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(57) ABSTRACT

Camera or object pose calculation 1s described, for example,
to relocalize a mobile camera (such as on a smart phone) in
a known environment or to compute the pose of an object
moving relative to a fixed camera. The pose information 1s
usetul for robotics, augmented reality, navigation and other
applications. In various embodiments where camera pose 1s
calculated, a trained machine learning system associates
image elements from an 1mage of a scene, with points 1n the
scene’s 3D world coordinate frame. In examples where the
camera 1s fixed and the pose of an object 1s to be calculated,
the trained machine learning system associates image ele-
ments from an 1mage of the object with points 1n an object
coordinate frame. In examples, the 1image elements may be
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noisy and mncomplete and a pose inference engine calculates
an accurate estimate of the pose.
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CAMERA/OBJECT POSE FROM PREDICTED
COORDINATES

CROSS-REFERENCE TO RELATED
APPLICATION

This application 1s a continuation of U.S. Non-Provisional
application Ser. No. 13/774,1435, filed on Feb. 22, 2013, and

entitled “CAMERA/OBJECT POSE FROM PREDICTED

COORDINATES” and 1s hereby incorporated by reference
herein for all intents and purposes.

BACKGROUND

For many applications, such as robotics, vehicle naviga-
tion, computer game applications, medical applications and
other problem domains, it 1s valuable to be able to find
orientation and position of a camera as 1t moves 1n a known
environment. Orientation and position of a camera 1s known
as camera pose and may comprise six degrees of freedom
(three of translation and three of rotation). Where a camera
1s fixed and an object moves relative to the camera 1t 1s also
uselul to be able to compute the pose of the object.

A previous approach uses keyirame matching where a
whole test 1mage 1s matched against exemplar traiming,
images (keyirames). K matching keyframes are found, and
the poses (keyposes) of those keylrames are interpolated to
generate an output camera pose. Keylframe matching tends
to be very approximate in the pose result.

Another previous approach uses keypoint matching where
a sparse set of interest points are detected 1n a test image and
matched using keypoint descriptors to a known database of
descriptors. Given a putative set ol matches, a robust opti-
mization 1s run to {ind the camera pose for which the largest
number of those matches are consistent geometrically. Key-
point matching struggles in situations where too few key-
points are detected.

Existing approaches are limited in accuracy, robustness
and speed.

The embodiments described below are not limited to

implementations which solve any or all of the disadvantages
of known systems for finding camera or object pose.

SUMMARY

The following presents a simplified summary of the
disclosure 1n order to provide a basic understanding to the
reader. This summary 1s not an extensive overview of the
disclosure and 1t does not 1dentity key/critical elements or
delineate the scope of the specification. Its sole purpose 1s to
present a selection of concepts disclosed herein 1 a simpli-
fied form as a prelude to the more detailed description that
1s presented later.

Camera or object pose calculation 1s described, for
example, to relocalize a mobile camera (such as on a smart
phone) 1n a known environment or to compute the pose of
an object moving relative to a fixed camera. The pose
information 1s useful for robotics, augmented reality, navi-
gation and other applications. In various embodiments
where camera pose 1s calculated, a trained machine learning,
system associates 1image elements from an 1image of a scene,
with points in the scene’s 3D world coordinate frame. In
examples where the camera 1s fixed and the pose of an object
1s to be calculated, the trained machine learming system
associates 1image elements from an 1mage of the object with
points 1n an object coordinate frame. In examples, the image
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2

clements may be noisy and incomplete and a pose inference
engine calculates an accurate estimate of the pose.

Many of the attendant features will be more readily
appreciated as the same becomes better understood by

reference to the following detailed description considered in
connection with the accompanying drawings.

DESCRIPTION OF THE DRAWINGS

The present description will be better understood from the
following detailed description read in light of the accompa-
nying drawings, wherein:

FIG. 1 1s a schematic diagram of a camera pose tracker for
relocalizing a mobile camera (such as 1n a smart phone) in
scene A;

FIG. 2 1s a schematic diagram of a person holding a
mobile device with a camera and a camera pose tracker and
which communicates with an augmented reality system to
enable an 1mage of a cat to be projected 1nto the scene 1n a
realistic manner:;

FIG. 3 1s a schematic diagram of a person and a robot each
with a camera and a camera pose tracker;

FIG. 4 1s a schematic diagram of three random decision
trees forming at least part of a random decision forest;

FIG. 5 1s a flow diagram of a method of training a random
decision forest to predict correspondences between image
clements and scene coordinates; and using the trained ran-
dom decision forest;

FIG. 6 15 a flow diagram of a method of training a random
decision forest using images of a scene where 1mage e¢le-
ments have labels indicating their corresponding scene coor-
dinates:

FIG. 7 1s a flow diagram of a method of using a trained
random decision forest to obtain scene coordinate—image
clement pairs;

FIG. 8 1s a flow diagram of a method at a camera pose
inference engine of using scene-coordinate-image element
pairs to infer camera pose;

FIG. 9 1s a schematic diagram of the camera pose tracker
of FIG. 1 where a 3D model of the scene 1s available;

FIG. 10 1llustrates an exemplary computing-based device
in which embodiments of a camera or object pose tracker
may be implemented.

Like reference numerals are used to designate like parts 1n
the accompanying drawings.

DETAILED DESCRIPTION

The detailed description provided below in connection
with the appended drawings i1s intended as a description of
the present examples and 1s not intended to represent the
only forms 1n which the present example may be constructed
or utilized. The description sets forth the functions of the
example and the sequence of steps for constructing and
operating the example. However, the same or equivalent
functions and sequences may be accomplished by difierent
examples.

Although the present examples are described and 1llus-
trated herein as being implemented using a random decision
forest, the system described 1s provided as an example and
not a limitation. As those skilled in the art will appreciate,
the present examples may be implemented using a variety of
different types of machine learning systems including but
not limited to support vector machines, Gaussian process
regression systems.

FIG. 1 1s a schematic diagram of a camera pose tracker for
relocalizing a mobile camera (such as 1n a smart phone) in
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scene A. In this example a person 114 1s holding the mobile
camera 112 which 1s integral with a communications device
such as a smart phone. The person 114 uses the mobile
camera 112 to capture at least one image 118 of scene A 116,
such as a living room, oflice or other environment. The
image may be a depth 1mage, a color image (referred to as
an RGB 1mage) or may comprise both a depth image and a
color image. In some examples a stream ol 1mages 1s
captured by the mobile camera.

A camera pose tracker 100 is either integral with the smart
phone or 1s provided at another entity in communication
with the smart phone. The camera pose tracker 100 1s
implemented using software and/or hardware as described 1n
more detail below with reference to FIG. 10. The camera
pose tracker 100 comprises a plurality of trained scene
coordinate decision forests 102, 104, 106 one for each of a
plurality of scenes. The trained scene coordinate decision
forests may be stored at the camera pose tracker or may be
located at another entity which 1s 1n communication with the
camera pose tracker. Each scene coordinate decision forest
1s a type of machine learning system which takes image
clements (from 1mages of 1ts associated scene) as mput and
produces estimates of scene coordinates (1n world space) of
points 1n a scene which the image elements depict. Image
clements may be pixels, groups of pixels, voxels, groups of
voxels, blobs, patches or other components of an 1mage.
Other types of machine learning system may be used in
place of the scene coordinate decision forest. For example,
support vector machine regression systems, Gaussian pro-
cess regression systems.

A decision forest comprises one or more decision trees
cach having a root node, a plurality of split nodes and a
plurality of leal nodes. Image elements of an 1image may be
pushed through trees of a decision forest from the root to a
leal node 1n a process whereby a decision 1s made at each
split node. The decision 1s made according to characteristics
of the image element and characteristics of test image
clements displaced therefrom by spatial oflsets specified by
the parameters at the split node. At a split node the 1image
clement proceeds to the next level of the tree down a branch
chosen according to the results of the decision. The random
decision forest may use regression or classification as
described 1n more detail below. During training, parameter
values (also referred to as features) are learnt for use at the
split nodes and data 1s accumulated at the leaf nodes. For
example, distributions of scene coordinates are accumulated
at the leal nodes.

Storing all the scene coordinates at the leal nodes during
training may be very memory intensive since large amounts
of training data are typically used for practical applications.
The scene coordinates may be aggregated in order that they
may be stored im a compact manner. Various diflerent
aggregation processes may be used. An example 1n which
modes of the distribution of scene coordinates are store 1s
described 1n more detail below.

In the example of FIG. 1 there 1s a plurality of trained
scene coordinate decision forests; one for each of a plurality
of scenes. However, 1t 1s also possible to have a single
trained scene coordinate decision forest which operates for
a plurality of scenes. This 1s explained below with reference
to FIG. 9.

The scene coordinate decision forest(s) provide image
clement-scene coordinate pair estimates 110 for mnput to a
camera pose mnierence engine 108 1n the camera pose tracker
100. Information about the certainty of the image element-
scene coordinate estimates may also be available. The
camera pose inference engine 108 may use an energy
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optimization approach to find a camera pose which 1s a good
fit to a plurality of 1mage element—scene coordinate pairs
predicted by the scene coordinate decision forest. This 1s
described 1n more detail below with reference to FIG. 8. In
some examples scene coordinates for each available 1mage
clement may be computed and used in the energy optimi-
zation. However, to achieve performance improvements
whilst retaining accuracy, a subsample of 1mage elements
may be used to compute predicted scene coordinates.

The camera pose inference engine 108 uses many 1mage
clement-scene coordinate pairs 110 to infer the pose of the
mobile camera 112 using an energy optimization approach
as mentioned above. Many more than three pairs (the
minimum needed) may be used to improve accuracy. For
example, the at least one captured image 118 may be noisy
and may have missing 1image elements, especially where the
captured 1image 118 1s a depth 1image. On the other hand, to
obtain a scene coordinate prediction for each 1image element
in an 1mage 1s computationally expensive and time consum-
ing because each 1image element needs to be pushed through
the forest as described with reference to FIG. 7. Theretfore,
in some examples, the camera pose inference engine may
use an 1terative process which gives the benefit that a
subsample of 1image elements are used to compute scene
coordinate predictions whilst taking accuracy into account.

The camera pose 120 output by the camera pose tracker
may be 1n the form of a set of parameters with six degrees
of freedom, three indicating the rotation of the camera and
three indicating the position of the camera. For example, the
output of the camera pose tracker 1s a set of registration
parameters of a transform from camera space to world space.
In some examples these registration parameters are provided
as a six degree of freedom (6DOF) pose estimate 1n the form
of an SE; matrix describing the rotation and translation of
the camera relative to real-world coordinates.

The camera pose 120 output by the camera pose tracker
100 may be mput to a downstream system 122 together with
the captured image(s) 118. The downstream system may be
a game system 124, an augmented reality system 126, a
robotic system 128, a navigation system 130 or other sys-
tem. An example where the downstream system 122 1s an
augmented reality system 1s described with reference to FIG.
2.

The examples described show how camera pose may be
calculated. These examples may be modified in a straight-
forward manner to enable pose of an object to be calculated
where the camera 1s fixed. In this case the machine learming
system 1s trained using traiming images ol an object where
image clements are labeled with object coordinates. An
object pose tracker 1s then provided which uses the methods
described herein adapted to the situation where the camera
1s fixed and pose of an object 1s to be calculated.

Alternatively, or in addition, the camera pose tracker or
object pose tracker described herein can be performed, at
least 1n part, by one or more hardware logic components. For
example, and without limitation, illustrative types of hard-
ware logic components that can be used include Field-
programmable Gate Arrays (FPGAs), Program-specific Inte-
grated Circuits (ASICs), Program-specific Standard
Products (ASSPs), System-on-a-chip systems (SOCs), Com-
plex Programmable Logic Devices (CPLDs), Graphics Pro-
cessing Units (GPUs).

FIG. 2 1s a schematic diagram of a person 200 holding a
mobile device 202 which has a camera 212, a camera pose
tracker 214 and a projector 210. For example, the mobile
device may be a smart phone. Other components of the
mobile device to enable 1t to function as a smart phone such
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as a communications interface, display screen, power source
and other components are not shown for clarty. A person
200 holding the mobile device 202 1s able to capture images
ol the scene or environment 1n which the user 1s moving. In
the example of FIG. 2 the scene or environment 1s a living
room containing various objects 206 and another person
204.

The mobile device 1s able to communicate with one or
more entities provided in the cloud 216 such as an aug-
mented reality system 218, a 3D model of the scene 220 and
an optional 3D model generation system 222.

For example, the user 200 operates the mobile device 202
to capture 1mages of the scene which are used by the camera
pose tracker 214 to compute the pose (position and orien-
tation) of the camera. At the consent of the user, the camera
pose 1s sent 224 to the entities 1n the cloud 216 optionally
with the images 228. The augmented reality system 218 may
have access to a 3D model of the scene 220 (for example, a
3D model of the living room) and may use the 3D model and
the camera pose to calculate projector mput 226. The
projector mput 226 1s sent to the mobile device 202 and may
be projected by the projector 210 into the scene. For
example, an 1image of a cat 208 may be projected into the
scene 1n a realistic manner taking into account the 3D model
of the scene and the camera pose. The 3D model of the scene
could be a computer aided design (CAD) model, or could be
a model of the surfaces in the scene built up from 1mages
captured of the scene using a 3D model generation system
222. An example of a 3D model generation system which
may be used 1s described in US patent application “Three-
Dimensional Environment Reconstruction” Newcombe,
Richard et al. published on Aug. 2, 2012 US20120194316.
Other types of 3D model and 3D model generation systems
may also be used.

An example where the downstream system 122 1s a
navigation system 1s now described with reference to FIG.
3. FIG. 3 has a plan view of a floor of an oflice 300 with
various objects 310. A person 302 holding a mobile device
304 1s walking along a corridor 306 i1n the direction of
arrows 308. The mobile device 304 has one or more cameras
314, a camera pose tracker 316 and a map display 318. The
mobile device 304 may be a smart phone or other mobile
communications device as described with reference to FIG.
2 and which 1s able to communicate with a navigation
system 322 1n the cloud 320. The navigation system 322
receives the camera pose from the mobile device (where the
user has consented to the disclosure of this information) and
uses that information together with maps 324 of the floor of
the oflice to calculate map display data to aid the person 302
in navigating the oflice floor. The map display data 1s sent to
the mobile device and may be displayed at map display 318.

An example where the downstream system 122 1s a
robotic system 1s now described with reference to FIG. 3. A
robot vehicle 312 moves along the corridor 306 and captures
1mages using one or more cameras 326 on the robot vehicle.
A camera pose tracker 328 at the robot vehicle 1s able to
calculate pose of the camera(s) where the scene 1s already
known to the robot vehicle.

FIG. 4 1s a schematic diagram of an example decision
forest comprising three decision trees: a first tree 400
(denoted tree W, ); a second tree 402 (denoted tree W,); and
a third tree 404 (denoted tree W,). Each decision ftree
comprises a root node (e.g. root node 406 of the first
decision tree 700), a plurality of internal nodes, called split
nodes (e.g. split node 408 of the first decision tree 400), and
a plurality of leal nodes (e.g. leat node 410 of the first
decision tree 400).
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In operation, each root and split node of each tree per-
forms a binary test (or possibly an n-ary test) on the input
data and based on the result directs the data to the left or
right child node. The leaf nodes do not perform any action;
they store accumulated scene coordinates (and optionally
other imnformation). For example, probability distributions
may be stored representing the accumulated scene coordi-
nates.

FIG. 5 15 a flow diagram of a method of training a random
decision forest to predict correspondences between image
clements and scene coordinates. This 1s 1llustrated in the
upper part of FIG. 5 above the dotted line in the region
labeled “training”. The lower part of FI1G. 5 below the dotted
line shows method steps at test time when the trained
random decision forest 1s used to predict (or estimate)
correspondences between 1mage elements from an image of
a scene and points 1n the scene’s 3D world coordinate frame
(scene coordinates).

A random decision forest 1s trained 502 to enable 1image
clements to generate predictions of correspondences
between themselves and scene coordinates. During training,
labeled traiming 1images 500 of at least one scene, such as
scene A, are used. For example, a labeled training image
comprises, for each image element, a point in a scene’s 3D
world coordinate frame which the image element depicts. To
obtain the labeled training 1mages various different methods
may be used to capture images 516 of scene A and record or
calculate the pose of the camera for each captured image.
Using this data a scene coordinate may be calculated indi-
cating the world point depicted by an image element. To
capture the images and record or calculate the associated
camera pose, one approach 1s to carry out camera tracking
from depth camera input 512. For example as described 1n
US patent application “Real-time camera tracking using
depth maps” Newcombe, Richard et al. published on Aug. 2,
2012 US20120196679. Another approach 1s to carry out
dense reconstruction and camera tracking from RGB camera
input 314. It 1s also possible to use a CAD model to generate
synthetic training data. The training images themselves (1.e.
not the label 1mages) may be real or synthetic.

An example of the training process of box 502 is
described below with reference to FIG. 6. The result of
training 1s a trained random decision forest 504 for scene A
(1n the case where the training 1mages were of scene A).

At test time an mput image 508 of scene A 1s received and
a plurality of image elements are selected from the put
image. The image elements may be selected at random or 1n
another manner (for example, by selecting such that spuri-
ous or noisy image elements are omitted). Each selected
image clement may be applied 506 to the trained decision
forest to obtain predicted correspondences 3510 between
those 1mage elements and points in the scene’s 3D world
coordinate frame.

FIG. 6 1s a flow diagram of a method of training a random
decision forest using 1mages of a scene where 1mage ele-
ments have labels indicating their corresponding scene coor-
dinates. A training set of 1images of a scene 1s received 600
where the 1mage elements have labels indicating the scene
coordinate of the scene point they depict. A number of trees
to be used 1n the decision forest 1s selected 602, for example,
between 3 and 20 trees.

A decision tree from the decision forest 1s selected 604
(e.g. the first decision tree 600) and the root node 606 1s
selected 606. At least a subset of the 1mage elements from
cach of the training images are then selected 608. For
example, the 1image may be filtered to remove noisy or
spurious 1mage elements.
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A random set of test parameters (also called weak learn-
ers) are then generated 610 for use by the binary test
performed at the root node as candidate features. In one
example, the binary test is of the form: &> (x;0)>7, such that
F(x;0) 1s a function applied to 1image element x with param-
cters 0, and with the output of the function compared to
threshold values € and t. If the result of f(x;0) 1s in the range
between € and T then the result of the binary test is true.
Otherwise, the result of the binary test 1s false. In other
examples, only one of the threshold values & and t can be
used, such that the result of the binary test 1s true 11 the result
of f(x;0) 1s greater than (or alternatively less than) a
threshold value. In the example described here, the param-
cter O defines a feature of the image.

A candidate function f(x;0) makes use of image infor-
mation which 1s available at test time. The parameter 0 for
the function (x;0) 1s randomly generated during training.
The process for generating the parameter 0 can comprise
generating random spatial oflset values 1in the form of a two
or three dimensional displacement. The result of the function
F(x:;0) 1s then computed by observing the depth (or intensity
value 1n the case of an RGB image and depth 1mage pair)
value for one or more test image elements which are
displaced from the 1image element of 1nterest X in the 1mage
by spatial offsets. The spatial offsets are optionally made
depth invariant by scaling by 1/depth of the image element
of interest. Where RGB 1mages are used without depth
images the result of the function F(x;0) may be computed by
observing the intensity value 1n a specified one of the red,
green or blue color channel for one or more test image
clements which are displaced from the image element of
interest X 1n the image by spatial oflsets.

The result of the binary test performed at a root node or
split node determines which child node an 1image element 1s
passed to. For example, 11 the result of the binary test 1s true,
the image element 1s passed to a first child node, whereas 1t
the result 1s false, the 1image element 1s passed to a second
child node.

The random set of test parameters generated comprise a
plurality of random values for the function parameter 0 and
the threshold values € and T. In order to inject randomness
into the decision trees, the function parameters 0 of each
split node are optimized only over a randomly sampled
subset O of all possible parameters. This 1s an eflective and
simple way of injecting randomness into the trees, and
increases generalization.

Then, every combination of test parameter may be applied
612 to each image element 1n the set of traiming 1mages. In
other words, available values for 0 (1.e. 0,£0) are tried one
after the other, in combination with available values of € and
T for each image element 1n each training image. For each
combination, criteria (also referred to as objectives) are
calculated 614. The combination of parameters that optimize
the critenia 1s selected 614 and stored at the current node for
future use.

In an example the objective 1s a reduction-in-variance
objective expressed as follows:

Q(SHQ) = V(S,) — Z

de{l,R}

d(
1553 )
Sl

V(SZ(9))

Which may be expressed in words as the reduction in
variance of the training examples at split node n, with weak
learner parameters 0 equal to the variance of all the training
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examples which reach that split node minus the sum of the
variances of the training examples which reach the left and
right child nodes of the split node. The variance may be
calculated as:

1
VS =g p, llm =il

(p.m)ss

Which may be expressed 1n words as, the variance of a set
of training examples S equals the average of the differences
between the scene coordinates m and the mean of the scene
coordinates 1n S.

As an alternative to a reduction-in-variance objective,
other criteria can be used, such as logarithm of the deter-

minant, or the continuous information gain.
It 1s then determined 616 whether the value for the

calculated criteria 1s less than (or greater than) a threshold.

If the value for the calculated criteria 1s less than the
threshold, then this indicates that further expansion of the
tree does not provide significant benefit. This gives rise to
asymmetrical trees which naturally stop growing when no
further nodes are beneficial. In such cases, the current node
1s set 618 as a leal node. Similarly, the current depth of the
tree 1s determined (1.e. how many levels of nodes are
between the root node and the current node). If this 1s greater
than a predefined maximum value, then the current node 1s
set 618 as a leal node. Each leaf node has scene coordinate
predictions which accumulate at that leal node during the
training process as described below.

It 1s also possible to use another stopping criterion in
combination with those already mentioned. For example, to
assess the number of example image elements that reach the
leaf. If there are too few examples (compared with a
threshold for example) then the process may be arranged to
stop to avoid overfitting. However, it 1s not essential to use
this stopping criterion.

If the value for the calculated criteria 1s greater than or
equal to the threshold, and the tree depth 1s less than the
maximum value, then the current node 1s set 620 as a split
node. As the current node 1s a split node, 1t has child nodes,
and the process then moves to training these child nodes.
Each child node 1s traimned using a subset of the training
image elements at the current node. The subset of 1mage
clements sent to a child node 1s determined using the
parameters that optimized the criteria. These parameters are
used 1n the binary test, and the binary test performed 622 on
all image elements at the current node. The image elements
that pass the binary test form a first subset sent to a first child
node, and the image elements that fail the binary test form
a second subset sent to a second child node.

For each of the child nodes, the process as outlined 1n
blocks 610 to 622 of FIG. 6 are recursively executed 624 for
the subset of 1mage elements directed to the respective child
node. In other words, for each child node, new random test
parameters are generated 610, applied 612 to the respective
subset of image elements, parameters optimizing the criteria
selected 614, and the type of node (split or leal) determined
616. It 1t 1s a leal node, then the current branch of recursion
ceases. IT 1t 1s a split node, binary tests are performed 622 to
determine further subsets of 1mage elements and another
branch of recursion starts. Therefore, this process recur-
sively moves through the tree, training each node until leat
nodes are reached at each branch. As leal nodes are reached,
the process waits 626 until the nodes 1n all branches have
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been trained. Note that, in other examples, the same func-
tionality can be attained using alternative techniques to
recursion.

Once all the nodes in the tree have been trained to
determine the parameters for the binary test optimizing the
criteria at each split node, and leal nodes have been selected
to terminate each branch, then scene coordinates may be
accumulated 628 at the leal nodes of the tree. This 1s the
training stage and so particular image elements which reach
a given leal node have specified scene coordinates known
from the ground truth training data. A representation of the
scene coordinates may be stored 630 using various different
methods. For example by aggregating the scene coordinates
or storing statistics representing the distribution of scene
coordinates.

In some embodiments a multi-modal distribution 1s fitted
to the accumulated scene coordinates. Examples of fitting a
multi-model distribution include using expectation maximi-
zation (such as fitting a Gaussian mixture model); using
mean shift mode detection; using any suitable clustering
process such as k-means clustering, agglomerative cluster-
ing or other clustering processes. Characteristics of the
clusters or multi-modal distributions are then stored rather
than storing the individual scene coordinates. In some
examples a handiul of the samples of the individual scene
coordinates may be stored.

A weight may also be stored for each cluster or mode. For
example, a mean shift mode detection algorithm 1s used and
the number of scene coordinates that reached a particular
mode may be used as a weight for that mode. Mean shiit
mode detection 1s an algorithm that efliciently detects the
modes (peaks) in a distribution defined by a Parzen window
density estimator. In another example, the density as defined
by a Parzen window density estimator may be used as a
weight. A Parzen window density estimator (also known as
a kernel density estimator) 1s a non-parametric process for
estimating a probability density function, 1n this case of the
accumulated scene coordinates. A Parzen window density
estimator takes a bandwidth parameter which can be thought
of as controlling a degree of smoothing.

In an example a sub-sample of the tramning image ecle-
ments that reach a leaf are taken and nput to a mean shiit
mode detection process. This clusters the scene coordinates
into a small set of modes. One or more of these modes may
be stored for example, according to the number of examples
assigned to each mode.

Once the accumulated scene coordinates have been stored
it 1s determined 632 whether more trees are present in the
decision forest. If so, then the next tree 1n the decision forest
1s selected, and the process repeats. If all the trees 1n the
forest have been trained, and no others remain, then the
training process 1s complete and the process terminates 634.

Therelore, as a result of the training process, one or more
decision trees are tramned using empirical training images.
Each tree comprises a plurality of split nodes storing opti-
mized test parameters, and leal nodes storing associated
scene coordinates or representations ol aggregated scene
coordinates. Due to the random generation of parameters
from a limited subset used at each node, and the possible
subsampled set of training data used 1n each tree, the trees
of the forest are distinct (i.e. different) from each other.

The traiming process may be performed in advance of
using the tramned prediction system to i1dentily scene coor-
dinates for image elements of depth or RGB 1mages of one
or more known scenes. The decision forest and the opti-
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mized test parameters may be stored on a storage device for
use 1n 1dentifying scene coordinates of 1image elements at a
later time.

FIG. 7 illustrates a tflowchart of a process for predicting
scene coordinates 1n a previously unseen image (a depth
image, an RGB 1mage, or a pair of rectified depth and RGB
images) using a decision forest that has been tramned as
described with reference to FIG. 6. Firstly, an unseen image
1s recerved 700. An image 1s referred to as ‘unseen’ to
distinguish i1t from a training image which has the scene
coordinates already specified.

An 1image element from the unseen 1image 1s selected 702.
A trammed decision tree from the decision forest i1s also
selected 704. The selected image element 1s pushed 706
through the selected decision tree, such that 1t 1s tested
against the trained parameters at a node, and then passed to
the appropriate child 1n dependence on the outcome of the
test, and the process repeated until the image element
reaches a leal node. Once the 1image element reaches a leaf
node, the accumulated scene coordinates (from the training
stage) associated with this leal node are stored 708 for this
image element. In an example where the leat node stores one
or more modes of a distribution of scene coordinates, one or
more of those modes are stored for this 1mage element.

If 1t 1s determined 710 that there are more decision trees
in the forest, then a new decision tree 1s selected 704, the
image element pushed 706 through the tree and the accu-
mulated scene coordinates stored 708. This 1s repeated until
it has been performed for all the decision trees 1n the forest.
The final prediction of the forest for an 1mage element may
be an aggregate of the scene coordinates obtained from the
leat found at each tree. Where one or more modes of a
distribution of scene coordinates are stored at the leaves, the
final prediction of the forest may be a union of the modes
from the leafl found at each tree. Note that the process for
pushing an image element through the plurality of trees in
the decision forest can also be performed in parallel, instead
of 1n sequence as shown in FIG. 7.

It 1s then determined 712 whether further unanalyzed
image elements are to be assessed, and 11 so another 1mage
clement 1s selected and the process repeated. The camera
pose iference engine may be arranged to determine whether
further unanalyzed image elements are to be assessed as
described below with reference to FIG. 8.

FIG. 8 1s a flow diagram of a method at a camera pose
inference engine of using scene-coordinate-image element
pairs to infer camera pose. As mentioned above the camera
pose inference engine may use an energy optimization
approach to find a camera pose which 1s a good fit to a
plurality of mmage element—scene coordinate pairs pre-
dicted by the scene coordinate decision forest. In the case
that depth 1mages, or both depth and RGB 1mages are used,
an example energy function may be:

E(H) = Zﬁ(gﬁ I — follz] = > ei(H)

=¥ =¥

Where 1 € 1 1s an image element index; p 1s a robust error
function; m € M, represents the set of modes (3D locations
in the scene’s world space) predicted by the trees in the
forest at image element p,; and x; are the 3D coordinates 1n
camera space corresponding to pixel p, which may be
obtained by back-projecting the depth image elements. The
energy function may be considered as counting the number
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of outhiers for a given camera hypothesis H. The above
notation uses homogeneous 3D coordinates.

In the case that RGB mmages are used without depth
images the energy function may be modified by

E(H) = Zp( min [lx(KH 'm = pi)lly = ) ei(H)

meM; .
pay S

where p 1s a robust error function, m projects from 3D to
2D image coordinates, K 1s a matrix that encodes the camera
intrinsic parameters, and p, 1s the 2D 1mage element coor-
dinate.

Note that E, p and e, may be separated out with diflerent
superscripts such as rgb/depth 1n the above equations.

In order to optimize the energy function an iterative
process may be used to search for good camera pose
candidates amongst a set of possible camera pose candi-
dates. Samples of 1mage element—scene coordinate pairs
are taken and used to assess the camera pose candidates. The
camera pose candidates may be refined or updated using a
subset of the image element-scene coordinate pairs. By
using samples of 1mage element-scene coordinate pairs
rather than each 1mage element-scene coordinate pair from
an i1mage computation time 1s reduced without loss of
accuracy.

An example iterative process which may be used at the
camera pose inference engine 1s now described with refer-
ence to FIG. 8. A set of mitial camera pose candidates or
hypotheses 1s generated 800 by, for each camera pose
candidate, selecting 802 three image elements from the mput
image (which may be a depth image, an RGB 1mage or a pair
of rectified depth and RGB 1mages). The selection may be
random or may take into account noise or missing values in
the mput 1mage. It 1s also possible to pick pairs where the
scene coordinate 1s more certain where certainty information
1s available from the forest. In some examples a minimum
distance separation between the image elements may be
enforced 1n order to improve accuracy. Each image element
1s pushed through the trained scene coordinate decision
forest to obtain three scene coordinates. The three 1mage
clement-scene coordinate pairs are used to compute 804 a
camera pose using any suitable method such as the Kabsch
algorithm also known as orthogonal Procrustes alignment
which uses a singular value decomposition to compute the
camera pose hypothesis. In some examples the set of mitial
camera pose candidates may include 820 one or more
camera poses of previous frames where a stream of 1mages
1s available. It may also include a camera pose predicted
from knowledge of the camera’s path.

For each camera pose hypothesis some inliers or outliers
are computed 806. Inliers and outliers are 1mage element-
scene coordinate pairs which are classified as either being
consistent with a camera pose hypothesis or not. To compute
inliers and outliers a batch B of image elements 1s sampled
808 from the 1nput 1image and applied to the trained forest to
obtain scene coordinates. The sampling may be random or
may take into account noise or missing values in the input
image. Each scene coordinate-image element pair may be
classified 810 as an inlier or an outlier according to each of
the camera pose hypotheses. For example, by comparing
what the forest says the scene coordinate 1s for the image
clement and what the camera pose hypothesis says the scene
coordinate 1s for the 1image element.

Optionally, one or more of the camera pose hypotheses
may be discarded 812 on the basis of the relative number of
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inliers (or outliers) associated with each hypothesis, or on
the basis of a rank ordering by outlier count with the other
hypotheses. In various examples the ranking or selecting
hypotheses may be achieved by counting how many outliers
cach camera pose hypothesis has. Camera pose hypotheses
with fewer outliers have a higher energy according to the
energy function above.

Optionally, the remaining camera pose hypotheses may be
refined 814 by using the inliers associated with each camera
pose to recompute that camera pose (using the Kabsch
algorithm mentioned above). For efliciency the process may
store and update the means and covariance matrices used by
the singular value decomposition.

The process may repeat 816 by sampling another batch B
ol 1image elements and so on until one or a specified number
ol camera poses remains or according to other criteria (such
as the number of 1terations).

The camera pose inference engine 1s able to produce an
accurate camera pose estimate at interactive rates. This 1s
achieved without an explicit 3D model of the scene having
to be computed. A 3D model of the scene can be thought of
as 1implicitly encoded in the trained random decision forest.
Because the forest has been trained to work at any valid
image element 1t 1s possible to sample image elements at test
time. The sampling avoids the need to compute interest
points and the expense of densely evaluation the forest.

FIG. 9 1s a schematic diagram of the camera pose tracker
of FIG. 1 where a 3D model 902 of the scene 1s available.
For example the 3D model may be a CAD model or may be
a dense reconstruction of the scene built up from depth
images of the scene as described 1in US patent application
“Three-dimensional environment reconstruction” New-
combe, Richard et al. published on Aug. 2, 2012
US20120194516. A pose refinement process 900 may be
carried out to improve the accuracy of the camera pose 120.
The pose refinement process 900 may be an 1terative closest
point pose refinement as described 1 US patent application
“Real-time camera tracking using depth maps” Newcombe,
Richard et al. published on Aug. 2, 2012 US20120196679.
In another example the pose refinement process 900 may

seek to align depth observations from the mobile camera
with surfaces of the 3D model of the scene in order to find
an updated position and ornentation of the camera which
facilitates the alignment. This 1s described 1n U.S. patent
application Ser. No. 13/749,497 filed on 24 Jan. 2013
entitled “Camera pose estimation for 3D reconstruction™
Sharp et al.

The example shown 1n FIG. 9 has a camera pose tracker
with one trained random decision forest rather than a plu-
rality of traimned random decision forests as in FIG. 1. This
1s intended to illustrate that a single forest may encapsulate
a plurality of scenes by training the single forest using
training data from those scenes. The training data comprises
scene coordinates for image elements and also labels for
image elements which i1dentify a particular scene. Each
sub-scene may be given a 3D sub-region of the tull 3D world
coordinate space and the forest may then be trained as
described above. The camera pose tracker output may com-
prise¢ an estimated camera pose and a scene so that the
camera pose tracker 1s also able to carry out scene recog-
nition. This enables the camera pose tracker to send data to
a downstream system 1dentifying which of a plurality of
possible scenes the camera 1s 1n.

FIG. 10 1llustrates various components of an exemplary
computing-based device 1004 which may be implemented
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as any form of a computing and/or electronic device, and 1n
which embodiments of a camera pose tracker or object pose
tracker may be implemented.

The computing-based device 1004 comprises one or more
input interfaces 1002 arranged to receive and process 1mput
from one or more devices, such as user mput devices (e.g.
capture device 1008, a game controller 1005, a keyboard
1006, a mouse 1007). This user input may be used to control
software applications, camera pose tracking or object pose
tracking. For example, capture device 1008 may be a mobile
depth camera arranged to capture depth maps of a scene. It
may also be a fixed depth camera arranged to capture depth
maps of an object. In another example, capture device 1008
comprises both a depth camera and an RGB camera. The
computing-based device 1004 may be arranged to provide
camera or object pose tracking at interactive rates.

The computing-based device 1004 also comprises an
output interface 1010 arranged to output display information
to a display device 1009 which can be separate from or
integral to the computing device 1004. The display infor-
mation may provide a graphical user interface. In an
example, the display device 1009 may also act as the user
iput device 1 it 1s a touch sensitive display device. The
output interface 1010 may also output date to devices other
than the display device, e.g. a locally connected printing
device.

In some examples the user mput devices 1005, 1007,
1008, 1009 may detect voice input, user gestures or other
user actions and may provide a natural user intertace (NUI).
This user input may be used to control a game or other
application. The output 1interface 1010 may also output data
to devices other than the display device, e.g. a locally
connected printing device.

The mmput terface 1002, output interface 1010, display
device 1009 and optionally the user mput devices 1005,
1007, 1008, 1009 may comprise NUI technology which
enables a user to 1nteract with the computing-based device
in a natural manner, free from artificial constraints imposed
by 1nput devices such as mice, keyboards, remote controls
and the like. Examples of NUI technology that may be
provided include but are not limited to those relying on voice
and/or speech recogmition, touch and/or stylus recognition
(touch sensitive displays), gesture recognition both on
screen and adjacent to the screen, air gestures, head and eye
tracking, voice and speech, vision, touch, gestures, and
machine itelligence. Other examples of NUI technology
that may be used include 1ntention and goal understanding,
systems, motion gesture detection systems using depth cam-
eras (such as stereoscopic camera systems, inirared camera
systems, rgb camera systems and combinations of these),
motion gesture detection using accelerometers/gyroscopes,
tacial recognition, 3D displays, head, eye and gaze tracking,
immersive augmented reality and virtual reality systems and
technologies for sensing brain activity using electric field
sensing electrodes (EEG and related methods).

Computer executable instructions may be provided using
any computer-readable media that 1s accessible by comput-
ing based device 1004. Computer-readable media may
include, for example, computer storage media such as
memory 1012 and communications media. Computer stor-
age media, such as memory 1012, includes volatile and
non-volatile, removable and non-removable media 1mple-
mented 1 any method or technology for storage of infor-
mation such as computer readable instructions, data struc-
tures, program modules or other data. Computer storage
media includes, but 1s not limited to, RAM, ROM, EPROM,

EEPROM, flash memory or other memory technology, CD-
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ROM, digital versatile disks (DVD) or other optical storage,
magnetic cassettes, magnetic tape, magnetic disk storage or
other magnetic storage devices, or any other non-transmis-
sion medium that can be used to store information for access
by a computing device.

In contrast, communication media may embody computer
readable 1nstructions, data structures, program modules, or
other data in a modulated data signal, such as a carrier wave,
or other transport mechanism. As defined herein, computer
storage media does not include commumnication media.
Theretfore, a computer storage medium should not be nter-
preted to be a propagating signal per se. Propagated signals
may be present in a computer storage media, but propagated
signals per se are not examples of computer storage media.
Although the computer storage media (memory 1012) 1s
shown within the computing-based device 1004 1t will be
appreciated that the storage may be distributed or located
remotely and accessed via a network or other communica-
tion link (e.g. using communication interface 1013).

Computing-based device 1004 also comprises one or
more processors 1000 which may be microprocessors, con-
trollers or any other suitable type of processors for process-
ing computing executable instructions to control the opera-
tion of the device in order to provide real-time camera
tracking. In some examples, for example where a system on
a chip architecture 1s used, the processors 1000 may include
one or more fixed function blocks (also referred to as
accelerators) which mmplement a part of the method of
real-time camera tracking in hardware (rather than sotftware
or firmware).

Platform software comprising an operating system 1014
or any other suitable platform software may be provided at
the computing-based device to enable application software
1016 to be executed on the device. Other software than may
be executed on the computing device 1004 comprises:
camera/object pose tracker 1018 which comprises a pose
inference engine. A trained support vector machine regres-
s10n system may also be provided and/or a trained Gaussian
process regression system. A data store 1020 1s provided to
store data such as previously received 1mages, camera pose
estimates, object pose estimates, trained random decision
forests registration parameters, user configurable param-
cters, other parameters, 3D models of scenes, game state
information, game metadata, map data and other data.

The term ‘computer’ or ‘computing-based device’ 1s used
herein to refer to any device with processing capability such
that 1t can execute instructions. Those skilled 1n the art will
realize that such processing capabilities are incorporated
into many different devices and therefore the terms ‘com-
puter’ and ‘computing-based device’ each include PCs,
servers, mobile telephones (including smart phones), tablet
computers, set-top boxes, media players, games consoles,
personal digital assistants and many other devices.

The methods described herein may be performed by
solftware 1n machine readable form on a tangible storage
medium e.g. 1n the form of a computer program comprising
computer program code means adapted to perform all the
steps of any of the methods described herein when the
program 1s run on a computer and where the computer
program may be embodied on a computer readable medium.
Examples of tangible storage media include computer stor-
age devices comprising computer-readable media such as
disks, thumb drives, memory etc. and do not include propa-
gated signals. Propagated signals may be present i a
tangible storage media, but propagated signals per se are not
examples of tangible storage media. The software can be
suitable for execution on a parallel processor or a serial




Us 11,710,309 B2

15

processor such that the method steps may be carried out in
any suitable order, or simultaneously.

This acknowledges that software can be a valuable, sepa-
rately tradable commodity. It 1s intended to encompass
software, which runs on or controls “dumb” or standard
hardware, to carry out the desired functions. It 1s also
intended to encompass software which “describes™ or
defines the configuration of hardware, such as HDL (hard-
ware description language) software, as 1s used for designing,
silicon chips, or for configuring universal programmable
chips, to carry out desired functions.

Those skilled i the art will realize that storage devices
utilized to store program instructions can be distributed
across a network. For example, a remote computer may store
an example of the process described as software. A local or
terminal computer may access the remote computer and
download a part or all of the software to run the program.
Alternatively, the local computer may download pieces of
the software as needed, or execute some software 1nstruc-
tions at the local terminal and some at the remote computer
(or computer network). Those skilled i the art will also
realize that by utilizing conventional techniques known to
those skilled 1n the art that all, or a portion of the software
instructions may be carried out by a dedicated circuit, such
as a DSP, programmable logic array, or the like.

Any range or device value given herein may be extended
or altered without losing the eflect sought, as will be
apparent to the skilled person.

Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, 1t 1s to be understood that the subject matter defined 1n
the appended claims 1s not necessarily limited to the specific
teatures or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
implementing the claims.

It will be understood that the benefits and advantages
described above may relate to one embodiment or may relate
to several embodiments. The embodiments are not limited to
those that solve any or all of the stated problems or those that
have any or all of the stated benefits and advantages. It will
turther be understood that reference to ‘an’ 1tem refers to one
or more of those 1tems.

The steps of the methods described herein may be carried
out in any suitable order, or simultancously where appro-
priate. Additionally, individual blocks may be deleted from
any of the methods without departing from the spirit and
scope ol the subject matter described herein. Aspects of any
of the examples described above may be combined with
aspects of any of the other examples described to form
turther examples without losing the effect sought.

The term ‘comprising’ 1s used herein to mean including
the method blocks or elements identified, but that such
blocks or elements do not comprise an exclusive list and a
method or apparatus may contain additional blocks or ele-
ments.

It will be understood that the above description 1s given by
way of example only and that various modifications may be
made by those skilled in the art. The above specification,
examples and data provide a complete description of the
structure and use of exemplary embodiments. Although
various embodiments have been described above with a
certain degree of particularity, or with reference to one or
more 1individual embodiments, those skilled in the art could
make numerous alterations to the disclosed embodiments
without departing from the spirit or scope of this specifica-
tion.
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The mnvention claimed 1s:

1. A device-implemented method of calculating pose of an
entity comprising:

recelving an unseen image where the unseen image 1s

cither: of the entity, or of a scene;
applying a plurality of image elements of the unseen
image to each of a plurality of trained random forests;

based at least on applying the plurality of 1mage elements,
receiving a plurality of image element-coordinate pairs,
cach of the plurality of image element-coordinate pairs
comprising an mput image element and a correspond-
ing output coordinate comprising either entity coordi-
nates or scene coordinates;

determiming whether a pose of the entity has been calcu-

lated;

based on a determination that the pose of the entity has not

been calculated, using the unseen 1mage to calculate an

initial pose of the entity without use of a three-dimen-

stonal model by applying the plurality of image ele-

ment-coordinate pairs to a pose inference engine;

confirming the 1nitial pose 1s accurate by:

sampling a set ol 1mage elements from the unseen
1mage;

applying the set of 1image elements to the plurality of
trained random forests to obtain a set of scene
coordinates;

comparing what the plurality of trained random forests
indicate the set of scene coordinates are for the set of
image elements to what the 1nitial pose indicates the
set of scene coordinates are for the 1image elements;
and

classifying each scene coordinate in the set of scene
coordinates as an 1nlier or an outlier according to the
imitial pose based on the comparing; and

based on a number of inliers and based on a rank
ordering by outlier count of the initial pose and other
hypotheses of the pose of the entity, confirming that
the 1mitial pose 1s accurate; and

generating map display data based at least 1in part on the

calculated initial pose of the entity.

2. The device-implemented method as claimed 1n claim 1,
wherein the entity 1s a mobile camera and the 1nitial pose of
the mobile camera 1s calculated without using a depth 1mage.

3. The device-implemented method as claimed 1n claim 1,
wherein the entity 1s an object and the mitial pose of the
object 1s calculated using only the unseen image captured by
a fixed camera.

4. The device-implemented method as claimed in claim
further comprising calculating the pose of the enfity as
parameters having six degrees of freedom, three indicating
rotation of the entity and three indicating position of the
entity.

5. The device-implemented method as claimed 1n claim 1,
wherein the unseen i1mage 1s an 1mage 1n which scene
coordinates are unknown.

6. The device-implemented method as claimed 1n claim 1,
wherein no other image besides the unseen 1mage 1s used to
calculate the 1nitial pose of the entity.

7. The device-implemented method as claimed in claim
further comprising a machine learning system comprising
the plurality of trained random forests and the method
comprises applying the image elements of the unseen 1image
to the plurality of trained random forests, each random forest
having been trained using images from a different one of a
plurality of scenes, obtaining scene coordinates from the
applied 1mage elements, and calculating the 1nmitial pose of
the entity from the scene coordinates.
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8. The device-implemented method as claimed 1n claim
turther comprising calculating the 1nitial pose by searching
amongst a set ol possible pose candidates and using samples
ol associations between 1mage elements and points to assess
the set of possible pose candidates.

9. The device-implemented method as claimed 1n claim
turther comprising receiving at the processor, a stream of
images, and calculating the 1initial pose by searching
amongst a set of possible pose candidates which includes a
pose calculated from another image 1n the stream of 1images.

10. The device-implemented method as claimed 1n claim
1, at least partially carried out using hardware logic selected
from any one or more of: a field-programmable gate array,
a program-specific integrated circuit, a program-specific
standard product, a system-on-a-chip, a complex program-
mable logic device, a graphics processing unit.

11. The device-implemented method as claimed 1n claim
wherein the entity 1s a mobile camera and the pose of the
mobile camera 1s calculated, the method comprising access-
ing a 3D model of the scene and refining the pose of the
mobile camera using the accessed 3D model.

12. A pose tracker comprising:

a processor arranged to receive an unseen image of a

scene captured by a mobile camera;

the processor arranged to:

apply a plurality of image elements of the unseen 1image
to each of a plurality of trained random forests;
based at least on applying the plurality of image
clements, recerving a plurality of image element-
coordinate pairs, each of the plurality of image
clement-coordinate pairs comprising an input 1image
clement and a corresponding output coordinate com-
prising either entity coordinates or scene coordi-
nates; and
determine whether a pose of the mobile camera has
been calculated;
using the unseen 1mage to calculate an 1nitial pose of
the mobile camera without use of a three-dimen-
sional model by applying the plurality of image
clement-coordinate pairs to a pose miference engine;
confirming the initial pose 1s accurate by:
sampling a set of 1mage elements from the unseen
1mage;
applying the set of image elements to the plurality of
trained forests to obtain a set of scene coordinates;
comparing what the plurality of trained forests indi-
cate the set of scene coordinates are for the set of
image elements to what the 1nitial pose indicates
the set of scene coordinates are for the image
elements; and
classitying each scene coordinate 1n the set of scene
coordinates as an inlier or an outlier according to
the 1nitial pose based on the comparing; and
based on a number of inliers and based on a rank
ordering by entity, confirming that the 1mitial pose
1S accurate; and
generate map display data based at least 1n part on the
calculated 1nitial pose of the mobile camera.

13. The pose tracker as claimed 1n claim 12, wherein the
processor 1s arranged to apply only a subsample of the image
clements of the unseen 1image to a trained machine learning
system.

14. The pose tracker as claimed 1n claim 12, wherein the
pose inference engine 1s arranged to calculate the initial pose
by searching amongst a set of possible pose candidates and
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using samples ol associations between 1image elements and
points 1n scene coordinates to assess the set of possible pose
candidates.

15. The pose tracker as claimed 1n claim 12, wherein the
processor 1s arranged to receive a stream of images, and
wherein the pose inference engine 1s arranged to calculate
the 1nitial pose by searching amongst a set of possible pose
candidates which includes a pose calculated from another
image 1n the stream of 1mages.

16. The pose tracker as claimed 1 claim 12 at least
partially implemented using hardware logic selected from
any one or more of: a field-programmable gate array, a
program-specific integrated circuit, a program-specific stan-
dard product, a system-on-a-chip, a complex programmable
logic device, a graphics processing unit.

17. One or more computer-readable storage devices com-
prising computer-executable instructions that, when
executed by one or more processors, cause the one or more
processors to perform operations comprising:

receiving an unseen image where the unseen image 1s

cither: of an entity or of a scene;
applying a plurality of image elements of the unseen
image to each of a plurality of trained random forests;

based at least on applying the plurality of 1mage elements,
receiving a plurality of image element-coordinate pairs,
cach of the plurality of image element-coordinate pairs
comprising an input image element and a correspond-
ing output coordinate comprising either entity coordi-
nates or scene coordinates;

determinming whether a pose of the entity has been calcu-

lated;

based on a determination that the pose of the entity has not

been calculated, using the unseen 1image to calculate an

initial pose of the entity without use of a three-dimen-

stonal model by applying the plurality of image ele-

ment-coordinate pairs to a pose inference engine;

conflirming the 1nmitial pose 1s accurate by:

sampling a set of 1mage elements from the unseen
1mage;

applying the set of 1image elements to the plurality of
trained random forests to obtain a set of scene
coordinates;

comparing what the plurality of trained random forests
indicate the set of scene coordinates are for the set of
image elements to what the initial pose indicates the
set of scene coordinates are for the 1image elements;
and

classitying each scene coordinate in the set of scene
coordinates as an inlier or an outhier according to the
imitial pose based on the comparing; and

based on a number of inliers and based on a rank
ordering by outlier count of the initial pose and other
hypotheses of the pose of the entity, confirming that
the 1itial pose 1s accurate; and

generating map display data based at least 1n part on the

calculated initial pose of the entity.

18. The one or more computer-readable storage devices
according to claim 17, where the entity 1s a mobile camera
and the mitial pose of the mobile camera 1s calculated
without using a depth image.

19. The one or more computer-readable storage devices
according to claim 17, where the entity 1s an object and the
initial pose of the object 1s calculated using only the unseen
image captured by a fixed camera.
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20. The one or more computer-readable storage devices
according to claim 17, wherein the unseen 1mage 1s an 1mage
in which scene coordinates are unknown.
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