US011704275B2

a2 United States Patent (10) Patent No.: US 11,704,275 B2

Tan et al. 45) Date of Patent: Jul. 18, 2023
(54) DYNAMIC PRESENTATION OF (58) Field of Classification Search
INTERCONNECT PROTOCOL CAPABILITY None
STRUCTURES See application file for complete search history.
(71) Applicant: Intel Corporation, Santa Clara, CA (56) References Cited
(US)

U.S. PATENT DOCUMENTS

(72) Inventors: Kuan Hua Tan, Coquitlam (CA); Eng

Hun Ooi. G t MY): Ano L. 6,647,434 Bl 11/2003 Kamepalli
Cun 'ﬂOl,, gige own (); Ang Li, 2002/0194400 A1 12/2002 Porterfield
oquitlam (CA) 2009/0222814 Al* 9/2009 Astrand GO6F 9/45537
718/1
(73) Assignee: Intel Corporation, Santa Clara, CA
(US) * cited by examiner
(*) Notice: Subject to any disclaimer, the term of this Primary Examiner — Scott C Sun

patent 1s extended or adjusted under 35 (74) Attorney, Agent, or Firm — Alhance IP, LLC

U.S.C. 154(b) by 156 days.
(57) ABSTRACT

A device connected by a link to a host system can include a
first port to receive a capability configuration message
across a link and a message request recerving logic com-
prising hardware circuitry to identify a capability of the

(21) Appl. No.: 17/387,261

(22) Filed: Jul 28, 2021

(65) Prior Publication Data device i1dentified in the capability configuration message,
US 2021/0357350 Al Nov. 18, 2021 determine that the capability 1s to be presented or hidden
Related U.S. Application Data from operation based on a capability hide enable bit 1n the

capability configuration message, and configure a capability
(62) Drvision of application No. 16/513,941, filed on Jul. linked list to present or hide the capability based on the

17, 2019, now Pat. No. 11,080,223. determination. The device can also include a message
response generator logic comprising hardware circuitry to
(51) Imt. Cl. generate a response message indicating that the capability 1s
GoOol 15/42 (2006.01) to be presented or hidden from operation. The device can
Goorf 9/445 (2018.01) include a second port to transmit the response message
(52) U.S. CL across the link.
CPC GO6I" 13/4221 (2013.01); GO6F 9/44505
(2013.01); GOO6F 2213/0026 (2013.01) 25 Claims, 14 Drawing Sheets
200 stem am Host 202 stem
\
- ;uper User {BIOS/System OS5} 204
s: ?
:I Host Application Layer 206 ;
Reguest Ge'g'neratar Respdnse Receiver
210} joa
%) Jo!
CAP_CFG_WR_REQ CAP_CFG_WR_RSP
P |
Int;thEnect Stack [T!.{?tfﬂ} 208
m““j ﬁ; i‘..
o mergheunblies

In_j;eft'ﬁnnect Transaction i.ayé'r.‘
interconnect Stack 234

Next Capability Linked List

'ﬂ'
‘-ﬂ‘
-

T A K
CAF_!:FG__TWR__HEQ @ CAP_CFG_WR_RSP
Yy : il
Reguest Recelver Capability Pointer Response Generator
230 switch 228 232

"-.,‘ -. Capability Structure __."'
“htu‘ Tab!e m -"'

Device Application Layer 224

Davice 223

U.S. Patent

Jul. 18, 2023

Sheet 1 of 14 US 11,704,275 B2

CORE 103

V]

Rename f Allocator 130

Arch Rey Arch Reg
151;&3 I81p EQE &

Power Controf

CORE 102

Arch Reg
1025

Arch Reg

ST8 gnd I-TLS 121

Decode g

R

&

Renogme / Allocator §313

o

Scheduler / Execution Scheduler / Execution

Unit{s; i40 Unit{s} 147
Reorder / Retirement Reorder / Retirement
{init 135 {init 136

{ower level D-Cache

and D-TLB 150

Device 180

ower ievel D-Cache
and D-TLE8 151

On-Chip Interface i3

100

105

e [[122 [z menmensy

FiG. 1

U.S. Patent Jul. 18, 2023 Sheet 2 of 14 US 11,704,275 B2

200

\

Host 202

Super User {BIQS/System 08} 204

Host Application Layer 206

Reguest Generator Response Recsiver
£10 232

interconnect Stack {TL/DL/PL} 208

~ .

7 ~.
12200

e,

interconnect PL/DL Layers

interconnect Transaction Layer

interconnect Stack 234

Next Capability Linked List
232

Regquest Regaiver Lapability Pointer Response Generator
230 Switch 228 232

Capability Structure
Table 228

Device Appiication Layer 224

Device 222

5. 2

U.S. Patent

200

\

Jul. 18, 2023

Sheet 3 of 14

US 11,704,275 B2

Host 202

Super User {BIQS/System 08} 204

2
1
!
&
|
|
2
I'
'
i
;
'

Reguest ﬁei'aemtm
2104

iﬁ_ﬁ&fﬁ'&ﬁneﬂ Transaction i.ayé‘a',‘

L

L

#
#
'
§

CAP CFG_RD REQ

Reqguest Receiver

230

“"“‘ Z | ™ :
“_ 220 k

T,
—
ey i7' ‘1.

- |
b %

]

interconnect Stack 234

»

Host Application Layer 206

Regm;;ma Receiver
r 2312

»

CAP_CFG_RD RSP

L 4
*

intercorinect PL/DL Layeéss

____—__“--_P

Next Capability Linked List

£33

Lapability Pointer
Swittch 228

Capability Structure
Table 2286

Device Appiication Layer

Device 222

i, 3

inteftqninect Stack (TL/QX/PL) 208

b

v A
CAP CFG_RD RSP

Response Generator
234

-
-
-
“‘ -
» -
"- -ﬂ-
=]
L " T - - -
el £ F g YUY R

US 11,704,275 B2

¥ Bid

Sheet 4 of 14

Jul. 18, 2023

U.S. Patent

4547 Ay D4 4V
ﬁmmmﬁ‘ﬂ&&‘gmm%mmgu
< o “ " “
BUNIINAS Ajlgeded
“ ﬁm@mwﬁwﬂ\m@%ﬁm mhﬂwuﬂhwm . ”
Avnqedes suiuiaisg
m - 034N B4 dYD m

ST EIETETS)
BsusUsey

~

T ETErEr R

3807 FEEXEREYY)
Appigede) EERIVETY

e

e

.r?-.-ljlllllllgl.-.r

TR EINETS)
Senboy
/;r

FETYERFTY
BEUOUSSY

ETBEL T

_
1S0H

U.S. Patent

£00

US 11,704,275 B2

Jul. 18, 2023 Sheet 5 of 14

Host 202

Reguest Ge?s&mmr Respgnse Receiver

210} {212
CAP CFG WR REQ CAP CFG_WR RSP
Intefeqninect Stack {TL/QH/PL) 208
~
N 12200 N,
s o %
intercarinect PL/DL Layées
............_._...._...................___...._.._.._..__.__..',.f._____..__.._..___.__‘!..;. ______________
interfonnect Transaction Layes,
,.*'“ interconnect Stack 234 “n,
;' Next Capability Linked List “-‘
CAP CFG_WR_REQ CAP CEG WR_ RSP
Capability Pointer Response Generator
Switch 228 232
"..‘ *-.. Capability Structure ,f'
“u“ Tabge m @ ,:"-

"
-
- -
ttttt
- -
nnnnn
- -

Device Application Layer 224

Devige 222

5. 5

US 11,704,275 B2

Sheet 6 of 14

Jul. 18, 2023

U.S. Patent

9 L4

1 . - . . .

| i ! : ; :

1 ' : : . .

H I : : , ._

H . : ; . ._

1 y : : . .

1 - : ; u .

1 ' ; : . ._

1 . : : . .

1 : : ; . .

H - : : . -

1 ’ : : . .

1 ' : : i ._
H [: ;

1 ’ : ; ._ .

1 - . .

1 ; : ; .

H - i .

1 s : ; .

E) . : :

| ' : : :

H ' . .

H h . ._

1 ' . . ._

I - : ﬂ -

2

M d]

1 - ' _ _ .

1 - : - : .

F 3 :

] H : ; -

A S P F i '

£ 3 :

¥ 1 :

E 3 :

i 3 i

v 3 '

H s : :

H H : :

M : : ; .

1 - : . ._

1 C : ; . _.

N ; ; :

" i : :

“ : . :

¥ 3 i

% 3]

H 3 '

¥ 1 :

H 3 '

¥ : '

H 3 :

H ! ‘

H 3 '

¥ H -

¥ - ‘

H 3 '

¥ - '

H 3 ‘

H H '

* - ‘

H 3 '

H 3 '

¥ A '

- 3 ‘

4 3 -

H 3 '

H 3 '

¥ 3]

3 -

1 \

351] POdUl] 9N10NA3S m
Aupaede) ALpow

|
“
m

LORRULICEN SUI1IaS
UOREINZLU0T 3INIINIS
Asiedes 10BN

- DI UM DI AV S BE— —
24330435 Aungedes
“ 2Py 40 RSB

YRR RS RIE L] FEXSERERY) NS EIETETS) EEVYERESY

IB%11 JO0
EVGR LY AGedey STERTAETY Senboy TV CET] it >
//};;Eé 555555555555555555 _ - o _ I \ / B \\x\\
B3RS _
350

-

3jgeus BpIH Auigede]

US 11,704,275 B2

£ BIAG BIBG Z 93Ag 3R | ¥ 33A8 BIEQ {3 33Ag BIRQ
(3 G807 JUBRaI3Ig (31 433153nbay BHBRA

30AL m
=t B3BESIAL JOBUBA 2007 5% oI \ KBPU SIQRE SIS Aligede
o ™,
-
I~
,_w {3 AOPUBA
- UOIISUNY | J3GLUWINR 33ABG JBGUNN SNG

DSBS AODUBA
o apo7 B3essai 88 £33 J215anoN
=
3

3 X
< 8us1 wo| v GOV nlu| or [u| e vo

glilzlelvlslslelolz|zlelplelalslolzlzlelv|lslslil|loglTlelelpls]lall
£ 314G 7 31Ag T 31Ag 3 31AG

U.S. Patent

B4

Ve Eid

W00 01 195 S pIsl SIUT TISN ssipgeden

ST UL SIS IPUOILIDDE OU S48 243UT J CI15H SSIngeded ayl u

LIS IXSU L0 UOHIED0! UL 01 ZUuod a0e0s uoneInsiiuesy s Uoiosung
347 OUL 19510 UR $3RIA0 DISY S — 483U04 Auiigede KN

US 11,704,275 B2

Y10 01 19% gf Aupgeded

LI 151 ALBOBCED SHUL WIBL SU0 AJUD 3ABY ABWL UOIIDUNY Yoy
AIGEdED JUBWSERURN MO

D BY1 St 51T 1EYL 3182IPUL O3 YTQ SUINIBL i3y SIYL ~ G Aupigede)

) SEINGISIIY uondiasaq sisifoy UOIIeI07 1Y
S I _ N
'
> _
2 oddang 720
s O0UNS 1
LN ANy
" (1503 UOIeZHRIBILE 31i3ads 30IAB(
~ 3] 01 WINIaY U0 SSSUINRSY SIRIDSIL
= $3003 I
= UOISIRA
-

(i Anjigede) I3 Alpgede oN | -

BAOOUNS JiAlS

U.S. Patent

88 "4

'SHG BB JO SISN BUNLN JOL AMO]E O WBUL YSBEL 15N BJBMIL0S USnoyie
GO0 $2 paluswsidilll 80 1SNW DU PRAIDSOY 28 J8SH0 S1UT 10 53 7 101109 aly
Y440 UBYL 1218248 J0 {SaIarae 1O 151 SUBBUILLIBY 104} YONO 18418 3Y shemyp
1SR SNUL DU 82edS UDIRINSHUO) 3anedWisd-1Nd 10 SUIUIEaG 2yl 01 9A11RS)
SHIS510 $1U1 B0RAS UONBINZLUOY U DIIUSWSICLI SSIMIgRde) DapUIINT 10
SRaedeT 10 1S PENUN U UL ISIXS SLUSH JBUI0 OU 4 OO0 1O 24NT0N1S Allilgedes
O SERICNT (4 1HSU UL 01 135K 4L SUIRIU0D RDISY SIU] ~ 33550 AUNORUR™Y IXSN STANNS

US 11,704,275 B2

"BIEMBIOS 10 2080 18UT YA S10I1RdLU0D § 1BUT 3UN1oNJIS

Ajigedeny e UIZIU0D HIM SIBQUUINnU UDIsSIaa Aljigeden) y4ons Aue guiIcdsd sUCIBun

SE‘UBIILM §1 SJBMILOS BUL USUM PBULSD JBCINU 1SaYBIU BU1 01 (BnD3 Jo Ueyl

JBIEBIE 318 IBYT SISGLUINU UCISIBA Aliigede] S0 03Ul 1STW 3J2ML0S "ajgneduos

-SJEMIIOS B0 IS BUNIONIIS AlBIgede) U 01 S3ZUBLYD UONS HY RIS SIUT JUSWBI0

03 Pa1uwIad st {piay AligedeD Mau & UBN0JYL 793} SjBILIIUSH 35IMIBUI0 10U

SH1BUL ABM B UL AJHIGRAR) DBPUBINT 8U1 S83uUBLD 1BYL UCIIBILIDaTS U] JO UBISIBA Y

FUSSBA0 BANIONILS ALpgede UL 10 UBISIaA U}

Oy SITEIPU] JBYY JIBGUUNU UDISIBA PBULSP DIS-{Dd B Si Pidi SIYL —~ usissapn Aujigede]

Sheet 9 of 14

Augedes papUIBnd 341 10 18WLOL PUB 2UNIBY U] S31R3IDU
{3 1241 I3GUINU G PaULIBP DIS-{Dd B Si P31 SiU] — (G AMKIedE] papuaixy $534dK3 134
SSINGLINY UOIITLIBSE0] 1915150 MOIE30T 1S

Jul. 18, 2023

UOISISA Ajigeaden

(1 Afigede]) papusixng ssaldxy (D4 13540 Alljigede) 3N

U.S. Patent

US 11,704,275 B2

Sheet 10 of 14

Jul. 18, 2023

U.S. Patent

ALOLUS L
(UBISAS

L6

& B4

76 adnsg Of]

516 4riH J2[jOIU0 S

506

506

108533044

i

OF6 1010431332y 52i4d0ag

[

U.S. Patent

Jul. 18, 2023 Sheet 11 of 14 US 11,704,275 B2

“ il
- A Vo (] i *
x 4 Py Py - - y . - "
- i - ~ . . . =
) F 2F C o * a
N .] . + e VK £ v, 4" h
-. -..- . -. -‘- . -* t.-." . . -'.--' - t--
[e au ranm e vy rouan,
L TR et e o e e e e e e T S T i e i i e HagHut il i e S
. . N E r . . \ . . . ' ' - - .
M . . a . A 2 M .
v - ¥ * 4 ' " r . 3 r - X . - . \ ; + . . K L
- '] - . - 1 ' ' . . . - - - \ LI
. - L " g - L - - . 4 4
RN | LR R N LRI I R R R L R e L N LI IR NN + L LI B e LI L LR
L] - - L] . - - L} . - r - - -
" g . 3] * K "y . " N - u ' . + .
" . . v - s v . - s ' ' . . ¥ - " - -
. . 3] . - 3 " 1 " . . + :
b w4 oua e aem oma e R huada wuumerres s s crurrafiL e Bu Ly k I R T R L N L PRI
F . * 1 . . v . - - ' W’ * 1 4 r . : ' 1 4 - . : -
14 N 4 " ' . kY v . 1 - 4 - L -) E 1 n N ..
- "] ' . " L] - - :
ERERS RN KRN NN LSS v v A w,w, IR R EE NN ER RN v v A w, TT T s A ER R
. . [] * . *] . . \] +] "
L L " :
a s -
I-‘-l ok om
1 [
" = . - -
14 - - - . [
nonmaa™eoa s now e Tl
. . v Pl E
] .] [
] =] - . E
L o ot Ty
] - . .
.]
+
-.1--.‘-- 5 “1 I H
ATyt
F F
. . L) ¥
. .
Vet e m s
] =
] = - F
AR R RS A
Ll T 7 ' 3}‘({34
. + : o
3
R L F ¥ k
M 4 .
.. :
b - E
] =
] -
R S N
P R P PR
]]
] v
. "
N EE
.]
1 =
L]]
R EE
] . " P
" = . - .
o - " .
RN s M'll:h'\.l L L AT w - . ' n vy [UTHTIFIER . w LIE TE T PP ERvr, 1 I Npu:ul;uuu.mwuulwwl.:_l g7 T
]] Kl 1 s ' ' a 1 - 1 w W E " L
L - ' - - . . - . .
.] . . A " . . R . . - 1 ' ' 4 1 - - 1 D . . . \ . [
Y R N N [e T T . FEC L q.aaqlra,a.a.a.l_a.aa.-llla.a.'a.a.aa.urn,a.:
" ' " - ' . - . .
N . . . " v " g .
1 L - - N N - . ' N 1 ' L N . ' 1 . L kY - - o
M . a . a . . - g -
1] ' . . -] ' ' * . * 1 . . + K] :
1 anaea R LI L R R LT I N A AR R R I . [a rmmlas I R T R L
4 = . - - . - - ~ ' ' = - 4 ~ H . - ’ = -
] = Vv ' . 4 1 ' - - N . . . € s ' ' 4 M € v i M N ! 4 s v . M g " [
. . K] " ' g L] r] 14 a] ' r Y +
EREEEE AR R N T e w4 4w m bk h kL L d kb k ko N TN RN EEEEERE 44 MR I IR E T
] . ' ' : : : . - X 1 s ' " : v a - f i - . + w " . : - .] .
.] ' ' . ' ' . * 1 ' ' . 4) v ! + 1 . g . [
. . - . - g 4 . . . - N N s . - . . . r - - . :
R e R IR STREIY, B .-, S J A e e e e e Py O P
M . g g :
A : " " . L - : "] . : : ! L . : . : \ . - . ' i : J| : r . - : : '
' " .) 1 4 c - ' r L “ . = . ' . . 1 . 4 :
" . . . - . . a N - a . 4 a s N n
salrr i s cr e b LaaMa e 444 parvpaagaacar e vatiaaiaay P T T T T T T T P T
. - . g - . 2 r - - - - - M . .
. . - r 1 ' a . . ' ! r r . . . " . ' . . - - - .
" - . ' . . \ " - - p A . . 1 " ' ' . . " r - f . . 1 1 s " .
] . ' Kl . L ' . * 1 ' ' . 4 L . 1 +
R L Nl N N AR L e N N N N N N e L R
- " N
]]] - .
. € E I
FEERNEE T LY
] - [
. N .
1 - . .
-1-1.1 0 . '-F-' -
- . - .
] = - .- .
Al dde ok RN
1 1 1 | I
] 4 . [
Nk h ok ke N ok kb d Nk
. € . [
M . . !
S L L e h F w244 ;
L] - - L] = -
" = k. . - -
4w . e eomat
PR R AL PR AL :
] .] [:
4 i) | I E
.] .
Taaa = - Fa e =
] -+ LI . E
M v . -
EEE N T EREN E
- " [l
= N N . _E
~ T T o
M TS
- . [
v] [
L - P,
L] 4 - -
]] L I
L anmoaama.
. - . .t
L] - Lt L] - -
. . e} ¥] ' . 1] E] '] ¥] . . 1 [' - . D e} ¥ v .
A T R T T A R R e N L R R L R R R R T N im ek sl ddrnn b b dddddrsambadaere's sambdddrensnasdiddidlonns s semsnnreenal
. . £ r] . 4] . - r 1 £ + - H
] - ' ' . . \ K] . 1 N 1 w ' . . ¢ L - ' . . 1 1 w " " .
] . . . A Kl . . A . K . * 1 ' . v 4 [. . . . ! + 1 " . . . \] [
R o T S T e T . . R e .
a N " ' M . ' N - " ' . a - . .
] - '] . - . . * 1 ' ' . a r - +] . g] .
A . . - L - I . . " - ' . \ r . . R . . " ' . L v L - - . A .
\ K . L 4 - ' . . ! ' . 1 . . . 1 ' - . . N r . 4 . .)
."-.‘."-. N LINC BT .'.'...-'."-_ N 1 "-_'.'.'\.-."-."-'."-."-..'.'.‘.'.-.-'."-."-.'L"-. Lo e '..'.'.r.'."-__ N\ 'h""'\".'.\'"\""\'"""".-"" I.""-i""'-I."'-"'\-\."'\'"'."' Jem
. . r 1 + 4 . + ! B L :. N + . ' + 1 . r - 4 ' H
" - ' . - . - s . ' . " r - " "
. - r 1 . ' r . . ' .) . 4 . .
] . . . a . . - . ' ' . . L -] -
AR A Mk ok kR N EENE] [I S S SRR TRy I R N S R EEEE R . RN R R R I E
] - ' . 4 A N ' ' . M - . 1 4 N . . " [
a 1 4 ¥ 1 ' . . R . M ' . 1 - ' ' : - r . M ' 4 4 - . : * : F -
] - ' . ¢ * i . - 1 ' . € n ' ' a L - N ! Al 4 n v . " .
ae e a2 L v P L LN R hoadddkd Lol Tl RL 4L py el bl Lyl b LYy LL Ly taee e . Lo e a4 L LR L L e L L L E Lo 4oy RLLRLL Ry
]] '] * 1 ' ' . 4 v] + 1 . . o,
. . - N - g . . . M " . . . \ . N N . L ' - . i v r - - . A .
1 + " ' - L - ' \ 1 . . f ! ! . 1 . ' - .) - 4 . '
.] ' 1] -) * 1 ' . .] d + " " .] .
L I T T T O o I I T T T T ML T I T e Liriassmrwman . L T I BT T T T A A I NI e
: .'_ . - . 1 1 " N . 4 F . ' ' ! . L 1 . :. 5 ' -\." "l .:, - ’ . + - . .
" ' . ¥ ™ ' 1 . K - g . v) N 1 ' ' ¥ w 5 ' v . = - + " o
" a v . . - s . . g . - A - s . 3 . -
O WY S 4. P N T T L [.. " - e = . LT .) .t
T T T T e T T e e T e T T T e T T e T e T e T T T T T T T T e e e e e e T T e T e e T e T e Ta e e T T e e it et R e et B e P e T e T T e T T e e e T T T e T T e e T T T e e
= . [
14 - - - P
T = SR B T
. * ‘f . [
4 L] L] 3 -
N R I Fok b E s
h i .
M . " .
L] L] L] - b
b = [Lt e e
" -] .
] . " [
--‘----'-- ---‘-- L] -
] - % . [
. -] [
L] % L]
.] . .] =
. :) £ .
T ETEREEE. s EEEEEEE"
. w . [
4 i f ; 4] "
g s - i e -
M 4 [
] i % . v -
R amemem et
. !] L.
1 - -
b mr 2 e omom 1 k. + 2 nn m o I
14 - - .
4 r 4 3 - ;
kv dlrrrn P R g
]]] [
a 1 § é a N .
kvt r o ea] LR E
g € g LI
Do : Do ;
ERRICOR) : O :
" . .
I : D :
R * F r)] -
N i % . E
ru
4 L9 F e
c ; . g
I H
4 i .‘I'_E d .r
- !]
.]
. 4 : %
L .
" =
P %
- R
o]
] € q
b4 4 o4 a4 am
. -
M -
o4 PR oRoE oy
" -
" .
----t--- =
] -
] v
R T
e
] + arare
E T = v H . d 3 = d . x T E = 5 ? = T B = Y
. u " . - ¥ . . * . " . M ' | - |
Lok bk R R A T M R R R T R I I R R R
. ¥ F ' . 4 g . v L n E . 1 5 ' - . v . + -
" = " . a N N A . . . - . . - . - : : . ! - - " . N . . :
1 . * ! € n 1 1 .
LN Pk m mm o ror LEE oo . mm AT T Ak, N mhmmsrr .
a g . . L
. . 5]]] L] . i .] . ; . . 5 + :
N a - . . N g . N r :
. N - 1 . i L n * ' - *
e e a™ Lo maaomoa LL e bR gam e aaaaaaa [aa 't L e a oy e La [-
: * . . w M " - ' i M . . g . - ' r - 4 :
+ " ' X L a 4 - v) . N . . - 5 ' r . 1 -
a . . | . - a 2 -
—r

o Externai Pevice

FiG. 10

U.S. Patent

Jul. 18, 2023

Sheet 12 of 14

US 11,704,275 B2

rARArAEAn

Fie, 12

Giobal 1 1102 Attribute Bits 1104 1100
A A
ha — ™
- Local i E
. source Priority | Reserved | Ordering | No-Snoop |
frans | - Chonnel iD 1106
01108 f3 2310 1112 1134 11316 1118
|
FiG, 11
1200
1215
\\ 216 — T
1206 > | o i1z211 -
g 1217 — -
P ﬁ.f' /7 ; ///
) 7 n 1218 N\ o~ ﬂﬂ/
< 1207 = < 1212
N i219
N -/ N \‘“m
S -
1205 1210

U.S. Patent Jul. 18, 2023 Sheet 13 of 14 US 11,704,275 B2

1300 -\

Processor
1307 gxecution Ut

Register File
1306

Processor Bus

1310 t

Graphics / Mgm i’; ¥
Video Card Eﬁmm er

Memory

nstruction

1312

1320
1322
_ Legacy i/0
Oata Controlier 1340
Storgge
Wireless L8 '
franscgiver “ Controfier
Hub

Seriqgi Port
EXpansion

1326

Filgsh BIGS
Audio

Controlier

MNetwork
Controiier

1334

FG. 13

US 11,704,275 B2

Sheet 14 of 14

Jul. 18, 2023

U.S. Patent

aTely
Bl 3007

2BDI03% Do)

vEVL
AIOLUBIK

GEVE

174 4

:

pLvL

/5 oipny

yi ENA

ISNOAS

SBMABLT USLIOS
2L | F751-- |/ PanogaAs)y

gIrt
3DpLg sng

pivi

3ABQ O/

GEDT
66T ey /1 | —Y/ sEvE
S DAL
d'd N-GEFT 18SUD PEPT E SIUDUIIOLIB-UBIH
PEPT ZShT —
08Pl | d-d dd|_ ldd| |dd| O
Z8FT aesr | .\) ZZFT
58Ff mEpl Y | BZpT GBI
o0l Al
JOSSII0I 0SS0

iyl ik

US 11,704,275 B2

1

DYNAMIC PRESENTATION OF
INTERCONNECT PROTOCOL CAPABILITY
STRUCTURES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a division of U.S. patent application
Ser. No. 16/513,941 filed Jul. 17, 2019, entitled
“DYNAMIC PRESENTATION OF INTERCONNECT
PROTOCOL CAPABILITY STRUCTURES.” The disclo-
sures ol the prior applications are considered part of and are
hereby incorporated by reference in their entirety in the
disclosure of this application.

BACKGROUND

Interconnects can be used to provide commumnication
between different devices within a system, some type of
interconnect mechanism 1s used. One typical communica-
tion protocol for communications interconnects between
devices 1n a computer system 1s a Peripheral Component
Interconnect Express (PCI Express™ (PCle™)) communi-
cation protocol. This communication protocol 1s one
example of a load/store input/output (I/O) interconnect
system. The communication between the devices 1s typically
performed sernally according to this protocol at very high
speeds.

Devices can be connected across various numbers of data
links, each data link including a plurality of data lanes.
Upstream devices and downstream devices undergo link
training upon initialization to optimize data transmissions
across the various links and lanes.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an embodiment of a block diagram for
a computing system including a multicore processor.

FIG. 2 1s a schematic diagram of a system that includes a
host connected to a downstream device 1n accordance with
embodiments of the present disclosure.

FIG. 3 1s a schematic diagram of the system of FIG. 2
illustrating an example of capability structure configuration
initialization accordance with embodiments of the present
disclosure.

FIG. 4 1s a swim lane diagram illustrating an example
capability structure configuration nitialization 1 accor-
dance with embodiments of the present disclosure.

FIG. 5 1s a schematic diagram of the system of FIG. 2
illustrating an example of capability structure configuration
in accordance with embodiments of the present disclosure.

FIG. 6 1s a swim lane diagram illustrating an example
capability structure configuration procedure 1 accordance
with embodiments of the present disclosure.

FIG. 7 1s a schematic diagram of an example vendor
defined message frame 1n accordance with embodiments of
the present disclosure.

FIG. 8A 1s an example interconnect protocol-based defi-
nition of a next capability pointer and capability identifier as
part of a Power Management Capabilities Register in accor-
dance with embodiments of the present disclosure.

FIG. 8B 1s an example interconnect protocol-based defi-
nition of extended capability header and next capability
oflset fields 1n a capability linked list 1n accordance with
embodiments of the present disclosure.

FIG. 9 illustrates an embodiment of a computing system
including an interconnect architecture.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 10 1illustrates an embodiment of a interconnect
architecture including a layered stack.

FIG. 11 illustrates an embodiment of a request or packet
to be generated or received within an interconnect architec-
ture.

FIG. 12 illustrates an embodiment of a transmitter and
receiver pair for an interconnect architecture.

FIG. 13 illustrates another embodiment of a block dia-
gram for a computing system including a processor.

FIG. 14 illustrates an embodiment of a block for a
computing system including multiple processor sockets.

DETAILED DESCRIPTION

In the following description, numerous specific details are
set forth, such as examples of specific types of processors
and system configurations, specific hardware structures,
specific architectural and micro architectural details, specific
register configurations, specific instruction types, specific
system components, speciiic measurements/heights, specific
processor pipeline stages and operation etc. in order to
provide a thorough understanding of the present disclosure.
It will be apparent, however, to one skilled 1n the art that
these specific details need not be employed to practice the
present disclosure. In other instances, well known compo-
nents or methods, such as specific and alternative processor
architectures, specific logic circuits/code for described algo-
rithms, specific firmware code, specific interconnect opera-
tion, specific logic configurations, specific manufacturing
techniques and materials, specific compiler implementa-
tions, specific expression ol algorithms in code, specific
power down and gating techniques/logic and other specific
operational details of computer system have not been
described 1n detail in order to avoid unnecessarily obscuring
the present disclosure.

Although the following embodiments may be described
with reference to energy conservation and energy efliciency
in specific integrated circuits, such as 1 computing plat-
forms or microprocessors, other embodiments are applicable
to other types ol integrated circuits and logic devices.
Similar techniques and teachings of embodiments described
herein may be applied to other types of circuits or semicon-
ductor devices that may also benefit from better energy
elliciency and energy conservation. For example, the dis-
closed embodiments are not limited to desktop computer
systems or Ultrabooks™. And may be also used in other
devices, such as handheld devices, tablets, other thin note-
books, systems on a chip (SOC) devices, and embedded
applications. Some examples of handheld devices include
cellular phones, Internet protocol devices, digital cameras,
personal digital assistants (PDAs), and handheld PCs.
Embedded applications typically include a microcontroller,
a digital signal processor (DSP), a system on a chip, network
computers (NetPC), set-top boxes, network hubs, wide area
network (WAN) switches, or any other system that can
perform the functions and operations taught below. More-
over, the apparatus’, methods, and systems described herein
are not limited to physical computing devices, but may also
relate to software optimizations for energy conservation and
clliciency. As will become readily apparent 1n the descrip-
tion below, the embodiments of methods, apparatus’, and
systems described herein (whether 1n reference to hardware,
firmware, software, or a combination thereof) are vital to a
‘oreen technology’ future balanced with performance con-
siderations.

As computing systems are advancing, the components
therein are becoming more complex. As a result, the inter-

US 11,704,275 B2

3

connect architecture to couple and communicate between
the components 1s also increasing in complexity to ensure
bandwidth requirements are met for optimal component
operation. Furthermore, different market segments demand
different aspects of interconnect architectures to suit the
market’s needs. For example, servers require higher perfor-
mance, while the mobile ecosystem 1s sometimes able to
sacrifice overall performance for power savings. Yet, 1t 1s a
singular purpose of most fabrics to provide highest possible
performance with maximum power saving. Below, a number
of interconnects are discussed, which would potentially
benefit from aspects of the disclosure described herein.

Referring to FIG. 1, an embodiment of a block diagram
for a computing system including a multicore processor 1s
depicted. Processor 100 includes any processor or process-
ing device, such as a microprocessor, an embedded proces-
sor, a digital signal processor (DSP), a network processor, a
handheld processor, an application processor, a co-proces-
sor, a system on a chip (SOC), or other device to execute
code. Processor 100, 1n one embodiment, includes at least
two cores—core 101 and 102, which may include asym-
metric cores or symmetric cores (the illustrated embodi-
ment). However, processor 100 may include any number of
processing elements that may be symmetric or asymmetric.

In one embodiment, a processing element refers to hard-
ware or logic to support a software thread. Examples of
hardware processing elements include: a thread unit, a
thread slot, a thread, a process unit, a context, a context unit,
a logical processor, a hardware thread, a core, and/or any
other element, which i1s capable of holding a state for a
processor, such as an execution state or architectural state. In
other words, a processing clement, 1n one embodiment,
refers to any hardware capable of being independently
associated with code, such as a software thread, operating
system, application, or other code. A physical processor (or
processor socket) typically refers to an integrated circuit,
which potentially includes any number of other processing,
elements, such as cores or hardware threads.

A core often refers to logic located on an integrated circuit
capable of maintaining an independent architectural state,
wherein each independently maintained architectural state 1s
associated with at least some dedicated execution resources.
In contrast to cores, a hardware thread typically refers to any
logic located on an integrated circuit capable of maintaining
an independent architectural state, wherein the indepen-
dently maintained architectural states share access to execu-
tion resources. As can be seen, when certain resources are
shared and others are dedicated to an architectural state, the
line between the nomenclature of a hardware thread and core
overlaps. Yet often, a core and a hardware thread are viewed
by an operating system as individual logical processors,
where the operating system 1s able to individually schedule
operations on each logical processor.

Physical processor 100, as illustrated 1n FIG. 1, includes
two cores—core 101 and 102. Here, core 101 and 102 are
considered symmetric cores, 1.e. cores with the same con-
figurations, functional units, and/or logic. In another
embodiment, core 101 includes an out-of-order processor
core, while core 102 includes an in-order processor core.
However, cores 101 and 102 may be individually selected
from any type of core, such as a native core, a soltware
managed core, a core adapted to execute a native Instruction
Set Architecture (ISA), a core adapted to execute a translated
Instruction Set Architecture (ISA), a co-designed core, or
other known core. In a heterogeneous core environment (1.¢.
asymmetric cores), some form of translation, such a binary
translation, may be utilized to schedule or execute code on

10

15

20

25

30

35

40

45

50

55

60

65

4

one or both cores. Yet to further the discussion, the func-
tional units illustrated 1n core 101 are described 1n further
detail below, as the units 1n core 102 operate in a similar
manner in the depicted embodiment.

As depicted, core 101 includes two hardware threads
101a and 1015, which may also be referred to as hardware
thread slots 101a and 10154. Therefore, software entities,
such as an operating system, in one embodiment potentially
view processor 100 as four separate processors, 1.e., four
logical processors or processing elements capable of execut-
ing four software threads concurrently. As alluded to above,
a first thread 1s associated with architecture state registers
1014, a second thread 1s associated with architecture state
registers 1015, a third thread may be associated with archi-
tecture state registers 102aq, and a fourth thread may be
associated with architecture state registers 1025. Here, each
of the architecture state registers (101a, 1015, 1024, and
1025) may be referred to as processing elements, thread
slots, or thread units, as described above. As 1illustrated,
architecture state registers 101a are replicated 1n architecture
state registers 1015, so individual architecture states/con-
texts are capable of being stored for logical processor 101a
and logical processor 1016. In core 101, other smaller
resources, such as mstruction pointers and renaming logic in
allocator and renamer block 130 may also be replicated for
threads 101a and 10154. Some resources, such as re-order
bullers 1n reorder/retirement unit 135, ILTB 120, load/store
buflers, and queues may be shared through partitioning.
Other resources, such as general purpose internal registers,
page-table base register(s), low-level data-cache and data-
TLB 115, execution umt(s) 140, and portions of out-of-order
unit 135 are potentially fully shared.

Processor 100 often includes other resources, which may
be fully shared, shared through partitioming, or dedicated
by/to processing elements. In FIG. 1, an embodiment of a
purely exemplary processor with 1illustrative logical units/
resources of a processor 1s 1llustrated. Note that a processor
may include, or omit, any of these functional units, as well
as include any other known functional units, logic, or
firmware not depicted. As illustrated, core 101 includes a
simplified, representative out-of-order (OOQ) processor
core. But an in-order processor may be utilized 1n different
embodiments. The OOO core includes a branch target butler
120 to predict branches to be executed/taken and an 1nstruc-
tion-translation bufler (I-TLB) 120 to store address transla-
tion entries for mstructions.

Core 101 further includes decode module 125 coupled to
fetch unit 120 to decode fetched elements. Fetch logic, 1n
one embodiment, includes 1individual sequencers associated
with thread slots 101a, 1015, respectively. Usually core 101
1s associated with a first ISA, which defines/specifies
istructions executable on processor 100. Often machine
code structions that are part of the first ISA include a
portion of the mstruction (referred to as an opcode), which
references/specifies an instruction or operation to be per-
formed. Decode logic 125 includes circuitry that recognizes
these nstructions from their opcodes and passes the decoded
instructions on in the pipeline for processing as defined by
the first ISA. For example, as discussed in more detail below
decoders 125, in one embodiment, include logic designed or
adapted to recognize specific mstructions, such as transac-
tional mstruction. As a result of the recognition by decoders
125, the architecture or core 101 takes specific, predefined
actions to perform tasks associated with the approprate
instruction. It 1s important to note that any of the tasks,
blocks, operations, and methods described herein may be
performed 1n response to a single or multiple instructions;

US 11,704,275 B2

S

some of which may be new or old instructions. Note
decoders 126, in one embodiment, recognize the same ISA
(or a subset thereof). Alternatively, 1n a heterogeneous core

environment, decoders 126 recognize a second ISA (either a
subset of the first ISA or a distinct ISA).

In one example, allocator and renamer block 130 includes
an allocator to reserve resources, such as register files to
store istruction processing results. However, threads 101qa
and 1015 are potentially capable of out-of-order execution,
where allocator and renamer block 130 also reserves other
resources, such as reorder buflers to track instruction results.
Unit 130 may also include a register renamer to rename
program/instruction reference registers to other registers
internal to processor 100. Reorder/retirement unit 133
includes components, such as the reorder builers mentioned
above, load buflers, and store buflers, to support out-oi-
order execution and later in-order retirement of instructions
executed out-of-order.

Scheduler and execution unit(s) block 140, 1n one
embodiment, includes a scheduler unit to schedule instruc-
tions/operation on execution units. For example, a floating,
point instruction 1s scheduled on a port of an execution unit
that has an available floating point execution unit. Register
files associated with the execution units are also included to
store information instruction processing results. Exemplary
execution units mclude a floating point execution unit, an
integer execution unit, a jump execution unit, a load execu-
tion unit, a store execution unit, and other known execution
units.

Lower level data cache and data ftranslation bufler
(D-TLB) 150 are coupled to execution umt(s) 140. The data
cache 1s to store recently used/operated on elements, such as
data operands, which are potentially held 1n memory coher-
ency states. The D-TLB 1s to store recent virtual/linear to
physical address translations. As a specific example, a
processor may include a page table structure to break
physical memory 1nto a plurality of virtual pages.

Here, cores 101 and 102 share access to higher-level or
further-out cache, such as a second level cache associated
with on-chip interface 110. Note that higher-level or further-
out refers to cache levels increasing or getting further way
from the execution unit(s). In one embodiment, higher-level
cache 1s a last-level data cache—Ilast cache in the memory
hierarchy on processor 100—such as a second or third level
data cache. However, higher level cache 1s not so limited, as
it may be associated with or include an instruction cache. A
trace cache—a type of imstruction cache—instead may be
coupled after decoder 125 to store recently decoded traces.
Here, an mstruction potentially refers to a macro-instruction
(1.e. a general instruction recognized by the decoders), which
may decode into a number of micro-instructions (micro-
operations).

In the depicted configuration, processor 100 also icludes
on-chip interface module 110. Historically, a memory con-
troller, which 1s described in more detail below, has been
included 1n a computing system external to processor 100. In
this scenario, on-chip interface 11 1s to communicate with
devices external to processor 100, such as system memory
175, a chupset (often including a memory controller hub to
connect to memory 175 and an I/O controller hub to connect
peripheral devices), a memory controller hub, a northbridge,
or other integrated circuit. And 1n this scenario, bus 105 may
include any known interconnect, such as multi-drop bus, a
point-to-point interconnect, a serial interconnect, a parallel
bus, a coherent (e.g. cache coherent) bus, a layered protocol
architecture, a differential bus, and a GTL bus.

10

15

20

25

30

35

40

45

50

55

60

65

6

Memory 175 may be dedicated to processor 100 or shared
with other devices 1n a system. Common examples of types
of memory 175 include DRAM, SRAM, non-volatile

memory (NV memory), and other known storage devices.
Note that device 180 may include a graphic accelerator,
processor or card coupled to a memory controller hub, data
storage coupled to an I/O controller hub, a wireless trans-
cerver, a tlash device, an audio controller, a network con-
troller, or other known device.

Recently however, as more logic and devices are being
integrated on a single die, such as SOC, each of these
devices may be incorporated on processor 100. For example
in one embodiment, a memory controller hub 1s on the same
package and/or die with processor 100. Here, a portion of the
core (an on-core portion) 110 includes one or more control-
ler(s) for interfacing with other devices such as memory 173
or a graphics device 180. The configuration including an
interconnect and controllers for interfacing with such
devices 1s often referred to as an on-core (or un-core
configuration). As an example, on-chip interface 110
includes a ring interconnect for on-chip communication and
a high-speed serial point-to-point link 105 for oflf-chip
communication. Yet, in the SOC environment, even more
devices, such as the network interface, co-processors,
memory 173, graphics processor 180, and any other known
computer devices/interface may be integrated on a single die
or integrated circuit to provide small form factor with high
functionality and low power consumption.

In one embodiment, processor 100 1s capable of executing
a compiler, optimization, and/or translator code 177 to
compile, translate, and/or optimize application code 176 to
support the apparatus and methods described herein or to
interface therewith. A compiler often includes a program or
set of programs to translate source text/code into target
text/code. Usually, compilation of program/application code
with a compiler 1s done 1 multiple phases and passes to
transform hi-level programming language code into low-
level machine or assembly language code. Yet, single pass
compilers may still be utilized for simple compilation. A
compiler may utilize any known compilation techniques and
perform any known compiler operations, such as lexical
analysis, preprocessing, parsing, semantic analysis, code
generation, code transformation, and code optimization.

Larger compilers often include multiple phases, but most
often these phases are included within two general phases:
(1) a front-end, 1.e. generally where syntactic processing,
semantic processing, and some transformation/optimization
may take place, and (2) a back-end, 1.e. generally where
analysis, transformations, optimizations, and code genera-
tion takes place. Some compilers refer to a middle, which
illustrates the blurring of delineation between a front-end
and back end of a compiler. As a result, reference to
insertion, association, generation, or other operation of a
compiler may take place imn any of the alorementioned
phases or passes, as well as any other known phases or
passes of a compiler. As an 1llustrative example, a compiler
potentially inserts operations, calls, functions, etc. 1n one or
more phases of compilation, such as insertion of calls/
operations 1n a front-end phase of compilation and then
transiformation of the calls/operations 1nto lower-level code
during a transformation phase. Note that during dynamic
compilation, compiler code or dynamic optimization code
may 1nsert such operations/calls, as well as optimize the
code for execution during runtime. As a specific illustrative
example, binary code (already compiled code) may be
dynamically optimized during runtime. Here, the program

US 11,704,275 B2

7

code may include the dynamic optimization code, the binary
code, or a combination thereof.

Similar to a compiler, a translator, such as a binary
translator, translates code either statically or dynamically to
optimize and/or translate code. Therefore, reference to
execution of code, application code, program code, or other
soltware environment may refer to: (1) execution of a
compiler program(s), optimization code optimizer, or trans-
lator either dynamically or statically, to compile program
code, to maintain software structures, to perform other
operations, to optimize code, or to translate code; (2) execu-
tion of main program code including operations/calls, such
as application code that has been optimized/compiled; (3)
execution of other program code, such as libraries, associ-
ated with the main program code to maintain software
structures, to perform other software related operations, or to
optimize code; or (4) a combination thereof.

Reconfiguring capabilities of a computing system archi-
tecture can facilitate adaptiveness, robustness, scalability,
and reliability for the ever-increasing use cases in current
computing and storage industry. The granularity of dynamic
reconfigurability for certain mterconnect components, how-
ever, 1s restricted to the capabilities advertised by each
function during the initial enumeration. Usually, after enu-
meration, the capability profile for a specific function offered
by a connected device 1s exposed 1dentically for all the logic
entities 1n the PCle hierarchy.

If an entity 1s to use that specific function to support a
certain exclusive capability, the capability will be visible to
other entities, which may cause negative side eflects such as
driver compatibility 1ssues or configuration conflicts. As a
result, this problem can prevent the system from being better
optimized in terms of cost and efliciency.

This disclosure describes a mechanism 1n a host and
device to hide or present certain interconnect capability
structure(s) within a function based on which requester
entity (such as BIOS, firmware, OS, driver, etc.) the function
1s responding to. This disclosure also describes dynamically
changing the wvisibility of certain interconnect capability
structure(s) based on new system preiference during system
initialization or normal operation.

This disclosure also describes facilitating other optimiza-
tions within a single function regarding sharing and/or
excluding resources associated to certain capability
structure(s).

The mechamsms and techniques described herein are

among the differentiators of 2LM over PCI Express (PCle)
interface.

Embodiments herein describe secure TLP-based hand-
shake mechanisms between SoC host and PCle device.
Provide Host the ultimate and hardware-autonomous control
of when and which PCle Capability structure(s) should be
present or hidden.

When necessary, a host can dynamically configure the
device PCle capability linked list and the device will take
actions to present or hide certain PCle Capability
structure(s).

Advantages of the present disclosure are readily apparent
to those of skill in the art. For example, embodiments can
fortity two-level memory (2LM)-related systems and other
potential computing systems by exploring and managing
features associated to vendor-specific critical capability
structure(s) (for example, using BIOS) and preventing them
from being exposed to irrelevant system hardware/software
entities (such as OS or driver), which ensures broader
software/driver reusability.

10

15

20

25

30

35

40

45

50

55

60

65

8

Embodiments provide hardware autonomous (OS, SW,
driver agnostic) and/or more system optimizations based on
system knowledge owned by host. Embodiments provide
fine capability-structure-level granularity, which can be
potentially leveraged 1n building future computing systems
for adaptiveness, robustness, scalability and reliability.

FIG. 2 1s a schematic diagram of a system 200 that
includes a host connected to a downstream device 1n accor-
dance with embodiments of the present disclosure. System
200 can include a host 202. Host 202 can include a core
processor and can include a root complex system for inter-
connecting various connected devices with the host 202. The
host 202 can be a system-on-chip design or can be an
independent unit, and can be capable of being coupled to
other devices across a link 220, such as an interconnect link
compliant with a PCle-based protocol. The host 202 can
include an interconnect protocol compatible (e.g., PCle) root
port controller.

The host 202 can include a super user 204. Super user 204
can be used as a term to represent any host system that can
administer system operations; for example, super user 204
can include system BIOS, operating systems, firmware,
etc.).

The host 202 can include a host application layer 206. The
host application layer 206 can include a request generator
210 implemented 1n hardware, software, or a combination of
hardware and software. The request generator 210 can be
implemented 1n the host 202 application layer 206 to com-
pose request messages and present them to standard PCle
Transaction layer in the interconnect stack 208 for trans-
mission across link 220. The request generator 210 can be a
component implemented 1n the host application layer 206 to
compose the related transaction layer packets (TLPs) and
present them to standard interconnect Transaction layer for
transmission. In some embodiments, the request generator
210 can generate vendor-defined messages (VDM), some
examples of which are described 1n more detail below.

The host 202 can also include, in the host application
layer 206, a response receiver 212 implemented 1n hardware,
software, or a combination of hardware and software. For
example, the response receiver 212 can be a VDM receiver
that can receirve VDM messages across an iterconnect link.
The response recetver 212 can parse, interpret, or decipher
an 1ncoming response message. In embodiments, the
response receiver 212 can determine responses to response
messages by parsing the response message and retrieving
information 1n response to the response message (e.g., by
accessing appropriate memory locations, tables, databases,
functional or logical components, etc.).

The system 200 can include one or more connected
devices, such as device 222. Device 222 can include a PCle
Endpoint or a special type of Root Complex Integrated
Endpoint (RCi1EP)). In embodiments, the RCiEP can be one
that leverages PCle link to communicate with its associated
Root Complex, which can be the super user 204. An example
1s a 2LM memory cache, which 1s an enhanced RCiEP.

Device 222 can include a device application layer 224.
The device application layer 224 can include a request
receiver 230 and a response generator 232, which are similar
to those described above. The request receiver 230 can
receive, parse, interpret, and/or decipher received messages,
such as VDM messages. The request receiver 230 can
receive the related TLPs from a standard interconnect Trans-
action layer, parse (and 1f needed, decipher) the TLPs, and
take other steps based on the mformation in the TLPs. The
device 222 can also include a response generator 232 to

US 11,704,275 B2

9

compose the related TLPs (responses) and present them to
standard PCle Transaction layer for transmission.

The device application layer 224 also includes a compo-
nent referred to herein as a capability pointer switch 228.
The capability pointer switch 228 can be implemented 1n
hardware, software, or a combination of hardware and
software. The capability poimnter switch 228 can include
logic for controlling the content of the Next Capability
Offset field value of the related Capability structures (de-
scribed below). The capability pointer switch 228 can be
controlled by the host 202 via the transmitted TLPs.

The device application layer 224 can include a capability
structure configuration 226. The capability structure con-
figuration 226 can include a table for the host 202 to probe
and configure, with information of the proposed capability
structure configuration that the Device supports. The capa-

bility structure configuration 226 can be accessed by the host

202 via TLPs. One example of a capability structure table
226 1s shown 1n Table 1.

TABLE 1

Example Capability (Cap) Structure Configuration Table.

Capability Requester 1D Valid Capability
Structure Index Check Enable Requester 1D Hide Enable
(RO to Host) (RW) (RW) (RW)
16h0 1b 16'h0000_0000 Ob

(All Caps)

16'0008h 1b 16'h0000_0000 Ob => 1b
(Cap_1:MFVC)

16'0017h 1b 16'h0000_0000 Ob
(Cap_2)

1 6’hxxxx_xXxXxX 1b 16'h0000_0000 Ob

(Cap_N)

FIG. 3 1s a schematic diagram of the system of FIG. 2
illustrating an example of capability structure configuration
initialization accordance with embodiments of the present
disclosure. FIG. 4 1s a swim lane diagram illustrating an
example capability structure configuration imitialization in
accordance with embodiments of the present disclosure.
FIGS. 3 and 4 can be viewed together.

To 1mplement the aspects of the embodiments, certain
handshake mechanisms are used between the host 202 and
device 222 to convey control/status information. Various
TLP-based mechanisms can be employed for the handshake,
such as Vendor Defined Message (VDM) (FIG. 7 provides
an example of a VDM structure), Special Memory Rd/Wr
targeting particular Memory-Mapped 10 spaces, or Cig

Rd/Wr Requests targeting Vendor-Specific Extended Capa-
bility (VSEC) or Designated Vendor-Specific Extended

Capability (DVSEC), etc.

The host 202 and device 222 can have an application layer
agreement on how capability structure configuration infor-
mation 1s packaged via a set of standard TLP packets.

(G1ven the above, several TLPs can be defined to facilitate
the capabaility structure configuration initialization process.

There are generally two kinds of host request TLPs;
namely:

CAP_CFG_RD_REQ (no payload): used to read the
“Capability Structure table”; and

CAP_CFG_WR_REQ (with payload): used to configure
the “Capability Structure table.”

From the device 222 perspective, several kinds of
responses are architected as an example to illustrate the
mechanism, namely:

10

15

20

25

30

35

40

45

50

55

60

65

10

CAP_CFG_RD_RSP (with payload): used to respond to
CAP_CFG_RD_REQ with information in “Capability
Structure table”; and

CAP_CFG_WR_RSP (no payload): used to respond to
CAP_CFG_WR_REQ regarding whether the configuration
from the host 202 1s successtul or not (reflected by the “RSP
Code” field mn FIG. 7).

(Given the definition above, FIGS. 3 and 4 1llustrate one
system example for capability structure configuration ini-
tialization. In addition, here 1s a brief introduction summary
of the highlighted blocks:

1) During normal system boot-up, the “Super User” entity
204 (for example, BIOS or firmware) at host 202 starts
exploring the additional *“‘capability structure configuration™
feature at the device side by composing a CAP_CFG_R-
D_REQ at Host application layer.

2) The CAP_CFG_RD_REQ 1s received by device inter-
connect layers 234, which 1n turn passes 1t to the request
receiver 230 at application layer 224. The request recerver
230 1s preprogrammed with information (based on the
agreement discussed above) of CAP_CFG_RD_REQ fram-
ing rules, and can extract the capability structure table
information from the capability structure configuration 226.
As shown 1n Table 1, there can be N capability structures
that can be dynamically present or hidden, each of which 1s
reflected by different capability structure index, as shown in
the first column of Table 1. The index can be mapped
directly to “Capability ID” or “PCle Extended Capability
ID,” shown by example mn FIG. 7. In embodiments, the
index can be mapped to an arbitrary value for each capability
based on predetermined agreement between the host 202 and
device 222.

Given that, the “Super User” 204 can choose to configure
one or multiple fields of each indexed entry in a way that the
device will present or hide certain capabilities, or addition-
ally even based on configuration conditions such as “Valid
Requester 1D,” etc.

The capability structure index field 1n Table 1 1s read-only
from the host perspective but can be configurable by Device
firmware. Also, note that Table 1 1s just one example of a
capability structure configuration table, and the techniques
described herein are not limited to the associated fields
enumerated 1n Table 1 for implementation.

3) The device 222 passes the default capability structure
configuration information to the response generator 232.
The response generator 232 constructs a
CAP_CFG_RD_RSP TLP carrying the information with
optional encryptions as a completion message 1n response to
the CAP_CFG_RD_REQ.

4) The CAP_CFG_RD_RSP ftraverses across the PCle
link and layers, and arrives at the response receiver 212 at
the host application layer 206. Then the host application
layer 206 can transmit the acknowledged information to the
“Super User” 204, which concludes the initialization pro-
CEesS.

In some embodiments, the host 202 can be prepro-
grammed to have knowledge of the device’s capability
structure table 226. In such circumstances, configuration
initialization process outlined by the text accompanying
FIGS. 3 and 4 would be optional. For example, during
enumeration, the “Subsystem Vendor ID Register” of the
PCle Device can be comprehended by Host 202 as a way to
identily the Device’s capabilities to support the dynamic
presentation or hiding of capabilities.

FIG. 5 1s a schematic diagram of the system of FIG. 2
illustrating an example of capability structure configuration
in accordance with embodiments of the present disclosure.

US 11,704,275 B2

11

FIG. 6 1s a swim lane diagram illustrating an example
capability structure configuration procedure in accordance
with embodiments of the present disclosure. FIGS. 5 and 6
can be viewed together.

5) During normal operation, the Host “Super User” 204
determines that there 1s a need or desire to present or hide
certain capability structures of the device 222 for certain
host entity or enfities (such as a System Image or a CPU
core). Based on that determination, the host request genera-
tor 210 can compose a CAP_CFG_WR_REQ TLP at host
application layer 206 as a “Capability structure configura-
tion request” with the configuration information targeting,
the particular capability structure. Based on the Table 1
example, the new setting for those RW fields can be con-
veyed via the respective fields of the example VDM TLP
frame shown in FIG. 7 as a VDM-based TLP example,
whether encrypted (11 necessary) or not.

6) The CAP_CFG_WR_REQ carrying the configuration
information 1s received by Device PCle layers 234, which 1n
turn passes 1t to the request recerver 230 at application layer
224. The request receiver 230 can be preconfigured to
contain or have access to information (based on the agree-
ment) of CAP_CFG_WR_REQ framing rules, and decodes
the TLP to extract the “Capability structure configuration”™
setting information. By way of example, a Host “Super
User” 204 can choose to configure the “Multi-Function
Virtual Channel (MFVC) Extended Capability,” which 1s
mapped to the second index entry in Table 1 (with index
being the Extended Capability ID as 16'h0008). The Host
“Super User” 204 can choose to hide this capability structure
from all the requesters whose Requester 1D 1s not all-zero,
by setting “Capability hide enable” field to “lb.” This
example shows how the request receiver can decode the TLP
using the capability structure configuration table 226.

7) The updated host setting 1n the “Capability Structure
Table” drives the “Capability pointer switch™ 228 to modily
the capability structure linked list 235 within the device 222
in a way that the MEFVC Capability structure 1s not chained
via the “Next Capability Oflset” into the capability structure
linked list 235.

The method of how to add/remove capability structure
to/from the linked list 1s implementation specific. Neverthe-
less, one example 1s to update the “Next Capabaility Pointer/
Offset” field 1n the linked list (shown 1n FIG. 8B).

8) The request receiver 230 notifies the response genera-
tor 232 1n the Device application layer 224 to construct a
CAP_CFG_WR_RSP with optional encryptions as a
completion message 1n response to the CAP_CFG_
WR_REQ.

9) The CAP_CFG_WR_RSP ftraverses across the inter-
connect link 220 and layers and arrives at the response
receiver 212 at the host application layer 206. Then the host
application layer 206 can transmait the acknowledge infor-
mation to BIOS or System OS, which concludes the capa-
bility structure configuration process.

Following the above steps, the device 222 may operate as
normal. When, for example, “System Image 17 (with
Requester ID as not all-zero) i FIG. 5 1ssues a capability
exploration or enumeration upon the device 222, the device
222 can present “System Image 17 a linked list that does not
include the MEVC Capability structure (continuing the
above example). This way, the MFVC Capability structure
1s hidden from System Image 1. If 1n case “System Image 17
chose to 1gnore the linked list 1t explored and i1ssued Con-
figuration Request “directly” targeting the MEFVC Capabil-
ity structure (Extended Capability ID as 16'h0008), the

device 222 can validate the request using the Requester 1D

10

15

20

25

30

35

40

45

50

55

60

65

12

check per Table 1 setting example, and respond with Unsup-
ported Request (UR) Completion to “System 1mage 1.”

Note that the example of hiding MFVC Capability struc-
ture has some real use case 1n 2L.M-related architecture,
since certain Virtual Channel resource can be dedicated only
for certain BIOS-granted logic entities in the Host 202, and
hiding the MFVC Capability structure from the irrelevant
entities 1n the Host, such as NVMe Driver, will keep the
compatibility from NVMe Driver point of view, which
allows the device 222 to flexibly support both 2LM and
non-21LM systems.

The forgoing can be a secure mechanism for dynamically
hiding or presenting capabilities by introducing information
encryption/decryption at application layers so that all the
configuration information at the physical PCle link/lanes can
be encrypted.

In addition, the forgoing can improve system efliciency
¢.g., when multiple capability structures in one or more
functions need to be changed. For example, one or more
capability structure configuration table(s) can be 1mple-
mented at the device application layer based on the agree-
ment knowledge from the host. This way, the TLPs used in
FIG. 5§ may carry imnformation as simple as a configuration
“mode” selection. When the device receives the “mode”
configuration, 1t can make changes to all the related capa-
bility structures 1n the device based on the Host Super User’s
choice of “mode.” In addition, this method 1s very secure by
means of hiding all the configuration information from the
physical PCle link/lanes.

In embodiments, a lane can include a set of differential
pairs of electrical signal conductors. One pair of electrical
signal conductors can be used for transmission and one pair
of electrical signal conductors can be used for reception. A
by-N link includes N lanes.

FIG. 7 1s a schematic diagram of an example vendor
defined message frame 700 1n accordance with embodiments
of the present disclosure. Based on PCle Vendor Defined
Message (VDM) definition, an example of VDM formats 1s
shown 1n FIG. 7. “Vendor Message” byte field defines the
detail type of command Request or Response associated to
cach and every VDM. Depending on whether each type
needs data payload associated, the last Double-word (Data
Byte0-3) may or may not be associated to the VDM, hence
the “Length” field value may vary between 1 (1DW data
payload) and O (reserved value as no payload). Note that this
1s just one example of the VDM format definition, and the
proposed 1dea 1s by no means limited by this specific VDM
format definition.

FIG. 8A 1s an example interconnect protocol-based defi-
nition of a next capability pointer and capability identifier as
part ol a Power Management Capabilities Register 800 in
accordance with embodiments of the present disclosure. The
bit[31:16] may vary between diflerent capability structures,
while the “Next Capability Pointer” and “Capability 1D”
field structures remain the same. A definition of Capability
ID and Next Capability Pointer (from PCI Express Base
Specification Revision 4.0 Version 1.0);

As part of the Capability Header in each PCle Capability
Structure, “Next Capability Pointer” field contains the offset
to the next PCI Capability structure or O0h 11 no other 1tems
exist 1n the linked list of Capabilities.

Similarly, an exclusive “Capability 1D 1s included in
cach and every PCle Capability structure Header to indicate
which particular Capability this structure is.

FIG. 8B 1s an example interconnect protocol-based defi-
nition of extended capability header and next capability
oflset fields 1n a capability linked list 850 1n accordance with

US 11,704,275 B2

13

embodiments of the present disclosure. The linked list fields
provide a definition of an Extended Capability ID and a Next

Capability Offset (from PCI Express Base Specification
Revision 4.0 Version 1.0). Note that for PCle Extended
Capability structures, the Extended Capability 1D 1s 16-bit
instead. Also, the term “Next Capability Offset” 1s used 1n
this example, but “Next Capability Pointer” can also be used
for the same purpose.

One interconnect fabric architecture includes the Periph-
eral Component Interconnect (PCI) Express (PCle) archi-
tecture. A goal of PCle 1s to enable components and devices
from different vendors to inter-operate 1n an open architec-
ture, spanning multiple market segments; Clients (Desktops
and Mobile), Servers (Standard and Enterprise), and Embed-
ded and Communication devices. PCI Express 1s a high
performance, general purpose 1/0 interconnect defined for a
wide variety of future computing and communication plat-
forms. Some PCI attributes, such as its usage model, load-
store architecture, and software interfaces, have been main-
tained through its revisions, whereas previous parallel bus
implementations have been replaced by a highly scalable,
tully serial interface. The more recent versions of PCI
Express take advantage of advances in point-to-point inter-

connects, Switch-based technology, and packetized protocol
to deliver new levels of performance and features. Power
Management, Quality Of Service (QoS), Hot-Plug/Hot-
Swap support, Data Integrity, and Error Handling are among
some of the advanced features supported by PCI Express.

Referring to FIG. 9, an embodiment of a fabric composed
of point-to-point Links that interconnect a set of components
1s 1llustrated. System 900 1includes processor 905 and system
memory 910 coupled to controller hub 915. Processor 9035
includes any processing element, such as a microprocessor,
a host processor, an embedded processor, a co-processor, or
other processor. Processor 905 1s coupled to controller hub
915 through front-side bus (FSB) 906. In one embodiment,
FSB 906 15 a serial point-to-point interconnect as described
below. In another embodiment, link 906 includes a serial,
differential interconnect architecture that i1s compliant with
different interconnect standard.

System memory 910 includes any memory device, such
as random access memory (RAM), non-volatile (NV)
memory, or other memory accessible by devices in system
900. System memory 910 1s coupled to controller hub 9135
through memory interface 916. Examples of a memory
interface include a double-data rate (DDR) memory inter-
tace, a dual-channel DDR memory interface, and a dynamic
RAM (DRAM) memory interface.

In one embodiment, controller hub 915 1s a root hub, root
complex, or root controller 1n a Peripheral Component
Interconnect Express (PCle or PCIE) imterconnection hier-
archy. Examples of controller hub 9135 include a chipset, a
memory controller hub (MCH), a northbridge, an intercon-
nect controller hub (ICH) a southbridge, and a root control-
ler/hub. Often the term chipset refers to two physically
separate controller hubs, 1.e. a memory controller hub
(MCH) coupled to an mterconnect controller hub (ICH).
Note that current systems often include the MCH integrated
with processor 905, while controller 915 1s to communicate
with I/O devices, 1n a similar manner as described below. In
some embodiments, peer-to-peer routing 1s optionally sup-
ported through root complex 915.

Here, controller hub 915 is coupled to switch/bridge 920
through serial link 919. Input/output modules 917 and 921,
which may also be referred to as interfaces/ports 917 and
921, include/implement a layered protocol stack to provide

10

15

20

25

30

35

40

45

50

55

60

65

14

communication between controller hub 9135 and switch 920.
In one embodiment, multiple devices are capable of being
coupled to switch 920.

Switch/bridge 920 routes packets/messages from device
925 upstream, 1.e. up a hierarchy towards a root complex, to
controller hub 915 and downstream, 1.e. down a hierarchy
away from a root controller, from processor 905 or system
memory 910 to device 925. Switch 920, in one embodiment,
1s referred to as a logical assembly of multiple virtual
PCI-to-PCI bridge devices. Device 925 includes any internal
or external device or component to be coupled to an elec-
tronic system, such as an I/O device, a Network Interface
Controller (NIC), an add-in card, an audio processor, a
network processor, a hard-drive, a storage device, a
CD/DVD ROM, a monitor, a printer, a mouse, a keyboard,
a router, a portable storage device, a Firewire device, a
Universal Serial Bus (USB) device, a scanner, and other
input/output devices. Often 1n the PCle vernacular, such as
device, 1s referred to as an endpoint. Although not specifi-
cally shown, device 925 may include a PCle to PCI/PCI-X
bridge to support legacy or other version PCI devices.
Endpoint devices in PCle are often classified as legacy,
PCle, or root complex integrated endpoints.

Graphics accelerator 930 1s also coupled to controller hub
915 through serial link 932. In one embodiment, graphics
accelerator 930 1s coupled to an MCH, which 1s coupled to
an ICH. Switch 920, and accordingly 1/O device 925, 1s then
coupled to the ICH. I/O modules 931 and 918 are also to
implement a layered protocol stack to communicate between
graphics accelerator 930 and controller hub 915. Similar to
the MCH discussion above, a graphics controller or the
graphics accelerator 930 1itself may be integrated 1n proces-
sor 905.

Turning to FIG. 10 an embodiment of a layered protocol
stack 1s 1llustrated. Layered protocol stack 1000 includes
any form of a layered communication stack, such as a Quick
Path Interconnect (QPI) stack, a PCie stack, a next genera-
tion high performance computing interconnect stack, or
other layered stack. Although the discussion immediately
below 1n reference to FIGS. 9-12 are 1n relation to a PCle
stack, the same concepts may be applied to other intercon-
nect stacks. In one embodiment, protocol stack 1000 1s a
PCle protocol stack including transaction layer 1005, link
layer 1010, and physical layer 1020. An interface, such as
interfaces 917, 918, 921, 922, 926, and 931 in FIG. 1, may
be represented as communication protocol stack 1000. Rep-
resentation as a communication protocol stack may also be
referred to as a module or interface implementing/including,
a protocol stack.

PCI Express uses packets to communicate information
between components. Packets are formed 1n the Transaction
Layer 1005 and Data Link Layer 1010 to carry the infor-
mation from the transmitting component to the receiving
component. As the transmitted packets flow through the
other layers, they are extended with additional information
necessary to handle packets at those layers. At the receiving
side the reverse process occurs and packets get transformed
from their Physical Layer 1020 representation to the Data
Link Layer 1010 representation and finally (for Transaction
Layer Packets) to the form that can be processed by the
Transaction Layer 1005 of the receiving device.

Transaction Layer

In one embodiment, transaction layer 1005 is to provide
an interface between a device’s processing core and the
interconnect architecture, such as data link layer 1010 and
physical layer 1020. In this regard, a primary responsibility
of the transaction layer 10035 is the assembly and disassem-

US 11,704,275 B2

15

bly of packets (1.e., transaction layer packets, or TLPs). The
translation layer 10035 typically manages credit-base flow
control for TLPs. PCle implements split transactions, 1.e.
transactions with request and response separated by time,
allowing a link to carry other traflic while the target device
gathers data for the response.

In addition PCle utilizes credit-based tlow control. In this
scheme, a device advertises an 1nitial amount of credit for
cach of the receive buflers 1n Transaction Layer 1005. An
external device at the opposite end of the link, such as
controller hub 115 1n FIG. 1, counts the number of credits
consumed by each TLP. A transaction may be transmitted 1f
the transaction does not exceed a credit limit. Upon receiv-
ing a response an amount of credit 1s restored. An advantage
of a credit scheme 1s that the latency of credit return does not
aflect performance, provided that the credit limit 1s not
encountered.

In one embodiment, four transaction address spaces
include a configuration address space, a memory address
space, an input/output address space, and a message address
space. Memory space transactions include one or more of
read requests and write requests to transifer data to/from a
memory-mapped location. In one embodiment, memory
space transactions are capable of using two diflerent address
formats, e.g., a short address format, such as a 32-bit
address, or a long address format, such as 64-bit address.
Configuration space transactions are used to access configu-
ration space of the PCle devices. Transactions to the con-
figuration space include read requests and write requests.
Message space transactions (or, simply messages) are
defined to support mn-band communication between PCle
agents.

Therefore, 1n one embodiment, transaction layer 1005
assembles packet header/payload 1006. Format for current
packet headers/payloads may be found in the PCle specifi-
cation at the PCle specification website.

Quickly referring to FIG. 11, an embodiment of a PCle
transaction descriptor 1s illustrated. In one embodiment,
transaction descriptor 1100 1s a mechanism for carrying
transaction information. In this regard, transaction descrip-
tor 1100 supports 1dentification of transactions in a system.
Other potential uses include tracking modifications of
default transaction ordering and association of transaction
with channels.

Transaction descriptor 1100 includes global i1dentifier
field 1102, attributes field 1104 and channel 1dentifier field
1106. In the 1llustrated example, global 1dentifier field 1102
1s depicted comprising local transaction 1dentifier field 1108
and source 1dentifier field 1110. In one embodiment, global
transaction identifier 1102 1s unique for all outstanding
requests.

According to one implementation, local transaction 1den-
tifier field 1108 1s a field generated by a requesting agent,
and 1t 1s unique for all outstanding requests that require a
completion for that requesting agent. Furthermore, 1in this
example, source 1dentifier 1110 uniquely 1identifies the
requestor agent within a PCle hierarchy. Accordingly,
together with source ID 1110, local transaction identifier
1108 field provides global identification of a transaction
within a hierarchy domain.

Attributes field 1104 specifies characteristics and relation-
ships of the transaction. In this regard, attributes field 1104
1s potentially used to provide additional immformation that
allows modification of the default handling of transactions.
In one embodiment, attributes field 1104 includes priority
field 1112, reserved field 1114, ordering field 1116, and

no-snoop field 1118. Here, priority sub-field 1112 may be

10

15

20

25

30

35

40

45

50

55

60

65

16

modified by an initiator to assign a priority to the transac-
tion. Reserved attribute field 1114 1s left reserved for future,
or vendor-defined usage. Possible usage models using pri-
ority or security attributes may be implemented using the
reserved attribute field.

In this example, ordering attribute field 1116 1s used to
supply optional information conveying the type of ordering
that may modily default ordering rules. According to one
example implementation, an ordering attribute of “0”
denotes default ordering rules are to apply, wheremn an
ordering attribute of “1” denotes relaxed ordering, wherein
writes can pass writes 1 the same direction, and read
completions can pass writes in the same direction. Snoop
attribute field 1118 1s utilized to determine 11 transactions are
snooped. As shown, channel ID Field 1106 i1dentifies a
channel that a transaction 1s associated with.

Link Layer

Link layer 1010, also referred to as data link layer 1010,
acts as an intermediate stage between transaction layer 1005
and the physical layer 1020. In one embodiment, a respon-
sibility of the data link layer 1010 1s providing a reliable
mechanism for exchanging Transaction Layer Packets
(TLPs) between two components a link. One side of the Data
Link Layer 1010 accepts TLPs assembled by the Transaction
Layer 1003, applies packet sequence identifier 1011, 1.e. an
identification number or packet number, calculates and
applies an error detection code, 1.e. CRC 1012, and submuits
the modified TLPs to the Physical Layer 1020 for transmis-
s10n across a physical to an external device.

Physical Layer

In one embodiment, physical layer 1020 1ncludes logical
sub block 1021 and electrical sub-block 1022 to physically
transmit a packet to an external device. Here, logical sub-
block 1021 is responsible for the “digital” functions of
Physical Layer 1021. In this regard, the logical sub-block
includes a transmit section to prepare outgoing information
for transmission by physical sub-block 1022, and a receiver
section to 1dentity and prepare received information before
passing it to the Link Layer 1010.

Physical block 1022 includes a transmitter and a receiver.
The transmitter 1s supplied by logical sub-block 1021 with
symbols, which the transmitter serializes and transmits onto
to an external device. The receiver 1s supplied with serial-
1zed symbols from an external device and transforms the
received signals mnto a bit-stream. The bit-stream 15 de-
serialized and supplied to logical sub-block 1021. In one
embodiment, an 8b/10b transmission code 1s employed,
where ten-bit symbols are transmitted/recerved. Here, spe-
cial symbols are used to frame a packet with frames 1023.
In addition, in one example, the receiver also provides a
symbol clock recovered from the incoming serial stream.

As stated above, although transaction layer 1005, link
layer 1010, and physical layer 1020 are discussed in refer-
ence to a specific embodiment of a PCle protocol stack, a
layered protocol stack 1s not so limited. In fact, any layered
protocol may be included/implemented. As an example, an
port/interface that 1s represented as a layered protocol
includes: (1) a first layer to assemble packets, 1.e. a trans-
action layer; a second layer to sequence packets, 1.¢. a link
layer; and a third layer to transmit the packets, 1.¢. a physical
layer. As a specific example, a common standard interface
(CSI) layered protocol 1s utilized.

Referring next to FIG. 12, an embodiment of a PCle serial
point to point fabric 1s illustrated. Although an embodiment
of a PCle senal point-to-point link 1s illustrated, a serial
point-to-point link 1s not so limited, as it includes any
transmission path for transmitting serial data. In the embodi-

US 11,704,275 B2

17

ment shown, a basic PCle link includes two, low-voltage,
differentially driven signal pairs: a transmit pair 1206/1211
and a receive pair 1212/1207. Accordingly, device 12035
includes transmission logic 1206 to transmit data to device
1210 and receiving logic 1207 to receive data from device
1210. In other words, two transmitting paths, 1.e. paths 1216
and 1217, and two receiving paths, 1.¢. paths 1218 and 1219,
are included m a PCle link.

A transmission path refers to any path for transmitting
data, such as a transmission line, a copper line, an optical
line, a wireless communication channel, an infrared com-
munication link, or other communication path. A connection
between two devices, such as device 1205 and device 1210,
1s referred to as a link, such as link 415. A link may support
one lane—each lane representing a set of difierential signal
pairs (one pair for transmission, one pair for reception). To
scale bandwidth, a link may aggregate multiple lanes
denoted by xN, where N 1s any supported Link width, such
as 1, 2, 4, 8, 12, 16, 32, 64, or wider.

A differential pair refers to two transmission paths, such
as lines 416 and 417, to transmit differential signals. As an
example, when line 416 toggles from a low voltage level to
a high voltage level, 1.e. a rising edge, line 417 drives from
a high logic level to a low logic level, 1.e. a falling edge.
Differential signals potentially demonstrate better electrical
characteristics, such as better signal integrity, 1.e. cross-
coupling, voltage overshoot/undershoot, ringing, etc. This
allows for better timing window, which enables faster trans-
mission frequencies.

Turning to FIG. 13, a block diagram of an exemplary
computer system formed with a processor that includes
execution units to execute an instruction, where one or more
of the interconnects implement one or more features 1n
accordance with one embodiment of the present disclosure
1s 1llustrated. System 1300 includes a component, such as a
processor 1302 to employ execution units including logic to
perform algorithms for process data, 1n accordance with the
present disclosure, such as in the embodiment described
herein. System 1300 1s representative of processing systems
based on the PENTIUM III™, PENTIUM 4™, Xeon™,
Itanium, XScale™ and/or StrongARM™ microprocessors
available from Intel Corporation of Santa Clara, Calif.,
although other systems (including PCs having other micro-
processors, engineering workstations, set-top boxes and the
like) may also be used. In one embodiment, sample system
1300 executes a version of the WINDOWS™ operating
system available from Microsoft Corporation of Redmond,
Wash., although other operating systems (UNIX and Linux
for example), embedded software, and/or graphical user
interfaces, may also be used. Thus, embodiments of the
present disclosure are not limited to any specific combina-
tion of hardware circuitry and software.

Embodiments are not limited to computer systems. Alter-
native embodiments of the present disclosure can be used in
other devices such as handheld devices and embedded
applications. Some examples of handheld devices include
cellular phones, Internet Protocol devices, digital cameras,
personal digital assistants (PDAs), and handheld PCs.
Embedded applications can include a micro controller, a
digital signal processor (DSP), system on a chip, network
computers (NetPC), set-top boxes, network hubs, wide area
network (WAN) switches, or any other system that can
perform one or more nstructions in accordance with at least
one embodiment.

In this illustrated embodiment, processor 1302 includes
one or more execution units 1308 to implement an algorithm
that 1s to perform at least one 1nstruction. One embodiment

10

15

20

25

30

35

40

45

50

55

60

65

18

may be described in the context of a single processor
desktop or server system, but alternative embodiments may
be included 1n a multiprocessor system. System 1300 1s an
example of a ‘hub’ system architecture. The computer
system 1300 includes a processor 1302 to process data
signals. The processor 1302, as one 1llustrative example,
includes a complex instruction set computer (CISC) micro-
processor, a reduced instruction set computing (RISC)
microprocessor, a very long instruction word (VLIW)
microprocessor, a processor implementing a combination of
instruction sets, or any other processor device, such as a
digital signal processor, for example. The processor 1302 1s
coupled to a processor bus 1310 that transmits data signals
between the processor 1302 and other components in the
system 1300. The elements of system 1300 (e.g. graphics
accelerator 1312, memory controller hub 1316, memory
1320, 1/O controller hub 1324, wireless transceiver 1326,
Flash BIOS 1328, Network controller 1334, Audio control-
ler 1336, Serial expansion port 1338, I/O controller 1340,
ctc.) perform their conventional functions that are well
known to those familiar with the art.

In one embodiment, the processor 1302 includes a Level
1 (L1) internal cache memory 1304. Depending on the
architecture, the processor 1302 may have a single internal
cache or multiple levels of internal caches. Other embodi-
ments mnclude a combination of both internal and external
caches depending on the particular implementation and
needs. Register file 1306 1s to store different types of data in
various registers including integer registers, floating point
registers, vector registers, banked registers, shadow regis-
ters, checkpoint registers, status registers, and instruction
pointer register.

Execution umt 1308, including logic to perform integer
and floating point operations, also resides in the processor
1302. The processor 1302, 1n one embodiment, includes a
microcode (ucode) ROM to store microcode, which when
executed, 1s to perform algorithms for certain macroinstruc-
tions or handle complex scenarios. Here, microcode 1s
potentially updateable to handle logic bugs/fixes for proces-
sor 1302. For one embodiment, execution unit 1308 includes
logic to handle a packed instruction set 1309. By including
the packed instruction set 1309 in the instruction set of a
general-purpose processor 1302, along with associated cir-
cuitry to execute the instructions, the operations used by
many multimedia applications may be performed using
packed data in a general-purpose processor 1302. Thus,
many multimedia applications are accelerated and executed
more efhiciently by using the full width of a processor’s data
bus for performing operations on packed data. This poten-
tially eliminates the need to transfer smaller units of data
across the processor’s data bus to perform one or more
operations, one data element at a time.

Alternate embodiments of an execution unit 1308 may
also be used 1n micro controllers, embedded processors,
graphics devices, DSPs, and other types of logic circuits.
System 1300 includes a memory 1320. Memory 1320
includes a dynamic random access memory (DRAM)
device, a static random access memory (SRAM) device,
flash memory device, or other memory device. Memory
1320 stores instructions and/or data represented by data
signals that are to be executed by the processor 1302.

Note that any of the atlorementioned features or aspects of
the disclosure may be utilized on one or more interconnect
illustrated i FIG. 13. For example, an on-die interconnect
(ODI), which 1s not shown, for coupling internal units of
processor 1302 mmplements one or more aspects of the
disclosure described above. Or the disclosure 1s associated

US 11,704,275 B2

19

with a processor bus 1310 (e.g. Intel Quick Path Intercon-
nect (QPI) or other known high performance computing
interconnect), a high bandwidth memory path 1318 to
memory 1320, a point-to-point link to graphics accelerator
1312 (e.g. a Pernipheral Component Interconnect express
(PCle) compliant fabric), a controller hub interconnect 1322,
an 1/0O or other interconnect (e.g. USB, PCI, PCle) for
coupling the other illustrated components. Some examples
of such components include the audio controller 1336,
firmware hub (flash BIOS) 1328, wireless transceiver 1326,
data storage 1324, legacy /O controller 1310 containing
user mput and keyboard interfaces 1342, a serial expansion
port 1338 such as Universal Serial Bus (USB), and a
network controller 1334. The data storage device 1324 can
comprise a hard disk drive, a floppy disk drive, a CD-ROM
device, a flash memory device, or other mass storage device.

Referring now to FIG. 14, shown 1s a block diagram of a
second system 1400 1n accordance with an embodiment of
the present disclosure. As shown 1n FIG. 14, multiprocessor
system 1400 1s a point-to-point interconnect system, and
includes a first processor 1470 and a second processor 1480
coupled via a point-to-point interconnect 1450. Each of
processors 1470 and 1480 may be some version of a
processor. In one embodiment, 1452 and 1454 are part of a
serial, point-to-point coherent interconnect fabric, such as
Intel’s Quick Path Interconnect (QPI) architecture. As a
result, the disclosure may be implemented within the QPI
architecture.

While shown with only two processors 1470, 1480, it 1s
to be understood that the scope of the present disclosure 1s
not so limited. In other embodiments, one or more additional
processors may be present in a given processor.

Processors 1470 and 1480 are shown including integrated
memory controller units 1472 and 1482, respectively. Pro-
cessor 1470 also includes as part of 1ts bus controller units
point-to-point (P-P) interfaces 1476 and 1478; similarly,
second processor 1480 includes P-P interfaces 1486 and
1488. Processors 1470, 1480 may exchange information via
a point-to-point (P-P) interface 1450 using P-P interface
circuits 1478, 1488. As shown 1n FIG. 14, IMCs 1472 and
1482 couple the processors to respective memories, namely
a memory 1432 and a memory 1434, which may be portions
of main memory locally attached to the respective proces-
SOrS.

Processors 1470, 1480 each exchange information with a
chipset 1490 via individual P-P interfaces 1452, 1454 using
point to point mterface circuits 1476, 1494, 1486, 1498.
Chipset 1490 also exchanges information with a high-
performance graphics circuit 1438 via an interface circuit
1492 along a high-performance graphics interconnect 1439.

A shared cache (not shown) may be included 1n either
processor or outside of both processors; yet connected with
the processors via P-P interconnect, such that either or both
processors’ local cache information may be stored in the
shared cache 1f a processor 1s placed 1nto a low power mode.

Chipset 1490 may be coupled to a first bus 1416 via an
interface 1496. In one embodiment, first bus 1416 may be a
Peripheral Component Interconnect (PCI) bus, or a bus such
as a PCI Express bus or another third generation I/O
interconnect bus, although the scope of the present disclo-
sure 1s not so limited.

As shown in FIG. 14, various /O devices 1414 are
coupled to first bus 1416, along with a bus bridge 1418
which couples first bus 1416 to a second bus 1420. In one
embodiment, second bus 1420 includes a low pin count
(LPC) bus. Various devices are coupled to second bus 1420
including, for example, a keyboard and/or mouse 1422,

10

15

20

25

30

35

40

45

50

55

60

65

20

communication devices 1427 and a storage unit 1428 such
as a disk drive or other mass storage device which often
includes instructions/code and data 1430, in one embodi-
ment. Further, an audio 1/0 1424 1s shown coupled to second
bus 1420. Note that other architectures are possible, where
the included components and interconnect architectures
vary. For example, instead of the point-to-point architecture
of FIG. 14, a system may implement a multi-drop bus or
other such architecture.

Turning to the diagram 1500 of FIG. 15, an example link
training state machine 1s shown, such as the PCle link
training and status state machine (LTSSM). For a system
utilizing a PHY according to a particular protocol to support
multiple alternative protocols (1.e., to run on top of the
PHY), ordered sets may be defined that are to be commu-
nicated between two or more devices on a link 1n connection
with the training of the link. For instance, training set (T'S)
ordered sets (OSes) may be sent. In an 1mplementation
utilizing PCle as the PHY protocol, the TS ordered sets may
include a 'TS1 and a TS2 ordered set, among other example
ordered sets. The ordered sets and traiming sequences sent
during link training may be based on the particular link
training state, with various link training states utilized to
accomplish corresponding link traiming activities and objec-
tives.

In one example, such as illustrated 1n FIG. 15, a link
training state machine 1600 may include such states as a
Reset state, a Detect state (e.g., to detect a far end termina-
tion (e.g., another device connected to the lanes), a Polling
state (e.g., to establish symbol lock and configure lane
polarity), a Configuration (or “Config”) state (e.g., to con-
figure the physical lanes of a connection nto a link with
particular lane width, lane numbering, etc., performing
lane-to-lane deskew and other link configuration activities),
a Loopback state (e.g., to perform testing, fault 1solation,
equalization, and other tasks), a Recovery state (e.g., for use
to change the data rate of operation, re-establish bit lock,
Symbol lock or block alignment, perform lane-to-lane
deskew, etc.) among other states, which may be utilized to
bring the link to an active link state (e.g., L.O). In one
example, training sequences to be sent 1n a particular one (or
more) of the link training states may be defined to accom-
modate the negotiation of a particular one of the supported
protocols of a particular device. For instance, the particular
training state may be a training state preceding entry into an
active link state, or a training state 1n which the data rate may
be upscaled (e.g., beyond that supported by at least one of
the supported protocols), such as a PCle state where a data
rate transitions ifrom a Genl speed to Gen3 and higher
speeds, among other examples. For instance, 1n the example
implementation shown 1 FIG. 15, a configuration state
(e.g., 1505) may be utilized and augmented to allow nego-
tiation of a particular one of multiple protocols 1n parallel
with the link training activities defined natively in the
training state (e.g., lane width determination, lane number-
ing, deskew, equalization, etc.). For instance, particular
training sequences may be defined for the training state and
these training sequences may be augmented to allow infor-
mation to be communicated (e.g., in one or more fields or
symbols of the ordered set) to identily whether each device
on the link supports multiple protocols (e.g., at least one
protocol stack other than the protocol stack of the physical
layer and the corresponding link training state machine),
identify the particular protocols each device supports, and
agree upon one or more protocols to employ over the
particular PHY (e.g., through a handshake accomplished

US 11,704,275 B2

21

through the transmission of these training sequences across
the link (1n both the upstream and downstream directions)).

In one example, a PCle physical layer may be utilized to
support multiple different protocols. Accordingly, a particu-
lar training state 1n a PCle LTSSM may be utilized for the
negotiation of protocols between devices on a link. As noted
above, the protocol determination may occur even before the
link trains to an active state (e.g., LO) in the lowest supported
data rate (e.g., the PCle Gen 1 data rate). In one example, the
PCle Config state may be used. Indeed, the PCle LTSSM
may be used to negotiate the protocol by using modified
PCle Traimning Sets (e.g., TS1 and TS2) after the link width
negotiation and (at least partially) in parallel with lane
numbering performed during the Config state.

While this disclosure has been described with respect to
a limited number of embodiments, those skilled in the art
will appreciate numerous modifications and variations there-
from. It 1s intended that the appended claims cover all such
modifications and variations as fall within the true spirit and
scope of this present disclosure.

A design may go through various stages, from creation to
simulation to fabrication. Data representing a design may
represent the design 1n a number of manners. First, as 1s
useful 1n simulations, the hardware may be represented
using a hardware description language or another functional
description language. Additionally, a circuit level model
with logic and/or transistor gates may be produced at some
stages of the design process. Furthermore, most designs, at
some stage, reach a level of data representing the physical
placement of various devices 1n the hardware model. In the
case where conventional semiconductor fabrication tech-
niques are used, the data representing the hardware model
may be the data specilying the presence or absence of
various features on different mask layers for masks used to
produce the integrated circuit. In any representation of the
design, the data may be stored 1n any form of a machine
readable medium. A memory or a magnetic or optical
storage such as a disc may be the machine readable medium
to store information transmitted via optical or electrical
wave modulated or otherwise generated to transmit such
information. When an electrical carrier wave indicating or
carrying the code or design 1s transmitted, to the extent that
copying, builering, or re-transmission of the electrical signal
1s performed, a new copy 1s made. Thus, a communication
provider or a network provider may store on a tangible,
machine-readable medium, at least temporarly, an article,
such as information encoded 1nto a carrier wave, embodying
techniques of embodiments of the present disclosure.

A module as used herein refers to any combination of
hardware, software, and/or firmware. As an example, a
module includes hardware, such as a micro-controller, asso-
ciated with a non-transitory medium to store code adapted to
be executed by the micro-controller. Theretfore, reference to
a module, 1n one embodiment, refers to the hardware, which
1s specifically configured to recognize and/or execute the
code to be held on a non-transitory medium. Furthermore, 1n
another embodiment, use of a module refers to the non-
transitory medium including the code, which 1s specifically
adapted to be executed by the microcontroller to perform
predetermined operations. And as can be inferred, in yet
another embodiment, the term module (in this example) may
refer to the combination of the microcontroller and the
non-transitory medium. Often module boundaries that are
illustrated as separate commonly vary and potentially over-
lap. For example, a first and a second module may share
hardware, software, firmware, or a combination thereof,
while potentially retaining some independent hardware,

10

15

20

25

30

35

40

45

50

55

60

65

22

software, or firmware. In one embodiment, use of the term
logic includes hardware, such as transistors, registers, or
other hardware, such as programmable logic devices.

Use of the phrase “to” or “configured to,” 1n one embodi-
ment, refers to arranging, putting together, manufacturing,
offering to sell, importing and/or designing an apparatus,
hardware, logic, or element to perform a designated or
determined task. In this example, an apparatus or element
thereof that 1s not operating 1s still ‘configured to” perform
a designated task 11 1t 1s designed, coupled, and/or 1ntercon-
nected to perform said designated task. As a purely illustra-
tive example, a logic gate may provide a O or a 1 during
operation. But a logic gate ‘configured to” provide an enable
signal to a clock does not include every potential logic gate
that may provide a 1 or 0. Instead, the logic gate 1s one
coupled 1n some manner that during operation the 1 or 0
output 1s to enable the clock. Note once again that use of the
term ‘configured to’ does not require operation, but instead
focus on the latent state of an apparatus, hardware, and/or
clement, where 1n the latent state the apparatus, hardware,
and/or element 1s designed to perform a particular task when
the apparatus, hardware, and/or element 1s operating.

Furthermore, use of the phrases ‘capable of/to,” and or
‘operable to,” 1n one embodiment, refers to some apparatus,
logic, hardware, and/or element designed in such a way to
enable use of the apparatus, logic, hardware, and/or element
in a specified manner. Note as above that use of to, capable
to, or operable to, 1n one embodiment, refers to the latent
state of an apparatus, logic, hardware, and/or element, where
the apparatus, logic, hardware, and/or element 1s not oper-
ating but 1s designed in such a manner to enable use of an
apparatus 1n a specified manner.

A value, as used herein, includes any known representa-
tion ol a number, a state, a logical state, or a binary logical
state. Often, the use of logic levels, logic values, or logical
values 1s also referred to as 1°s and 0’s, which simply
represents binary logic states. For example, a 1 refers to a
high logic level and O refers to a low logic level. In one
embodiment, a storage cell, such as a transistor or flash cell,
may be capable of holding a single logical value or multiple
logical values. However, other representations of values 1n
computer systems have been used. For example the decimal
number ten may also be represented as a binary value of
1010 and a hexadecimal letter A. Therefore, a value includes
any representation of information capable of being held 1n a
computer system.

Moreover, states may be represented by values or portions
of values. As an example, a first value, such as a logical one,
may represent a default or mitial state, while a second value,
such as a logical zero, may represent a non-default state. In
addition, the terms reset and set, 1n one embodiment, refer
to a default and an updated value or state, respectively. For
example, a default value potentially includes a high logical
value, 1.e. reset, while an updated value potentially includes
a low logical value, 1.e. set. Note that any combination of
values may be utilized to represent any number of states.

The embodiments of methods, hardware, software, firm-
ware or code set forth above may be implemented via
instructions or code stored on a machine-accessible,
machine readable, computer accessible, or computer read-
able medium which are executable by a processing element.
A non-transitory machine-accessible/readable medium
includes any mechanism that provides (1.e., stores and/or
transmits) information in a form readable by a machine, such
as a computer or electronic system. For example, a non-
transitory machine-accessible medium includes random-ac-

cess memory (RAM), such as static RAM (SRAM) or

US 11,704,275 B2

23

dynamic RAM (DRAM); ROM; magnetic or optical storage
medium; flash memory devices; electrical storage devices;
optical storage devices; acoustical storage devices; other
form of storage devices for holding information received
from transitory (propagated) signals (e.g., carrier waves,
inirared signals, digital signals); etc., which are to be dis-
tinguished from the non-transitory mediums that may
receive miformation there from.

Instructions used to program logic to perform embodi-
ments of the disclosure may be stored within a memory in
the system, such as DRAM, cache, flash memory, or other
storage. Furthermore, the nstructions can be distributed via
a network or by way of other computer readable media. Thus
a machine-readable medium may include any mechanism
for storing or transmitting information 1n a form readable by
a machine (e.g., a computer), but 1s not limited to, floppy
diskettes, optical disks, Compact Disc, Read-Only Memory
(CD-ROMs), and magneto-optical disks, Read-Only
Memory (ROMs), Random Access Memory (RAM), Eras-
able Programmable Read-Only Memory (EPROM), Electri-
cally Frasable Programmable Read-Only Memory (EE-
PROM), magnetic or optical cards, flash memory, or a
tangible, machine-readable storage used in the transmission
of information over the Internet via electrical, optical, acous-
tical or other forms of propagated signals (e.g., carrier
waves, infrared signals, digital signals, etc.). Accordingly,
the computer-readable medium includes any type of tangible
machine-readable medium sutable for storing or transmit-
ting electronic mnstructions or information in a form readable
by a machine (e.g., a computer).

Reference throughout this specification to “one embodi-
ment” or “an embodiment” means that a particular feature,
structure, or characteristic described 1n connection with the
embodiment 1s included 1n at least one embodiment of the
present disclosure. Thus, the appearances of the phrases “in
one embodiment” or “in an embodiment” 1n various places
throughout this specification are not necessarily all referring,
to the same embodiment. Furthermore, the particular fea-
tures, structures, or characteristics may be combined 1n any
suitable manner 1n one or more embodiments.

In the foregoing specification, a detailed description has
been given with reference to specific exemplary embodi-
ments. It will, however, be evident that various modifica-
tions and changes may be made thereto without departing
from the broader spirit and scope of the disclosure as set
forth 1n the appended claims. The specification and drawings
are, accordingly, to be regarded 1n an 1llustrative sense rather
than a restrictive sense. Furthermore, the foregoing use of
embodiment and other exemplarnly language does not nec-
essarily refer to the same embodiment or the same example,
but may refer to different and distinct embodiments, as well
as potentially the same embodiment.

The systems, methods, and apparatuses can include one or
a combination of the following examples:

Example 1 1s an apparatus comprising a first port to
receive a capability configuration message across a link; a
message request receiving logic comprising hardware cir-
cuitry to identify one or more capabilities of the device
identified in the capability configuration message, determine
that the one or more capabilities are to be presented or
hidden from operation based on a capability hide enable bit
in the capability configuration message, and configure a
capability linked list to present or hide the one or more
capabilities the determination. The apparatus also includes a
message response generator logic comprising hardware cir-
cuitry to generate a response message indicating that the one
or more capabilities are to be presented or hidden from

10

15

20

25

30

35

40

45

50

55

60

65

24

operation. The apparatus also includes a second port to
transmit the response message across the link.

Example 2 may include the subject matter of example 1,
wherein one or both of the capability configuration message
or the response message comprise a transaction layer packet
(TLP) based on a Peripheral Component Interconnect
Express (PCle) protocol.

Example 3 may include the subject matter of any of
examples 1-2, wherein one or both of the capability con-
figuration message or the response message comprise a
vendor-defined message (VDM) transaction layer packet.

Example 4 may include the subject matter of any of
examples 1-3, wherein the capability configuration message
comprises a capability structure configuration request mes-
sage 1dentifying one or more capabilities of the apparatus to
present or to hide.

Example 5 may include the subject matter of any of
examples 1-4, further comprising a capability pointer switch
logic to update a next capability field 1n the capability linked
list.

Example 6 may include the subject matter of example 3,
wherein the capability linked list comprises a capability
identifier and a next capability pointer, the capability 1den-
tifier indicating an 1dentifier for each capability and the next
capability pointer pointing to a next capability 1n the capa-
bility linked list.

Example 7 may include the subject matter of any of
examples 1-6, the message request receiving logic to 1den-
tify for the apparatus a mapping between a capability and a
corresponding capability index from a capability structure
table; and the response message generator logic to compose
a response message indicating the mapping between the
capability and the corresponding capability index.

Example 8 may include the subject matter of example 6,
the message request receiving logic to recerve a capability
configuration initialization request message; extract capa-
bility structure configuration information from the capability
configuration imtialization request message; and update the
capability structure table with the capability structure con-
figuration information.

Example 9 1s a system comprising a host device imple-
mented at least partially in hardware circuitry comprising a
system administrator to determine that one or more capa-
bility structure configuration features of a connected device,
a request message generator circuit to generate a capability
configuration read request message, and a response message
receiver circuit to receive response messages. The system
can include a connected device connected to the host device
across a link, the connected device comprising a request
message receiver circuit to receive the configuration read
request message, and determine capability structure configu-
ration information from a capability structure configuration
table stored at the connected device. The connected device
can also include a response message generator circuit to
compose a capability configuration response message that
indicates a mapping between a capability identifier and a
capability structure index; and cause the transmission of the
capability configuration response message to the host
device.

Example 10 may include the subject matter of example 9,
wherein the host device comprises a host controller logic to
determine that the one or more capabilities are to be pre-
sented or hidden from operation based, at least 1n part on, a
received capability configuration response message.

Example 11 may include the subject matter of any of
examples 9-10, the system administrator to determine that
one or more capability structures are to be hidden or

US 11,704,275 B2

25

presented to support an entity using the connected device.
The request message generator to compose a capability
configuration write request message comprising a bit
enabling or disabling a capability hide indicator, and cause
the transmission of the capability configuration write request
message to the connected device.

Example 12 may include the subject matter of any of
examples 9-11, a request message receiver circuit to receive
the capability configuration write request message; deter-
mine one or more capability structures to hide or present
based on the capability configuration write request message.
The system comprising a capability pointer switch logic to
change a capability linked list based on the determined one
or more capability structures to hide or present.

Example 13 may include the subject matter of example
12, the connected device comprising a response message
generator to transmit a capability configuration response
message.

Example 14 may include the subject matter of any of
examples 9-13, wherein one or both of the capability con-
figuration read request message or the capability configura-
tion response message comprise a transaction layer packet
(TLP) based on a Peripheral Component Interconnect
Express (PCle) protocol.

Example 15 may include the subject matter of any of
examples 9-14, wherein one or both of the capability con-
figuration read request message or the capability configura-
tion response message comprise a vendor-defined message
(VDM) transaction layer packet.

Example 16 may include the subject matter of any of
examples 9-15, wherein the capability configuration read
request message comprises a capability structure configura-
tion request message 1dentifying one or more capabilities of
the connected device to present or to hide.

Example 17 may include the subject matter of any of
examples 9-16, the message request recerving logic to
identify for the connected device a mapping between a
capability and a corresponding capability index from a
capability structure table; and the response message genera-
tor logic to compose a response message indicating the
mapping between the capability and the corresponding capa-
bility index.

Example 18 may include the subject matter of any of
examples 9-17, the message request receiving logic to
receive a capability configuration mitialization request mes-
sage; extract capability structure configuration information
from the capability configuration initialization request mes-
sage; and update the capability structure table with the
capability structure configuration information.

Example 19 may include the subject matter of any of
examples 9-18, wherein the link 1s based on a Peripheral
Component Interconnect Express (PCle) protocol.

Example 20 may include the subject matter of any of
examples 9-19, wherein the system administrator comprises
one of a host operating system (OS) or a host system BIOS.

Example 21 may include the subject matter of any of
examples 9-20, wherein the connected device comprises a
root complex integrated end point (RCiEP) compatible with
a Peripheral Component Interconnect Express (PCle) pro-
tocol.

Example 22 1s a method comprising 1dentifying one or
more capabilities of the device i1dentified 1n the capability
configuration message; determining that the one or more
capabilities are to be presented or lhidden from operation
based on a capability hide enable bit 1n the capability
configuration message; configuring a capability linked list to
present or hide the one or more capabilities the determina-

5

10

15

20

25

30

35

40

45

50

55

60

65

26

tion; generating a response message indicating that the one
or more capabilities are to be presented or hidden from
operation; and transmitting the response message across a
link.

Example 23 may include the subject matter of example
22, turther comprising updating, by a capability pointer
switch logic, a next capability field in the capability linked
l1st.

Example 24 may include the subject matter of example
23, turther comprising updating a capability identifier and a
next capability pointer of the capability linked list, the
capability 1dentifier indicating an identifier for each capa-
bility and the next capability pointer pointing to a next
capability 1n the capability linked list.

Example 25 may include the subject matter of any of
examples 22-24, further comprising 1dentifying a mapping
between a capability and a corresponding capability index
from a capability structure table; composing a response
message indicating the mapping between the capability and
the corresponding capability 1index; receiving a capability
configuration 1nitialization request message; extracting
capability structure configuration information from the
capability configuration mitialization request message; and
updating the capability structure table with the capability
structure configuration information.

Example 26 1s an apparatus comprising a first port to
receive a capability configuration message across a link; a
means for identifying one or more capabilities of the device
identified in the capability configuration message, means for
determining that the one or more capabilities are to be
presented or hidden from operation based on a capability
hide enable bit in the capability configuration message;
means for configuring a capability linked list to present or
hide the one or more capabilities the determination; means
for generating a response message indicating that the one or
more capabilities are to be presented or hidden from opera-

tion; and a second port to transmit the response message
across the link.

What 1s claimed 1s:

1. A system comprising:

a host device implemented 1n hardware circuitry compris-

ng:

a system administrator to determine that capability
structure configuration feature of a connected device,

a request message generator circuit to generate a capa-
bility configuration read request message, and

a response message receiver circuit to receive response
messages;

a connected device connected to the host device across a

link, the connected device comprising:
a request message receiver circuit to:
receive the configuration read request message, and
determine capability structure configuration infor-
mation from a capability structure configuration
table stored at the connected device;
a response message generator circuit to:
compose a capability configuration response mes-
sage that indicates a mapping between a capability
identifier and a capability structure index; and
transmit the capability configuration response mes-
sage to the host device.

2. The system of claim 1, wherein the host device com-
prises a host controller logic to determine that the capability
1s to be presented or hidden from operation based on a
received capability configuration response message.

US 11,704,275 B2

27

3. The system of claim 1, the system administrator to
determine that capability structure 1s to be hidden or pre-
sented to support an entity using the connected device; and
the request message generator to:
compose a capability configuration write request mes-
sage comprising a bit enabling or disabling a capa-
bility hide indicator, and

transmuit the capability configuration write request mes-
sage to the connected device.

4. The system of claim 3, a request message receiver
circuit to:

receive the capability configuration write request mes-
sage;

determine a capability structure to hide or present based
on the capability configuration write request message;

the system comprising;

a capability pointer switch logic to change a capability
linked list based on the determined capability structure
to hide or present.

5. The system of claim 4, the connected device compris-
Ing a response message generator to transmit a capability
configuration response message.

6. The system of claim 1, wherein the capability configu-
ration read request message or the capability configuration
response message comprises a transaction layer packet
(ILP) based on a Peripheral Component Interconnect
Express (PCle) protocol.

7. The system of claim 6, wherein the capability configu-
ration read request message or the capability configuration
response message comprises a vendor-defined message
(VDM) transaction layer packet.

8. The system of claim 1, wherein the capability configu-
ration read request message comprises a capability structure
configuration request message 1dentifying a capability of the
connected device to present or to hide.

9. The system of claim 1, the message request receiving,
logic to 1dentity for the connected device a mapping
between a capability and a corresponding capability index
from a capability structure table; and

the response message generator logic to compose a
response message indicating the mapping between the
capability and the corresponding capability index.

10. The system of claim 9, the message request rece1ving

logic to:

receive a capability configuration initialization request
message;

extract capability structure configuration information
from the capability configuration initialization request
message; and

update the capability structure table with the capability
structure configuration information.

11. The system of claim 1, wherein the link 1s based on a
Peripheral Component Interconnect Express (PCle) proto-
col.

12. The system of claim 1, wherein the system adminis-
trator comprises one of a host operating system (OS) or a
host system BIOS.

13. The system of claim 1, wherein the connected device
comprises a root complex integrated end point (RCiEP)
compatible with a Peripheral Component Interconnect
Express (PCle) protocol.

14. An apparatus comprising:

interconnect stack circuitry to connect the apparatus to a
connected device across a link:

a request message generator circuit to generate a capa-
bility configuration read request message;

10

15

20

25

30

35

40

45

50

55

60

65

28

a response message receiver circuit to receive a capability
configuration response message irom the connected
device based on the capability configuration read
request message;

host controller circuitry to determine, based on the
response message, to hide a capability of the connected
device.

15. The apparatus of claim 14, wherein the request

message generator 1s to:

compose a capability configuration write request message
comprising a bit enabling or disabling a capability hide
indicator, and

transmit the capability configuration write request mes-
sage to the connected device.

16. The apparatus of claim 14, wherein the capability
configuration read request message or the capability con-
figuration response message comprises a transaction layer
packet (TLP) based on a Peripheral Component Interconnect
Express (PCle) protocol.

17. The apparatus of claim 16, wherein the capability
configuration read request message or the capability con-
figuration response message comprises a vendor-defined
message (VDM) transaction layer packet.

18. The apparatus of claim 14, wherein the capability
configuration read request message comprises a capability
structure configuration request message identifying a capa-
bility of the connected device to present or to hide.

19. The apparatus of claim 14, wherein the interconnect
stack circuitry 1s to implement a link based on a Peripheral
Component Interconnect Express (PCle) protocol.

20. A method comprising;:

generating, at a host device, a capability configuration
read request message;

transmitting the capability configuration read request
message to a connected device across a link;

recerving a capability configuration response message
from the connected device based on the capability
confliguration read request message;

determining, based on the response message, to hide a
capability of the connected device.

21. The method of claim 20, wherein the request message

generator 1s 1o:

compose a capability configuration write request message
comprising a bit enabling or disabling a capability hide
indicator, and

transmit the capability configuration write request mes-
sage to the connected device.

22. The method of claim 20, wherein the capability
configuration read request message or the capability con-
figuration response message comprises a transaction layer
packet (TLP) based on a Peripheral Component Interconnect
Express (PCle) protocol.

23. The method of claim 22, wherein the capability
configuration read request message or the capability con-
figuration response message comprises a vendor-defined
message (VDM) transaction layer packet.

24. The method of claim 20, wherein the capability
configuration read request message comprises a capability
structure configuration request message 1dentifying a capa-
bility of the connected device to present or to hide.

25. The method of claim 20, wherein the link 1s based on
a Peripheral Component Interconnect Express (PCle) pro-
tocol.

	Front Page
	Drawings
	Specification
	Claims

