the mput 1001 may be sent to
computing system such as a processor 1045. The processor
1045 may analyze the input 1001 with a central processing
unit (CPU) 1035. The CPU 1035 may communicate with the
hard drive 1040, graphics processing unit (GPU) 1030, and
random-access memory (RAM) 1025. In some embodi-
ments, the CPU 1033 may be able to receive input from the
hard drive 1040, GPU 1030, and RAM 1025. In some
embodiments, the CPU 1035 may be able to send data and
commands to the hard drive 1040, GPU 1030, and RAM
1025. The communication among the CPU 1035, the hard
drive 1040, GPU 1030, and RAM 1025 may produce an
output from the processor 1045. The processor 1045 may
use the image input 1001 to detect an object 1n the 1mage
input. For example, the processor 1045 may identify a lane
object such as a lane marking or a lane boundary in the
image mput 1001. After identifying the lane object, the
processor may output the lane object 1050.

FIGS. 11A-D depict the behavior of an example object
detection system on four different images included as part of
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a testing dataset used to evaluate performance of the object
detection system 1n accordance with one embodiment. In
some embodiments, the system may augment training data-
sets by using style transier to synthesize additional training
data.

For each of FIGS. 11A-D, shides 1101', 1101", 1101™,
1101"" depict a line drawing representation of an input
testing 1mage, 1n accordance with some embodiments. Slides
1102, 1102", 1102™, 1102"" depict the per pixel likelithood
calculated by the object detection system that a pixel 1s part
of a lane object within the image, where an object classifier
in the object detection system 1s trained on a first training

dataset, 1n accordance with some embodiments. Slides
1103', 1103", 1103™, 1103"" depict the per pixel likelihoods

calculated 1n shides 1102', 1102", 1102"™, 1102"" overlaid
upon the image of slides 1101', 1101", 1101™, 1101"". Slides
1104', 1104", 1104™, 1104"" depict the per pixel likelithood
calculated by the object detection system that a pixel 1s part
of a lane object within the 1image, where the object classifier
in the object detection system 1s trained on a second training
dataset including synthesized image data obtained via style

transfer, 1n accordance with some embodiments. Slides
1105', 1105", 1105™, 1105"" depict the per pixel likelihoods

of slides 1103', 1103", 1103™, 1103"" overlaid upon 1mage
from shides 1101', 1101", 1101™, 1101"", respectively.

In FIG. 11A, slides 1102' and 1103' show a discontinuity
in the right most lane boundary whereas slides 1104' and
1105' show a continuous lane boundary. In FIG. 11B,
embodiments may improve boundary detection from show-
ing a discontinuity 1108, 1110 1n slides 1102" and 1103" that
1s absent from shides 1104" and 1103". Similar improve-

ments 1n the identification of lane objects are visible in
FIGS. 11C and 11D as well, where lane objects 1112, 1114

are missing 1n slides 1102', 1102"" and 1103™, 1103"" but
are present 1n slides 1104™, 1104"" and 1105™, 11035"". The
improvement in detection of lane objects may be clearer
when the system 1s trained on the second training dataset
which may include 1mages synthesized using style transier
in some embodiments.

A mathematical explanation concerning embodiments of
a lane representation method 1s provided below. In the most
general case, lane annotations are curves v:[0,1]—=R*. In
order to control the orientation of the lanes, some embodi-
ments assume that lane annotations can be written as a
function of the vertical axis of the image. A lane annotation
y therefore 1s represented in some embodiments by a
sequence of {height, width} pixel coordinates y={y,, . . .,
y +={th, w,}, ..., {h,w,}} where h ,-h=1. Given an
image XER" the joint probability p(ylx) can be fac-
tored as follows:

p(ylx)zp(yllx)ﬂlen_lp(yﬂl Yoo, YuX) (1)

Some embodiments may use a recurrent neural network to
predict p(v,.,1V,, ..., ¥, X). To decode the neural network,
some embodiments assume most of the dependency can be
captured by conditioning only on the previous decoded
coordinate:

pyIx)=p(y Ix)I1,_ 1H_1P Vie1lysX) (2)

Because embodiments may assume h, ,—h.=1, the pro-
cessor may sumplity the probability as:

PV eX)=D(AW,ly;,x) (3)

(4)

In some embodiments, lane detection may be reduced to
predicting a distribution over dw/dh at every pixel 1n addi-

Aw;=wy, 1 —w,.
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tion to the standard per-pixel likelihood. Decoding proceeds
by choosing an initial pixel coordinate and integrating. To
represent the distribution p(Aw.ly,, X), embodiments may
use a normal distribution and perform regression. In cases
where the true distribution 1s multi-modal such as when
lanes split, a regression output may cause the network to
take the mean of the two paths instead of capturing the
multimodality. Some embodiments may make no assump-
tions about the shape of p(Aw |y, X) and represent the
pairwise distributions using categorical distributions with
support Awe{ieZ|-L=i<l.}U{end} where L is chosen large
enough to be able to cover nearly-horizontal lanes and end
1s a stop token signaling the end of the lane. At each pixel
th,w}, the neural network may predict (1) p,,, o:=p(h,
w|x)—the probability that pixel {h,w} is part of a lane, (2)
s 1 —P(1h+1,Aw}Uendlh,w,x)—the categorical distribu-
tion over pixels in the row above pixel {h,w} within a
distance L that pixel {h+1,w+Aw} is part of the same lane
as pixel {h,w}, or that pixel {h,w} is the top pixel in the lane
it is a part of, (3) ps.._:=p({h-1,Aw}Uendlh,w,x)—the
categorical distribution over pixels in the row below pixel
th,w} within a distance L that pixel {h—1,w+Aw} is part of
the same lane as pixel {h,w}, or that pixel {h,w} is the
bottom pixel in the lane it 1s a part of.

(Given these probabilities, embodiments may decode a full
lane segment given any initial point on the lane. Given some
initial position h,,w, on lane y, embodiments may follow the
greedy recursion:

ylho)=wq (3)

y(x+s1gn)=p(x)+Aw (6)

(7)

where sign&{—-1,1} depending on if the system draws the
lane upwards or downwards from x,,y,. Some embodiments
may choose any y, &y as h,,w, and may concatenate the
results from the upwards and downwards trajectories.
Embodiments may stop decoding when argmax returns the
end token.

As previously discussed, the loss function in the neural
network may decrease as the processor continues to train
neural network parameters. In some embodiments, system
may minimize the negative log likelihood given by p(yIx)=
p(v,IX)IL_,""p(y,.,y, X) to calculate loss. The negative
log likelihood may be the joint probability of a sequence of
pixels being a lane. The loss L(0) may be defined by:

Lmasﬁc(g):_lﬂg(p (J/m lfé(x)))

Ax=-L+argmax p, J(x).sign

(8)

LSE‘QHE‘HCE‘(G):ZSE{—l,,l }2f=ln ng(p(wi+5_wf| {hff wz}lfé(‘x) (9)

L(O)=L,,,(0)+L 0) (10)

3H. W
R!‘!

Sediien E‘E"(

where 0 represent the weights of the network, x&
an input image, and y={{h,,w,}, ..., {h ,w } } a ground
truth lane annotation such that h~h,_,=1 and y, ER"*" a
ground truth segmentation mask of the lane.

Because the task of binary segmentation and pairwise
prediction have different uncertainties and scales, embodi-
ments may dynamically weight these two objectives. Some
embodiments may incorporate a learned temperature a
which 1s task specific to weigh the loss:

5 (11)

2
Lseqafncf + lﬂgﬂ' mask G-SE'-:}'HE’H(?E

L(6) =

1 1
2 l‘?ﬂﬂ.ﬂk (9) + 2
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During training, embodiments may substitute W=log o~
into (11) for numerical stability. In some embodiments, a
fixed W may result in a similar system performance to
allowing W to be learnable.

Embodiments may correct for exposure bias in object
detection. Embodiments may train the neural network to
denoise lane annotations and augment datasets with synthe-
s1ized perturbations. In some embodiments, to each ground
truth annotation (y), the system may add gaussian noise and
train the network to predict the same target as the pixels in
y. Embodiments may generate training examples as follows:

s~| N(0.5,0) ] (12)

w,'=w.+s

(13)

p(wi+sign_ wi ,| {ki? WI-'},J:):}»’(}ZI-‘FSigH)—WI- +L (14)

where sign&{-1,1}. Some embodiments may tune o as a
hyperparameter which 1s dependent on dataset and image
size. In some embodiments, the system may clamp the
ground truth difference y(h+sign)-w '+ between 0 and
2L+1 and clamp w' between O and the width of the image.

Some embodiments may perform style transfer on the
images 1n unordered datasets D and D'. In some embodi-
ments, a framework such as the CycleGAN framework may
train an encoder-generator pair E,G for each dataset D and
D' such that G(E(x))=~x for x~D and difference between the
distributions y~G'(E(x)) and y~D' 1s minimized, with analo-
gous statements for D'. "

The multimodal unsupervised
image-to-1mage translation framework may generalize this
model to include a style vector s~N(0,I) as mput to the
encoder E. Style translations are distributions that can be
sampled from instead of deterministic predictions 1n some
embodiments.

Some embodiments use multimodal unsupervised image-
to-image translation to augment the labeled training set with
difficult training examples. In some embodiments, D={x,,y,}
is a dataset of images X, and lane annotations y, and D'={x_}
a corpus of images without labels. Style transfer may
preserve the geometric content of mput images. Embodi-
ments may generate new training examples {x',y'} by sam-
pling from the distribution D'~{x",y'} defined by:

X, v~ (15)

X~G(EX,8))s-no,1) (16)

Y=y (17)

Although representation of lanes around the world are
location dependent, the distribution of lane geometries may
be considered constant in some embodiments. Unsupervised
style transfer may allow the system to adjust to different
styles and weather conditions without the need to additional
human annotation.

In some embodiments, the processor may identily a
plurality of roadway lanes 1n an image. In some embodi-
ments, the roadway lanes may split. When the roadway lanes
split, embodiments may represent pairwise distributions
using categorical distributions with support. A full lane
segment may be determined given an 1nitial point. Embodi-
ments may use a greedy recursions to determine lane tra-
jectories and, from these ftrajectories, may determine
polylines representing a lane.

Embodiments of the present disclosure, for example, are
described above with reference to block diagrams and/or
operational 1llustrations of methods, systems, and computer
program products according to embodiments of the present
disclosure. The functions/acts noted 1n the blocks may occur
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out of the order as shown 1n any flowchart. For example, two
blocks shown 1n succession may in fact be executed sub-
stantially concurrent or the blocks may sometimes be
executed 1n the reverse order, depending upon the function-
ality/acts involved. Additionally, not all of the blocks shown
in any flowchart need to be performed and/or executed. For
example, 11 a given flowchart has five blocks containing
functions/acts, 1t may be the case that only three of the five
blocks are performed and/or executed. In this example, any
of the three of the five blocks may be performed and/or
executed.

Autonomous driving systems rely on precise vehicle
location data. An autonomous planning subsystem of an
autonomous driving system may use vehicle location data
for motion or route planning. Various sensors such as global
positioning systems (GPS), light detection and ranging
(LiDAR), Inertial Measurement Units (IMU’s) and cameras
(used for object detection) may all be used to provide data
usetul for vehicle location detection. Systems may weigh
sensor output data and estimate the location of an object
based on sensor outputs used together to provide a sensor
tused vehicle location estimate.

In some embodiments, a motion planning subsystem
increases a weight applied to an output of a subsystem for
detecting surrounding objects relative to another weight
applied to a separate output of the lane object detection
system 1n order to plan a lateral position of the vehicle on a
roadway. In some embodiments, an object detection subsys-
tem may detect both objects surrounding the vehicle and
lane objects. In some embodiments, a motion planning
subsystem 1ncreases a weight applied to an output of a
sensor system such as a LiDAR system, an IMU or a GPS
system relative to another weight applied to an output of a
lane object detection system 1n order to plan lateral position
of a vehicle on a roadway. In some embodiments, the change
in weights of outputs may be applied when an uncertainty of
a lane object detected by the lane object detection system 1s
above a threshold.

Some embodiments may use an uncertainty measure for
sensor output data to adjust the weighting of that sensor’s
output when forming the fused vehicle location estimate.
For example, GPS satellite communication may be lost or
obscured when driving through mountainous terrain or
through tunnels, LiDAR data may become noisy when
heavy snow 1s falling, and IMU output may driit over time.
As the uncertainty regarding a particular sensor or detector
output increases, its weighting may be lowered so the
uncertain data has less influence on the fused vehicle loca-
tion estimate 1n some embodiments.

In winter, 1t may be the case that snow 1s falling and road
surfaces are partially or completely snow covered. In such
conditions, humans often have difliculty in determining
exactly where lanes are located. A human driver in such
circumstances will often slow down and increase the follow
distance. If there are many surrounding objects, the risk to
moving outside of a lane boundary 1s high and a human
operator may be more conservative i how they drive. If
there are few surrounding objects, a human operator may not
worry quite as much about lane boundaries and will ensure
they stay on the road surface, even 1f they drift over lane
boundaries. An autonomous vehicle may operate 1n a similar
manner to a human under such deteriorated operating con-
ditions. The uncertainty measure provides a representation
to the autonomous vehicle of the degraded operating con-
ditions.

In some embodiments, an object detection system that
computes for each pixel a probability that the pixel 1s part of
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an object such as a lane object may provide a natural
measure of uncertainty. The characteristics of the spatial
distribution of calculated probabilities may provide a mea-
sure of uncertainty in some embodiments. In some embodi-
ments, a wider distribution of probabilities about a pixel may
correlate with higher uncertainty that an object 1s being
detected. In some embodiments, the uncertainty in the neural
network classifier output in an object detection system may
increase 1 occluded and shadowy conditions. An autono-
mous driving system may use the known increase 1n uncer-
tainty to prevent reckless driving in high-uncertainty situa-
tions.

Lateral location of an autonomous vehicle on a roadway
may be controlled by the autonomous system using the
output of a lane object detection system 1n some embodi-
ments. In some embodiments, the autonomous system may
sense the presence of surrounding objects, such as other
vehicles, on the road. When uncertainty of detected lane
objects 1s low, a motion planning subsystem of an autono-
mous vehicle may weigh the output of the lane object
detection more highly than the presence of surrounding
objects, and rely upon the lane object detection system to
guide lateral positioning of the vehicle on the road.

As the uncertainty of the lane object detection increases,
the lane object detection system may no longer be relied
upon to reliably guide lateral lane positioning. In such
circumstances, a motion planning subsystem of an autono-
mous vehicle may weight lane object detection output lower
(or possibly completely disregard the output from the lane
object detection system) and rely more or completely on the
detection of surrounding objects to guide lateral positioning
of the vehicle on the roadway 1 some embodiments.
Embodiments may continuously or discretely vary the
welghting of lane object detection as a function of uncer-
tainty of the lane object detection. Embodiments may reduce
the weighting ol a lane object detection system when the
uncertainty increases above a predetermined threshold.

In one non limiting example, the system may use the
output of a lane object detector operating on 1mage data 1n
combination with high definition road maps to provide an
estimate of vehicle location. This vehicle location estimate
may be fused with other vehicle location estimates provided
by other vehicle sensor systems such as GPS, LiDAR, efc.
When uncertainty in the identification of lane objects
increases, the weighting of the lane object detection-based
vehicle location estimate may be reduced relative to other
vehicle location estimates, so 1t has less influence on the
fused vehicle location estimate. Other systems for generat-
ing vehicle location estimates may also have associated
uncertainty measures. For example, a L1IDAR may have an
uncertainty measure that 1s a function of the signal to noise
ration of 1ts output, where the uncertainty measure increases
as the signal to noise ratio decreases. A GPS system may
have an associated uncertainty measure that 1s a function of
received satellite signal strength, where the uncertainty
increases as the received signal strength decreases. The
weighting of various location estimates can be increased
when uncertainty 1s low and decreased when uncertainty 1s
high. In this way, robustness of the fused vehicle location
estimate 1s made more robust 1n some embodiments.

Embodiments of an autonomous vehicle planming subsys-
tem may adjust certain parameters to control behavior of the
autonomous vehicle. Some of these parameters aflect how
sately the vehicle operates. An autonomous planning sub-
system may adjust a parameter or parameters related to
vehicle speed (speed relative to the posted speed limit and/or
speed relative to the speed of surrounding traflic) as a
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function of the uncertainty of the vehicle location estimate.
The planning system may adjust a parameter for vehicle
follow distance as a function of the uncertainty in the vehicle
location estimate. The planning system may adjust a param-

22

(d) forming, with the processor, a line through the at least
one 1dentified adjacent row pixel to represent the
object.

2. The method of claam 1 further comprising forming a

eter to control when a vehicle 1s allowed to or 1s inhibited 5 [ine segment between each identified adjacent row pixel.

from changing lanes as a function of the uncertainty 1n the
vehicle location estimate. In one non-limiting example, a
motion planning subsystem of an autonomous vehicle may
reduce speed, increase follow distance, inhibit lane changes,
or any combination thereolf when the uncertainty in the
vehicle location estimate increases. The adjustments may be
continuous or discrete functions of the uncertainty. The
adjustments may be performed when uncertainty exceeds a
preset threshold. Systems may comprise more than one
threshold above which parameters are adjusted. The manner
in which the planning system alters safety related parameters
as a function of the uncertainty 1n a vehicle location estimate
may be determined by the architect of the autonomous
system.

In one non-limiting example, a planning subsystem may
adjust parameters that aflect the operating safety of an
autonomous vehicle as a function of the uncertainty in the
detection of lane objects 1n 1image data. As the uncertainty
increases, a planning subsystem may reduce vehicle speed.
A planning system may increase the follow distance between
two vehicles. The planning subsystem may reduce speed and
or increase follow distance when the uncertainty in lane
object detection exceeds a predetermined threshold. The
planning subsystem may continuously vary vehicle speed
and follow distance as a function of uncertainty in lane
object detection. A planning subsystem may continuously
vary vehicle speed and follow distance as a function of
uncertainty in lane object detection once uncertainty exceeds
a preset threshold.

The description and 1llustration of one or more embodi-
ments provided 1n this application are not intended to limit
or restrict the scope of the present disclosure as claimed 1n
any way. The embodiments, examples, and details provided
in this application are considered suflicient to convey pos-
session and enable others to make and use the best mode of
the claimed embodiments. The claimed embodiments should
not be construed as being limited to any embodiment,
example, or detail provided in this application. Regardless of
whether shown and described 1n combination or separately,
the various features (both structural and methodological) are
intended to be selectively included or omitted to produce an
embodiment with a particular set of features. Having been
provided with the description and 1llustration of the present
application, one skilled in the art may envision variations,
modifications, and alternate embodiments falling within the
spirit of the broader aspects of the general inventive concept
embodied 1n this application that do not depart from the
broader scope of the claimed embodiments.

What 1s claimed 1s:

1. A method of instance segmentation 1n an 1mage, the
method comprising:

(a) 1dentifying, with a processor, a starting pixel associ-
ated with an object 1n an 1mage, the 1mage having a
plurality of rows of pixels, the starting pixel located in
a row of the plurality of rows;

(b) 1dentitying, with the processor, at least one pixel
located 1n an adjacent row to the row 1n which the
starting pixel 1s located, the at least one pixel being part
of the object;

(c) 1terating steps (a)-(b) using the at least one 1dentified
adjacent row pixel as a start pixel for a next iteration of

steps (a)-(b); and
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3. The method of claim 1 further comprising forming a
line by fitting a curve through the i1dentified adjacent row
pixels 1n the 1image.

4. The method of claim 1 wherein the object 1s a lane
object and the 1mage 1s an 1mage of a road surface.

5. The method of claim 1 wherein 1dentifying the at least
one adjacent row pixel comprises:

(b-1) assigning, with the processor, a probability value to
cach pixel 1n a plurality of pixels in a window 1n a row
adjacent to the row of pixels in which the start pixel 1s
located, wherein the probability value 1s the likelihood
that each pixel 1in the plurality of pixels 1s part of the
same object as the start pixel; and

(b-2) 1dentitying, with the processor, the at least one
adjacent row pixel as being 1n the same object as the
start pixel when the assigned probability value of the at
least one adjacent row pixel exceeds a threshold.

6. The method of claim 1 wherein 1dentifying the at least

one adjacent row pixel comprises:

(b-1) assigning, with the processor, a probability value to
cach pixel 1n a plurality of pixels in a window 1n a row
adjacent to the start pixel, wherein the probability value
1s the likelihood that each pixel 1n the plurality of pixels
1s part of the same object as the start pixel; and

(b-2) 1dentitying, with the processor, the at least one
adjacent row pixel with the highest probability of being
part of the object as being in the same lane as the start
pixel.

7. The method of claim 4 wherein i1dentitying the start

pixel for the 1image of a road surface comprises:
estimating, for each pixel 1n the 1mage, a probability that
cach pixel 1s part of the lane object;

masking the image pixels to retain pixels located 1n a
border around the edges of the image and discarding
pixels 1n a middle portion of the image;

thresholding the probabilities of each pixel in the 1mage to
classity each pixel in the image into whether or not
cach pixel in the image 1s part of the lane object; and

spatially clustering the pixels into a finite set of 1nitial
object pixels from which the mnitial starting pixel can be
selected.

8. The method of claim 1 wherein 1dentifying the at least
one adjacent row pixel comprises 1dentiiying the at least one
adjacent row pixel using a trained classifier.

9. The method of claim 1 wherein (d) 1s performed after
the processor i1dentifies an endpoint of the object 1n a row
adjacent to the previous iteration start pixel.

10. The method of claim 8 wherein training for the trained
classifier comprises perturbing the identified starting pixel as
part of the training.

11. A system for instance segmentation of an image
comprising a processor configured to:

(a) 1dentily a starting pixel in an 1mage associated with a
lane object 1n the 1image; the 1mage having a plurality
of rows of pixels, the starting pixel located 1n a first row
of the plurality of rows;

(b) 1dentity at least one adjacent row pixel in the lane
object;

(c) 1terate steps (a)-(b) using the at least one 1dentified
adjacent row pixel as a start pixel for a next iteration of

steps (a)-(b); and




US 11,718,324 B2

23

(d) form a line through the at least one identified adjacent

row pixel to represent the lane object.

12. The system of claim 11, wherein the processor is
configured to 1dentily the at least one adjacent row pixel by:

assigning, with the processor, a probability value to each

pixel 1n a plurality of pixels 1n a window 1n a second
row adjacent to the first row, wherein the probability
value 1s the likelihood that each pixel 1n the plurality of
pixels 1s part of the lane object; and

identifying, with the processor, the at least one adjacent

row pixel as being 1n the same lane object as the start
pixel when the assigned probability value of the at least
one adjacent row pixel exceeds a threshold.

13. The system of claim 11 wherein:

the system 1s configured to assign a probability of being

part of the lane object to each pixel 1n a row adjacent
to the first row; and

the adjacent row pixel has the highest probability of being

part of the lane object.

14. The system of claim 11 wherein identifying the at least
one adjacent row pixel comprises 1dentitying the at least one
adjacent row pixel using a trained classifier.

15. The system of claam 11 wherein the processor is
configured to connect the at least one 1dentified adjacent row
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pixel to the start pixel to form a lane object representing the
lane after 1dentifying an endpoint in a row adjacent to the
start pixel.

16. The system of claim 11, wherein the 1image 1s received
from at least one of a camera attached to a moving vehicle,
a camera providing an aerial view of a roadway, a satellite
imager, and a source of two-dimensional map data.

17. The system of claim 14 wherein:

the classifier 1s trained with a set of training 1images;

a first subset of the set of training 1images used to train the

classifier are annotated;

a second subset of the training 1mages are synthetic;

the synthetic images are generated by extracting content

including annotations and style information from the
first subset of 1mages, discarding the extracted style
information and replacing the extracted style informa-
tion with new style information; and

the new style information 1s extracted from a dataset of

camera 1mages, wherein the annotations from the first
subset of i1mages are preserved in the synthesized
1mages.
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