US011704322B2

a2 United States Patent (10) Patent No.: US 11,704,322 B2

Jones et al. 45) Date of Patent: Jul. 18, 2023
(54) RAPID IMPORTATION OF DATA (358) Field of Classification Search
INCLUDING TEMPORALLY TRACKED None
OBJECT RECOGNITION See application file for complete search history.
(71) Applicant: Palantir Technologies Inc., Denver, (56) References Cited
CO (US) U.S. PATENT DOCUMENTS
(72) Inventors: Samuel Jones, New York, NY (US); 8,838,597 B1* 9/2014 Gottumukkala GOGF 16/901
Sean Hacker, Washington, DC (US) 707/740
10,963,465 Bl 3/2021 Jone_s et al.
(73) Assignee: Palantir Technologies Inc., Denver, 2016/0055220 A1* 2/2016 Joshi ..o, GO6F7(1)§§$£
CO (US) 2019/0026322 Al* 1/2019 Gerweck G06Q 30/02

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35 OTHER PUBLICATTONS

U.S.C. 154(b) by 95 dayvs.
(b) by S Wes McKinney; Data Structures for Statistical Computing in Python;

(21) Appl. No.: 17/249,585 2010, Capital Management; pp. 56-61 (Year: 2010).*

(22) Filed: Mar. 5, 2021 * cited by examiner
Primary Examiner — Mariela Reyes

(65) Prior Publication Data Assistant Fxaminer — Ta M
US 2021/0263920 Al Aug. 26, 2021 (74) Attorney, Agent, or Firm — Knobbe, Martens, Olson
& Bear, LLP
Related U.S. Application Data (57) ABSTRACT
(63) Continuation of application No. 15/801,591, filed on Systems and methods for rapid importation of data including
Nov. 2 2017 now Pat. No. 10.963 465 temporally tracked object recognition. One of the methods
O j T includes receiving datasets each indicating information
(60) Provisional application No. 62/550,503, filed on Au assoclated with one or more objects. Information indicating
25 9017 PP | T s unique 1dentitying information associated with the objects 1s
’ ' accessed, and an updated dataset joining information from
(51) Int. CL datasets that 1s associated with each object 1s generated. The
GOGF 16/2455 (2019.01) updated dataset 1s maintained to include most recent ver-
GO6F 16723 (2019.01) sions of each of the datasets, with one or more datasets being
GO6F 167245 (2019.01) replaced with more recent versions, and with one or more
GOGF 16/25 (2019.01) other datasets being propagated to be the most recent
(52) U.S. Cl versions. Queries received from clients are responded to,
CPC ' GOGF 16/2456 (2019.01); GO6F 16/23 with the quenies indicating requests for specific information
(2019.01); GO6F 16/245 (2019.01); GoeF related 1o objects.
16/25 (2019.01) 20 Claims, 7 Drawing Sheets
Object Definitional infarmation
Entity: — ' 1 10 Merged Objects
- System | 20
Core: i
~'Core Field A .
- 'Core Field 8’ | 8A ap 8C oA ag
- 'Core Field T - Core Core Core Secondary Secondary
Felds: L Field A FieldB Fleldb Fielda FieldC
- 'Secondary .Ffeid A - Object 1 value | Value Value Value Value
o F Sec:mjdary rleld G > Object 2 Value | Value Value Value Value
‘Dataset A 1 Object3| Value | Valie | value | Value | Value
Dataset B
Dataset A:
Core:
- 'Core Field A
- 'Core Field 8
Fields
-‘Secondary Feld A’
- ‘Secondary Fiele B
Dataset B:
Core.
- 'Core Field B’
- 'Core Field C
Fields -
- 'Secondary Field A’
-'Secondary Field €'

US 11,704,322 B2

Sheet 1 of 7

Jul. 18, 2023

U.S. Patent

0¢

- [gLoid]
mmuﬁowﬁobmmbmﬁ

00L

a1 "914] uonewio)|
- [euoiuyaq 192igQ |

V9% Ol

STEA

ofHEA

oNEA

oNeA

onjeaA

TIHIN

SNEA

oNjeA

w”:m BA

oA

onNjeA

oN[eA

L 192040
€ 102lqo

Z 13lq0

O PRI

Aiepuodsg Aiepuodas

v pioid

O PRl
9109

g pPleid
2100

g8

aNeA

anjep

oNfeA

;

anjeA

anje

anjep

SNRA

anjeA

oNfeA

SN{BA

£13[q0
RACCICT

y

g Plaid

Alepuodoeg Asepuoosg

V Pleid

g Platd
2109

g8

V Pioid
3100

L ﬂﬁwmﬂ_o

) N

+
|8

2

loseie(

joseleq|

US 11,704,322 B2

Sheet 2 of 7

Jul. 18, 2023

U.S. Patent

- |0 pisi4 Alepuoossg, -
v Djoi4 Alepuooasg, -

spiaid
0 piaid 2100, -

g pIoi4 8107, -
8100

g} 19seie(
g Plel4 Alepuodss, -
VY piot4 Arepuodasg, -
Spiaid
g Ploi4 2107, -

'8100)

¥ laseie
” g 19se1eq
anjeA | enjea | enjep | £319940 vieseleq |
- T T | | .Slaseled
mﬂ_m\/ ws_m\/ wﬂ_m\/ N “Ummﬂo P ——

anjeA | enjep

....... N[eA | dnjeA

SNjeA | 9Nnjep

. 1
e e e e e T .

“opRE VpRH gpely 8PP VPRH m :spleld |
Aiepuodeg Alepuodss 2100 810D 3100 m ~ plai4 2107, - |
86 Y6 J8 g8 V8 q PRl 9109 -
m 12109
@M m Emwwmw;

s109{gQ pabisn oL { Eﬁcw

UoileuLIoUf feuoiliuyaq 1091q0

” ” N D Pistd Aiepuooag, -
onjleA | anjep | enep 1193140 | v pjeid Aiepuooas, -

L A A A e A A A L A e A A A e Al A AL A L A e A A A A AL A AL A e A e A A A A L "l L A AL AL AL A A AL A A L A e A AL A AL " L A L A AL AL AL g A . . g

JL 9l4

US 11,704,322 B2

I~
U
-
e,
@
Qs
e
9 |
onjeA on|eA aN|eA on|eA
e onN|eA onjeA anjeA oN|eA
—
5 anjeA on|eA an|eA anjeA
m p UWINJOD € UWNOD ZUWNOD | UWN|OD
- [A

SUWN]OY) pIal4 2107 109]9S 9sed|d

'L 19sele(q wioyj ejeq ajdwexy

.
iiiiiiiii

U.S. Patent
p
5
N~

US 11,704,322 B2

Sheet 4 of 7

Jul. 18, 2023

U.S. Patent

¢ Ol

012 WoISAg
asegeyeq ../

ADOTOLNO

A M A m A m A E A E A A R A R A N A A R R A R R S R R e R e B L R L B R L R L R R A S B L e S A R e R M e L R M A R R L R S e L B R e B S e L B L R R e L R L e S B L R S A R e R M e R M R R R L R R e L B R e L B R L B o R R A L R S R S R S R S A R A e R R

0102
103rgo
Viva

 $0Z 133 NI

e
e

L3
W dede dede —dem oA i e dr de ok owde s dede ol ke mdew el dede de ok rdec dede de ke cder oede A de de ke mde o e e - Ak = dew A e e e

i e A ol ke -de

60 ASVAVLILVO

IdA L 3svyg §2¢

SIN3INOIWOD Bl E

HOLI03

PV A A Ay e

3dAl ALHIdOYd 9Z¢C

ALHILONd O1C

US 11,704,322 B2

¥OLIQ3 FdA L 103r80 PCE prvovmvvmon ..

103rg0 107

Sheet 5 of 7

HWNT 200

Y

MOLIAT IdAL MNIT Q28 u._.:::..:::::wm S3dA L MNIT OES
\ w X

Jul. 18, 2023

U.S. Patent

ADOTIOLNO §O7

8§07 Isvavivg

Viv(]
O31-IGON
£0¢

ONictd Y ALH3d0Hd
~L03a0 10¢

HASAYL Z20¢

S3ASVEVIV(]
FOUNOS
IR ARE:
1ndN| 00€

e e o e o

AV 10V V0e

| AABUV A |
| FTNAOKW 300D gH0¢

HOLIAY H3ISUYH 72T

U.S. Patent Jul. 18, 2023 Sheet 6 of 7 US 11,704,322 B2

400 -~
\

Receive datasets, each dataset indicating
information associated with objects

O tionally: Modifying the dataset according to
? one or more cleaning processes ?

| Merge, for each object, information from |
different datasets based on object definitionalf
5 information f

Respond to queries received from clients

FIG. 4

US 11,704,322 B2

Sheet 7 of 7

Jul. 18, 2023

U.S. Patent

A
(S)LSOH

\ 0cY
N

OEOZC.MZ

AHGOM LN
quo._\

r/szmsz_\

| f:\
wmm'u

0ES
(S)43IAY3S

G 9ld

oom

81§

_________ modmﬂ.—mma—.z_ . . .Wwom
NOILYOINAWINOD (S)H0SS300Ud

OLS o 500

30IA3A _m_mw AYOWIN
JOVHOLS NIYIA

91§

T0dLINQD
JOSdNO

71S
30IA3C
1dNI

US 11,704,322 B2

1

RAPID IMPORTATION OF DATA
INCLUDING TEMPORALLY TRACKED
OBJECT RECOGNITION

CROSS-REFERENCE TO RELATED
APPLICATIONS

Any and all applications for which a foreign or domestic
priority claim 1s identified in the Application Data Sheet as
filed with the present application are hereby incorporated by
reference in their entirety under 37 CFR 1.57.

TECHNICAL FIELD

The present disclosure relates to systems and techniques
for data integration, analysis, and visualization. More spe-
cifically, this disclosure relates to importation and process-
ing of disparate datasets spread across computing systems.

BACKGROUND

A corporation may generate large quantities of informa-
tion, such as logs indicating user access, virtual private
network (VPN) connections, information associated with
employees, and so on, and may store this information in
numerous databases. These logs may include tables of
information, and may include millions, hundreds of mil-
lions, billions, and so on, rows of disparate items of infor-
mation with the logs imncluding little useful contextual infor-
mation. While the corporation may have a need to ask
complex questions whose answers are contained 1n combi-
nations of this data, being able to parse and process the
information presents large technical hurdles. For example, a
corporation may have an immediate need to rapidly 1dentily
computer systems that conform to a set of constraints (e.g.,
particular applications execute on the computer systems,
particular users have utilized the computer systems, the
computer systems are located in particular physical areas,
and so on).

Since disparate systems can, with some regular frequency,
generate logs, this mass of logs can pile up leaving the
corporation with little daylight into the imnformation. As an
example, a domain controller may generate logs associated
with security authentication requests. As another example,
logs may automatically be generated that specily user access
rights, for example based on an access control list. Both of
these types of logs may include information, which in
combination, can be useful to a reviewing user.

Additionally, incorporating new types of logs, updated
logs, modified logs, and so on, can result in deep-rooted
errors that can propagate through analyses being performed
based on the logs. Without systems and processes to rapidly
ingest and process logs, this log information can be of
limited use.

SUMMARY

As will be described, a technical scheme to rapidly
incorporate disparate log information related to various
objects (e.g., computer systems, users, any entity being
monitored), such that complex queries can be posed that
utilize some, or all of, information associated with one or
more objects. For example, particular logs (e.g., database
tables) may include information associated with a particular
type ol object (e.g., computer system), such as one or more
uniquely identifying values for each object (e.g., fully quali-
fied domain name, media access control address, and so on).

10

15

20

25

30

35

40

45

50

55

60

65

2

These particular logs may further specily secondary infor-
mation for each object, such as imnformation that describes a
context in which the particular logs were generated. As an
example, a first type of log may i1dentily unique computer
systems, and may further indicate user accounts used to
access the computer systems, applications that are installed
on the computer systems, a system role of the computer
system, and so on. As another example, a second type of log
identify applications utilized by user accounts during par-
ticular computing sessions. The system described herein can
utilize these example logs, along with multitudes of other
types ol logs, to quickly enable complex analyses. For
example, the system can enable a reviewing user (e.g.,
security oflicer) to determine whether a particular user
account utilized a particular application on specific com-
puter systems, computer systems of a particular system role,
and so on.

Based on large quantities of logs, or other structured or
unstructured information, the system can generate an onto-
logical representation of each object. For example, each type
of log may include a subset of information related to an
object that 1s of use to a reviewing user. The system can
ingest the large quantities of logs, and prepare an ontological
representation of the objects that includes the full set of
information related to each object of use to the reviewing
user.

As will be described, the user can generate information
utilized by the system to 1dentily unique objects, and further
utilized by the system to select particular columns of 1nfor-
mation that the reviewing user wishes to preserve. As an
example, the user can specily that for a user account object,
the user account 1s uniquely 1dentified by user account name,
and that the user prefers to preserve date ol creation,
locations from which the user account provides requests,
and so on. The user can specily the above information for
multitudes of datasets, logs, and so on, such that the system
can quickly generate a holistic view of each object. Option-
ally, the user can specity this immformation in a file, and
optionally as will be described the user can cause generation
of this information through interactions with one or more
user nterfaces. For example, a system can present a sum-
mary of each dataset to the user, and the user can quickly
select zero or more columns that are to be preserved. Based
on these selections, the system can generate the ontological
information for the objects.

Furthermore, particular events can be generated based on
the logs, with an event representing a particular occurrence
for which a reviewing user 1s interested. For example, the
reviewing user can indicate that the system is to generate
information indicating occurrences of (1) a particular system
(2) executing a particular application and (3) a particular
user account accessing the particular system and (4) using
the particular application within (5) a range of times. As will
be described, since the system has generated an ontological
representation of each object (e.g., computer system, user
account, application, and so on), the system can quickly
provide a response to the reviewing user with the requested
information.

In this way, the systems and methods improve the func-
tioning of the computer and recite technical benefits. For
example, the system enables complex analyses to be per-
formed using otherwise impenetrable data generated 1n the
normal course of any automated computer system’s €Xis-
tence. While this data can otherwise be stored for posterity,
or deleted after being stored for a threshold amount of time
(e.g., a month), the system described herein can preserve this
data for utilization by reviewing users. As an example of

US 11,704,322 B2

3

utilizing the data, a zero-day exploit may be released into the
wild, and a security officer may have a very immediate need
to 1dentity computer systems that could be affected. The
system can 1dentify all computer systems that were turned
on during a prior period of time, and which include a
particular application associated with the exploit. In addi-
tion, the system can identily the computer systems which
had the particular application activated, and further which
computer systems had particular actions performed via the
particular application, which computer systems were being,
utilized by a user account with particular permissions, and so
on.

This sort of rich analysis can be easily performed through
utilization of the system, which was not possible 1n prior
systems. Furthermore, the system can ensure that informa-
tion related to each object, which as described above can be
pulled from numerous dataset, 1s up to date. For example,
the system can store diflerent versions ol a same dataset,
such as datasets received periodically in time. If a reviewing
user requests to view current (e.g., up to date) information,
the system can use the most recently received version of
each dataset. As will be described, information from a
dataset can be propagated forward in time from when it was
received, such that the current information may include
older mmformation from a dataset that represents the most
recently received version of the dataset. Thus, the system
can track each object through time, and present current
versions ol information associated with each object.

Accordingly, 1n various embodiments, large amounts of
data are automatically and dynamically calculated interac-
tively 1n response to user inputs, and the calculated data can
be efliciently and compactly presented to a user by the
system. Thus, 1n some embodiments, the user interfaces
described herein are more etlicient as compared to previous
user intertfaces i which data i1s not dynamically updated and
compactly and efliciently presented to the user in response
to interactive inputs.

Further, as described herein, the system may be config-
ured and/or designed to generate user interface data useable
for rendering the wvarious i1nteractive user interfaces
described. The user interface data may be used by the
system, and/or another computer system, device, and/or
solftware program (for example, a browser program), to
render the interactive user interfaces. The interactive user
interfaces may be displayed on, for example, electronic
displays (including, for example, touch-enabled displays).

Additionally, 1t has been noted that design of computer
user interfaces “that are useable and easily learned by
humans 1s a non-trivial problem for soiftware developers.”
(Dillon, A. (2003) User Interface Design. MacMillan Ency-
clopedia of Cognitive Science, Vol. 4, London: MacMillan,
453-458.) The wvarious embodiments of interactive and
dynamic user interfaces of the present disclosure are the
result of significant research, development, improvement,
iteration, and testing. This non-trivial development has
resulted 1n the user interfaces described herein which may
provide significant cognitive and ergonomic ethiciencies and
advantages over previous systems. The interactive and
dynamic user 1nterfaces include improved human-computer
interactions that may provide reduced mental workloads,
improved decision-making, reduced work stress, and/or the
like, for a user. For example, user interaction with the
interactive user interfaces described herein may provide an
optimized display of time-varying report-related informa-
tion and may enable a user to more quickly access, navigate,
assess, and digest such information than previous systems.

10

15

20

25

30

35

40

45

50

55

60

65

4

Further, the interactive and dynamic user interfaces
described herein are enabled by innovations in eflicient
interactions between the user interfaces and underlying
systems and components. For example, disclosed herein are
improved methods of receiving user inputs, translation and
delivery of those mputs to various system components,
automatic and dynamic execution of complex processes 1n
response to the input delivery, automatic interaction among
various components and processes of the system, and auto-
matic and dynamic updating of the user interfaces. The
interactions and presentation of data via the interactive user
interfaces described herein may accordingly provide cogni-
tive and ergonomic efliciencies and advantages over previ-
Ous systems.

Various embodiments of the present disclosure provide
improvements to various technologies and technological
fields. For example, the interactions with information, such
as information stored abstractly in databases, cannot reason-
able be performed by humans alone. Similarly, displayed
data described below in reference to various embodiments
cannot reasonably be performed by humans alone, without
the computer technology upon which they are implemented.
Further, the implementation of the various embodiments of
the present disclosure via computer technology enables
many of the advantages described herein, including more
cilicient interaction with, and presentation of, various types
of electronic image data.

Additional embodiments of the disclosure are described
below 1n reference to the appended claims, which may serve
as an additional summary of the disclosure.

In various embodiments, systems and/or computer sys-
tems are disclosed that comprise a computer readable stor-
age medium having program instructions embodied there-
with, and one or more processors configured to execute the
program instructions to cause the one or more processors 1o
perform operations comprising one or more aspects of the
above- and/or below-described embodiments (including one
or more aspects of the appended claims).

In various embodiments, computer-implemented methods
are disclosed 1n which, by one or more processors executing
program 1nstructions, one or more aspects of the above-
and/or below-described embodiments (including one or
more aspects ol the appended claims) are implemented
and/or performed.

In various embodiments, computer program products
comprising a computer readable storage medium are dis-
closed, wherein the computer readable storage medium has
program 1nstructions embodied therewith, the program
instructions executable by one or more processors to cause
the one or more processors to perform operations compris-
ing one or more aspects of the above- and/or below-de-
scribed embodiments (including one or more aspects of the
appended claims).

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A 1illustrates a block diagram of an object moni-
toring system generating merged objects.

FIG. 1B 1llustrates a representation of object definitional
information being utilized to generate merged objects.

FIG. 1C 1llustrates an example user interface for deter-
mining object definitional information.

FIG. 2 illustrates one embodiment of a database system
using an ontology.

FIG. 3 1llustrates one embodiment of a system for creating,
data 1n a data store using a dynamic ontology.

US 11,704,322 B2

S

FIG. 4 1s a flowchart of an example process for generating,
merged objects referenced in datasets.

FIG. 5 illustrates a computer system with which certain
methods discussed herein may be implemented.

DETAILED DESCRIPTION

Terms

In order to facilitate an understanding of the systems and
methods discussed herein, a number of terms are defined
below. The terms defined below, as well as other terms used
herein, should be construed to include the provided defini-
tions, the ordinary and customary meamng of the terms,
and/or any other implied meaning for the respective terms.
Thus, the definitions below do not limit the meaning of these
terms, but only provide exemplary defimitions.

Ontology: Stored information that provides a data model
for storage of data in one or more databases. For example,
the stored data may comprise definitions for object types and
property types for data 1in a database, and how objects and
properties may be related.

Data Store: Any computer readable storage medium and/
or device (or collection of data storage mediums and/or
devices). Examples of data stores include, but are not limited
to, optical disks (e.g., CD-ROM, DVD-ROM, etc., magnetic
disks (e.g., hard disks, floppy disks, etc.), memory circuits
(e.g., solid state drives, random-access memory (RAM),
etc.), and/or the like. Another example of a data store 1s a
hosted storage environment that includes a collection of
physical data storage devices that may be remotely acces-
sible and may be rapidly provisioned as needed (commonly
referred to as “cloud” storage).

Database: Any data structure (and/or combinations of
multiple data structures) for storing and/or organizing data,
including, but not limited to, relational databases (e.g.,
Oracle databases, MySQL databases, etc.), non-relational
databases (e.g., NoSQL databases, etc.), in-memory data-
bases, spreadsheets, as comma separated values (CSV) files,
eXtendible markup language (XML) files, TeXT (TXT)
files, flat files, spreadsheet files, and/or any other widely
used or proprietary format for data storage. Databases are
typically stored in one or more data stores. Accordingly,
cach database referred to herein (e.g., 1n the description
herein and/or the figures of the present application) 1s to be
understood as being stored in one or more data stores.

Data Object or Object: A data container for information
representing speciiic things in the world that have a number
of definable properties. For example, a data object can
represent an entity such as a person, a place, an organization,
a market instrument, or other noun. A data object can
represent an event that happens at a point 1n time or for a
duration. A data object can represent a document or other
unstructured data source such as an e-mail message, a news
report, or a written paper or article. Each data object may be
associated with a unique i1dentifier that uniquely identifies
the data object. The object’s attributes (e.g., metadata about
the object) may be represented 1n one or more properties.

An object may be an 1tem or entity being tracked across
datasets. For example, an entity may be a computer system,
a user account, and so on. As will be described, an onto-
logical representation of each object can be generated. This
ontological representation can include information specific
to the object, such as core fields and secondary fields defined
below.

Object Type: Type of a data object (e.g., Computer
System, Person, Event, or Document). Object types may be

10

15

20

25

30

35

40

45

50

55

60

65

6

defined by an ontology and may be modified or updated to
include additional object types. An object definition (e.g., 1n
an ontology) may include how the object is related to other
objects, such as being a sub-object type of another object
type (e.g., an agent may be a sub-object type of a person
object type), and the properties the object type may have.

Dataset: A grouping ol information that specifies infor-
mation associated with objects. The dataset can be a data-
base table, structured information (e.g., JavaScript Object
notation iformation), unstructured mformation (e.g., a col-
lection of information), and so on. With respect to the
example of a database table, the database table can include
multiple columns and rows, with the columns indicating
fields of information associated with objects, and the rows
indicating particular values of the fields. For example, a field
can be associated with a unique identifier, and values for the
field (e.g., rows) can specily the umique 1dentifiers.

Properties: Afttributes of a data object that represent
individual data 1items. At a mimimum, each property of a data
object has a property type and a value or values.

Property Type: The type of data a property 1s, such as a
string, an integer, or a double. Property types may include
complex property types, such as a series data values asso-
ciated with timed ticks (e.g., a time series), etc.

Property Value: The value associated with a property,
which 1s of the type indicated 1n the property type associated
with the property. A property may have multiple values.

Link: A connection between two data objects, based on,
for example, a relationship, an event, and/or matching
properties. Links may be directional, such as one represent-
ing a payment from person A to B, or bidirectional.

Link Set: Set of multiple links that are shared between two
or more data objects.

Core Fields: Unique fields for objects, which can be
spread around multiple datasets. A core field can optionally
unmiquely identify each object, or may uniquely identily each
object in combination with one or more other core fields. For
example, a fully qualified domain name can be a core field
which may, in some embodiments, uniquely identily a
system (e.g., computer system laptop, and so on). As another
example, a name of a system may, 1n combination with a
physical location of the system, uniquely 1dentily the sys-
tem.

Secondary Fields: Information describing a context in
which a dataset was generated. For example, a secondary
field can include whether a system 1s a server, a system role
of a system, an address of a user, a phone number of a user,
and so on. The secondary fields can, as described above, be
particular columns in a database table. These secondary
fields can be utilized to describe an object, for example in an
ontological representation of the object as described above.
Overview

This specification describes a system (e.g., the object
monitoring system 100 described below) that can receive
disparate datasets associated with objects, and generate
merged objects from the datasets. For example, as described
above an object may include an entity being monitored (e.g.,
tracked) throughout the disparate systems. Example objects
can include systems (e.g., computer system, laptop, tablet,
wearable device, and so on), users (e.g., customers, network
accounts), applications (e.g., software applications execut-
ing on systems), vulnerabilities (e.g., soltware or hardware
vulnerabilities), and so on. As will be described, the system
can utilize object definitional information that defines one or
more types ol objects (e.g., system, users, applications, and
so on) to merge any identified objects 1n the datasets. For
example, the object definitional information can specity one

US 11,704,322 B2

7

or more core fields that uniquely identify objects of a
particular type (e.g., fully qualified domain name, user
account 1dentifier, email address, and so on), and particular
datasets that include one or more of the core fields. As
another example, the object definitional information can
specily one or more secondary fields, for example from
particular datasets, whose associated values are to be
obtained and stored with each object.

The system can 1dentity all unique objects of a particular
type, and using the object definitional information, can
generate an ontological representation of each object. For
example, the ontological representation can include, for each
object, the core fields and secondary fields spread through-
out the datasets. As will be described below, the system can
generate the ontological representation of an object based on
merging mformation associated the object from the disparate
datasets. For example, and with respect to the datasets being
database tables, the system can perform one or more join
operations with respect to particular identifying information
associated with the object.

As an example of a join operation, and with respect to a
system object type, the system can utilize fully qualified
domain names to merge objects specified 1n datasets. For
example, a first dataset can include multitudes of rows with
cach row specifying a particular fully qualified domain name
associated with a system. A second dataset can include
multitudes of rows each specilying a particular fully quali-
fied domain name associated with a system. The system can
merge (e.g., j10in) these two datasets such that a row from
cach dataset that specifies a same fully qualified domain
name can be merged. Additional join operations can be
performed, for example between datasets that do not include
same 1dentitying information. With respect to the first and
second datasets described above, a third dataset may not
specily fully qualified domain names. For this third dataset,
the system can join the third dataset based on other i1denti-
tying information that is shared with either, or both, of the
first and second datasets. As an example, a static internet
protocol (IP) address may be specified, such as an IPv6
address. The system can join the system objects described 1n
the third dataset based on their respective IPv6 addresses. In
this way, the system can merge information associated with
cach object, which 1s spread throughout multitudes of data-
Sets.

As will be described below, the object definitional infor-
mation may specily some, or all, of the information
described above to generate merged objects. For example,
and as will be described below with respect to FIG. 1B, the
object definitional information can specily types of objects
that are to be merged. That 1s, the object definitional
information can include diflerent sections, with each section
describing a respective object type. The object definitional
information can specily datasets that are to contribute to the
construction of a final object by indicating core fields and
secondary fields for each dataset. Additionally, the object
definitional information can include definitions regarding
how to join the datasets and coalesce the varying fields from
the datasets. Optionally, the object definitional information
can indicate 1n which datasets the above information can be
located. Optionally, the object definitional information can
specily datasets that may include information associated
with each type of object, and each dataset may further
indicate core fields, secondary fields, and so on, associated
with a type of object. In this way, the system can utilize the
object definitional information to (1) identify one or more
type of objects, (2) determine information to obtain from

10

15

20

25

30

35

40

45

50

55

60

65

8

cach dataset, (3) and merge the determined information
associated with each identified object.

As will be described, a particular user can rapidly gen-
crate this object definitional information, for example the
reviewing user can view a dataset and easily incorporate the
dataset 1n the object definitional information. Optionally, the
object definitional information can be a file (e.g., a text file),
that enables the particular user to quickly define the infor-
mation described above. Furthermore, and as will be
described below with respect to FIG. 1C, the system, or a
presentation system 1n communication with the system, can
present interactive user interfaces that include summary
information associated with datasets. This summary infor-
mation can 1dentily, for example, particular columns
included 1n the dataset. The particular user can interact with
the user interfaces to specity columns that are associated
with core fields and/or secondary fields. As an example, the
particular user can select columns to be designated as core
fields (e.g., with respect to a user device with a touch screen,
the particular user can select a column with a first pressure,
or for a particular duration), and optionally columns to be
designated as secondary fields (e.g., the particular user can
select a column with a second pressure, or for a different
duration).

Subsequent to generating the ontological representation
ol each object, the system can traverse through datasets and
store information indicating occurrences of each object. For
example, the system can obtain historical versions of each
dataset and store information indicating occurrences of each
object 1n the historical versions. As will be described below,
cach historical version can optionally be associated with a
respective time. An example of time can include a time at
which the dataset was generated, the time at which the
system received, or processed, the dataset, and so on.
Optionally, for datasets that specily timestamps, the system
can utilize the timestamp nformation. Thus, a first dataset
can be separated according to time, such as a time of 1ts
generation as described above. As will be described, a
reviewing user can utilize this time information for complex
queries 1n which time information may be useful. For
example, the reviewing user can specily information that,
based on a specified time, may be included one or more
particular versions of the first dataset.

However, each dataset may not include information for all
objects. As an example, a first dataset generated for a
particular time period (e.g., a particular day) may include
information for an example object. A second dataset gener-
ated for the particular time period may not include infor-
mation to the example object. For the subsequent time
period, the first dataset may not include information for the
example object, while the second dataset may include infor-
mation. To ensure that the reviewing user can view up to
date information, as will be described information from the
first dataset may be propagated forward to the subsequent
time period. As an example, the reviewing user can request
information associated with the example object at the sub-
sequent time period. Since the first dataset does not include
information for the subsequent time period, a naive imple-
mentation may provide the reviewing user with only infor-
mation Irom the second dataset. However as will be
described, the system can propagate the information from
the first dataset to the subsequent time period. In this way,
the reviewing user can access up-to date mformation from
all datasets.

FIG. 1A 1llustrates a block diagram of an object moni-
toring system 100 generating merged objects. As described
above, the object monitoring system 100 can receive data-

US 11,704,322 B2

9

sets (e.g., datasets A-B 1, 2) specitying mnformation associ-
ated with objects, and generate merged objects 20 based, at
least 1n part, on object defimtional information 10. The
object monitoring system 100 can be a system of one or
more computers, one or more virtual machines executing on
a system ol one or more computers, and so on. Additionally,
the object monitoring system 100 can be in commumnication
with one or more databases, distributed databases, data
storage systems, and so on. The distributed databases can
include multitudes of distributed worker nodes (e.g., sys-
tems of one or more computers, virtualizes resources execut-
ing on systems, and so on) that can process information (e.g.,
perform complex merge, join, store, load, operations) and
can parallelize tasks to increase performance.

In the example of FIG. 1A, a first table 6 A 1s 1llustrated
as being stored in dataset A 2. While the examples herein
describe tables, 1t should be understood that other structured
or unstructured mformation may be utilized. For example, a
JavaScript Object Notation (JSON) object may include
information associated with multitudes of objects. In a
JSON object, fields may be specified according to a particu-
lar format (e.g., attribute-value pairs), and the object moni-
toring system 100 can analyze the recerved JSON objects.
As another example, unstructured nformation may be
received. The object monitoring system 100 can analyze the
unstructured information for occurrences of particular 1den-
tifiers associated with objects. For example, the unstructured
information can specily a particular object and the system
can analyze the subsequent information according to one or
more processes. An example process could include the
subsequent information being stored i a known format
(e.g., information related to an object may be separated by
comma or colon).

The first table 6 A includes five columns that specily
information relating to objects 1-3. As 1llustrated, the first
column 1s associated with core field A 8A, and the second
column 1s associated with core field B 8B. As described
above, these core fields can specily unique nformation
associated with objects 1-3. While the 1llustration 1ndicates
these are core fields, the first table 6 A can include identifiers
assoclated with these columns. As will be described, the
object definitional information 10 can be utilized by the
object monitoring system 100 to determine which column
corresponds to a core field. Similarly, the first table 6A
includes two secondary fields 9A, 9B. As described above,
these secondary fields 9A, 9B, can represent a context for
which the first table 6 A was generated. Additionally, the
second fields 9A, 9B, can indicate information included 1n
the table 6A that a particular user, or the object monitoring,
system 100, prefers to store (e.g., store for posterity, such
that queries can be run against the information).

As an example, a secondary field 6 A can indicate a person
in charge of a department 1n which a system (e.g., objects
1-3 can represent systems) 1s located. This information may
be beneficial 1 a reviewing user needs to rapidly i1dentify
systems that may be subject to a particular exploit. For
example, upon identifying systems that may be subject to a
particular exploit, the reviewing user can then cause an
automatic notification to be presented for display to the
person 1n charge. Since this can be time-sensitive informa-
tion, the object monitoring system 100 can provide the
notification for real-time display to the person (e.g., an
application executing on a user device of the person may be
activated via the generated notification). Additional example
secondary fields can include a system role, MAC address, an
operating system type, applications installed on a system, a

10

15

20

25

30

35

40

45

50

55

60

65

10

domain associated with a system, whether a system 1s a
server, one or more user names of users who accessed a
system, and so on.

Second table 6B includes information related to objects
1-3, and includes core fields and secondary fields. Since
second table 6B 1s being obtained from dataset B4, second
table 6B may be generated for a different purpose than table
6A. For example, second table 6B may have been generated
by a domain controller. In contrast, first table 6 A may have
been generated via one or more systems that momtor for
vulnerabilities executing on other systems. As described
above, combinations of datasets can provide rich insights
into the complex functioning and interactions between vari-
ous objects. In the example described above, first table 6 A
may provide information associated with user accesses to
systems, and second table 6B may provide information
related to vulnerabilities. These two tables 6A, 6B, may
therefore inform whether a particular user accessed a system
later determined to have a detected vulnerability.

Thus, second table 6B can include zero or more of the
core fields which first table 6A 1ncludes. In the example of
FIG. 1A, second table 6B includes core field B 8B, which
was included 1n first table 6 A, and core field C 8C. Similarly,
second table 6B includes secondary field A 9A, which was
included 1n first table 6A, and secondary field C 9C. The
objects are indicated as being 1n a distinct order than the
objects 1n the first table 6A. Since the datasets are being
generated by disparate systems, for example based on occur-
rences of events, and so on, the datasets may, as an example,
not include objects 1n a same order. As 1llustrated, secondary
field A 9A includes a NULL value for object 3. As will be
described, the object monitoring system 100 can determine
a single value for any secondary field that 1s to be preserved
(e.g., stored 1n an ontological representation of an associated
object). For example, the object monitoring system 100 can
prefer to utilize a value from a particular dataset, and then
if the particular dataset lacks a value, can utilize a value from
a different dataset. As illustrated in FIG. 1B, object 3
includes a value for secondary field 9A, which as an
example may have been obtained from {first table 6A.

The object monitoring system 100 can receive dataset A
2 and dataset B 4 and generate merged objects 20. As will
be described 1n more detail below, these merged objects may
represent an ontological representation of each object. That
1s, each dataset can indicate a portion of the known infor-
mation related to each object. For example, dataset A 2, as
described above, may be associated with a domain control-
ler. Other datasets may be associated with virtual private
network logs, other types of access logs, user actions on
systems, and so on. Collectively, this information can be
combined to provide a more holistic view of each object.
The ontological representation of each object therelore
represents this more holistic view.

FIG. 1B illustrates a representation of object definitional
information 10 being utilized to generate merged objects 20.
As described above, the object definitional information 10
can specily imformation, which 1n some implementations,
may be suflicient to generate merged objects. As illustrated
in FIG. 1B, the object definitional information 10 1ncludes
textual data that can be utilized by the object monitoring
system 100 to merge information associated with same
objects that i1s spread around multiple datasets. In the
example of FIG. 1B, the object definitional information 10
represented 1s directed to a system type of object (e.g.,
‘entity’). The information 10 can include information

US 11,704,322 B2

11

directed to multiple types of objects, and a particular user
can rapidly define how the object monitoring system 100 1s
to mgest datasets.

A particular user can quickly enter the textual informa-
tion, for example based on viewing information from each
dataset. As an example, the object monitoring system 100
can collect (e.g., gather) all datasets being generated from
any system. With respect to datasets being generated by a
system, as described above numerous systems in a large
entity (e.g., corporation) may be routinely generating infor-
mation. For example, individual laptops, computers, and so
on, may generate system logs. Similarly, servers, active
directory systems, and so on, may generate multiple logs
cach specilying particular information. The object monitor-
ing system 100 can obtain these datasets from disparate
sources, and can present summary information to the par-
ticular user. As an example, the object monitoring system
100 can generate user interface information that indicates
identifiers associated with columns in datasets. The particu-
lar user can then specity the columns that are to be assigned
as core fields, and the columns that are to be assigned as
secondary fields.

Optionally, for any column specified as a core field, the
object monitoring system 100 can automatically select a
column with a same 1dentifier 1n a different dataset as being
a core field. Similarly, optionally the particular user can
specily 1dentifiers associated with core fields, and the object
monitoring system 100 can identify all datasets that include
the identifiers. Furthermore, optionally the object monitor-
ing system 100 can identily identifiers that comport with
identifiers specified by the particular user. As an example,
the particular user can specily that an internet protocol (IP)
address 1s to be a core field. The object monitoring system
100 can parse each dataset to determine whether any 1den-
tifiers of columns may be associated with an IP address. For
example, the object momitoring system can determine a
measure of closeness of each i1dentifier to the particular user
specified IP address (e.g., Levenshtein distance, based on a
technical thesaurus, and so on). In this way, the object
monitoring system 100 can determine that ‘IPv6’ corre-
sponds to IP address. Additionally, optionally the object
monitoring system 100 can determine whether a column 1s
associated with, for example, an IP address based on the
values 1indicated 1n the column. In the case of an IP address,
the object momtoring system 100 can determine whether the
values are numbers and whether they conform to the IP
address standard. Similarly, 1f the particular user specified a

MAC address, the object momitoring system 100 can deter-
mine whether the values conform to a MAC address stan-
dard.

As 1llustrated in the example of FIG. 1B, the object
definitional information 10 indicates that there are three core
fields (e.g., core fields A-C) that are to be identified 1n
datasets. Similarly, the object defimitional information 10
indicates that there are two secondary fields (e.g., secondary
ficlds A-B) that are to be i1dentified 1n datasets. The infor-
mation 10 further indicates datasets (e.g., Dataset A, Dataset
B) that are to be utilized to obtain information associated
with the type of object (e.g., “system™). The information 100
then specifies that dataset A includes core fields A and B, and
that dataset B includes core fields B and C. However as
described above, the object definitional information 10 can
indicate the three core fields (e.g., core fields A-C), and the
object monitoring system 100 can determine whether dataset
A or dataset B includes any of the core fields. Similarly, the
object definitional information 10 1ndicates that secondary
fields A and C are to be preserved from any dataset that

10

15

20

25

30

35

40

45

50

55

60

65

12

includes these secondary fields. As illustrated, the object
definitional information 10 specifies that dataset A includes
secondary fields A, B. Similarly, the object definitional
information 10 specifies that dataset B includes secondary
fields B, C.

Optionally, the object definitional information 10 can
specily a ranking of datasets for which a value specified 1n
a secondary field 1s to be obtained. As an example, a first
dataset may include a value for an operating system type of
a system. A second dataset may include a value for an
operating system type of the system. In some cases, these
values may conflict for the same system, due to data
integrity 1issues, propagation of inaccuracies, and so on.
Therefore, the object definitional information 10 can option-
ally specity that the value from the first dataset 1s preferred.
If the object monitoring system 100 analyzes the first dataset
and does not find a value (e.g., the value 1s NULL for
example), the object monitoring system 100 can then utilize
the second dataset.

Based on the object definitional information 10, the object
monitoring system 100 can process the received datasets to
identify all core fields and secondary fields included 1n the
received datasets. With respect to the object monitoring
system 100 being a distributed system, for example with
distributed worker nodes as described above, the worker
nodes can each process a portion of the datasets. The object
definitional information 10 can be provided to each worker
node, such that the worker node can identity information
that 1s to be preserved. In this way, the worker node can limit
an extent to which network calls (e.g., local area networks,
virtual networks) are required.

For each dataset, the object monitoring system 100 can
therefore 1dentily columns corresponding to core fields and
secondary fields. Subsequently, the object monitoring sys-
tem 100 can obtain the rows associated with these columns
and then merge the rows between datasets. As an example,
and as described above, the object definitional information
10 can indicate one or more core columns that are to be uses
for j01n operations. As an example, a core column can be an
email address of a user or a fully qualified domain name of
a system. The object monitoring system 100 can therefore
jo1n these disparate datasets, and obtain merged objects 20
indicating the core fields and secondary fields that were
previously spread around the datasets.

FIG. 1B illustrates an example representation ol merged
objects 20. As 1llustrated, objects 1-3 are included 1in the
representation 20, and each object 1s 1llustrated with 1its
associated core fields 8A-8C and secondary fields 9A-9B.
Similarly, the object monitoring system 100 may optionally
store information associated with each object 1n a different
dataset (e.g., diflerent table).

As will be described below, with respect to FIG. 4, the
object monitoring system 100 can generate a umique 1den-
tifier for each object that 1s based on its associated core field
values. For example, the object monitoring system 100 can
compute a hash (e.g., MD3) of the values indicated 1n core
ficlds 8A-8C. As an example, the object monitoring system
100 may not receive updated information for a particular
object for a lengthy time period. In this example, upon
receipt of one or more updated datasets, 1n which updated
information for the particular object 1s specified, the system
100 can 1dentity the particular object (e.g., according to the
core fields), and associate the updated information the
particular object’s historical information. Thus, this unique
identifier can be utilized by the system 100 to uniquely
identify an object, such that 1t can be monitored (e.g., over
time, creating a record of the object). Additionally, the object

US 11,704,322 B2

13

monitoring system 100 can identify all instances of each
object 1n the datasets. In this way, the object monitoring
system 100 can respond to queries that request information
from particular times (e.g., a particular time range, a par-
ticular time such as a day, and so on). When responding to
these queries, the object monitoring system 100 can generate
merged objects 20 based on datasets as they existed at the
particular times.

As described above, each dataset can be associated with
a particular time, such as a time of its generation, a time of
receipt by the object monitoring system 100, and so on. The
object monitoring system 100 can generate merged objects
20 based on the most recently received version of each
dataset. For the versions of a dataset, a particular object may
appear 1n a subset of the versions. That 1s, and as an
example, for a particular day the particular object might be
included in the dataset, and on a subsequent day the par-
ticular object may not be included in the dataset. Therefore,
the object monitoring system 100 can utilize information
from the particular day for the particular object until receipt
of updated information for the particular object.

For example, if the object momitoring system 100
received datasets A, B and C, the object monitoring system
100 can 1dentity whether a particular object 1s included 1n
cach of the datasets. Table 1 below 1llustrates three days that
datasets A-C were received, and whether the particular
object was referenced in datasets A-C.

TABLE 1

Dataset A Dataset B Dataset C
Day 1 X X
Day 2 X
Day 3 X

As 1llustrated in the above table, on day 1 datasets A and
B included information for the particular object. The object
monitoring system 100 can utilize core fields and secondary
fields 1included 1n datasets A-B to merge the information for
the particular object as described above. Additionally, 1if a
reviewing user provides a query that utilizes datasets A and
B, the object monitoring system 100 can utilize the infor-
mation from datasets A and B for the particular object when
responding.

On day 2, a new version of dataset B 1s received, with the
new version specitying information for the particular object
(e.g., updated information). Therefore, on day 2 the object
monitoring system 100 can utilize the mnformation from day
2 as the current state of the particular object. That 1s, the
object monitoring system 100 can replace the information
received for day 1 with the information received for day 2.
Thus, when responding to an example query received from
a reviewing user (e.g., a query requesting current informa-
tion), the object momitoring system 100 can utilize the day
2 information for the particular object. However, since the
object monitoring system 100 does not have information
from dataset A for day 2, the information from dataset A for
day 1 1s propagated forward to day 2. When the object
monitoring system 100 generates merged objects 20, as
described above, 1t will then use dataset A as recerved on day
1 along with dataset B as received on day 2. Additionally,
when responding to the example query the object monitoring,
system 100 can utilize the day 1 information of dataset A for
the particular object.

On day 3 dataset C 1s recerved, and as illustrated 1n the
table, dataset C includes information for the particular

10

15

20

25

30

35

40

45

50

55

60

65

14

object. Thus, the object momitoring system 100 can utilize
this new information when generating merged objects 20.
For example, the mnformation from dataset C can be incor-
porated based on the core fields and/or secondary fields
indicated 1n object definitional information.

The object monitoring system 100 can there ensure that
information for each object 1s based on a most up to date
version of the datasets that includes information for the
object. For instance, the table 1llustrated above can be on a
per object basis, such that information for each object can be
propagated forward 1n time.

As described above the object monitoring system 100 can
respond to queries that indicate particular times. For these
queries, the object monitoring system 100 can utilize infor-
mation from versions of datasets associated with the par-
ticular times. Similar to the above description of propagating
information, the object monitoring system 100 can ensure
that for a time 1ndicated 1n a query, the mnformation utilized
1s the most current for that time. As an example with respect
to Table 1, the object monitoring system 100 may receive a
query associated with day 2. For this query, the object
monitoring system 100 can utilize information for the par-
ticular object that 1s current as of day 2. As described above,
this information includes dataset A as received on day 1, and
dataset B as received on day 2.

FIG. 1C 1illustrates an example user interface 50 for
determining object definitional information. User interface
50 can be an interactive user interface presented on a user
device of a user, such as a laptop, tablet, computer, wearable
device, mobile device, and so on. Optionally, user interface
50 may be a document, such as a web page, that 1s presented
on the user device (e.g., rendered). For example, the user
device may present the web page, and interactions with the
web page may be processed, at least 1 part, via a web
application executing on an outside system (e.g., the object
monitoring system 100, a presentation system in communi-
cation with the object monitoring system 100). Optionally,
user 1nterface 50 can be presented via an application on the
user device (e.g., an ‘app’ downloaded from an electronic
application store).

As described above, object definitional information 10
can specily particular core fields and/or secondary fields that
are included 1n datasets. The information 10 can be quickly
speciflied, and the object monitoring system 100 can then
analyze the datasets to generate merged objects 20. The
examiner user mterface 50 can be utilized to automatically
generate object definitional information 10, such that users
can visually indicate core fields and/or secondary fields. As
illustrated, the user interface 50 includes example informa-
tion from ‘dataset 1°. The user interface 50 can automati-
cally populate with information from newly received data-
sets. As an example, the user interface 50 may present
information from the object monitoring system 100 indicat-
ing newly included datasets. A user of the user interface 50
can interact with the user interface 50 to specily particular
columns 1n a newly 1included dataset that are to be core fields
and/or secondary fields.

As described above, the user may select a column using
a touch screen, or optionally using a mouse, keyboard, and
so on. For example, the user may select column 1 52 and the
user interface 50 can optionally update to reflect the selec-
tion (e.g., column 1 52 can be shaded or colored differently
than remaiming columns). The selection can further indicate
whether column 1 52 1s to be a core field or a secondary field.
For example, the user can press for a particular length of
time or withun a particular range of forces to indicate a core
field or a secondary field. Additionally, upon selection of

US 11,704,322 B2

15

column 1 52, the user interface 50 can update to request
whether column 1 52 1s to be a core field or a secondary field.
Optionally, user interface 50 may automatically illustrate
particular columns that were indicated 1n other datasets as
being core fields and/or secondary fields. For example, i
dataset 1 describes users, the user interface 50 may auto-
matically cause a column indicating email addresses to be
highlighted, colored, shaded, and so on.

Optionally, user interface 50 may present a portion of
dataset 1. For example, a threshold number of rows from
dataset 1 may be included 1n the user interface 50. In this
way, a user of user interface 50 can quickly determine which
columns are to be selected. The user interface 50 may further
present a portion of multiple datasets, for example a thresh-
old number of datasets that have not been reviewed vet.
Optionally, user interface 50 can indicate identifiers of
columns of the datasets, and not present values included 1n
the columns. As an example, the user interface 50 can
present the 1dentifiers and a user of the user interface 50 can
select (e.g., select a check box, swipe left or right on the
identifiers, and so on) whether the 1dentifiers are to be core
fields and/or secondary fields.

Object Centric Data Model

To provide a framework for the following discussion of
specific systems and methods described herein, an example
database system 210 using an ontology 205 will now be
described. This description 1s provided for the purpose of
providing an example and i1s not intended to limit the
techniques to the example data model, the example database
system, or the example database system’s use of an ontology
to represent information. Optionally, the clustering behavior
determination system 100 may i1mplement {features
described herein.

In one embodiment, a body of data 1s conceptually
structured according to an object-centric data model repre-
sented by ontology 205. The conceptual data model 1s
independent of any particular database used for durably
storing one or more database(s) 209 based on the ontology
205. For example, each object of the conceptual data model
may correspond to one or more rows 1n a relational database
or an entry in Lightweight Directory Access Protocol
(LDAP) database, or any combination of one or more
databases.

FIG. 2 illustrates an object-centric conceptual data model
according to an embodiment. An ontology 205, as noted
above, may include stored information providing a data
model for storage of data in the database 209. The ontology
205 may be defined by one or more object types, which may
cach be associated with one or more property types. At the
highest level of abstraction, data object 201 1s a container for
information representing things in the world. For example,
data object 201 can represent an entity such as a person, a
place, an orgamization, a market instrument, or other noun.
Data object 201 can represent an event that happens at a
point 1n time or for a duration. Data object 201 can represent
a document or other unstructured data source such as an
¢-mail message, a news report, or a written paper or article.
Each data object 201 1s associated with a unique identifier
that uniquely 1dentifies the data object within the database
system.

Diflerent types of data objects may have different prop-
erty types. For example, a “Person” data object might have
an “Eye Color” property type and an “Event” data object
might have a “Date” property type. Each property 203 as
represented by data in the database system 210 may have a
property type defined by the ontology 205 used by the
database 205.

5

10

15

20

25

30

35

40

45

50

55

60

65

16

Objects may be instantiated 1n the database 209 1n accor-
dance with the corresponding object definition for the par-
ticular object 1n the ontology 205. For example, a specific
monetary payment (e.g., an object of type “event”) of
US$30.00 (e.g., a property of type “currency’) taking place
on Mar. 27, 2009 (e.g., a property of type “date”) may be
stored 1n the database 209 as an event object with associated
currency and date properties as defined within the ontology
205. The data objects defined in the ontology 205 may
support property multiplicity. In particular, a data object 201
may be allowed to have more than one property 203 of the
same property type. For example, a “Person™ data object
might have multiple “Address” properties or multiple
“Name” properties.

Each link 202 represents a connection between two data
objects 201. In one embodiment, the connection 1s either
through a relationship, an event, or through matching prop-
erties. A relationship connection may be asymmetrical or

symmetrical. For example, “Person” data object A may be
connected to “Person” data object B by a “Child Of1”
relationship (where “Person” data object B has an asym-
metric “Parent Of” relationship to “Person” data object A),
a “Kin Of” symmetric relationship to “Person” data object
C, and an asymmetric “Member Of” relationship to “Orga-
nization” data object X. The type of relationship between
two data objects may vary depending on the types of the data
objects. For example, “Person” data object A may have an
“Appears In” relationship with “Document™ data object Y or
have a “Participate In” relationship with “Event” data object
E. As an example of an event connection, two “Person’ data
objects may be connected by an “Airline Flight” data object
representing a particular airline flight 1 they traveled
together on that tlight, or by a “Meeting” data object
representing a particular meeting 11 they both attended that
meeting. In one embodiment, when two data objects are
connected by an event, they are also connected by relation-
ships, 1n which each data object has a specific relationship
to the event, such as, for example, an “Appears In” rela-
tionship.

As an example of a matching properties connection, two
“Person” data objects representing a brother and a sister,
may both have an “Address” property that indicates where
they live. If the brother and the sister live 1n the same home,
then their “Address™ properties likely contain similar, 1f not
identical property values. In one embodiment, a link
between two data objects may be established based on
similar or matching properties (e.g., property types and/or
property values) of the data objects. These are just some
examples of the types of connections that may be repre-
sented by a link and other types of connections may be
represented; embodiments are not limited to any particular
types of connections between data objects. For example, a
document might contain references to two different objects.
For example, a document may contain a reference to a
payment (one object), and a person (a second object). A link
between these two objects may represent a connection
between these two entities through their co-occurrence
within the same document.

Each data object 201 can have multiple links with another
data object 201 to form a link set 204. For example, two
“Person” data objects representing a husband and a wile
could be linked through a “Spouse Of” relationship, a
matching “Address” property, and one or more matching
“Event” properties (e.g., a wedding). Each link 202 as
represented by data 1n a database may have a link type
defined by the database ontology used by the database.

US 11,704,322 B2

17

FIG. 3 1s a block diagram 1llustrating exemplary compo-
nents and data that may be used in identifying and storing
data according to an ontology. In this example, the ontology
may be configured, and data 1n the data model populated, by
a system of parsers and ontology configuration tools. In the
embodiment of FIG. 3, input data 300 1s provided to parser
302. The mput data may comprise data from one or more
sources. For example, an institution may have one or more
databases with information on credit card transactions,
rental cars, and people. The databases may contain a variety
of related information and attributes about each type of data,
such as a “date” for a credit card transaction, an address for
a person, and a date for when a rental car i1s rented. The
parser 302 1s able to read a variety of source input data types
and determine which type of data it 1s reading.

In accordance with the discussion above, the example
ontology 205 comprises stored information providing the
data model of data stored 1n database 209, and the ontology
1s defined by one or more object types 310, one or more
property types 316, and one or more link types 330. Based
on information determined by the parser 302 or other
mapping of source mput mformation to object type, one or
more data objects 201 may be instantiated in the database
209 based on respective determined object types 310, and
cach of the objects 201 has one or more properties 203 that
are nstantiated based on property types 316. Two data
objects 201 may be connected by one or more links 202 that
may be instantiated based on link types 330. The property
types 316 cach may comprise one or more data types 318,
such as a string, number, etc. Property types 316 may be
instantiated based on a base property type 320. For example,
a base property type 320 may be “Locations” and a property
type 316 may be “Home.”

In an embodiment, a user of the system uses an object type
editor 324 to create and/or modily the object types 310 and
define attributes of the object types. In an embodiment, a
user of the system uses a property type editor 326 to create
and/or modily the property types 316 and define attributes of
the property types. In an embodiment, a user of the system
uses link type editor 328 to create the link types 330.
Alternatively, other programs, processes, or programmatic
controls may be used to create link types and property types
and define attributes, and using editors 1s not required.

In an embodiment, creating a property type 316 using the
property type editor 326 involves defining at least one parser
definition using a parser editor 322. A parser definition
comprises metadata that informs parser 302 how to parse
input data 300 to determine whether values 1n the mput data
can be assigned to the property type 316 that 1s associated
with the parser definition. In an embodiment, each parser
definition may comprise a regular expression parser 304 A or
a code module parser 304B. In other embodiments, other
kinds of parser definitions may be provided using scripts or
other programmatic elements. Once defined, both a regular
expression parser 304 A and a code module parser 304B can
provide mput to parser 302 to control parsing of mput data
300.

Using the data types defined 1n the ontology, mput data
300 may be parsed by the parser 302 determine which object
type 310 should recerve data from a record created from the
input data, and which property types 316 should be assigned
to data from i1ndividual field values 1n the mnput data. Based
on the object-property mapping 301, the parser 302 selects
one ol the parser definitions that i1s associated with a
property type 1n the mput data. The parser parses an input
data field using the selected parser definition, resulting 1n
creating new or modified data 303. The new or modified data

10

15

20

25

30

35

40

45

50

55

60

65

18

303 1s added to the database 209 according to ontology 205
by storing values of the new or modified data 1n a property
of the specified property type. As a result, input data 300
having varying format or syntax can be created in database
209. The ontology 205 may be modified at any time using
object type editor 324, property type editor 326, and link
type editor 328, or under program control without human
use of an editor. Parser editor 322 enables creating multiple
parser definitions that can successiully parse input data 300
having varying format or syntax and determine which prop-
erty types should be used to transform input data 300 into
new or modified mput data 303.

FIG. 4 1s a flowchart of an example process 400 for
generating merged objects referenced in datasets. For con-
venience, the process 400 will be described as being per-
formed by a system of one or more computers (e.g., the
object monitoring system 100). The process 400 may
include some, or all, of the below described blocks, and the
blocks may be performed by the system 1n any order.

The system receives datasets indicating information asso-
ciated with objects (block 402). As described above, datasets
can be generated based on occurrences of events (e.g., user
logins, system events, and so on), and can include informa-
tion associated with particular objects (e.g., users, systems,
user accounts, and so on). The system can receive the
datasets and, as described above, rapidly ingest the datasets
for processing.

The system optionally modifies the datasets according to
one or more cleaning processes (block 404). Since the
datasets may include raw data, the system can apply clean-
ing processes to adjust the datasets into a usable form. For
example, the system can remove white spaces, punctuation,
make values lower case, and so on. Additionally, the system
can extract values using regular expressions. As an example,
a particular column of a dataset may include valuable
information in information that can be discarded. The sys-
tem can extract the wvaluable information, such that the
cleaning dataset includes the valuable information.

The system merges information from different datasets
(block 406). As described above, with respect to FIGS.
1A-1B, the system can utilize information (e.g., object
definitional information) to generate merged objects. As an
example, the information can define a type of an object (e.g.,
system, user, application, and so on), and 1n which datasets
information for the type of object 1s included. Furthermore,
information can specily core fields for the type of object,
such as uniquely identifying information, and in which
datasets the core fields are located. Similarly, the informa-
tion can specily secondary fields that are to be retrieved for
the objects (e.g., contextual information associated with the
datasets).

The system utilizes the information to obtain all core
fields and secondary fields for each object. For example, the
system can join the datasets based on one or more of the core
fields, and then retain the core fields and secondary fields.
This information can then be stored, and as described above,
as information changes over time the system can monitor the
changes. For ease of referencing each object, the system can
generate a unique identifier for each object. As described
above, the unique 1dentifier can be a hash of the core fields,
and the system can utilize the hash to monitor the object as
information changes.

Based on the values of the core fields, the system can
traverse the datasets and 1dentily occurrences of each object
in the datasets. In this way, the system can store information
indicating datasets, and optionally times associated with
cach dataset, that each object was seen. For example, and

US 11,704,322 B2

19

with respect to Table 1 described above, the particular object
was seen by the system on days 1, 2, and 3. As described
above, the system can generate summary imformation for the
particular object any each of these days. As an example, on
day 1 the summary mformation would include information
from Datasets A and B, and on day 2 the summary infor-
mation would include information from Dataset A with
updated information for Dataset B, and so on. In this way,
the system can generate an up to date view of any object for
a specified time (e.g., a particular day). Therefore, the
system can generate merged information for each object, for
every point 1in time. That 1s, the system can obtain the core
fields and secondary fields for each object, based on all
versions of the datasets. As described above, with respect to
Table 1, different versions of datasets may be received over
time (e.g., periodic updates). The system can thus generate
historical versions of the merged nformation for each
object, such that summary information for each object can
be quickly presented to reviewing users. As an example, a
reviewing user may request information for a particular
application object, and the system can present up to date
merged information for the application object. Additionally,
the system can present historical merged information, so that
the reviewing user can view how the application object
changed over time. For example, the merged information
may specily computer systems that execute the application,
updates that have been made to the application, vulnerabili-
ties associated with the application, users who commonly
use the application, and so on.

Optionally, 1n addition to generating merged information
for each object, the system can create event objects for
particular occurrences. For example, the object definitional
information may specity particular events of interest, and the
system can analyze the datasets to identily events. The
system may record information describing the specified time
and/or duration of the occurrence of an event. An event can
specily one or more object types that are associated with the
event, e.g., the occurrence of two objects 1nteracting. As an
example, a particular event can indicate that a system object
type, a user object type, and an application object type, are
associated with the particular event. Additionally, datasets
that are to be utilized can be specified. Since each dataset, as
an example, can specily information for multiple objects, the
above system, user, and application, object types may
optionally be included 1n a same dataset. Additionally, the
object types may be spread around different datasets, and the
object definitional information can specily the datasets.

An event can further specily information for each object
type 1indicated 1n the event that 1s to be utilized. With respect
to the particular event described above, the system can
utilize particular information for each of the object types.
For example, a user name associated with each user object
can be obtained, along with an identifier of each system
object (e.g., global system resource ID) and a product name
and version of each application object. In this way, the
system can generate resulting information that very easily
illustrates users who utilize particular applications on par-
ticular systems.

The system responds to queries received from clients
(block 408). The system can receive queries from clients,
and using the above-described merged information and/or
event information, can respond. As described above, a query
can indicate current (e.g., most up to date) information, or
optionally can indicate that prior information be utilized. For
example, a query can specily that information 1s current as
of a prior date be utilized, or information 1s from within a
particular time period. As an example of a query, a particular

10

15

20

25

30

35

40

45

50

55

60

65

20

query can request a list of systems that have not been
rebooted 1n the last 24 hours, and that execute a particular

application. The system can analyze the particular query,
and based on the merged information, can determine sys-
tems 1ndicated as not having been rebooted (e.g., a second-
ary field can be included in the merged information 1ndi-
cating a time of last reboot). I a secondary field for the
system objects specifies applications, the system can easily
determine which systems execute the particular application.
However, if there 1s no corresponding secondary field, the
system can obtain merged information for the particular
application. This merged information can then be utilized to
determine systems on which the particular application
executes. The system can then provide a list of systems that
conform the particular query. Sitmilarly, a subsequent query
may request that the list specily systems for which the
particular application was actually utilized in the last 24
hours. The system can utilize merged information, for
example based on a dataset for each system that indicates
applications executed, to respond to the subsequent query.

Additional Implementation Details and
Embodiments

Various embodiments of the present disclosure may be a
system, a method, and/or a computer program product at any
possible technical detail level of integration. The computer
program product may include a computer readable storage
medium (or mediums) having computer readable program
istructions thereon for causing a processor to carry out
aspects of the present disclosure.

For example, the functionality described herein may be
performed as soltware instructions are executed by, and/or in
response to software 1nstructions being executed by, one or
more hardware processors and/or any other suitable com-
puting devices. The solftware instructions and/or other
executable code may be read from a computer readable
storage medium (or mediums).

The computer readable storage medium can be a tangible
device that can retain and store data and/or 1nstructions for
use by an instruction execution device. The computer read-
able storage medium may be, for example, but 1s not limited
to, an electronic storage device (including any volatile
and/or non-volatile electronic storage devices), a magnetic
storage device, an optical storage device, an electromagnetic
storage device, a semiconductor storage device, or any
suitable combination of the foregoing. A non-exhaustive list
of more specific examples of the computer readable storage
medium 1ncludes the following: a portable computer dis-
kette, a hard disk, a solid state drive, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), a static random access memory (SRAM), a por-
table compact disc read-only memory (CD-ROM), a digital
versatile disk (DVD), a memory stick, a tloppy disk, a
mechanically encoded device such as punch-cards or raised
structures 1n a groove having instructions recorded thereon,
and any suitable combination of the foregoing. A computer
readable storage medium, as used herein, 1s not to be
construed as being transitory signals per se, such as radio
waves or other freely propagating electromagnetic waves,
clectromagnetic waves propagating through a waveguide or
other transmission media (e.g., light pulses passing through
a fiber-optic cable), or electrical signals transmaitted through
a wire.

Computer readable program 1nstructions described herein
can be downloaded to respective computing/processing

US 11,704,322 B2

21

devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface 1 each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions (as also referred
to herein as, for example, “code,” “mnstructions,” “module,”
“application,” “software application,” and/or the like) for
carrying out operations of the present disclosure may be
assembler 1nstructions, instruction-set-architecture (ISA)
istructions, machine instructions, machine dependent
istructions, microcode, firmware instructions, state-setting
data, configuration data for integrated circuitry, or either
source code or object code written 1n any combination of one
or more programming languages, including an object ori-
ented programming language such as Smalltalk, C++, or the
like, and procedural programming languages, such as the
“C” programming language or similar programming lan-
guages. Computer readable program instructions may be
callable from other 1nstructions or from 1tself, and/or may be
invoked 1n response to detected events or interrupts. Com-
puter readable program instructions configured for execu-
tion on computing devices may be provided on a computer
readable storage medium, and/or as a digital download (and
may be originally stored i a compressed or installable
format that requires installation, decompression or decryp-
tion prior to execution) that may then be stored on a
computer readable storage medium. Such computer readable
program 1instructions may be stored, partially or fully, on a
memory device (e.g., a computer readable storage medium)
of the executing computing device, for execution by the
computing device. The computer readable program instruc-
tions may execute entirely on a user’s computer (e.g., the
executing computing device), partly on the user’s computer,
as a stand-alone software package, partly on the user’s
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, 1n order to
perform aspects of the present disclosure.

Aspects of the present disclosure are described herein
with reference to flowchart 1llustrations and/or block dia-
grams ol methods, apparatus (systems), and computer pro-
gram products according to embodiments of the disclosure.
It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks 1n the flowchart 1llustrations and/or block diagrams,
can be implemented by computer readable program instruc-
tions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,

2T L

10

15

20

25

30

35

40

45

50

55

60

65

22

special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
speciflied 1n the flowchart(s) and/or block diagram(s) block
or blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer 1mple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified 1n the tlow-
chart and/or block diagram block or blocks. For example,
the 1nstructions may 1nitially be carried on a magnetic disk
or solid state drive of a remote computer. The remote
computer may load the instructions and/or modules mto 1ts
dynamic memory and send the instructions over a telephone,
cable, or optical line using a modem. A modem local to a
server computing system may receive the data on the
telephone/cable/optical line and use a converter device
including the appropriate circuitry to place the data on a bus.
The bus may carry the data to a memory, from which a
processor may retrieve and execute the instructions. The
instructions received by the memory may optionally be
stored on a storage device (e.g., a solid state drive) either
betfore or after execution by the computer processor.

The flowchart and block diagrams 1n the Figures 1llustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present disclosure. In this regard, each block 1n the flowchart
or block diagrams may represent a module, segment, or
portion of 1nstructions, which comprises one or more
executable 1nstructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the blocks may occur out of the order
noted 1n the Figures. For example, two blocks shown in
succession may, 1n fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality involved. In
addition, certain blocks may be omitted 1n some implemen-
tations. The methods and processes described herein are also
not limited to any particular sequence, and the blocks or
states relating thereto can be performed 1n other sequences
that are appropnate.

It will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks 1n
the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems
that perform the specified functions or acts or carry out
combinations of special purpose hardware and computer
instructions. For example, any of the processes, methods,
algorithms, elements, blocks, applications, or other func-
tionality (or portions ol functionality) described in the
preceding sections may be embodied 1n, and/or fully or
partially automated via, electronic hardware such applica-

US 11,704,322 B2

23

tion-specific processors (e.g., application-specific integrated
circuits (ASICs)), programmable processors (e.g., field pro-
grammable gate arrays (FPGAs)), application-specific cir-
cuitry, and/or the like (any of which may also combine
custom hard-wired logic, logic circuits, ASICs, FPGAs, etc.
with custom programming/execution ol software instruc-
tions to accomplish the techniques).

Any of the above-mentioned processors, and/or devices
incorporating any of the above-mentioned processors, may
be referred to herein as, for example, “computers,” “com-
puter devices,” “computing devices,” “hardware computing,
devices,” “hardware processors,” “processing units,” and/or
the like. Computing devices of the above-embodiments may
generally (but not necessarily) be controlled and/or coordi-

nated by operating system software, such as Mac OS, 108,
Android, Chrome OS, Windows OS (e.g., Windows XP,

Windows Vista, Windows 7, Windows 8, Windows 10,
Windows Server, etc.), Windows CE, Unix, Linux, SunOS,
Solaris, Blackberry OS, VxWorks, or other suitable operat-
ing systems. In other embodiments, the computing devices
may be controlled by a proprietary operating system. Con-
ventional operating systems control and schedule computer
processes for execution, perform memory management,
provide file system, networking, 1/0 services, and provide a
user interface functionality, such as a graphical user inter-
tace (“GUI”), among other things.

For example, FIG. § 1s a block diagram that 1llustrates a
computer system 500 upon which various embodiments may
be implemented. For example, one or more computer sys-
tems 500 can optionally be the object monitoring system
100. Computer system 300 includes a bus 502 or other
communication mechanism for communicating information,
and a hardware processor, or multiple processors, 504
coupled with bus 502 for processing information. Hardware
processor(s) 504 may be, for example, one or more general
PUrpose miCroprocessors.

Computer system 500 also imncludes a main memory 506,
such as a random access memory (RAM), cache and/or other
dynamic storage devices, coupled to bus 502 for storing
information and instructions to be executed by processor
504. Main memory 306 also may be used for storing
temporary variables or other intermediate information dur-
ing execution of instructions to be executed by processor
504. Such 1nstructions, when stored 1n storage media acces-
sible to processor 504, render computer system 500 1nto a
special-purpose machine that 1s customized to perform the
operations specified 1n the instructions.

Computer system 300 further includes a read only
memory (ROM) 508 or other static storage device coupled
to bus 502 for storing static information and instructions for
processor 304. A storage device 510, such as a magnetic
disk, optical disk, or USB thumb drive (Flash drive), etc., 1s
provided and coupled to bus 502 for storing information and
instructions.

Computer system 500 may be coupled via bus 502 to a
display 512, such as a cathode ray tube (CRT) or LCD
display (or touch screen), for displaying information to a
computer user. An input device 514, including alphanumeric
and other keys, 1s coupled to bus 502 for communicating
information and command selections to processor 504.
Another type of user input device 1s cursor control 316, such
as a mouse, a trackball, or cursor direction keys for com-
municating direction mformation and command selections
to processor 504 and for controlling cursor movement on
display 512. This input device typically has two degrees of
freedom 1n two axes, a first axis (e.g., X) and a second axis
(e.g., v), that allows the device to specily positions 1n a

10

15

20

25

30

35

40

45

50

55

60

65

24

plane. In some embodiments, the same direction information
and command selections as cursor control may be imple-
mented via recerving touches on a touch screen without a
CUrsofr.

Computing system 500 may include a user interface
module to implement a GUI that may be stored 1n a mass
storage device as computer executable program instructions
that are executed by the computing device(s). Computer
system 500 may further, as described below, implement the
techniques described herein using customized hard-wired
logic, one or more ASICs or FPGAs, firmware and/or
program logic which in combination with the computer
system causes or programs computer system 500 to be a
special-purpose machine. According to one embodiment, the
techniques herein are performed by computer system 500 in
response to processor(s) 504 executing one or more
sequences of one or more computer readable program
instructions contained 1 main memory 306. Such nstruc-
tions may be read into main memory 306 from another
storage medium, such as storage device 510. Execution of
the sequences of nstructions contained 1n main memory 506
causes processor(s) 504 to perform the process steps
described herein. In alternative embodiments, hard-wired
circuitry may be used in place of or in combination with
soltware 1nstructions.

Various forms of computer readable storage media may be
involved 1n carrying one or more sequences ol one or more
computer readable program instructions to processor 504 for
execution. For example, the instructions may initially be
carried on a magnetic disk or solid state drive of a remote
computer. The remote computer can load the instructions
into its dynamic memory and send the instructions over a
telephone line using a modem. A modem local to computer
system 500 can receive the data on the telephone line and
use an 1nfra-red transmitter to convert the data to an infra-red
signal. An 1nfra-red detector can receive the data carried 1n
the mira-red signal and appropriate circuitry can place the
data on bus 502. Bus 502 carries the data to main memory
506, from which processor 504 retrieves and executes the
instructions. The instructions recetved by main memory 506
may optionally be stored on storage device 510 either before
or after execution by processor 504.

Computer system 300 also includes a communication
interface 518 coupled to bus 502. Communication interface
518 provides a two-way data communication coupling to a
network link 520 that 1s connected to a local network 522.
For example, communication interface 318 may be an
integrated services digital network (ISDN) card, cable
modem, satellite modem, or a modem to provide a data
communication connection to a corresponding type of tele-
phone line. As another example, communication interface
518 may be a local area network (LAN) card to provide a
data communication connection to a compatible LAN (or
WAN component to communicated with a WAN). Wireless
links may also be implemented. In any such implementation,
communication interface 518 sends and receives electrical,
clectromagnetic or optical signals that carry digital data
streams representing various types of information.

Network link 520 typically provides data communication
through one or more networks to other data devices. For
example, network link 3520 may provide a connection
through local network 522 to a host computer 524 or to data
equipment operated by an Internet Service Provider (ISP)
526. ISP 526 1n turn provides data communication services
through the world wide packet data communication network
now commonly referred to as the “Internet” 3528. Local
network 522 and Internet 528 both use electrical, electro-

US 11,704,322 B2

25

magnetic or optical signals that carry digital data streams.
The signals through the various networks and the signals on
network link 520 and through communication interface 518,
which carry the digital data to and from computer system
500, are example forms of transmission media.

Computer system 300 can send messages and receive
data, including program code, through the network(s), net-
work link 520 and communication interface 318. In the
Internet example, a server 530 might transmit a requested
code for an application program through Internet 528, ISP
526, local network 522 and communication intertace 518.

The received code may be executed by processor 504 as
it 1s recerved, and/or stored in storage device 510, or other
non-volatile storage for later execution.

As described above, 1n various embodiments certain
functionality may be accessible by a user through a web-
based viewer (such as a web browser), or other suitable
soltware program). In such implementations, the user inter-
face may be generated by a server computing system and
transmitted to a web browser of the user (e.g., running on the
user’s computing system). Alternatively, data (e.g., user
interface data) necessary for generating the user interface
may be provided by the server computing system to the
browser, where the user interface may be generated (e.g., the
user interface data may be executed by a browser accessing,
a web service and may be configured to render the user
interfaces based on the user interface data). The user may
then interact with the user interface through the web-
browser. User interfaces of certain implementations may be
accessible through one or more dedicated software applica-
tions. In certain embodiments, one or more of the computing
devices and/or systems of the disclosure may include mobile
computing devices, and user interfaces may be accessible
through such mobile computing devices (for example,
smartphones and/or tablets).

Many variations and modifications may be made to the
above-described embodiments, the elements of which are to
be understood as being among other acceptable examples.
All such modifications and variations are intended to be
included herein within the scope of this disclosure. The
foregoing description details certain embodiments. It will be
appreciated, however, that no matter how detailed the fore-
going appears 1n text, the systems and methods can be
practiced 1n many ways. As 1s also stated above, 1t should be
noted that the use of particular terminology when describing
certain features or aspects of the systems and methods
should not be taken to imply that the terminology is being
re-defined herein to be restricted to including any specific
characteristics of the features or aspects of the systems and
methods with which that terminology 1s associated.

Conditional language, such as, among others, “can,”
“could,” “might,” or “may,” unless specifically stated oth-
erwise, or otherwise understood within the context as used,
1s generally intended to convey that certain embodiments
include, while other embodiments do not include, certain
features, elements, and/or steps. Thus, such conditional
language 1s not generally intended to imply that features,
clements and/or steps are 1n any way required for one or
more embodiments or that one or more embodiments nec-
essarily include logic for deciding, with or without user
input or prompting, whether these features, elements and/or
steps are included or are to be performed 1n any particular
embodiment.

The term ““substantially” when used 1n conjunction with
the term “real-time” forms a phrase that will be readily
understood by a person of ordinary skill in the art. For
example, 1t 1s readily understood that such language will

10

15

20

25

30

35

40

45

50

55

60

65

26

include speeds in which no or little delay or waiting 1s
discernible, or where such delay 1s suthiciently short so as not
to be disruptive, irritating, or otherwise vexing to a user.

Conjunctive language such as the phrase “at least one of
X, Y, and 7Z,” or “at least one of X, Y, or Z.,” unless
specifically stated otherwise, 1s to be understood with the
context as used 1n general to convey that an 1tem, term, etc.
may be either X, Y, or 7Z, or a combination thereof. For
example, the term “or’” 1s used 1n its inclusive sense (and not
in 1ts exclusive sense) so that when used, for example, to
connect a list of elements, the term “or” means one, some,
or all of the elements in the list. Thus, such conjunctive
language 1s not generally intended to imply that certain
embodiments require at least one of X, at least one of Y, and
at least one of Z to each be present.

The term ““a” as used herein should be given an inclusive
rather than exclusive interpretation. For example, unless
specifically noted, the term “a” should not be understood to
mean “exactly one” or “one and only one”; instead, the term
“a” means “one or more” or “at least one,” whether used 1n
the claims or elsewhere 1n the specification and regardless of
uses ol quantifiers such as “at least one,” “one or more,” or
“a plurality” elsewhere 1n the claims or specification.

The term “comprising’” as used herein should be given an
inclusive rather than exclusive interpretation. For example,
a general purpose computer comprising one Or more pro-
cessors should not be interpreted as excluding other com-
puter components, and may possibly include such compo-
nents as memory, input/output devices, and/or network
interfaces, among others.

While the above detailed description has shown,
described, and pointed out novel features as applied to
various embodiments, 1t may be understood that various
omissions, substitutions, and changes 1n the form and details
of the devices or processes 1llustrated may be made without
departing from the spinit of the disclosure. As may be
recognized, certain embodiments of the inventions described
herein may be embodied within a form that does not provide
all of the features and benefits set forth herein, as some
features may be used or practiced separately from others.
The scope of certain inventions disclosed herein 1s indicated
by the appended claims rather than by the foregoing descrip-
tion. All changes which come within the meaning and range
of equivalency of the claims are to be embraced within their
scope.

What 1s claimed 1s:

1. A computer system comprising one or more computer
processors configured to execute software code to perform
operations comprising;:

recerving a plurality of datasets, the datasets indicating

information associated with one or more objects of a
plurality of objects, the datasets each comprising one or
more versions, each version being associated with a
time of generation or receipt;

accessing object defimtional information associated with

an object type, the object definitional information

usable to generate one or more merged unique objects

of the object type based on information joined from one

or more of the plurality of datasets, the object defini-

tional information indicating:

one or more core fields usable for unique 1dentification
ol objects,

one or more secondary fields comprising object-related
information, and

for individual datasets of the plurality of datasets, an
indication of a subset of the one or more core fields

US 11,704,322 B2

27

and one or more secondary fields for which the
individual dataset includes information;

generating, based on the object definitional information

and the one or more versions of the plurality of data

sets, one or more merged unique objects of the object

type, wherein each of the one or more merged unique

objects 1ncludes:

respective imnformation 1n the one or more core fields of
the respective merged unique object; and

respective mformation 1n one or more secondary fields
of the respective merged unique object,

wherein the information 1n the one or more core fields
and the information in the one or more secondary
fields 1s associated with one or more points 1n time
corresponding to versions of the plurality of data sets
from which the information 1s derived, and

wherein any information in the one or more core fields
and any mnformation in the one or more secondary
fields 1s propagated forward from a prior point in
time to a particular point in time when a version of
that information 1s not available for the particular
point 1n time; and

responding to a query received from a client, indicating a

request for information related to at least a first merged
unique object as of a specified time, wherein respond-
ing to the query comprises determining and providing
a version of the first merged unique object with infor-
mation as of the specified time.

2. The computer system of claim 1, wherein the secondary
fields reflect information included 1n the datasets which 1s to
be preserved.

3. The computer system of claim 1, wherein the opera-
tions further comprise generating the object definitional
information via a user interface, and wherein the user
interface enables user assignment of columns included 1n
datasets as core fields or secondary fields.

4. The computer system of claim 3, wheremn the user
interface presents summary information associated with the
datasets, and wherein for a particular core field assigned 1n
a particular dataset, instances of the particular field 1n other
of the datasets are i1dentified by the computer system.

5. The computer system of claim 1, wherein the opera-
tions further comprise:

receiving a first identifier associated with a core field;

identifying a first dataset which includes a column with

the first 1dentifier; and

determining one or more second datasets which includes

columns associated with the core field, wherein the
determination 1s based on one or more measures asso-
ciated with the first identifier and second 1dentifiers of
columns 1ncluded in the second datasets.

6. The computer system of claim 1, wherein generating
the one or more merged unique objects comprises accessing,
information indicating mformation to be utilized as a join
key and causing the joining of the datasets based on the join
key.

7. The computer system of claim 1, wherein the object
definitional information specifies a ranking associated with
a particular secondary field, and wherein the ranking indi-
cates that a first dataset which includes the particular sec-
ondary field is to be used 1nstead of a second dataset which
includes the particular secondary field.

8. The computer system of claim 1, wherein the specified
time indicates a time range, a current time, or a particular
prior time.

9. A method comprising:

by a system of one or more processors,

10

15

20

25

30

35

40

45

50

55

60

65

28

recetving a plurality of datasets, the datasets indicating
information associated with one or more objects of a
plurality of objects, the datasets each comprising one or
more versions, each version being associated with a
time of generation or receipt;

accessing object defimitional information associated with
an object type, the object definitional information
usable to generate one or more merged unique objects
of the object type based on information joined from one
or more of the plurality of datasets, the object defini-
tional information indicating:
one or more core fields usable for unique 1dentification

ol objects,

one or more secondary fields comprising object-related
information, and

for individual datasets of the plurality of datasets, an
indication of a subset of the one or more core fields
and one or more secondary fields for which the
individual dataset includes information;

generating, based on the object defimtional information

and the one or more versions of the plurality of data

sets, one or more merged unique objects of the object

type, wherein each of the one or more merged unique

objects 1ncludes:

respective information in the one or more core fields of
the respective merged unique object; and

respective mformation in one or more secondary fields
ol the respective merged unique object,

wherein the information 1n the one or more core fields
and the information in the one or more secondary
fields 1s associated with one or more points in time
corresponding to versions of the plurality of data sets
from which the information 1s derived, and

wherein any information in the one or more core fields
and any information in the one or more secondary
fields 1s propagated forward from a prior point 1n
time to a particular point in time when a version of
that information 1s not available for the particular
point 1n time; and

responding to a query, received from a client, indicating

a request for information related to at least a first
merged unique object as of a specified time, wherein
responding to the query comprises determining and
providing a version of the first merged unique object
with information as of the specified time.

10. The method of claim 9, wherein the secondary fields
reflect information included in the datasets which 1s to be
preserved.

11. The method of claim 9, wherein the method further
comprises generating the object definitional information via
a user interface, and wherein the user interface enables user
assignment ol columns included 1n datasets as core fields or
secondary fields.

12. The method of claim 11, wherein the user interface
presents summary nformation associated with the datasets,
and wherein for a particular core field assigned 1n a particu-
lar dataset, instances of the particular field i other of the
datasets are identified by the system.

13. The method of claim 9, wherein the method further
COmprises:

recerving a first identifier associated with a core field;

identifying a first dataset which includes a column with

the first identifier; and

determining one or more second datasets which includes

columns associated with the core field, wherein the
determination 1s based on one or more measures asso-

US 11,704,322 B2

29

ciated with the first identifier and second 1dentifiers of
columns included 1n the second datasets.

14. The method of claim 9, wherein generating the one or
more merged unique objects comprises accessing mforma-
tion indicating information to be utilized as a join key and
causing the joining of the datasets based on the join key.

15. The method of claim 9, wherein the object definitional
information specifies a ranking associated with a particular
secondary field, and wherein the ranking indicates that a first
dataset which includes the particular secondary field 1s to be
used 1nstead of a second dataset which includes the particu-
lar secondary field.

16. The method of claim 9, wherein the specified time
indicates a time range, a current time, or a particular prior
time.

17. A computer program product comprising non-transi-
tory computer storage media, the computer program product
storing instructions that when executed by a system of one
or more computer processors cause the system to perform
operations comprising;:

receiving a plurality of datasets, the datasets indicating

information associated with one or more objects of a
plurality of objects, the datasets each comprising one or
more versions, each version being associated with a
time of generation or receipt;

accessing object definitional information associated with

an object type, the object definitional information

usable to generate one or more merged unique objects

of the object type based on information joined from one

or more of the plurality of datasets, the object defini-

tional information indicating:

one or more core fields usable for unique 1dentification
ol objects,

one or more secondary fields comprising object-related
information, and

for individual datasets of the plurality of datasets, an
indication of a subset of the one or more core fields
and one or more secondary fields for which the
individual dataset includes information;

generating, based on the object definitional information

and the one or more versions of the plurality of data
sets, one or more merged unique objects of the object
type, wherein each of the one or more merged unique
objects 1ncludes:

10

15

20

25

30

35

40

30

respective information in the one or more core fields of
the respective merged unique object; and

respective mformation 1n one or more secondary fields
of the respective merged unique object,

wherein the information in the one or more core fields
and the information in the one or more secondary
fields 1s associated with one or more points 1n time
corresponding to versions of the plurality of data sets
from which the information i1s derived, and

wherein any information in the one or more core fields
and any information in the one or more secondary
fields 1s propagated forward from a prior point in
time to a particular point in time when a version of
that information 1s not available for the particular
point 1n time; and

responding to a query received from a client, indicating a
request for information related to at least a first merged
unique object as of a specified time, wherein respond-
ing to the query comprises determining and providing
a version of the first merged unique object with 1nfor-
mation as of the specified time.

18. The computer program product of claim 17, wherein
the secondary fields reflect information included in the
datasets which 1s to be preserved.

19. The computer program product of claim 17, wherein
the operations further comprise:

recerving a first identifier associated with a core field;

identifying a first dataset which includes a column with
the first 1dentifier; and

determining one or more second datasets which includes
columns associated with the core field, wherein the
determination 1s based on one or more measures asso-
ciated with the first identifier and second identifiers of
columns included 1n the second datasets.

20. The computer program product of claim 17, wherein
the object definitional information specifies a ranking asso-
ciated with a particular secondary field, and wherein the
ranking indicates that a first dataset which includes the
particular secondary field 1s to be used 1nstead of a second
dataset which includes the particular secondary field.

¥ ¥ # ¥ ¥

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 11,704,322 B2 Page 1 of 1
APPLICATION NO. :17/249585

DATED : July 18, 2023
INVENTOR(S) : Samuel Jones et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims
Column 27, Line 23, Claim 1, delete “query” and insert -- query, --.

Column 30, Line 17 (approx.), Claim 17, delete “query” and 1nsert -- query, --.

Signed and Sealed this
B Third Day of _ctober, 2023

.
3

; 3 P

Katherine Kelly Vidal
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

