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MAPPING OF UNLABELED DATA ONTO A
TARGET SCHEMA VIA SEMANTIC TYPE
DETECTION

BACKGROUND

Our world 1s driven by data processed by automatic
means (e.g., computational systems that include a combina-
tion of hardware and software). To process data, most
computational systems require the input data to be structured
(e.g., formatted) 1n a specific data schema (e.g., a known
structure or format). Frequently, the mput data may be
acquired (or received) without structure, or if structured,
within a format that does not precisely match the data
schema that the computation system expects. In such sce-
narios, prior to being processed, the mput data must be
“mapped” or transformed into the appropriate data schema.
Traditionally, this mapping has been performed via manual
means. However, such manual means tends to be intensive
and/or time consuming. As we rely more and more on data,
the data schemas that computational systems employ (and
the input data) are trending towards the more complex in

nature. Accordingly, the manual effort required to map input
data to expected target schemas 1s continues to increase.

SUMMARY

The technology described herein 1s directed towards
enhanced methods and systems for automatically mapping
unlabeled mput data onto a target schema via semantic type
detection. The mput data includes a set of data elements that
may be structured as a two-dimensional (2D) table compris-
ing a set of rows and a set of columns forming a set of cells.
Each data element of the set of data elements 1s included 1n
a cell of the set of cells. The target schema includes a set of
fields. Schema mapping, via the various embodiments,
includes mapping each column of the set of columns to one
or more fields of the set of fields. More particularly, the set
of fields 1s clustered into a set of field clusters, where each
field cluster of the set of field clusters includes one or more
of the fields of the set of fields. Each column of the set of
columns 1s automatically mapped to one of the field clusters
of the set of field clusters. The mapping between schema
fields and data columns may be automatically performed
based on appropriate pairings of the detected semantic types,
where the semantic types are encoded in vector representa-
tions of the fields, the field clusters, and the data elements.

The mapping 1s performed via three stages. In the first
stage, the fields of the schema are clustered 1nto a set of field
clusters. To perform the clustering, a vector representation 1s
generated for each field. The vector representation may be
deeply learned based on the data types and field descriptions
of the fields. An unsupervised clustering algorithm may be
employed to generate the clustering of the vector represen-
tations.

In the second stage, a vector representation for each input
data element may be generated via a similar deep learning
method. Via the vector representation, an element probabil-
ity may be generated for each possible pairing of a data
clement and a cluster. From these element probabilities, a
column probability may be generated for each possible
paring of a data column and a field cluster. In the third phase,
the column probabilities are updated in accordance with
global statistics for each column of data (e.g., the mean,
variance, min, max, sum, and the like for the length of the
associated data elements). A cluster 1s mapped to each
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column based on the combined statistics, which may include
a combination of the column probabilities and global sta-
tistics.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1llustrates an enhanced schema mapping system
implementing various embodiments presented herein.

FIG. 2 illustrates an example embodiment of a field
cluster generator of the target schema mapper of FIG. 1,
according to various embodiments.

FIG. 3 illustrates an example embodiment of a cluster
probability generator of the target schema mapper of FIG. 1,
according to various embodiments.

FIG. 4 illustrates an example embodiment of a cluster
assignment generator of the target schema mapper of FIG. 1,
according to various embodiments.

FIG. § illustrates one embodiment of a method for map-
ping unlabeled data onto a target schema, which 1s consistent
with the various embodiments presented herein.

FIG. 6 illustrates one embodiment of a method for gen-
crating a set of target field clusters for a target schema,
which 1s consistent with the various embodiments presented
herein.

FIG. 7 illustrates one embodiment of a method for gen-
crating field cluster-probabilities for columns and fields,
which 1s consistent with the various embodiments presented
herein.

FIG. 8 illustrates one embodiment of a method for assign-
ing data columuns to field cluster, which 1s consistent with the
various embodiments presented herein.

FIG. 9 1s a block diagram of an example computing
device 1n which embodiments of the present disclosure may
be employed.

DETAILED DESCRIPTION

The embodiments are directed towards systems and meth-
ods that enable the automatic mapping of unlabeled 1mnput
data (e.g., data to be inserted into a database) to a target
schema (e.g., a database schema). More specifically, unla-
beled mput data may be formatted as a two-dimensional
(2D) array. The 2D-nature of the input data may be struc-
tured as a 2D table (e.g., entries 1n a relational database), and
thus organized into a set of rows and a set of columns that
form a set of cells. Equivalently, the mput data may be
structured as a 2D array. The atomic values of the input data
may be referred to as data elements and the input data
includes a set of data elements. When structured as a 2D
table and/or array, there 1s a one-to-one correspondence data
clements and the cells of the table and/or array. The columns
of the table may correspond to a field of a schema (e.g., a
target schema). However, the unlabeled mmput data lacks
explicit labeling of the columns. That 1s, the unlabeled 1nput
data lacks a mapping between fields of the target schema and
the columns of the mnput data. Conventionally, such a
mapping between mput data columns and fields of a target
schema 1s manually performed. However, such manual
mapping may be an onerous and/or cumbersome task that 1s
subject to frequent human-induced errors. To address these,
and other shortcomings, of such manual iterventions, the
various embodiments provide automated means to generate
such a mapping. The embodiments include automatically
detecting semantic types of the fields and the columns of the
input data. The embodiments match the detected semantic
types of the fields and columns to generate at least a partial
mapping between the fields of the target schema and the
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unlabeled columns of the input data. The semantic types are
encoded 1n vector representations of the data elements and
vector representations of the fields. In various embodiments,
a machine learning (ML) model 1s employed to map the data
columns to the fields based on the semantic types encoded
in the vector representations of the fields and data columns.
Various supervised training methods may be employed to
train the ML model to learn a mapping between the vector
representations of the fields and data columns. In some
embodiments, the In at least one embodiment, mapping a
data column to a field includes comparing the vector repre-
sentations of the data elements associated with a column to
the vector representation of the field.

In a non-limiting embodiment, a target schema 1s
received. The target schema may include a set of target
fields. Each field of the set of fields may be associated with
a field name, a field data type (e.g., boolean, int, float,
double, char, string, and the like), and one or more field
descriptors (e.g., a set of field descriptors) that include one
or more natural language-based descriptions of the data
associated with the field. Because the input data 1s unlabeled
(e.g., fields for the columns of data are not indicated), a user
may wish to structure the input data in the target schema.
When structuring the input data according to the target
schema, each column of the mput data may be mapped to a
column of the target schema. More simply, the user may
wish to label each column of the input data with a field name
of the target schema. In some embodiments, for an input data
column to be mapped to a target field of the target schema,
a data type associated with the column must match the data
type associated with the field. That 1s, a user may wish to
structure the data as field-value pairs based on the target
schema. For such field-value pairs, the field, for the field-
value pairs of a column, 1s the field that 1s mapped to the
column and the data elements included 1n the column are the
values for each of the field-value pairs of the column. Note
the example data types boolean, int, float, double, char, and
string are non-limiting and other data types are possible
(e.g., complex data types that include one or more combi-
nations of lower-level data types, such as but not limited to
data objects, arrays, lists, and the like).

The embodiments are directed towards automatically
mapping each column of mput data to a field of the target
schema. Once mapped, the values stored in the data ele-
ments of the mput data may be associated with the appro-
priate field. Thus, each row of the imput data may be
regarded as a record (e.g., a database record) that includes a
set of field-value pairs based on the target schema. Conven-
tionally, such mappings are performed manually. However,
schemas may 1nclude hundreds (or even thousands) of fields,
requiring significant manual effort. With such a significant
number of fields, the manual labelling of the data may be
prone to human error. Furthermore, because the values
(and/or data types) of one column of the data may be similar
to values (and/or data types) of one or more other columns,
the manual mapping may result in ambiguities or errors.

The embodiments address these 1ssues, and improve upon
conventional means, by employing machine learning (ML)
to detect the semantic types for the fields of the schema and
semantic types of the values stored in the columns of data.
The semantic types are encoded 1n vector representations of
mentioned above.

The mapping between schema fields and data columns
may be automatically performed based on appropriate pair-
ings of the detected semantic types. The mapping 1s per-
formed via three stages. In the first stage, the fields of the
schema are clustered 1nto a set of field clusters. To perform
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the clustering, a vector representation 1s generated for each
field. The vector representation may be deeply learned based

on the data types and field descriptions of the fields. An
unsupervised clustering algorithm may be employed to
generate the clustering of the vector representations.

In the second stage, a vector representation for each input
data element may be generated via a similar deep learning
method. Via the vector representation, an element probabil-
ity may be generated for each possible pairing of a data
clement and a cluster. From these element probabilities, a
column probability may be generated for each possible
paring of a data column and a field cluster. In the third phase,
the column probabilities are updated based on global statis-
tics for each column of data (e.g., the mean, variance, min,
max, sum, and the like for the length of the associated data
clements). A cluster 1s mapped to each column based on the
updated statistics. The column may be mapped to a single
field 1n the cluster via manual annotation or other methods.

Example Operating Environment for Automatic
Schema Mapping

FIG. 1 1illustrates an enhanced schema mapping system
100 implementing various embodiments presented herein.
Schema mapping system 100 i1s enabled to automatically
map (or transform) input data 114 to a target data schema
112. Schema mapping system 100 may include at least a
client computing device 102 and a server computing device
104, 1n communication via a communication network 110.
The client computing device 102 can provide each of the
target schema 112 and the mput data 114 to the server
computing device 104, via the communication network 110.
The server computing device 104 implements a target
schema mapper 120. The target schema mapper 120 1s
enabled to map the input data 114 onto the target schema 112
and provide the schema mapping 142 to the client comput-
ing device 102, via the commumnication network 110, as
discussed below.

Communication network 110 may be a general or specific
communication network and may directly and/or indirectly
communicatively coupled to client computing device 102
and server computing device 104. Communication network
110 may be any communication network, including virtually
any wired and/or wireless communication technologies,
wired and/or wireless communication protocols, and the
like. Communication network 110 may be virtually any
communication network that communicatively couples a
plurality of computing devices and storage devices in such
a way as to computing devices to exchange information via
communication network 104.

As shown 1 FIG. 1, each of the target schema 112 and the
input data 114 are formatted as two-dimensional (2D) data
structures (e.g., 2D tables). The 2D tables are organized as
a set of columns and a set of rows, wherein each unique pair
of column and row forms a correspondingly unique cell of
the table. The embodiments are not limited to 2D target
schemas and input data. For instance, a “higher dimen-
sional” target schema and/or a “higher dimensional” 1nput
data may be recursively “flattened” into a corresponding 2D
structure. Upon mapping the flattened input data onto the
flattened target schema, the “mapped and flattened™ 1nput
data may be recursively “expanded” back into its higher
dimensional structure. When expanded, the “flattened
ping’ may be similarly expanded, such that the 1
dimensional mput data 1n mapped onto the higher dimen-
sional target schema. As such, many of the embodiments
discussed herein are 2D embodiments.
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Furthermore, because relational databases are typically
organized as 2D tables, many of the embodiments discussed
herein are 1n the context of a relational database model. For
example, input data 114 may encode a table of data objects
to be inserted into a relational database, via the target
schema 112. However, the embodiments are not so limited,
and the various methods discussed are applicable to other
data management/data processing applications.

Target schema 112 may include a set of fields. The set of
fields of the target schema 112 may include M fields, where
M 1s any positive mteger greater than 1. Fach field 1is
associated with a unique index (e.g., 1, 2, 3, . .., M) and
unique field name (e.g., fiecld.Name.1, field.Name.2, field.
Name.3, . . . , ficld. Name.M). Furthermore, each field 1s
associated with a data type (e.g., boolean, char, string, int,
float, double, and the like), indicated by data. Type.x, where
x 18 the corresponding field index. The embodiments are not
limited to one-dimensional (1D) data types, and data types
may include higher dimensional data types, such as but not
limited to arrays, vectors, matrices, and/or higher dimen-
sional tensors of booleans, chars, strings, ints, floats,
doubles, and the like. In various embodiments, the data type
associated with a field may be a complex data type that
includes a combination of one or more simpler data types
(e.g., a combination of one or more booleans, chars, strings,
ints, floats, doubles, and the like). For example, a data type
may include a data structure or data object composed of
multiple data types. Each field may include one or more field
descriptors (e.g., a set of field descriptors), which may be a
natural language-based (e.g., a string) description of the data
associated with the field. That 1s, each field may be associ-
ated with a set of field descriptors, where each field descrip-
tor of the set of field descriptors includes a sequence of one
or more natural language tokens. In the non-limiting
embodiment of FIG. 1, each field 1s associated with a set of
field descriptors that includes up to N field descriptors,
where N 1s any natural number. The individual field descrip-
tors are indicated as field.Descriptor.x.y, where x 1s the
corresponding field index and vy 1s the index for the corre-
sponding set of field descriptors. Target schema 112 1s
shown 1 FIG. 1 as a 2D table, where each row corresponds
to a particular field and the columns corresponds to the
attributes of a field (e.g., field index, target schema field
name, data type, and the elements of the set of field
descriptors). It 1s understood that this table structure 1is
non-limiting and other target schemas may be alternatively
organized.

As shown 1n FIG. 1, the input data 114 may be structured
as a LxM 2D table that includes L rows and M columns,
where L 1s a natural number and M 1s a positive integer
greater than 1 and may be equivalent (or at least similar to)
the number of fields of the target schema 112. In some
embodiments, the number of fields 1n the target schema (e.g.,
N) 1s greater than or equal to M, e.g., N=M. In various
embodiments, N 1s not less M and may be greater than M
Each row of the 2D table 1s indicated as input.data.row[x],
cach column of the 2D table 1s indicated as input.data.col-
umn|[y], and each corresponding cell of the 2D table 1s
indicted as input.data.clement[x][y], where x and y are
positive mtegers indicating the index of the row and column.
Thus, the range of x 1s 1, 2, 3, . . ., L and the range of y 1s
1,2,3,..., M. Each row the input data 114 corresponds to
a data object (or M-tuple) and each column corresponds to
a field of the target schema 112. Each data object (e.g., a row
of the 2D table) includes M data elements. Each cell of the
data object’s row 1ncludes one of the M data elements (e.g.,
an element or value of the M-tuple).
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In some embodiments, there 1s a correspondence between
the columns of the input data 114 and the fields of the target
schema 112. Because of the correspondence between 1nput
data columns and target schema fields, each input data
clement of a particular column 1n the input data may be of
an equivalent (or at least similar) data type. Thus, each
column of the mput data 114 may be associated with a
particular data type. For example, the value for each input
data element of the first input data column (e.g., input.data.
column[1]) may be of a string data type. Thus, the first
column may be associated with the string data type. Like-
wise, input.data.column[2] may be associated with the data
type corresponding to float (e.g., the value of each data
clement of the column 1s a tloating point). Input.data.column
[3] may be associated with a string data type and the
input.data.column|M] 1s associated an int data type. This
correspondence between mput data columns and target
schema fields may be a one-to-one correspondence. Because
the columns of the input data 114 are unlabeled, the corre-
spondence between the columns of the unlabeled mput data
114 and the fields of the target schema 112 1s unknown. The
target schema mapper 120 1s enabled to automatically gen-
crate, at least a portion, of the correspondence. That 1s, the
target schema mapper 120 generates, at least a partial,
mapping between the fields of the target schema 112 and the
columns of the mnput data 114.

More particularly, target schema mapper 120 may include
a field cluster generator 122, a cluster probability generator
124, and a cluster assignment generator 126. The field
cluster generator 122 receives the target schema 112 as mput
and generates a set of field clusters 144. The set of field
clusters 144 may include S field clusters, where S i1s any
positive integer. Each field cluster of the set of field clusters
144 includes one or more fields of the target schema’s 112
set of fields. Furthermore, each field cluster of the set of field
clusters 1s associated with a specific data type. The set of
field clusters 144 may be encoded in the 2D array (or 2D
table) shown 1 FIG. 1. More specifically, each field cluster
of the set of field clusters 144 may be indexed by a cluster
index and may be encoded by the field indices of the fields
included in the cluster as shown 1n the 2D table encoding the
set of field clusters 144. For example, a first cluster (with a
cluster index of 1) of the set of field clusters 144 1is
associated with a string data type and includes three of the
schema’s 112 fields with field indices of 1, 5, and 17. Various
embodiments of a field cluster generator 122 are discussed
in conjunction with FIG. 2. As discussed 1n conjunction with
FIG. 2, the field cluster generator 122 may generate a vector
encoding for each field (e.g., a field vector) and a vector
encoding for each field cluster (e.g., a field cluster vector).
The vector encoding represents the corresponding field/field
cluster 1n a deeply-learned vector space.

The vector encodings of the target schema 112, as well as
the mput data 114 1s provided to the cluster probability
generator 124. The cluster probability generator 124 1s
generally responsible for calculating a cluster-column prob-
ability for each possible pairing of one of the M columns of
the 1nput data 114 and one of the L field clusters of the set
of field clusters 144. The cluster-column probabilities may
be encoded in a 2D column probability array. Various
embodiments of the cluster probability generator 124 are
discussed 1n conjunction with FIG. 3. However, briefly here,
the cluster probability generator 124 generates a vector
encoding of each mput data element of the input data 112
(e.g., a data element vector). The data element vector
represents the corresponding input data element 1n an
equivalent (or at least similar vector space) as the vector
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space for the vector encodings of the target schema’s 112
fields and field clusters. A machine learnming (ML) model
may be employed to calculate the cluster-column probabili-
ties. The model may be pre-trained to learn a mapping from
the vector encodings of the data elements to the vector
encodings of the target schema’s 112 fields. The mapping
may be a probabilistic mapping, and the ML model may be
trained to calculate the cluster-column probabilities that
constitute the probabilistic mapping. Thus, the cluster-col-
umn probabilities are calculated based on an ML model
generating a mapping between the vector encodings of each
data element of a particular column with the vector encod-
ings of the corresponding fields and/or field clusters.

The cluster-column probabilities are provided to the clus-
ter assignment generator 126. The cluster assignment gen-
crator 126 1s generally responsible for updating and/or
refining the cluster-column probabilities based on global
statistics of the columns of mput data 114. The cluster
assignment generator 126 assigns each column of the mput
data 114 to one (or more) of the field clusters of the set of
field clusters 144. That 1s, the cluster assignment generator
126 generates a schema mapping 142, where each input data
column mndex 1s mapped to a field cluster index. The schema
mapping 142 may be encoded 1n a 2D table data structure,
as shown 1n FIG. 1. For example, as shown 1n the 2D table
142, mput.data.column[1] 1s mapped to the field cluster
indicated by the field cluster index S, input.data.column|2]
1s mapped to the field cluster indicated by the field cluster
index 3, mput.data.column|3] 1s mapped to the field cluster
indicated by the field cluster index 1, and mput.data.column
[M] 1s mapped to the field cluster indicated by the field
cluster index 2. In various embodiments, the data type
associated with the field column (e.g., the data type associ-
ated with each field included in the field cluster) 1s equiva-
lent (or at least similar) to the data type associated with input
column mapped to the field cluster. As shown 1n the schema
mapping table 142, a string data type is associated with both
the S field cluster and the first input data column. Similarly,
a tloat data type may be associated with each of the second
input data column and the third field cluster. A string data
type 1s associated with both the third mput data column and
the first field cluster. An integer data type may be associated
with both the M™ input data column and the second field
cluster. Note that, for at least some of the field clusters, more
than one mput data column 1s mapped to the field cluster. In
some embodiments, since the correspondence between the
input data columns and the schema fields 1s a one-to-one
correspondence, the number of mput data columns that are
mapped to a particular field cluster 1s equivalent (or at least
similar to) the number of fields assigned to the field cluster.

In various embodiments, the schema mapping 142 may be
employed to map (or assign) each input data column to a
field. For instance, the one-to-one data column to field
mapping may be generated from the data column to field
cluster mapping via manual means. In other embodiments,
the column probabilities may be further employed to gen-
crate the one-to-one data column to field mapping.

FIG. 2 illustrates an example embodiment of a field
cluster generator 200 of the target schema mapper 120 of
FIG. 1, according to various embodiments. Field cluster
generator 200 may be similar to field cluster generator 122
of FIG. 1. Field cluster generator 200 may include a data
type filter 202, a field descriptor concatenator 204, a field
vector generator 206, and a field clusterizer 208. Data type
filter 202 1s generally responsible for generating an encoding
of field data type groups 210. As noted above, a particular
data type (e.g., boolean, char, string, int, float, double, and
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the like) 1s associated with each field of the target schema
112 and each column of the mput data 114. For a schema
mapping to be coherent, the data type of the input data
column should be equivalent (or at least similar) to the data
type of the field that the mput data column 1s mapped to.
Thus, each field included 1n a field cluster should be of an
equivalent (or at least similar) data type. The data type filter
202 filters (or sorts) the fields of the target schema 112 on
data type of generate an encoding (e.g., a 2D table data
structure) of field data type groups. Thus, the data type filter
202 may serve as a flield pre-clusterizer that generates
groupings (or pre-clusters) of fields of common (or shared)
data types.

The encoding of the field data type groups 210 may be a
2D table data structure, as shown 1n the 2D table encoding
the field data type groups 210. According to this table, the
schema fields with the field induces of 1, 4, 5, 6, 17, 40, and
104 are associated with a string data type. Likewise, the
schema fields with the field indices of 56, 78, and M are
associated with an 1nt data type and the fields with the field
indices 45 and 89 are associated with a float data type. Note,
the field data type groups 210 table shown 1n FIG. 2 1s not
a complete table of all the available data types.

The field descriptor concatenator 204 generates a string,
for each schema field that 1s based on a concatenation of
cach of the field descriptors for the field. The string may be
referred to as a field descriptor concatenation and may be
encoded 1n a 2D table data structure: field descriptors 212.
The field descriptor concatenation for the schema field with
a field index of 1 may be the string “<field.descriptor.1.1,
field.descriptorl.2,  field.descriptor.1.3, . . .
field.descriptor.1.N>"". Thus, the field descriptor concatena-
tion for a field includes a sequence of natural language
tokens. The other field descriptors may be similarly con-
structed and encoded 1n the field descriptor table 212. The
field descriptor concatenation for a field may provide a
string that 1s representative of the field in a “natural language
space.” The field descriptors 212 are provided to the field
vector generator 206.

Field vector generator 206 1s generally responsible for
generating a field vector for each field of the set of fields
based on the field descriptor concatenation for the field. The
field vector for the field represents the field within a vector
space. To generate such a vector representation for each
field, the field vector generator 206 may implement a natural
language processing (NLP) model that generates a vector
quantity from a natural language-based string quantity (e.g.,
the field descriptor concatenation for the field). The NLP
model may generates a vector from the sequence of natural
language tokens of the field descriptor concatenation. The
NLP model may be a deeply learned model that 1s trained on
sequential data (e.g., sequences of tokens). In some embodi-
ments, the NLP model may be transformer model employing
attentional mechanisms that are enabled to handle sequential
data. The NLP model may be a bidirectional encoder model,
such as but not limited to a bidirectional encoder represen-
tations from transformers (e.g., a BERT) model. The NLP
model may be pre-trained and refined via one or more
specific textual corpuses. In at least one embodiment, a
pre-trained BERT model 1s fine-tuned by employing the
Stanford Natural Language Inference (SNLI) corpus to
predict similarity scores for pairs of sequences of tokens.
Thus, the field vector generator 206 generates a vector (1n
the deeply-learned vector space of the implemented NLP
model) for each field of the set of target fields. The field
vector generator 206 provides the field vectors to the field
clusterizer 208.
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The field clusterizer 208 generates the set of field clusters
144 tfrom the field vectors. In various embodiments, the field
clusterizer 208 employs one or more clustering algorithms,
such as but not limited to an unsupervised clustering algo-
rithm. For example, field clusterizer 208 may generate
clusters of the field vectors, 1n the vector space of the BERT
model. The unsupervised clustering algorithm may be a
“bottom-up” and/or hierarchical clustering algorithm, such
as an agglomerative clustering algorithm. In some embodi-
ments of the agglomerative clustering algorithm, the field
clusterizer 208 generates a similarity (or proximity) score
for each pair of fields. The similarity score for a pair of fields
1s based on the field vectors for each field of the pair. For
example, the similarity score for a pair may be based on a
cosine similarity score (e.g., a normalized dot product) for
the pair of vectors, a distance metric (e.g., a Fuclidean
distance, Manhattan distance, and the like) for the pair of
vectors, or any other such metric based on a comparison of
a pair ol vectors. The similarity scores for the pairs of fields
may be encoded mm an MxM symmetric similarity (or
proximity) matrix. The clustering algorithm may employ the
similarity matrix to generate the set of field clusters 144.

In some of the agglomerative clustering embodiments, for
its 1nitial 1terative step, each field 1s considered as a cluster
of one field (e.g., M singleton clusters). The two “most
similar” (or “most proximate™) pair of fields (e.g., a first field
and a second field of the set of fields), based on the similarity
(or proximity) scores are merged to form a single first
cluster. In embodiments where a data type 1s associated with
cach cluster of the set of clusters 144, a requirement for
classifying a pair of fields as the two most similar (or
proximate) fields 1s that the two fields are associated with an
equivalent (or at least similar) data type. For such embodi-
ments, the field data type groups table 210 may be consulted.
I1 the two most similar fields are of dissimilar data types, the
next most similar pair (that are of the same data type) may
be merged to form the cluster. A first cluster vector for the
first cluster may be generated based on a first field vector
(representing the first field of the field pair) and a second
field vector (representing the second field of the field pair).
For example, the centroid (e.g., a geometric center of
gravity) of the first and second field vectors may be calcu-
lated. The first cluster vector (which represents the first
cluster 1n the NPL model’s vector space) may be set to the
centroid of the first and second field vectors. The first and
second fields may be removed from the set of fields, and a
“pseudo-field” (a field cluster) representing the first cluster
may be added to the set of fields, where the first cluster
vector represents the added “pseudo-field”. The similarity
(or proximity) scores may be updated, and an updated
(M-1)x(M-1) symmetric similarity (or proximity) matrix
may be generated based on the updated scores.

This iterative process may be continued until one or more
threshold tests are exceeded. After the initial step, fields
(e.g., singleton clusters) may be merged with other singleton
clusters to form a cluster, a singleton cluster may be merged
with a multi-field cluster to form a cluster, and/or a multi-
field cluster may be merged with another multi-field cluster
to form another cluster. The threshold test may be based on
a minimum similarity score needed to merge fields/clusters,
or the threshold may be based on a minimum number of
clusters (e.g., the clustering algorithm 1s terminated prior to
reach a minimum number of clusters). Because each cluster
1s associated with a single data type, a separate threshold
value may be employed for each data type. For example, a
first minimum similarity score may be applied as a threshold
for clusters associated with an int data type and a second
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minimum similarity score may be applied as another thresh-
old for clusters associated with a float data type. Note that
the set of field clusters table 144 shown 1n FIG. 2 includes
a column for the cluster vectors and another column for the
field vectors. The cluster vectors are indicated as cluster.vec-
tor[x], where X 1ndicates the cluster index. The field vectors
are 1ndicated as field.cluster[y], where v indicates the field
index. After the clustering algorithm has terminated (via one
or more threshold tests), the set of field clusters 144 (includ-
ing the cluster/field vector representations) may be provided
to a cluster probability generator (e.g., cluster probability
generator 124 of FIG. 1 and/or cluster probability generator
300 of FIG. 3).

FIG. 3 illustrates an example embodiment of a cluster
probability generator 300 of the target schema mapper 120
of FIG. 1, according to various embodiments. Cluster prob-
ability generator 300 may be equivalent (or at least similar)
to cluster probability generator 124 of FIG. 1. Cluster
probability generator 300 may include an element vector
generator 302 and a cluster-column probability generator
306. Element vector generator 302 1s generally responsible
for generating a data element vector for each data element of
the mput data 114. That 1s, element vector generator 302
receives the input data 114 and generates a data element
vector (e.g., element vector) for each data element of the set
of data elements included in the mput data 114. Each data
clement vector represents the corresponding data element 1n
an equivalent (or at least similar) vector space to the vector
space that the field vectors and field vector clusters (gener-
ated by field cluster generator 200 of FIG. 2) are embedded
in. Thus, the element vector generator 302 may employ an
equivalent (or similar) NLP model to the NLP model
employed by the field vector generator 206 of the field
cluster generator 200.

The element vector generator 302 may employ a bi-
directional transtformer NLP model, such as but not limited
to a BERT model, to generate the set of data element vectors
310. Similar to the data elements of the input data 114, the
corresponding data element vectors 310 may be stored 1n the
2D table shown 1n FIG. 3, and referenced as input.data.vec-
tor[x][v], where X 1s the row’s index and vy 1s the column’s
index. Because data elements within the same column
should be mapped to the same target field, the NLP model
(e.g., a BERT model) may be pre-trained to generate clusters
of data element vectors that are included in the same
column. For example, the NLP model employed by the
clement vector generator 302 (and/or the NLP model
employed by the field vector generator 206) may be pre-
trained on a large unlabeled textual corpus such at least a
portion ol Wikipedia, collection of digital books, or the like.
The data element vectors 310 and the set of field clusters 144
are provided to the cluster-column probability generator
306. For simplicity i FIG. 3, the field indices and the field
vectors of the set of field clusters 144 have been omuitted.

The cluster-column probability score generator 306 1s
generally responsible for generating a probability for each
possible pairing of an input data element (of the set of input
data elements) and a field cluster (of the set of field clusters)
based on a machine learning (ML) model that 1s pre-trained
to determine a mapping between data elements and field
clusters. The ML model learns how to calculate probabilities
for each data element being paired with each of the field
clusters of the set of field clusters 144. The ML model may
employ a softmax function to generate the probabilities. In
some embodiments, the ML model 1s implemented via a
neural network. The neural network may include a softmax
That 1s, the ML model 1s trained to determine which data
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clements are mappable to which target fields 1n a probabi-
listic sense. The cluster-element probabilities 312 are gen-
crated based on the vector embeddings of the data elements
and the field clusters. Note that the resulting set of cluster-
clement probabilities 312 may be structured as a 3D array
(or table), with a first dimension associated with the data
element’s row, a second dimension associated with the data
element’s column, and a third dimension associated with the
paired field cluster.

The cluster-column probability generator 306 1s further
responsible for transforming the 3D cluster-element prob-
abilities 312 into 2D cluster-column probabilities 314. The
cluster-column probabilities 314 include a probability for
cach possible pairing of an mput column of the mput data
114 and a field cluster of the set of field clusters 144, where
the probability indicates the likelihood that the correspond-
ing mput column 1s mapped to the corresponding field
cluster. The cluster-element probabilities 312 may be refer-
enced as p, , ;, where the index 1 refers to input data rows, the
index 1 refers to the mput data columns, and the index k
refers to the field clusters. The probabilities may be averaged
over the mput rows to generate a set ol cluster-column
probabilities, via P(j, k)=2._,“p, s In the 2D table of the
cluster-column probabilities 314, cluster.column.probability
[K][7] indicates P(j, k). In various embodiments where the
data type associated with a column should match the data
type of the mapped column, the data types of the columns
308 are compared to the data type of the cluster (as indicated
by the set of field clusters 144) to ensure that the cluster-
column probabilities 314 for any pairing of a column and
field cluster with non-equivalent (or non-similar) data types
are 1dentically set to 0.0.

FIG. 4 illustrates an example embodiment of a cluster
assignment generator 400 of the target schema mapper 120
of FIG. 1, according to various embodiments. Cluster
assignment generator 400 may be equivalent (or at least
similar) to cluster assignment generator 126 of FIG. 1.
Cluster assignment generator 400 may include a global
statistics generator 402 and an assignment model 404. The
input data 114 may be received by the global statistics
generator 402. The global statistics generator 402 1s gener-
ally responsible for generating global statistics of each
column of the mput data 114. The global statistics for each
column of the set of columns may be encoded 1n a 2D array
and/or table, as shown 1n the set of global statistics 410. The
global statistical may be aggregated length statistical distri-
butions (for each mput data columns) to form statistical
distributions for various metrics. As shown in the set of
global statistics 410, the global statistics may include (for
cach column) the mean (or average) length of the data
clements in the column, the variance of the length of the data
clements 1 the column, the minimum length of the data
clements 1n the column, and the minimum length of the data
elements 1n the column. In some embodiments, the set of
global statistics additional the kurtosis, skewness, and media
of the underling length distributions of the data elements 1n
the columns.

The set of global statistics and the cluster-column prob-
abilities 314 are provided to the assignment model 404. The
assignment model may implement one or more machine
learning (ML) models that combine the set of global statis-
tics 410 and the set cluster-column probabilities 314 to
generate the schema mapping 142. The ML models may be
implemented by one or more neural networks (or at least one
or more neural network layers). The ML model may be
trained (e.g., via one or more deep learning methods) on the
global statistics 410 and the cluster-column probabilities 314
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to recognize patterns 1n the global statics and data types to
generate an accurate schema mapping 112.

Generalized Processes for Mapping Unlabeled Input Data
onto a Target Schema

Processes 500-800 of FIGS. 5-8, or portions thereof, may
be performed and/or executed by any computing device,
such as but not limited to, client computing device 102 of
FIG. 1, server computing device 104 of FIG. 1, and/or
computing device 900 of FIG. 9. Additionally, a target
schema mapper, such as but not limited to target schema
mapper 120 of FIG. 1, may perform and/or execute at least
portions ol process 500-800.

FIG. 5 illustrates one embodiment of a method for map-
ping unlabeled data onto a target schema, which 1s consistent
with the various embodiments presented herein. Process 500
may be performed by a target schema mapper, such as but
not limited to target schema mapper 120 of FIG. 1. Process
500 begins at block 502, where a target schema that includes
a set of target fields 1s received and/or accesses. The target
schema may be similar to target schema 112 of FIG. 1.
Accordingly, each target field of the set of target fields may
be associated with a set of field descriptors. At block 504, a
set of target field clusters 1s generated for the set of target
fields. Various embodiments of generating a set of field
clusters 1s discussed in conjunction with at least process 600
of FIG. 6. However, briefly here, at block 504, the set of
target fields 1s clustered mto a set of field clusters. The set
of field clusters may be similar to the set of field clusters 144
of FIGS. 1-2. When clustering, each target field 1s assigned
to one or more field clusters of the set of field clusters. Each
field cluster of the set of field clusters may be represented by
a field cluster vector. The field cluster vector may be
generated based on the set of field descriptors associated
with each target field assigned to the field cluster, with a
vector space. As noted throughout, each target field of the set
of target fields 1s associated with a particular data type. The
set of fields may be clustered 1n the set of field clusters based
on the data type associated with field of the set of fields.

At block 506, input data 1s received and/or accessed. The
input data may be similar to input data 114 of FIG. 1. Thus,
the 1input data may include a set of input data elements
structured 1 and/or corresponding to a set of data cells
formed by a set of data rows and a set of data columns. The
set of data elements may be organized as a 2D table or array.
Thus, each data element of the set of data elements 1s
reference by (or associated with) a first integer value cor-
responding to a first index (associated with a row of the set
of rows) and a second value corresponding to a second 1ndex
(associated with a column of the set of columns). More
particularly, the set of data elements 1s structured as a 2D
data array that includes the set of data rows and the set of
data columns. Fach data element of the set of data elements
that 1s associated with a same first value corresponding to the
first index 1s included 1n the same row of the set of data rows.
Each data element of the set of data elements that 1is
associated with a same second value corresponding to the
second 1ndex 1s included 1n the same column of the set of
columns.

At block 508, a set of field cluster-column probabilities 1s
generated for the set of columns and the set of field clusters.
Various embodiments of generating the set of field cluster-
column probabilities 1s discussed in conjunction with pro-
cess 700 of FIG. 7. However, briefly here, a data element
vector may be generated for each data element of the set of
data elements. The data element vector represents the cor-
responding data element in the vector space. The field-
cluster probabilities for a paired field cluster and column 1s
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based on the cluster vector representing the field cluster and
the element vector of the data element.

At block 510, each column of the set of columns 1s
assigned to (or associated with) a field cluster of the set of
field clusters based on the cluster-column probabilities and
global statistics of the columns. Various embodiments of
assigning columns to field clusters as discussed 1n conjunc-
tion with process 800 of FIG. 8. Assigning columns to
cluster fields may generate a schema mapping, such as but
not limited to schema mapping 142 of FIG. 1. However,
briefly here, assigning a column to a particular field cluster
may include assigning each data element of the set of data
clements, which 1s associated with a particular second value
corresponding to the second index, with the particular field
cluster of the set of field cluster based on the particular
cluster vector of the particular field cluster and the data
clement vector of each data element that 1s associated with
the particular second value. That 1s, each data element 1n a
column 1s assigned to the particular field cluster. Assigning

(or associating) each data column of the set of data columns
with a field cluster of the set of field clusters 1s based on the
cluster vector of the field cluster and the data element vector
of each data element included in the data column. At block
512, each column in the set of columns may be mapped to
a field of the set of fields based on the column-field cluster
assignments. For example, a column may be mapped (or
assigned) to a field included 1n its assigned field cluster by
automatic and/or manual means.

FIG. 6 illustrates one embodiment of a method for gen-
crating a set ol target field clusters for a target schema,
which 1s consistent with the various embodiments presented
herein. Process 600 may be performed by a field cluster
generator, such as but not limited to field cluster generator
122 of FIG. 1 and/or field cluster generator 200 of FIG. 2.
Process 600 begins at block 602, where the set of target field
(of the target schema) 1s sorted (or filtered) 1n a set of field
groups based on the data type associated with the fields. As,
noted throughout, each field 1s associated with a particular
data type. At block 602, the data type filter 202 of FIG. 2
may generate a set of field groups, where the field groups are
filtered via the associated data type. The set of field groups
may be similar to field data type groups 210 of FIG. 2, and
may be employed by the field cluster generator to cluster the
set of field values 1nto a set of field clusters (e.g., set of field
clusters 144 of FIGS. 1-2) based on the data type associated
with each group and each data types associated with the data
clements.

At block 604, field descriptor concatenations are gener-
ated from the set of field descriptors associated with each
target field of the set of target fields. For example, the field
descriptor concatenator 204 of FIG. 2 may generate field
descriptors 212 of FIG. 2 at block 604. At block 606, a set
of field vectors representing the set of fields 1s generated
based on the field descriptor concatenation for each of the
fields. The field vector generator 206 of FIG. 2 may imple-
ment a NLP model to generate the set of field vectors. More
specifically, the field vector generator 206 may generate a
field vector for each target field of the set of target fields, via
its 1mplemented NLP model (e.g., a pre-trained BERT
model). The particular field vector for a particular target field
1s based on the set of field descriptors associated with the
particular target field. The particular field vector for the
target field represents the particular target field within the
vector space of the implemented NLP model.

At block 608, a set of field clusters 1s generated based on
the cluster groups generated at block 602 and the set of field
vectors generated at block 606. In some embodiments, at

5

10

15

20

25

30

35

40

45

50

55

60

65

14

block 608, field clusterizer 208 of FIG. 2 may cluster the set
of fields into the set of field clusters 144 of FIGS. 1-2.
Clustering the set of fields may be based on applying a
hierarchical clustering analysis to the set of field vectors that
includes the field vector representing each target field in the
vector space. The clustering may be further based on the data
type of each of the target fields (e.g., a necessary but
isuilicient condition for two field clusters being included 1n
a common cluster 1s that both clusters are associated with the
same (or similar) data type). Note that a set of field cluster
vectors may represent the set of field clusters. A particular
field cluster vector representing a particular field cluster may
be determined from a centroid (e.g., a geometric center of
gravity) of the field vectors of each of the fields that is
included 1n the particular field cluster.

FIG. 7 illustrates one embodiment of a method 700 for
generating field cluster-probabailities for columns and fields,
which 1s consistent with the various embodiments presented
herein. Process 700 may be performed by a cluster prob-
ability generator, such as but not limited to cluster probabil-
ity generator 124 of FIG. 1 and/or cluster probability gen-
erator 300 of FIG. 3. Process 700 begins at block 702, where
a set of data element vector are generated. The set of data
clement vectors may represent the set of data elements 1n an
equivalent (or at least similar) vector space to that of the
NLP model that generated the set of field cluster vectors, as
discussed 1n conjunction with block 606. In some embodi-
ments at block 702, the element vector generator 302 of FIG.
3 may generate the set of data element vectors 310 of FIG.
3.

At block 704, a set of cluster-element probabilities may be
generated. The set of cluster-element probabilities may be
based on the set of field cluster vectors (representing the set
of target field clusters generated at block 608 of process 600)
and the set of data element vectors. As discussed throughout,
a machine learning (ML) model may be employed to gen-
crate the probabilities. The ML model may be pre-trained to
generate the probabilities. Note that the set of cluster-
clement similarity scores may be encoded in a 3D array
and/or table data structure.

In some embodiments, the set of cluster-element prob-
abilities may be encoded in a 3D array and/or table data
structure (e.g., cluster-element probabilities 312 of FIG. 3).
The encoding array may be referred to as an element
probability array. More specifically, a 3D element probabil-
ity array may be generated by the cluster-column probability
generator 306 of FIG. 3. The 3D element probability array
may have a first dimension corresponding to the set of data
rows, a second dimension corresponding to the set of data
columns, and a third dimension corresponding to the set of
field clusters. Each value included in the element probabaility
array 1s an element probability that a data element of the
corresponding data row of the set of data rows and the
corresponding data column of the set of data columns 1is
associated with the corresponding field cluster of the set of
field clusters. The element probability may be calculated
based on the cluster vector of the corresponding field cluster
and the corresponding data element vector. As described
below, each data column of the set of data columns may be
associated with (or assigned/mapped to) a field cluster of the
set of field clusters based on each element probability of the
clement probability array.

At block 706, a set of cluster-column probabilities are
generated based on the set of cluster-element probabilities.
For example, the cluster-column probability generator 306
may “tlatten” the 3D cluster-element probabilities table 312,
via a summing (or averaging) function, to generate the 2D
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cluster-column probabilities table 314. The encoding of the
cluster-column probabilities into a 2D array may be referred
to as a column probability array. More specifically, a column
probability array may be generated by the cluster-column
probability generator 306. The column probability array
may 1nclude a first dimension corresponding to the set of

data columns and a second dimension corresponding to the
set of field clusters. Each value included in the column
probability array 1s a column probability that a correspond-
ing data column of the set of data columns 1s associated with
the corresponding field cluster of the set of field clusters. The
column probability 1s calculated based on a combination of
cach element probability of the corresponding to each of the
data column and the field cluster. Each data column of the
set of data columns may be associated with (or assigned/
mapped to) a field cluster of the set of field clusters based on
cach column probability of the column probability array.

FIG. 8 illustrates one embodiment of a method 800 for
assigning data columns to field cluster, which 1s consistent
with the various embodiments presented herein. Process 800
may be performed by a cluster assignment generator, such as
but not limited to cluster assignment generator 126 of FIG.
1 and/or cluster assignment generator 400 of FIG. 4. Process
800 begins at block 802, where a set of global statistics 1s
calculated for each column of the set of columns of the input
data 114. For example, global statistics generator 402 of
FIG. 4 may calculate and encode the set of global statistics
410 of FIG. 4 mn a 2D array and/or table data structure. The
set of global statics for a particular column of the set of
columns may be based on a distribution of the lengths of the
data elements of the set of data elements that 1s associated
with the particular column.

At block 804, a machine learming (ML) model may be
employed to map each column of the set of columns to a
field cluster of the set of field clusters. Such a mapping may
generate the schema mapping 142 of FIGS. 1 and 4. The
mapping may be based on the set of global statistics 410 and
the cluster-column probabilities 314 of FIGS. 3-4.
[lustrative Computing Device

Having described embodiments of the present invention,
an example operating environment 1n which embodiments of
the present invention may be implemented 1s described
below 1 order to provide a general context for various
aspects of the present mvention. Referring to FIG. 9, an
illustrative operating environment Jfor 1mplementing
embodiments of the present invention 1s shown and desig-
nated generally as computing device 900. Computing device
900 15 but one example of a suitable computing environment
and 1s not mtended to suggest any limitation as to the scope
of use or functionality of the invention. Neither should the
computing device 900 be interpreted as having any depen-
dency or requirement relating to any one or combination of
components 1llustrated.

Embodiments of the mvention may be described in the
general context of computer code or machine-useable
instructions, including computer-executable instructions
such as program modules, being executed by a computer or
other machine, such as a smartphone or other handheld
device. Generally, program modules, or engines, including
routines, programs, objects, components, data structures,
etc., refer to code that perform particular tasks or implement
particular abstract data types. Embodiments of the invention
may be practiced 1n a variety ol system configurations,
including hand-held devices, consumer electronics, general-
purpose computers, more specialized computing devices,
etc. Embodiments of the invention may also be practiced 1n

5

10

15

20

25

30

35

40

45

50

55

60

65

16

distributed computing environments where tasks are per-
formed by remote-processing devices that are linked through
a communications network.

With reference to FIG. 9, computing device 900 includes
a bus 910 that directly or indirectly couples the following
devices: memory 912, one or more processors 914, one or
more presentation components 916, mput/output ports 918,
input/output components 920, and an illustrative power
supply 922. Bus 910 represents what may be one or more
busses (such as an address bus, data bus, or combination
thereol). Although the various blocks of FIG. 9 are shown
with clearly delineated lines for the sake of clarity, in reality,
such delineations are not so clear and these lines may
overlap. For example, one may consider a presentation
component such as a display device to be an I/O component,
as well. Also, processors generally have memory 1n the form
of cache. We recognize that such 1s the nature of the art, and
reiterate that the diagram of FIG. 9 1s merely illustrative of
an example computing device that can be used 1n connection
with one or more embodiments of the present disclosure.
Distinction 1s not made between such categories as “work-
station,” “server,” “laptop,” “hand-held device,” etc., as all
are contemplated within the scope of FIG. 9 and reference
to “computing device.”

Computing device 900 typically includes a variety of
computer-readable media. Computer-readable media can be
any available media that can be accessed by computing
device 900 and includes both volatile and nonvolatile media,
removable and non-removable media. By way of example,
and not limitation, computer-readable media may comprise
computer storage media and communication media.

Computer storage media include volatile and nonvolatile,
removable and non-removable media implemented in any
method or technology for storage of information such as
computer-readable 1nstructions, data structures, program
modules or other data. Computer storage media includes, but
1s not limited to, RAM, ROM, EEPROM, flash memory or
other memory technology, CD-ROM, digital versatile disks
(DVD) or other optical disk storage, magnetic cassettes,
magnetic tape, magnetic disk storage or other magnetic
storage devices, or any other medium which can be used to
store the desired mformation and which can be accessed by
computing device 900. Computer storage media excludes
signals per se.

Communication media typically embodies computer-
readable instructions, data structures, program modules or
other data in a modulated data signal such as a carrier wave
or other transport mechanism and includes any information
delivery media. The term “modulated data signal” means a
signal that has one or more of its characteristics set or
changed in such a manner as to encode information in the
signal. By way of example, and not limitation, communi-
cation media includes wired media such as a wired network
or direct-wired connection, and wireless media such as
acoustic, RF, infrared and other wireless media. Combina-
tions of any of the above should also be 1included within the
scope of computer-readable media.

Memory 912 includes computer storage media 1n the form
of volatile and/or nonvolatile memory. Memory 912 may be
non-transitory memory. As depicted, memory 912 includes
instructions 924. Instructions 924, when executed by pro-
cessor(s) 914 are configured to cause the computing device
to perform any of the operations described herein, 1n refer-
ence to the above discussed figures, or to implement any
program modules described herein. The memory may be
removable, non-removable, or a combination thereof. Illus-
trative hardware devices include solid-state memory, hard
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drives, optical-disc drives, etc. Computing device 900
includes one or more processors that read data from various
entities such as memory 912 or I/O components 920. Pre-
sentation component(s) 916 present data indications to a
user or other device. Illustrative presentation components
include a display device, speaker, printing component,
vibrating component, etc.

I/O ports 918 allow computing device 900 to be logically
coupled to other devices including I/O components 920,
some of which may be built 1. Illustrative components
include a microphone, joystick, game pad, satellite dish,
scanner, printer, wireless device, efc.

Embodiments presented herein have been described in
relation to particular embodiments which are intended 1n all
respects to be illustrative rather than restrictive. Alternative
embodiments will become apparent to those of ordinary skill
in the art to which the present disclosure pertains without
departing from 1ts scope.

From the foregoing, 1t will be seen that this disclosure in
one well adapted to attain all the ends and objects herein-
above set forth together with other advantages which are
obvious and which are inherent to the structure.

It will be understood that certain features and sub-com-
binations are of utility and may be employed without
reference to other features or sub-combinations. This 1s
contemplated by and 1s within the scope of the claims.

In the preceding detailed description, reference 1s made to
the accompanying drawings which form a part hereof
wherein like numerals designate like parts throughout, and
in which 1s shown, by way of illustration, embodiments that
may be practiced. It 1s to be understood that other embodi-
ments may be utilized and structural or logical changes may
be made without departing from the scope of the present
disclosure. Therefore, the preceding detailed description 1s
not to be taken 1 a limiting sense, and the scope of
embodiments 1s defined by the appended claims and their
equivalents.

Various aspects of the illustrative embodiments have been
described using terms commonly employed by those skilled
in the art to convey the substance of their work to others
skilled 1n the art. However, 1t will be apparent to those
skilled 1n the art that alternate embodiments may be prac-
ticed with only some of the described aspects. For purposes
ol explanation, specific numbers, materials, and configura-
tions are set forth 1n order to provide a thorough understand-
ing of the illustrative embodiments. However, 1t will be
apparent to one skilled 1n the art that alternate embodiments
may be practiced without the specific details. In other
instances, well-known features have been omitted or sim-
plified 1n order not to obscure the 1llustrative embodiments.

Various operations have been described as multiple dis-
crete operations, 1n turn, in a manner that 1s most helpful 1n
understanding the illustrative embodiments; however, the
order of description should not be construed as to imply that
these operations are necessarily order dependent. In particu-
lar, these operations need not be performed 1n the order of
presentation. Further, descriptions of operations as separate
operations should not be construed as requiring that the
operations be necessarily performed independently and/or
by separate entities. Descriptions of entities and/or modules
as separate modules should likewise not be construed as
requiring that the modules be separate and/or perform sepa-
rate operations. In various embodiments, 1llustrated and/or
described operations, entities, data, and/or modules may be
merged, broken into further sub-parts, and/or omaitted.

The phrase “in one embodiment” or “in an embodiment™
1s used repeatedly. The phrase generally does not refer to the

10

15

20

25

30

35

40

45

50

55

60

65

18

same embodiment; however, 1t may. The terms “compris-
ing,” “having,” and “including” are synonymous, unless the
context dictates otherwise. The phrase “A/B” means “A or
B.” The phrase “A and/or B” means “(A), (B), or (Aand B).”
The phrase “at least one of A, B and C” means “(A), (B), (C),
(A and B), (A and C), (B and C) or (A, B and C).”

What 1s claimed 1s:

1. A non-transitory computer-readable storage medium
having instructions stored thereon for mapping mput data
onto a target schema, which, when executed by a processor
of a computing device cause the computing device to
perform actions comprising: accessing the target schema,
which includes a set of target fields that has been clustered
into a set of field clusters, wherein each target field of the set
of target fields 1s associated with a set of field descriptors and
1s assigned to one or more field clusters of the set of field
clusters, and each field cluster of the set of field clusters 1s
represented by a cluster vector, based on the set of field
descriptors associated with each target field assigned to the
field cluster, within a vector space; receiving input data that
includes a set of data elements, wherein each data element
of the set of data elements 1s associated with a first value
corresponding to a first index and a second value corre-
sponding to a second 1ndex; generating a data element vector
for each data element of the set of data elements that
represents the data element 1in the vector space; and associ-
ating each data element of the set of data elements, which 1s
associated with a particular second value corresponding to
the second 1ndex, with a particular field cluster of the set of
field clusters based on a particular cluster vector of the
particular field cluster and the data element vector of each
data element that 1s associated with the particular second
value.

2. The computer-readable storage medium of claim 1,
wherein each target field of the set of target fields 1s
associated with a data type and the actions further compris-
ing clustering the set of target fields into the set of field
clusters based on the data type associated with each of the
target fields of the set of target fields.

3. The computer-readable storage medium of claim 1,
wherein the actions further include: generating a field vector
for each target field of the set of target fields based on the set
of field descriptors associated with the target field, wherein
the field vector for a target field represents the target field
within the vector space, and a set of field vectors comprises
cach of the generated field vectors; and clustering the set of
target fields into the set of field clusters based on applying
a hierarchical clustering analysis to the set of field vectors.

4. The computer-readable storage medium of claim 1,
wherein the set of data elements 1s structured as a two-
dimensional (2D) data array that includes a set of data rows
and a set of data columns, each data element of the set of
data elements that 1s associated with a same first value
corresponding to the first index 1s included 1n a same row of
the set of data rows, each data element of the set of data
clements that 1s associated with a same second value cor-
responding to the second index 1s included 1n a same column
of the set of data columns, and the actions further comprise:
associating each data column of the set of data columns with
a field cluster of the set of field clusters based on a
comparison of the cluster vector of the field cluster and the
data element vector of each data element included in the data
column.

5. The one or more computer-readable storage media of
claim 4, wherein the actions further comprise: generating an
clement probability array with a first dimension correspond-
ing to the set of data rows, a second dimension correspond-
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ing to the set of data columns, and a third dimension
corresponding to the set of field clusters, wherein each value
included in the element probability array i1s an element
probability that a data element of the corresponding data row
of the set of data rows and the corresponding data column of
the set of data columns 1s associated with the corresponding
field cluster of the set of field clusters, and wherein the
clement probability 1s calculated based on the cluster vector
of the corresponding field cluster and the corresponding data
clement vector; and associating each data column of the set
of data columns with a field cluster of the set of field clusters
based on each element probability of the element probability
array.

6. The one or more computer-readable storage media of
claim 5, wherein the actions further comprise: generating a
column probability array with a fourth dimension corre-
sponding to the set of data columns and a fifth dimension
corresponding to the set of field clusters, wherein each value
included in the column probability array 1s a column prob-
ability that a corresponding data column of the set of data
columns 1s associated with the corresponding field cluster of
the set of field clusters, and wherein the column probability
1s calculated based on a combination of each eclement
probability of the corresponding to each of the data column
and the field cluster; and associating each data column of the
set of data columns with a field cluster of the set of field
clusters based on each column probability of the column
probability array.

7. The one or more computer-readable storage media of
claim 4, wherein the actions further comprise: generating a
set of global statistics for each data column of the set of data
columns that 1s based on lengths of the data elements of the
set of data elements that 1s associated with the column; and
employing a machine learming (ML) model to generate a
schema mapping that maps each column of the set of
columns to a field cluster of the set of cluster fields, based
on the set of global statistics for each column and the column
probability array.

8. A method for mapping mput data onto a target schema,
wherein the method comprising: generating a set of field
clusters for the target schema that includes a set of target
fields, wherein each field cluster of the set of field clusters
includes a subset of the target fields of the set of target fields
and 1s represented by a cluster vector 1n a vector space;
receiving the mput data that includes a set of data elements
corresponding to a set of columns and a set of rows;
generating a set of data element vectors, wherein each data
clement vector of the set of data element vectors corre-
sponds to a data element of the set of data elements and
represents the corresponding data element 1in the vector
space; mapping each column of the set of columns to a field
cluster of the set of field clusters based on a comparison of
cach data element vector of the set of data element vectors
to each field cluster vector of the set of field clusters.

9. The method for claim 8, wherein each target field of the
set of target fields 1s associated with a data type and the
method further comprises: generating the set of field clusters
based on the data type associated with each of the target field
of the set of target fields.

10. The method of claim 8, further comprising: generating
a field vector for each target field of the set of target fields
based on a set of field descriptors associated with the target
field, wherein the field vector for a target field represents the
target field within the vector space, and a set of field vectors
includes each of the generated field vectors; and generating
the set of field clusters based on applying a agglomerative
clustering analysis to the set of field vectors.
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11. The method of claim 8, further comprising: mapping
cach column of the set of columns to the field cluster of the
set of field clusters based on a data type associated with each
column and another data type associated with each field
cluster.

12. The method of claim 8, further comprising: generating
an element probability array with a first dimension corre-
sponding to the set of rows, a second dimension correspond-
ing to the set of columns, and a third dimension correspond-
ing to the set of field clusters, wherein each value included
in the element probability array i1s an element probability
that a data element of the corresponding row of the set of
rows and the corresponding column of the set of columns 1s
associated with the corresponding field cluster of the set of
field clusters, and wherein the element probability 1s calcu-
lated based on the field cluster vector of the corresponding
field cluster and the corresponding data element vector; and
mapping each column of the set of columns to a field cluster
of the set of field clusters based on each element probability
of the element probability array.

13. The method of claim 12, further comprising: gener-
ating a column probability array with a fourth dimension
corresponding to the set of columns and a fifth dimension
corresponding to the set of field clusters, wherein each value
included 1n the column probability array 1s a column prob-
ability that a corresponding column of the set of columns 1s
associated with the corresponding field cluster of the set of
field clusters, and wherein the column probability 1s calcu-
lated based on a combination of each element probability of
the corresponding to each of the column and the field cluster;
and mapping each column of the set of columns to a field
cluster of the set of field clusters based on each column
probability of the column probability array.

14. The method of claim 8, further comprising: generating
a set of global statistics for each data column of the set of
columns that 1s based on lengths of the data elements of the
set of data elements that 1s associated with the column; and
employing a machine learning (ML) model to generate a
schema mapping that maps each column of the set of
columns to a field cluster of the set of cluster fields, based
on the set of global statistics for each column and the column
probability array.

15. A computing system for mapping input data onto a
target schema, comprising: a processor device; and a com-
puter-readable storage medium, coupled with the processor
device, having instructions stored thereon, which, when
executed by the processor device, perform actions compris-
ing: steps for recerving the target schema, which includes a
set of target fields that has been clustered 1nto a set of field
clusters, wherein each target field of the set of target fields
1s associated with a set of field descriptors and 1s assigned to
one or more field clusters of the set of field clusters, and each
field cluster of the set of field clusters 1s represented by a
cluster vector, based on the set of field descriptors associated
with each target field assigned to the field cluster, within a
vector space; steps for accessing input data that includes a
set of data elements, wherein each data element of the set of
data elements 1s associated with a first value corresponding
to a first index and a second value corresponding to a second
index; steps for generating a data element vector for each
data element of the set of data elements that represents the
data element 1n the vector space; steps for associating each
data element of the set of data elements, which 1s associated
with a particular second value corresponding to the second
index, with a particular field cluster of the set of field clusters
based on a particular cluster vector of the particular field
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cluster and the data element vector of each data element that
1s associated with the particular second value.

16. The computing system of claim 135, wherein each
target field of the set of target fields 1s associated with a data
type and the actions further comprise: steps for clustering
the set of target fields 1nto the set of field clusters based on
the data type associated with each of the target fields of the
set of target fields.

17. The computing system of claim 15, wherein the
actions further comprise: steps for generating a field vector
for each target field of the set of target fields based on the set
of field descriptors associated with the target field, wherein
the field vector for a target field represents the target field
within the vector space, and a set of field vectors comprises
cach of the generated field vectors; and steps for clustering
the set of target fields 1nto the set of field clusters based on
applying a hierarchical clustering analysis to the set of field
vectors.

18. The computing system of claim 15, the set of data
clements 1s structured as a two-dimensional (2D) data array

that includes a set of data rows and a set of data columns,
each data element of the set of data elements that 1s
associated with a same {first value corresponding to the first
index 1s included 1n a same row of the set of data rows, each
data element of the set of data elements that i1s associated
with a same second value corresponding to the second index
1s included 1n a same column of the set of data columns, and
the actions further comprise: steps for associating each data
column of the set of data columns with a field cluster of the
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set of field clusters based on the cluster vector of the field
cluster and the data element vector of each data element
included in the data column.

19. The computing system of claim 18, wherein the
actions further comprise: steps for generating an element
probability array with a first dimension corresponding to the
set of data rows, a second dimension corresponding to the
set of data columns, and a third dimension corresponding to
the set of field clusters, wherein each value included in the
clement probability array 1s an element probability that a
data element of the corresponding data row of the set of data
rows and the corresponding data column of the set of data
columns 1s associated with the corresponding field cluster of
the set of field clusters, and wherein the element probability
1s calculated based on the cluster vector of the corresponding
field cluster and the corresponding data element vector; and
associating each data column of the set of data columns with
a field cluster of the set of field clusters based on each
clement probability of the element probability array.

20. The computing system of claim 18, wheremn the
actions further comprise: steps for generating a set of global
statistics for each data column of the set of data columns that
1s based on lengths of the data elements of the set of data
clements that 1s associated with the column; and steps for
employing a machine learning (ML) model to generate a
schema mapping that maps each column of the set of
columns to a field cluster of the set of cluster fields, based
on the set of global statistics for each column and the column
probability array.
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