12 United States Patent

Pieczul et al.

US011695776B2

US 11,695,776 B2
Jul. 4, 2023

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)

(22)

(65)

(1)

(52)

(58)

TECHNIQUES FOR AUTOMATICALLY

CONFIGURING MINIMAL CLOUD SERVICE

ACCESS RIGHTS FOR CONTAINER
APPLICATIONS

Applicant: Oracle International Corporation,

Redwood Shores, CA (US)

Inventors: Olgierd Stanislaw Pieczul, Dublin
(IE); Hubert Alexander Foskett,
Sammamish, WA (US); Robert
Graham Clark, Clyde Hill, WA (US)

Assignee: Oracle International Corporation,
Redwood Shores, CA (US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 36 days.

Appl. No.: 17/177,159

Filed: Feb. 16, 2021

Prior Publication Data

US 2022/0263835 Al Aug. 138, 2022

Int. CIL.

HO4L 9/40 (2022.01)

GOOF 9/455 (2018.01)

U.S. CL

CPC HO4L 63/104 (2013.01); HO4L 63/08

(2013.01); HO4L 63/20 (2013.01); GO6F
9/45558 (2013.01); GOGF 2009/45562

(2013.01); GO6F 2009/45587 (2013.01)

Field of Classification Search

CPC ... HO4L 63/104; HO4L 63/20; HO4L 63/08;
GO6F 2009/45562; GO6F 9/45558; GOO6F
2009/45587

USPC e 726/1

See application file for complete search history.

100
N\

102

(56) References Cited
U.S. PATENT DOCUMENTS

7,127,461 B1 10/2006 Zhu et al.

11,032,287 Bl 6/2021 Wang et al.
2010/0115291 Al 5/2010 Buer
2017/0214701 Al1* 7/2017 Hasan HO4L 63/1491
2017/0228182 Al 8/2017 Novak et al.
2018/0191725 Al1* 7/2018 Luukkala HO4L 63/083

(Continued)

OTHER PUBLICATTONS

Multifactor Authentication (MFA), IBM Cloud Docs / App ID,
Available Online at: https://cloud.ibm.com/docs/appid?topic=appid-
cd-mfa Sep. 22, 2020, 15 pages.

(Continued)

Primary Examiner — Benjamin A Kaplan

(74) Attorney, Agent, or Firm — Kilpatrick Townsend &
Stockton LLP

(57) ABSTRACT

A computer system may receive one or more requests for
access to one or more cloud services and may store the one
or more requests 1n a request log. The computer system may
receive one or more access rules applicable to cloud service
access rights. The computer system may aggregate the one
or more requests of the request log to determine access
requirements for a container, the container being configured
to store one or more applications. The computer system may

generate and store container access policies that define
access of a container and the one or more cloud services, the
container access policies based at least 1 part on the
aggregated one or more requests and the one or more access
rules. The computer system may send the container access
policies to a request forwarder of a compute stance 1 a
production environment.

17 Claims, 12 Drawing Sheets

Compute inslance

—

110

104 Container 1 J

4 7y 106 ;/~
Metadata eJnslance credenﬁE!/L.
Service
\.. S
108

/’_ e
- 12 Cloud service A
/.l
N
Container 2 credenta Cloud service B
N %
Container 3 j 4 A
'_—-p Cloud senvice C
11 if
N /

US 11,695,776 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2018/0316676 Al 11/2018 Gilpin et al.
2018/0367528 Al 12/2018 Schwarz et al.
2019/0020665 Al 1/2019 Surcout et al.
2019/0081955 Al 3/2019 Chugtu et al.
2019/0098055 Al 3/2019 Pitre et al.
2020/0097195 Al 3/2020 Fritz et al.
2020/0120102 Al 4/2020 Cybulski et al.
2020/0272712 Al 8/2020 Pinter et al.
2020/0301839 Al 9/2020 Kral et al.
2022/0209939 Al 6/2022 Skuliber et al.

OTHER PUBLICATIONS

International Application No. PCT/US2022/015608, International

Search Report and Written Opinion dated May 4, 2022, 13 pages.
U.S. Appl. No. 17/143,133, Non-Final Oflice Action dated Jul. 26,
2022, 11 pages.

Chow et al., SPICE—Simple Privacy-Preserving Identity-
Management for Cloud Environment, Springer-Verlag, Applied
Cryptography and Network Security, Jun. 2012, pp. 526-543.
Dissanayaka et al., A Review of MongoDB and Singularity Con-
tainer Security 1 regards to HIPAA Regulations, ACM, UCC
Companion: Companion Proceedings of the 10th International
Conference on Utility and Cloud Computing, Dec. 2017, pp. 91-97.
Surantha et al., Secure Kubernetes Networking Design Based on
Zero Trust Model: A Case Study of Financial Service Enterprise 1n
Indonesia, Springer Link, Innovative Mobile and Internet Services
in Ubiquitous Computing, 2020, pp. 348-361.

* cited by examiner

US 11,695,776 B2

Sheet 1 of 12

Jul. 4, 2023

U.S. Patent

3 89IAISS PNOJ)

g 89IAJ8S PNOJY

L
L
K

V S9IAI8S pNoj)

} Ol
RN
L
a1]
AI'II'/W f,,.M
) ¢ J~UIBJUOD
-~ F e
N /80l
ﬁ/\/ e — _ m\ B JM,
T\ /m M 90INI9S
AETEERENEE TR
[eUaPaID ¢ JSUIEJUO]) T_ﬁm D Jsup™ elepelsiy
90uBISUu| _ S | y
a)
OL1
18UIRIO M
| JSUIRO0Y 201
N

90UEJSU| sndwon)

¢0l

/oor

US 11,695,776 B2

Sheet 2 of 12

Jul. 4, 2023

U.S. Patent

,\,,,J,,,E;,,
NMN a.../.../......./\L 0) allIAlZs PO
N
067~/
I €] 90198 PNOL)
M/
-
— \/ 801AJSS PNO|D
/E j
077
p
L AV PNOLO
5)
072

fo110d
SS800Y

Adtjod
$$900Y

JBUIBIUO

boj

36jN.
$S900Y

186nbay

cCC

~.

¢ 9Old
m - 09¢ ™
| L~ glupuo) |
| [enuapaln
JopJemio] jsenbey JBUIBILIOD -~ z /
p// H\\ ™
— ” 4 ﬂ_gm_Emnt ¢ BEERO
Iz [eJUapaIo " b 9C7 -
aoUE)sul | 7G7
| ,,,, S— S
901MISS y OUEFRY
| ‘ 9G¢ —~_
| elEpEloN
| ¢9¢
~ a soUB)sUl 8)ndwion
) YA
T4 JUSLIUOJIALIS LIOTIONPOIA
e e
e) ¢ Jaulejuon p
[enuspalo |
Japlemo) 1ssnbsey JOUIBIUOS -
B - Jsuigiuo A
[BIUSP8I0 [ERUSPSIT 07 T ~ p
2oUR)SUI 18D - " ¢0¢
e ™ D
S0INIBS | JBUBUOD L
ElePEIo
¢le T AL .
s0UB)sUl gndwion)
. L ;
..ﬁ]lllk i
70¢ JUSWUOJIAUT 88 |
007

US 11,695,776 B2

Sheet 3 of 12

Jul. 4, 2023

U.S. Patent

& 94
AANEN
AN
e ™
18pIRMIO] 1S8nDhay]
N \AH‘LH& ™
Aarjod Jaurejuod Ja1SNo JoulRILo?) € 30¢ Jﬂk
S /,Hf | y fo110d J8uRu09 - M 4 N
SIBUIRIUOY) P + JOULBJU00 0l 1 seniod «—— Dojjsenbay
. M. P glLe 5 G kmwmmmamm - »aiaé\
maﬁ]}lixx
Uopensayolo 4 abeyoed UGS 186 | 18UIBILO0D
AV PROLD . Aanod Py OINONNSEAU| abeyoed JustiAojda(] JOUIBIUOS. H AU 581 W POIPOW/MEN
- | Y, . S J N | S M _/ - \
. — _ ~ % —
~ 5 e o Mo 20¢
JINSay 188
90¢ —~
. P

/ 00¢

U.S. Patent

400 \

Jul. 4, 2023

Sheet 4 of 12 US 11,695,776 B2

412

;

.
410

N

" Container 6

N

s g a0

\

w“’

Container 5 - Container 3 | \.

f\m 402

- Container 1

| / 404

Container 2

406
~_ 408

| Container 4

N

Allowed arrangements

FIG. 4

U.S. Patent Jul. 4, 2023 Sheet 5 of 12 US 11,695,776 B2

500 \

// MMMMM F T \
/o

s 512 504 Container 2 |

Contamer 0
3 /

510 506#ﬁ>7/”

Contamer 5 Container 3

-
- e Fatp, —a—r

~ Container 4

\

508

Forbidden arrangements

FIG. 5

U.S. Patent

600 \

Jul. 4, 2023 Sheet 6 of 12 US 11,695,776 B2
e ~
Node group 1 602 Node group 2
50 4f’“ CMGOS
BNy
516 \
//Ci Container 1
N \J
< Container 6 ; —~ 610
" \
Container 3 }
| %3608 |
[4
Container 2 > - -
kw/ Container 5
612
/ """"" P 608
Container 4 /
Ofbf Container 2 |
) .)

P PR LA L LA L L L R L R R L rara ERITELY

Allowed grouping

FIG. 6

U.S. Patent Jul. 4, 2023 Sheet 7 of 12 US 11,695,776 B2

700 ~

Receiving one or more requests for access to one
or more cloud services

Lvvvarararars rarara raLLT [ELELL T L T
e} I

720 . Storing the one or more requests in a request Iog

r

Recelving one or more access rules applicable o
cloud service access rights

R

Aggregating the one or more requests of the
request log to determine access requirements for
a container, the container being configured to
store one or more applications

v

Generating container access policies that define
access of a container and the one or more cioud
750 — 1 services, the container access policies based at
least in part on the aggregated one or more
requests and the one or more access rules

!

760 — | Storing the container access policies in a memory

T o s rord
A rava

Sending the container access policies to a
request forwarder of a compute instance in a
770 production environment, the request forwarder
~accessing the container access policies to grant
access rights of containers to the one or more

cloud services

rrrss A vararars

710 —

FIG. 7

018

ll

b8 — 7v8

P18
BRUaNS

US 11,695,776 B2
=)

....................... 0€8 sieugns gd

058 Jol1 8 g 209G
. EIEQ Sueld B shouang | 878 191] Bleq 8ue|d |05U0D "
— R Opg 4ot ddy m -
b~ : : adetlt m
> | Zv8 e 0¢8 Sjaugng ddy “
w...w + vzg o1l ddy aueig oo
B SRkl s e T | “ 229 SPUaNg g1
X 028 1911 ZWQ BUEld 00D
3 L ——
3 _ “
< 918 NOA
= aue|d |0Quon
N 618 Aoueua | 90IneS
NBS si0)esedp
wowabeuep erpely | 058 S0IDS
S9INSG
| ! PO
Y58 oA / "

AANd

U.S. Patent

US 11,695,776 B2

Sheet 9 of 12

Jul. 4, 2023

U.S. Patent

706

Aoueus |
JS0H

...........

01 6-tainoes
=k Od]
w6 ||}
0€6 SisuanS ga RUINS | [1BUang |
" JSOH |

8¢0 911
eled SUEjd JOJUOY

8IN%8Q

9 9
slaugng ddy

Y 9%
(Sheuans
ddy h

| P06 1011 ddy || 0
6 JOLIN SUEld Ele] | | siojesadQ

¢Co
Sjugng ¢ | 026 91
A 7INQ eueld [oquod

lllllllllllllllllll

op6 st | ddy sueld eleq P

756
JeuRu[JliNd

916 NOA 966
816 NOA 9tFId B _ oUe|d [OUC]) $3INIBS PO
126 Aoueus | Jawojsn) P 616 Aoueus] somIeg Y Gl
e meeceeaneanens *
OO — -

256

90WIaG Jusiebeuey

EIepER

ﬂ-ﬂ-q-.- L L R F. F | L.y . 2 X 3 K F X 3 L 2 F 3. B _F E 5 1§ |
'ﬂ-_-----q---- LT r Ty Ty yy"
k-ﬂ--- e &3 42 5 F : E B B _ B 1 J 1 5 E 2. J J |

= I 1 5] B
= fro T —— GO T | e
o SINA 00} % 6 010} 010L i\ | foleus|
2 N)Z901 Jouang ddy I 3101 NOA sueld ele(d _ L Y 1501
_ | S RETEEEEEEE 0)0d) .
o . :
£ . NIBIOLNOAY 0801 (Sheuang aq Ft: o
— 2D SUBIIOD 050} (Sheuans 6@ vl0l
. [(N)oL0} Aoveus | sswoisn V ||| 1uang
g auelg joguog)
. @v R ||| eN— N .
. 11(2)2901 38uang ddy/: : 1| 0101 -
M ' ZVEQG A (Sheugng ddy
Z (2)890LND ok || S
E ||\t e ®oool| ||—=, |i|| | Ueld IOAOD 0012
7 (2)0201 Aoueus] Jswoisny) aedL H :%%%v_‘ i ' ommomf ;
m : m m Joje.
= : {L (spouans ady IS %mmmww_wm B0INIO
er) M INAA m : Em- m ; m
o . 11{(1)2901 Jouang day |- L m — _ m
Q - m i | .mo YA oS P P— 0501
- || BeoNeL0— L || [(femeleo) Aemales) ﬁﬁwm 910} NOA SO0INISS
= | [(emorg) (118901 NON || | N8BS Sueld (040D _
= cHNLYN/ Ssaib3 Jeureon] || wwotm_.ﬁ_zo m%_n_hﬁm.m m w,:o_w
T:@B;o%% 1 Jswoysn) ||

S — 6101 fouetl sone]
g | N0 B B - T = .
) ISURU0Y /.
m . pusha depy : 0001

eeeeeeeeeeeeeeeeeeeeeeeeee A B .
011 . T T
:] : : oL
@. .4 OLLL o:_\o_‘:‘ m _m_ Aoueus |
nﬂm’ : “ J50H

3IN09Q

&
ad &

US 11,695,776 B2

1222,

011 (sheugns ga QNS
G 9z11jeugng ddy |
w.z.v..m.m.wmﬂ_ﬂ_.m.. E 821 | Joilje1eq Ueld (040 69
e P K (@9l m : : .
= (0211 DINA _m
S * ralll :vaw I 0z 11 (sheugng ddy
— TG AT |1 I m
" AesLL OINA 1| (spouang ddy paisfauy ~] A e o
.m 196 ddy aueld BleC " > Of | Lisol] a%.mw%_& eleq | /4% — “ i
s o .
e puns g1 ||| | | [eehl (Sheuans g si0)es0dQ -
A 90INBS
e 81 | JoILiZING dueidiEleq || : 1711 4811 ZINQ 8ueld joaub
“ : : N |} ; ;
S ¥l 2ang Jouwiojsng | | AT /FEIIN /GE
- 8¢} A1 — | kemajeo) Aemajeo) Aemajeo) [€-+sxx--s-=
< 9} 1} NOA
E eNBIED) 8911 NOA LYN/\guy 3ueld |04U0)

wmwmm

""
""

L
U

Tﬂ‘-

¢S 1 | SINRG
Juswiabeue) elepesiy

(N)-(1)291) wm

JauRIU0N
pusba deiy

LT Y I T T Y I XY I PSP XYY R YRR EYT TR OET LR SR Y
| F I J J

t‘-----‘-----------‘-----------‘---‘----i

» 1ouIgU| g § €

U.S. Patent

¢k Ol

glcl
NFLSASENS IDVHOLS

US 11,695,776 B2

444
VIQ3P IOVHOLS

418vAv4Y

171 WILSAS ONILYHIdO

~ 0€cl 8¢cl -431NdINOD

- $31vadn| |SWvadLS ._..,...._..........

= IN3IAT INIAT ¢l VIV AVEY0dd

~ 0cc)

" 171 SWVH90Y NOILYOITddyY H3avaY VIQIN

o JOVHOL

Z éoz%_\”_ﬂ&@,m quﬂmw
] WILSASEANS SNOILYOINNWINOY HALNAWOD

ol

g |

—

g |

<+ 202 — _

= _ 90¢T LINN PTTT LINN @mwww_% ﬁ_

= 80¢l NOILYYI 1300y ONISSIOOMd ANS

N3LSASENS O/ ONISSIO0NJ

ans
3Hov)) | | 3HOVD EN%
E1T0% EN10%0 7409

0021 ¥0cl
LINM DNISS400d

U.S. Patent

US 11,695,776 B2

1

TECHNIQUES FOR AUTOMATICALLY
CONFIGURING MINIMAL CLOUD SERVICE

ACCESS RIGHTS FOR CONTAINER
APPLICATIONS

BACKGROUND

Infrastructure and Platform as a service cloud providers
support integrated authentication. In particular, customer
workloads, hosted on a cloud provider’s infrastructure can
authenticate using an 1dentity of compute 1nstances they are
hosted on. This model can allow customers to build secure
workloads. Without 1t, a customer would be required to
bootstrap their mstances, or applications running on them,
with credentials each time they are created, and ensure that
such credentials are recognized by cloud services.

Customer access rules can restrict access to certain ser-
vices or customer data by compute instances or nodes to
prevent all the containers from having the same level of
access 1o the cloud infrastructure. Existing systems to estab-
lish connectivity for cloud services often can use overly
permissive rules 1n which all containers have the same level
ol access to the cloud infrastructure.

BRIEF SUMMARY

Certain embodiments of the present disclosure can pro-
vide methods, systems, and computer-readable storage
mediums for managing access to cloud based services. The
disclosure describes systems and techmques that mediate
requests between containers and the cloud service 1n order to
provide adequate level of access control. The disclosed
techniques combine an internal authentication of the cloud
orchestrator to 1dentily the container caller and cloud service
authentication to authenticate calls made to cloud services.
In some examples, individual containers running on the
system may not get direct access to the metadata service or
instance credential. Instead, the containers may send the
requests through a request forwarder component. That com-
ponent establishes the container 1dentity and verifies that the
specific container has the access to communicate with the
target service (e.g., the cloud services). The request for-
warder component uses the instance credential to authenti-
cate the call to the target service. The compute 1nstance can
be configured 1n a way that prevents containers from access-
ing the metadata service. The techmque etl

ectively prevents
processes 1n containers to use the compute instance creden-
tials. Compute nstances are examples of virtual processors,
compute nodes in the cloud, or even bare metal processors
(e.g., physical hardware computers).

When a container 1s initialized 1t can be provided with a
credential by the container orchestrator. The container
orchestrator can identity the container using the credential 1n
addition to replacing nodes, replacing containers to nodes
and so forth. This process can take different forms. In some
instances, the process will result 1n a credential being stored
on a container’s file system. According to an aspect of the
disclosure, a process being executed 1n a container intends
to make a call to a cloud service. The process can direct a
request for cloud services to the request forwarder. The
request can include the container credential. The request
forwarder can receive the request and determine the 1dentity
of the container by sending the container credential to the
container orchestrator. The request forwarder can consult
one or more policies stored on the system to verily that the
container 1s allowed to access the target cloud service. The
request forwarder can obtain an instance credential from the

10

15

20

25

30

35

40

45

50

55

60

65

2

metadata service. The request forwarder can send the request
to the target cloud service including the compute instance
credential. The cloud service can verily the request against
one or more stored cloud policies to verify that the instance
running in a container is allowed to access the requested
cloud service.

Specifically, containers can execute one or more applica-
tions that may request access to cloud resources. For
example, the resources may be used to create virtual
machines, or access sequence or data objects or manage keys
in a key management system or store data in a database.
Cloud infrastructure systems can include their own inte-
grated access management mechanism. In the access man-
agement system, one can grant access to principals. While 1t
1s technically possible to just create principals for every
container, that technique would need to include granting
access to each container. This technmique i1s diflicult to
replicate at scale because 1t would require provisioning the
credential and dividing those containers. This problem can
be solved only using compute nodes. Compute nodes have
theirr own first class i1dentity, and one can grant access to
those nodes. Thereby, those machines, as principals, are
enabled to perform these kind of actions.

The disclosed techniques allow for 1solation of containers,
assuming there are two pieces of data that need to be
separately stored. For example, one container can store the
first piece of data and the second container can store the
second piece of data. Ideally, the containers are never hosted
on the same machine. In this way, 1f there 1s a breach or
vulnerability 1n one container or 1n container isolation that
vulnerability does not provide access to the other data in
other containers.

In some aspects, a method includes: receiving one or more
requests for access to one or more cloud services; storing the
one or more requests 1n a request log; receiving one or more
access rules applicable to cloud service access rights; aggre-
gating the one or more requests of the request log to
determine access requirements for a container, the container
being configured to store one or more applications; gener-
ating container access policies that define access of a con-
tainer and the one or more cloud services, the container
access policies based at least 1n part on the aggregated one
or more requests and the one or more access rules; storing
the container access policies in a memory; and sending the
container access policies to a request forwarder of a compute
instance in a production environment, the request forwarder
accessing the container access policies to grant access rights
ol containers to the one or more cloud services.

In some aspects, generating node access policies, the node
access policies specily access policies for granting groups of
compute instances a combined access of one or more
containers on a node; and storing the container access
policies 1n the memory.

In some aspects, the method includes granting access
permissions equal to combined access of the one or more
containers assigned to the node.

In some aspects, the method includes partitioning the
compute mstance with a plurality of compute instances into
groups ol nodes, each of the nodes having distinct access:
and assigning one or more containers to a node with suili-
cient access based at least 1n part on the node access policies.

In some aspects, node access 1s pre-determined and con-
tainer access within each node 1s dynamically configured.

In some aspects, the method includes testing access
requirements for a cloud system; detecting a failure of a
specific application to access the one or more cloud services

US 11,695,776 B2

3

based at least 1in part on an entry in the request log; and
changing permissions of a compute instance to remedy the
tailure.

In some aspects, the method includes setting the request
forwarder for each container type in the production envi-
ronment to a permissive mode, the permissive mode grant-
ing access of the one or more applications stored in the
container to the one or more cloud services; receiving the
one or more requests from the request forwarder; and 1n
accordance with a number of the one or more requests
exceeding a threshold requirement, switching the request
torwarder to a restrictive mode, the restrictive mode granting
access of the one or more applications to the one or more
cloud services based 1n part on the container access policies
in accordance with a number of the one or more requests
exceeding a threshold requirement, switching the request
forwarder to a restrictive mode, the restrictive mode granting
access ol the one or more applications to the one or more
cloud services based in part on the container access policies.

In some aspects, a non-transitory computer-readable
medium storing a set of mstructions for configuring cloud
service access rights for container applications includes: one
or more instructions that, when executed by one or more
processors of a computer system, cause the computer system
to: receive one or more requests for access to one or more
cloud services; store the one or more requests 1n a request
log; receive one or more access rules applicable to cloud
service access rights; aggregate the one or more requests of
the request log to determine access requirements for a
container, the container being configured to store one or
more applications; generate container access policies that
define access of a container and the one or more cloud
services, the container access policies based at least 1n part
on the aggregated one or more requests and the one or more
access rules; store the container access policies in a memory;
and send the container access policies to a request forwarder
of a compute istance m a production environment, the
request forwarder accessing the container access policies to
grant access rights of containers to the one or more cloud
SErvices.

In some aspects, the one or more instructions further
cause the computer system to: generate node access policies,
the node access policies specilying access policies for
granting groups ol compute 1nstances a combined access of
one or more containers on a node; and store the container
access policies 1 the memory.

In some aspects, the one or more instructions further
cause the computer system to: grant access permissions
equal to combined access of the one or more containers
assigned to the node.

In some aspects, the one or more instructions further
cause the computer system to: partition the compute instance
with a plurality of compute 1nstances mto groups of nodes,
cach of the nodes having distinct access; and assign one or
more containers to a node with suflicient access based at
least 1n part on the node access policies.

In some aspects, node access 1s pre-determined and con-
tainer access within each node 1s dynamically configured.

In some aspects, the one or more instructions further
cause the computer system to: test access requirements for
a cloud system; detect a failure of a specific application to
access the one or more cloud services based at least 1n part
on an entry in the request log; and change permissions of a
compute instance to remedy the failure.

In some aspects, the one or more instructions further
cause the computer system to: set the request forwarder for
cach container type in the production environment to a

10

15

20

25

30

35

40

45

50

55

60

65

4

permissive mode, the permission mode granting access of
the one or more applications stored in the container to the
one or more cloud services; receive the one or more requests
from the request forwarder; and 1n accordance with a num-
ber of the one or more requests exceeding a threshold
requirement, switch the request forwarder to a restrictive
mode, the restrictive mode granting access of the one or
more applications to the one or more cloud services based in
part on the container access policies.

In some aspects, a computer system includes: one or more
memories; and one or more processors, communicatively
coupled to the one or more memories, configured to perform
operations for configuring cloud service access rights for
container applications, the operations comprising: receiving
one or more requests for access to one or more cloud
services; storing the one or more requests 1 a request log;
receiving one or more access rules applicable to cloud
service access rights; aggregating the one or more requests
of the request log to determine access requirements for a
container, the container being configured to store one or
more applications; generating container access policies that
define access of a container and the one or more cloud
services, the container access policies based at least in part
on the aggregated one or more requests and the one or more
access rules; storing the container access policies 1 a
memory; and sending the container access policies to a
request forwarder ol a compute 1nstance in a production
environment, the request forwarder accessing the container
access policies to grant access rights of containers to the one
or more cloud services.

In some aspects, the one or more processors are further
configured to perform operations comprising: generating
node access policies, the node access policies specifying
access policies for granting groups of compute instances a
combined access of one or more containers on a node; and
storing the container access policies 1n the memory.

In some aspects, the one or more processors are further
configured to perform operations comprising: granting
access permissions equal to combined access of the one or
more containers assigned to the node.

In some aspects, the one or more processors are further
configured to perform operations comprising: partitioning
the compute 1nstance with a plurality of compute 1nstances
into groups of nodes, each of the nodes having distinct
access; and assigning one or more containers to a node with
suflicient access based at least 1n part on the node access
policies.

In some aspects, node access 1s pre-determined and con-
tainer access within each node 1s dynamically configured.

In some aspects, the one or more processors are further
configured to perform operations comprising: testing access
requirements for a cloud system; detecting a failure of a
specific application to access the one or more cloud services
based at least 1n part on an entry in the request log; and
changing permissions of a compute instance to remedy the
failure.

Reference to the remaining portions of the specification,
including the drawings and claims, will realize other features
and advantages of disclosed embodiments. Further features
and advantages, as well as the structure and operation of
various examples of the present disclosure, are described in
detail below with respect to the accompanying drawings. In
the drawings, like reference numbers can indicate 1dentical

or functionally similar elements.
These and other embodiments are described in detail

below. For example, other embodiments are directed to

US 11,695,776 B2

S

systems, devices, and computer readable media associated
with methods described herein.

A better understanding of the nature and advantages of
embodiments of the present disclosed may be gained with
reference to the following detailed description and the
accompanying drawings.

BRIEF DESCRIPTION OF TH.

(L]

DRAWINGS

FI1G. 1 1llustrates a logical construct for an example cloud
network architecture.

FIG. 2 1llustrates a logical construct for a second example
cloud network architecture.

FIG. 3 1s a flowchart of an example process associated
with a technique for automatically configuring minimal
cloud service access rights for container applications.

FI1G. 4 1llustrates an example arrangement diagram show-
ing allowed arrangement of the disclosed system.

FIG. 5 illustrates an example arrangement diagram show-
ing forbidden arrangement of the disclosed system

FIG. 6 illustrates an example diagram of allowed group-
ng.

FIG. 7 1s a simplified flowchart for a technique for
selective container access to cloud services based on a
hosting node using a request forwarder as a service.

FIG. 8 1s a block diagram illustrating one pattern for
implementing a cloud infrastructure as a service system,
according to at least one embodiment.

FIG. 9 1s a block diagram 1llustrating another pattern for
implementing a cloud infrastructure as a service system,
according to at least one embodiment.

FI1G. 10 1s a block diagram 1llustrating another pattern for
implementing a cloud infrastructure as a service system,
according to at least one embodiment.

FIG. 11 1s a block diagram 1llustrating another pattern for
implementing a cloud infrastructure as a service system,
according to at least one embodiment.

FIG. 12 1s a block diagram illustrating an example com-
puter system, according to at least one embodiment.

DETAILED DESCRIPTION

I. Introduction

Modern computing frameworks abstract the concept of a
machine. The machine can be considered just a unit of
processing. Modern applications are increasingly built using,
containers, which are micro services packaged with their
dependencies and configurations. A container management/
clustering service 1s soltware for deploying and managing
those containers at scale. As applications grow to span
multiple containers deployed across multiple servers, oper-
ating them becomes more complex. To manage this com-
plexity, a container management/clustering service provides
an open source application programming interface (API)
that controls how and where those containers will run.
Container management/clustering service orchestrates clus-
ters of virtual machines and schedules containers to run on
those virtual machines based on their available compute
resources and the resource requirements of each container.
Containers are grouped mnto pods, the basic operational unit
for container management/clustering service, and those pods
scale to the desired state. Container management/clustering
service also automatically manages service discovery, mcor-
porates load balancing, tracks resource allocation, scales
based on compute utilization, checks the health of individual

5

10

15

20

25

30

35

40

45

50

55

60

65

6

resources, and enables apps to self-heal by automatically
restarting or replicating containers.

A network orchestrator can be used to assign the number
ol mstances for each container. Based on how busy each of
the machines are, containers can be added or removed to
create high workload density to result in cost savings.
Containers can be customized for high mput/output (I/0)
bandwidth for increased performance.

Cloud providers can issue an identity for each of the
compute nodes. In this way, the nodes can have their own
identity. There 1s a standard mechamism of obtaining that
identity. So 11 the container 1s running a process on the node,
the system can call a specific IP address for example. This
can return a specific 1dentity ephemeral credential that is
associated with that specific instance. That credential would
have multiple parameters such as what 1s a specific machine
but also what group of machines that machine belongs to.

In an example, a customer can use two services from the
cloud vendor (e.g., compute and object storage). A custom-
er’s application runs on compute instances and stores and
retrieves data from object storage buckets. Without an
integrated authentication mechanism, the customer would be
forced to operate 1n the same fashion as 1n legacy pre-cloud
environments. That 1s, the customer would need to: create
users under their account; grant those users access to object
storage; and provide user’s credentials to the application.
This last step can be particularly problematic. The credential
has to be placed on the system before the application can
become operational. IT the system restarts, or new machines
are added, this step has to be repeated. It also has to be
performed manually by an engineer that has access to the
credential, which increases the credential exposure risk. In
order to make the process less troublesome, the customer
may decide to store the credential persistently on the
machine 1tself, or location where multiple machines can
access 1t. This could further increase the risk of credential
compromise. Apart from security problems, such processes
do not scale for complex large workloads. The requirement
for synchronized actions (e.g., creation of a credential,
distribution of the credential) pose serious problems for
highly automated cloud workloads. Also, the process has to
be repeated every time a customer would like to change the
credential.

Modem cloud vendors offer highly integrated Identity
Access Management (IAM) solutions. IAM 1s a framework
of policies and technologies for ensuring that the proper
people 1n an enterprise have the appropriate access to
technology resources. IAM systems fall under the overarch-
ing umbrellas of I'T security and data management. Identity
and access management systems not only identify, authen-
ticate, and authorize individuals who will be utilizing IT
resources, but also the hardware and applications employees
need to access. Identity and access management solutions
have become more prevalent and critical 1n recent years as
regulatory compliance requirements have become increas-
ingly more rigorous and complex.

It addresses the need to ensure appropriate access to
resources across 1increasingly heterogeneous technology
environments and to meet increasingly rigorous compliance
requirements. [Compute 1mstances, and other resources dedi-
cated to host customer workloads such as server-less func-
tions, have their own identity recognized by cloud 1AM
under customer’s account. The customer may directly
address these components as first-class principals, group
them and grant them required access. The compute
machines, functions and other components are automatically
provisioned with short-lived credentials accessible to the

US 11,695,776 B2

7

processes they host. Applications retrieve those credentials
and use them to access cloud resources.

A problem can arise when a customer intends to host
multiple, heterogeneous processes on a single compute
instance. This 1s common, when compute nodes are used to
run containers managed by orchestration framework such as
used 1 commercially available container management/clus-
tering services. The core of the problem 1s the fact that
mimmum granularity of the identity 1s a single machine. Just
because the containers are hosted on the same machine, 1t
does not mean that they are intended to have the same access
to cloud resources. However, as the single machine 1s the
most granular level of identity, the containers all need to
share 1it.

Consider the following example. A customer utilizes two
services from a cloud vendor, compute and object storage.
The customer’s application runs on compute nstances and
performs storage and retrieval data operations from a bucket
within object storage. Without an integrated authentication
mechanism, the customer would be forced to operate 1n the
same fashion as in legacy pre-cloud environments. The
pre-cloud system would: (1) create a user 1n their account;
(2) grant the user access to object storage; and (3) provide
the user’s credentials to the application.

This last step 1s particularly problematic. The credential
has to be placed on the system before the application can
become operational. If the system restarts, or new machines
are added, this step has to be repeated. It also has to be
performed manually by an engineer with access to the
credential, increasing the risk of credential exposure. To
save time, the customer may decide to persistently store the
credential on the machine itself, or in a location where
multiple machines could access 1t, further increasing the risk
of credential compromise.

Apart from the security problems, this process does not
scale for large or complex workloads. The requirement for
synchronized actions (e.g., creation of a credential or dis-
tribution of a credential) can pose a problem for highly-
automated cloud workloads. Further, the process has to be
repeated every time a customer would like to change the
credential.

Compute stances and other resources dedicated to host
customer workloads, such as server-less functions, have
their own 1dentity recognized by cloud IAM under the
customer’s account. The customer may directly address
these components as first-class principals, group them and
grant them required access. The compute instances, func-
tions, and other components are automatically provisioned
with short-lived credentials, accessible to the processes they
host. Applications can then retrieve these credentials and use
them to access cloud resources.

In a typical implementation, the compute instance
includes a locally accessible network service, commonly
referred to as a Metadata service. This service allows local
workloads on the system to access various information
propagated by the cloud vendor, such as the credential for
the principal representing the compute instance. The meta-
data service can be accessible only to the processes running
on this specific machine. A process makes a request to the
metadata service, receives the credential, and uses i1t to
access other cloud services. The other services use the cloud
vendor’s IAM service to verily that the principal, represent-
ing the instance, has access to perform the requested opera-
tion.

Certain embodiments of the present disclosure can pro-
vide methods, systems, and computer-readable mediums for
managing access to cloud based services. Two types of

10

15

20

25

30

35

40

45

50

55

60

65

8

access control are described herein. First, there 1s access for
the container to the particular cloud service. This access can
determine whether or not a container has permissions based
on policies that call it service. Furthermore, the second
access control 1s by the compute instance to the cloud
service. Therefore, a process running on a container needs
permission for that container to access the cloud service, but
it also needs permission for the compute instance that the
container 1s a part of to have access to that cloud service.

The disclosure describes systems and techniques that
mediate requests between containers and the cloud service in
order to provide an adequate level of access control. The
disclosed techniques combine an internal authentication of
the cloud orchestrator to identify the container caller and
cloud service authentication to authenticate calls made to
cloud services. In some examples, individual containers
running on the system may not get direct access to the
metadata service or instance credential. Instead, the contain-
ers may send the requests through a request forwarder
component. That component establishes the container 1den-
tity and verifies that the specific container has the access to
communicate with the target service. The request forwarder
component uses the instance credential to authenticate the
call to the target service. The compute instance can be
configured 1n a way that prevents containers from accessing
the metadata service. The technique eflectively prevents
processes 1n containers to use the compute instance creden-
tials. The container gains access to the cloud service through
the machine that 1t 1s running on because as a result of these
techniques the containers are not given direct access.

When a container 1s 1nitialized, i1t can be provided with a
credential by the container orchestrator. This process can
take different forms, but most typically will be a process that
results 1n a credential being stored on container’s file system.
According to an aspect of the disclosure, a process being
executed 1n a container ntends to make a call to a cloud
service. The process can direct a request for cloud services
to the request forwarder. The request can include the con-
tamner credential. The request forwarder can receive the
request and determine the identity of the container by
sending the container credential to the container orchestra-
tor. The request forwarder can consult one or more policies
stored on the system to verily that the container 1s allowed
to access the target cloud service. The request forwarder can
obtain an instance credential from metadata service. The
request forwarder can send the request to the target cloud
service including the compute instance credential. The cloud
service can verily the request against the cloud policy to
verily that the instance 1s allowed to perform a given
operation by the cloud service.

For the purpose of this disclosure, an instance (e.g.,
compute mstance) 1s a hosted server that 1s running either 1n
the Customer Enclave (available publicly) or Service
Enclave. If it directly accesses the hardware that 1t runs on,
it can be considered a bare metal instance. If there 1s a
hypervisor between the istance and the operating system, 1t
can be considered a virtual instance. A hypervisor 1s a piece
ol software that enables a user to create and runs one or more
virtual machines simultaneously. A hypervisor 1s also known
as the virtual machine monitor (VMM). One of the key
functions that hypervisor provides is 1solation, meaning that
a guest cannot aflect the operation of the host or any other
guest, even 1f 1t crashes. Hypervisors can be of two types:
Type 1 and Type 2. Type 1 hypervisors can be known as
native or bare metal hypervisor, this type of hypervisor runs
directly on top of the physical hardware. FEach virtual
operating system runs atop the hypervisor. Examples of bare

US 11,695,776 B2

9

metal hypervisors can be the Oracle VM server, Vmware
ESX/ESX1 and Microsoft Hyper-V. Type 2 hypervisors can
also be known as a hosted hypervisor. This type of hyper-
visor 1s mnstalled as a software application on an existing host
operating system (OS). An example of the hosted hypervisor
can be the Oracle VirtualBox, Microsoft Virtual PC,
Vmware Server and Workstation.

For the purpose of this disclosure, a container 1s a
collection of schemas, objects, and related structures in a
multitenant container database (CDB) that logically appears
to an application as a separate database. Within a CDB, each
container has a unique ID and name. The root and every
pluggable database (PDB) 1s considered a container. PDBs
isolate data and operations so that, from the perspective of
a user or application, each PDB appears as 1f 1t were a
traditional non-CDB.

FI1G. 1 1llustrates a logical construct for an example cloud
network architecture 100. The cloud network architecture
can mnclude one or more containers (e.g., Container 1 104,
Container 2 106, and Container 3 108). In an implementa-
tion, the compute mnstance 102 can include a locally acces-
sible network service, commonly referred to as metadata
service 110. This metadata service 110 allows local work-
loads on the system to access various information propa-
gated by the cloud vendor, including the credential for the
principal representing the compute instance 102. The meta-
data service 110 can be accessible only to the processes

running on this specific machine. A process can contact the
metadata service 110 to obtain the credential and use that
credential to access other cloud services (e.g., Cloud Service
A 112, Cloud Service B 114, or Cloud Service C 116). The
services use the cloud vendor’s IAM service to verily that
the principal, representing the instance, has access to per-
form the requested cloud operation.

A problem can arise when a customer intends to host
multiple, heterogeneous processes on a single compute
instance 102. This can be common, when compute nodes are
used to run containers managed by an orchestration frame-
work (e.g., such as a container management/clustering ser-
vice or the like). The minimum granularity of the identity
can be a single machine. Previous techniques may have just
assigned access to one or more cloud services to the
machine, not necessarily to diflerent containers located on
the same machine. Just because the containers are hosted on
the same machine, 1t does not mean that they are intended to
have the same access to cloud resources. However, as the
single machine 1s the most granular level of identity, they all
need to share 1t.

For example, as depicted 1n FIG. 1. Container 1 104 only
communicates with the Cloud service A 112. Container 2
106 communicates with Cloud service A 112 and Cloud
Service B 114. Container 3 108 communicates with Cloud
service C 116. In one arrangement, a customer can accept the
risk of nodes having access to cloud services that were not
intended. In this arrangement, the compute nodes are
granted all the access that any container they host may need,
with all containers receiving access node credentials. This
approach eflectively compromises security for convenience.
For example, 1n the arrangement shown 1n FIG. 1, compute
instance 102 can be provided access to Cloud Service A 112,
Cloud Service B 114, and Cloud Service C 116. As an
example, processes running on Container 1 104 may be
prohibited from accessing Cloud Service C 116 potentially
because the service belongs to a competitor entity. If access
1s only controlled by the computing instance, the processes
running in Container 1 104 may inadvertently gain access to

5

10

15

20

25

30

35

40

45

50

55

60

65

10

Cloud Service C 116 because the compute instance 102
provided permissions for all containers to access all three

cloud services 1llustrated.

In a second arrangement, a customer can selectively
disable metadata service 110 access to some containers. In
this arrangement, containers that do not need access to any
cloud resources can be forbidden access to metadata service
110. This can be simple to implement, but 1s an all or nothing,
approach. This arrangement 1s not helpful for containers
having different access needs. So using firewall rules or
network policies, a user may decide to only allow this
container to access that metadata service network wide.
Furthermore, this works only 11 that container needs access
to any services. So one can at least 1solate components that
do not need access to any cloud services by breaking the
path for the containers to obtain a credential.

In a third arrangement, a customer can distribute contain-
ers to separate machines. In this arrangement, a customer
may create a group ol compute nodes and grant each group
different access. A customer can subsequently configure the
container orchestrator to place the containers on nodes with
access that matches needs for each container. The nodes can
be placed into different groups. The groups assign those
nodes different access and then configure the scheduler in
the container orchestrator to only assign specific containers
to specific nodes. This approach works 1n limited cases, but,
the more one needs to do it, the more fragmented the set of
machines becomes and the more a user 1s losing out on
machines and overall the workload density suflers. This
arrangement provides containers with tailored access to
cloud resources. However, this arrangement can be more
complicated and requires careful planning and mapping
policies to nodes and nodes to containers, and may result in
poor utilization of resources.

A customer may also use any combination of these
options, 1ncreasing the complexity ol access management.
The disadvantages of the above-mentioned solutions
increase with the size and complexity of the workload, 1n
particular the number of different containers and their cloud
service access needs. Accepting the risk will result 1n
increasingly larger access given to individual containers,
cven though they may not need 1t. Distributing a large
number ol containers may result 1n an increasingly larger
number of different machines required and complexity in
finding the right set of access needed on each node. At the
extreme, a customer may decide to have a pool of machines
for every container type which will provide pertect access
restrictions, but undermine the very purpose of using con-
taimner management service and greatly increase the cost due
to low process density.

Some providers, such as commercially available container
management/clustering services, provide support for con-
tainers (e.g., a pod) with their own type of principal 1n their
managed service. As such, access can be granted directly to
the containers themselves rather than relying on the meta-
data service 110. While this may be a useful solution, it 1s
limited to a given vendor and the vendor’s specific service.
Customers who intend to manage their own cluster, or want
to use a different framework will not be able to implement
this solution.

II. Logical Construct for Cloud Network
Architecture

As a cloud service adds and removes containers or rules
are added, multiple types of instances may be required. The
multiple types of instances may grant different levels of

US 11,695,776 B2

11

access to the different instances. This process can be diflicult
to perform at scale and 1s more complicated than simple
manual mapping of the network.

Access ol the machine-to-cloud services can be managed
by a cloud IAM. The disclosed techniques can determine
two policies. One policy manages container access within
the node. The second policy manages node access within the
cloud.

A potential TAM solution can establish a request for-
warder that can i1dentily the component making a call for
cloud services. The component can use 1ts own 1dentity to
make a call to the cloud provider service. Such request
forwarder can access one or more policies that can deter-
mine a configuration and which services can call with which
APIs, and with which credentials.

Such system can be diflicult to implement at scale or with
the modern fast-paced software delivery paradigms. New or
updated components may be delivered on a daily basis, each
time having different needs for communicating with the
cloud services. This renders any manual management of the
individual component policies impractical and error prone.
This, 1n turn, may result in an overly permissive policy
allowing all components to access unneeded services.
Access of the compute node 1tself must be managed as well,
to ensure no discrepancies exist between 1t and the combined
permissions of all the containers running on the node.

A second 1ssue can be managing compute node access.
The above discussion assumes that the compute node has
suilicient access to handle all requests from various con-
tainers located on the node. However, managing compute
node access can also be very dithicult, especially 1n rapidly
changing environments. In principle, the compute node has
to have the access that 1s a umion of all access needs of all
the containers hosted on that node. As containers on the node
are added, removed, or relocated, the access requirements
for the node change. This commonly results 1n granting
excessive rights to compute nodes, as a means to ensure that
all contaimners have their required access. Best security
practices mandate the node access be granted to the smallest
possible set. Management of node access, now properly
understood as distinct from management of containers’
access, becomes a major operational hurdle.

The present disclosure describes a system that automati-
cally infers the minmimal required set of access needs, for
both containers and compute nodes. Those needs are further
represented as a policy that 1s provided to the request
torwarder and cloud IAM. It also combines the life cycle of
the component with the life cycle of the policy itsell.
Further, the system allows for specitying criteria, or access
rules, to control how access 1s assigned to nodes.

With such a system, users can deliver new components
and modily existing components quickly, while ensuring
that access granted to cloud services remains minimal.
Without an automated mechanism for generating narrow and
specific policies, users may tend to grant overly permissive
access to the containers and, even more likely, compute
instances. Alternatively, when high-level of secunity 1is
expected, manual provisioning of single centralized policies
may negatively impact the performance of the feature
release cycle. The disclosed system allows a development
team to achieve high velocity delivery without sacrificing,
high security with access controls. Further, because of the
ability to specily rules for access, the system can automati-
cally partition containers to nodes, automatically building
secure 1solation boundary for the containers.

FIG. 2 1llustrates a logical construct for a second cloud
network architecture 200. The disclosed system operates in

10

15

20

25

30

35

40

45

50

55

60

65

12

two key phases. In the first phase, the container 1s subjected
to integration tests. The test environment 1s provisioned with
the request forwarder which 1s set to run in permissive mode.
Such tests, which are typical in continuous delivery and
containerized systems, exercise the container’s functionality
and trigger calls to the cloud provider. The requests to the
cloud provider are logged by the request forwarder. This log
1s then aggregated to create a cloud service access policy
specific to the particular container, as well as the cloud
service access policy for the compute node (often group of
nodes) hosting the container. Policy creation can be {ine-
tuned by access rules provided as system configuration.
Such access rules may, for example, prevent one node
having access to two specific cloud services. The policies are
then packaged with the container into a single deployment
package.

The deployment package consists ol: a container, the
container-specific policy, and a node policy. An infrastruc-
ture orchestration system deploys the node access policy 224
to the cloud IAM 226, while the container and container-
specific access policy 222 are deployed to the container
cluster. The cluster then deploys the container and sends 1ts
policy to the request forwarder. Similarly, when the con-
tainer 1s removed, the access, that 1s the container access 1n
forwarder and an unnecessary part of the policy granted to
the compute node, 1s removed.

The second cloud network architecture 200 can include a
test environment 202. The test environment 202 can include
one or more compute mnstances 204. The compute instance
204 can include one or more containers (e.g., Container 1
206, Container 2 208, and Container 3 210). Fach of the
containers can receive a credential to identity to the con-
tamner on the network. In various examples, a container
orchestrator can provide the i1dentity to the container upon
creation. The container identity can be stored 1n memory for
the container.

As previously discussed for FIG. 1, a process being
executed 1n a container of the compute nstance 204 can
request cloud services (e.g., Cloud Service A 228, Cloud
Service B 230, or Cloud Service C 232). The container can
send 1ts container credential to a request forwarder 214. The
request forwarder 214 can act as a proxy between containers
and cloud services. The request forwarder 214 1s responsible
for obtaining credentials so that a component on the machine
can call with the 1nstance credential to cloud services which
allow the network architecture to disconnect all of those
containers from accessing that credential. So those contain-
ers do not have that credential and now the containers have
to make all the calls through the request forwarder 214
because that 1s the only way to get a credential. The request
torwarder 214 can receive the request from the container
including the container credential. The request forwarder
214 can verily the credential with the container orchestrator
in the control plane. The request forwarder 214 can send the
container credential to the container orchestrator and receive
back the container identity.

In the test environment 202, the request forwarder 214 can
send a request to a metadata service. The request can include
the container credential. The metadata service 212 can use
the container credential to obtain an instance credential. The
request forwarder 214 can transmit the request for cloud
services Irom the one or more containers to the request log
216. The request can be stored in the request log 216. The
request log 216 data can be stored on a server. An aggregator
220 can aggregate the one or more requests and store the
agoregated list on the server. The aggregator 220 can also
receive one or more access rules 218. The aggregator 220

US 11,695,776 B2

13

can generate one or more container access policies 222. The
aggregator 220 can generate one or more node access
policies 224.

The production environment 252 can include a compute
instance 254. The compute instance 254 can include one or
more containers (e.g., Container 1 256, Container 2 238, and
Container 3 260). Fach of the containers can receive a
credential to i1dentity to the container on the network. In
various examples, a container orchestrator can provide the
identity to the container upon creation. The container 1den-
tity can be stored in memory for the container. The compute
instance 254 can include a request forwarder 274. The
request forwarder 274 can act as a proxy between containers
and cloud services. The request forwarder 274 1s responsible
for obtaining credentials so that the component on the
machine can call with the instance credential to cloud
services which allow the network architecture to disconnect
all of those containers from accessing that credential. So
those containers do not have that credential and now the
containers have to make all the calls through the request
torwarder 274 because that 1s the only way to get a creden-
tial. The request forwarder 274 can receive the request from
the container including the container credential. The request
torwarder 274 can verily the credential with the container
orchestrator in the control plane. The request forwarder 274
can send the container credential to the container orchestra-
tor and receive back the container identity.

The compute instance 254 can include a metadata service
262. The request forwarder 274 can send a request to a
metadata service 262. The request can include the container
credential. The metadata service 262 can use the container
credential to obtain an instance credential. The request
torwarder 274 can access the container access policies 222.
In various embodiments, the container access policies 222
can be stored on the compute mstance 254. In the production
environment, the request forwarder 274 can receive the one
or more container access policies 222. The container access
policies 222 can be used to determine which cloud services,
iI any, the container 1s permitted to use. The request for-
warder 274 can use the container access policies 222 to
determine permissions for the container. The request for-
warder 274 can request an instance credential from the
metadata server 222. The metadata server 262 can send
instance credential information based on the container
access policy 222 for the container. The request forwarder
274 can send the request to the cloud services (e.g., Cloud
Service A 228, Cloud Service B 230, or Cloud Service C

232). The instance credential can be attached to the request
sent to the cloud services.

FIG. 3 1s a flowchart of an example process 300 associ-
ated with a technique for automatically configuring minimal
cloud service access rights for container applications. At
302, the process 300 can begin by adding a new or modified
container to the cloud server infrastructure.

At 304, the container can enter the test environment. In
the test environment, the request forwarder can be set to run
in permissive mode. The test environment does not control
access but 1s used to identily the access needs. Such tests,
which can be typical in continuous delivery and container-
1zed systems, exercise the container’s functionality and
trigger calls to the cloud provider. The test environment
should be as comprehensive as possible, otherwise the tests
may have gaps and may not catch the request need and
therefore, they will not grant the access.

The test environment can exist 1n the cloud. Within the
test environment there can exist a baseline policy that
provides the maximum allowed access that the system can

10

15

20

25

30

35

40

45

50

55

60

65

14

have. For example, the baseline policy may provide restric-
tions such as connecting to functions as a service (e.g. due
to security concerns). So in this case, the test machines will
not be provided access to function as a service. So if one
attempts to connect through that system, and with otherwise
permissive policies 1n place, the test will fail, because that
machine used for the test will not have that access, and the
test will fail. This 1s intended, so developers can see what
access 1s not possible.

At 306, the test results can be receirved. The test results
can determine whether one or more applications running on
the container can access one or more cloud services. If the
test result 1s negative, the process does not proceed because
either the container 1s broken or miscoded, or the baseline
policies prohibit access.

At 308, the requests to the cloud provider can be logged
in a request log by the request forwarder. The request log can
be stored on the server.

At 310, the request log 1s then aggregated to create a cloud
service access policy specific to the particular container, as
well as the cloud service access policy for the compute node
(often group of nodes) hosting the container. This process
can be performed by a type of infrastructure orchestration.
Policy creation can be fine-tuned by access rules provided as
system configuration. Such access rules may, for example,
prevent one node having access to two specific cloud
services. The policies are then packaged with the container
into a single deployment package.

At 312, a deployment package can be generated. The
deployment package can include a container, the container-
specific policy, and node policy.

At 314, an infrastructure orchestration module can receive
the deployment package.

At 316, the infrastructure orchestration module can
deploy the node access policy to the Cloud IAM. The node
access policy provides the machines access.

At 318, the infrastructure orchestration module can
deploy the container and the container-specific access policy
1s deployed to the container cluster.

At 320, the container cluster can deploy the container. The
container here goes to the container cluster or container with
the policy, and the contamner itself gets deployed to the
containers and the policy gets deployed to the request
forward. So now, request forwarder 1s aware of what access
individual containers running on the node can use and
controls that access, and cloud IAM now has the policy that
allows those machines to wield that access based on that
coniiguration.

At 322, the container cluster sends the policy to the
request forwarder. Sitmilarly, when the container 1s removed,
the access, that 1s the container access 1n forwarder and the
unnecessary part of the policy granted to the compute node,
are removed.

In an example operation, a new container 1s 1dentified for
use for the first time 1n the application. To proceed two
things are required. First, the process needs a policy that
allows that container to use the object store, so the node will
recognize this container, but not the other containers. This
allows the container to access object store, and that machine
that this container will be runming on has to have access to
the object store. So those two policies are created, packaged
together with the new container. Now, when the container 1s
deployed and the infrastructure orchestration unpacks it, the
deployable artifact provision provides access to cloud IAM,
so that the machine and this container will get deployed to
a group of machines that will now have access to access
object store, which it never had before. Furthermore, when

US 11,695,776 B2

15

that container 1s deployed to the container cluster, the
request forwarder, or any other mechanism that controls
such access, will know that this container has access to the
object store. So even though there may be other containers
running on that machine, those containers will not get access
to the object store even though that machine technically can
access the object store.

The container cluster can be spread over multiple
machines or multiple compute instances (e.g., Kubernetes,
Docker Swarm, or Openshiit). The container orchestrators
can be systems that place and manage containers on multiple
machines. Those machines can be abstracted as workers.
Those machines can be added, or removed by the container
orchestrators that provides that container to another machine
iI a machine dies. Those machines may have groups (e.g., a
machine group), which can be a set of machines that this
container can be running on. This group of machines can
also be referred to as a node from the point of view of
container orchestrators. From the point of view of cloud
infrastructure, they can be referred to as instances. The
instances can be virtual machines or bare metal computers.

The Cloud IAM can control access to the group of either
virtual machines or bare metal machines or a combination
that the container cluster sets. The Cloud IAM controls what
principals 1n that cloud environment have access to what 1s
within the cloud. The machines are typically placed into
groups and those groups of machines are granted access to
cloud services. Groups allow for scaling up and down to
grant access to groups of machines to allow another machine
to take over 1f one instance 1s unable to handle the load.

FIG. 4 1llustrates an example arrangement diagram 400
showing allowed arrangement of the disclosed system. The
example can assume a workload that consists of six con-
tainers, and the following connectivity needs were 1dentified
in the test environment. Table 1 illustrates a Container/
Services or Resources chart. An example service can be
Oracle Cloud Infrastructure (OCI) that allows for managing
and scaling networks. Another example service can be a

VMware Configuration Manager (VCM). A resource within
the service may be a subnet or a load balancer.

TABLE 1

Container Services/Resources
Container 1 Service A
Contaimner 2 Service B
Container 3 Service B

Service A
Container 4 Service C/Resource X
Container 5 Service A

Service C/Resource Y
Container 6 Service D

In the example, access rules can be specified by system
administrator to retlect security requirements of the service.
The example access rules can require separate access to
Service C/Resource X from Service C/Resource Y. The
access rules can also require separate access to Service A
from Service D. These rules provide restrictions on what
access can be granted to compute nodes and tune system
operation. Based on the known communication paths, and
access control restrictions, the system can identify which
containers can be co-located on the same nodes. This 1s
depicted 1n the “Allowed arrangements™ graph 1llustrated 1n
FIG. 4. Using graph operations, the system can identily
groups ol containers that can be shared and a number of
distinct nodes. With reference to FIG. 4, Container 1 402 can

10

15

20

25

30

35

40

45

50

55

60

65

16

be co-located with Container 2 404, Container 3 406,
Container 4 408 or Container 5 410 but not Container 6 412.
Container 2 can be co-located with Container 1 402, Con-
tainer 3 406, Container 4 408, Container 5 410 or Container
6 412. Container 3 406 can be co-located with Container 1
402, Container 2 404, Container 4 408 or Container 5 410.
Container 4 408 can be co-located with Container 1 402,
Container 2 404, Container 3 406, or Container 6 412.
Container 5 can be co-located with Container 1 402, Con-
tainer 2 404, or Container 3 406. Container 6 can be
co-located with Container 2 404 or Container 4 408.

FIG. § illustrates an example arrangement diagram 500
showing forbidden arrangement of the disclosed system.
FIG. 5 follows the same access rules specified in Table 1 and
discussed for FIG. 4. One approach to perform this operation
1s to capture forbidden arrangements of containers using a
graph. This 1s depicted i1n the “Forbidden arrangements™
graph shown 1n FIG. 5. Given a Forbidden arrangement, any
set of disconnected graph nodes becomes a valid grouping
for a container. This 1s captured 1n “Allowed grouping’™ as
shown 1n FIG. 4. Note that Container 2 504 1s disconnected
from every node; as such, 1t may be included in any
container grouping. Also, note that other possible arrange-
ments exist which are not shown. The system may only
provide the strict criteria for container grouping, allowing
the container orchestrator to schedule containers based on its
own algorithm and considering other factors, within these
constraints. As shown 1n FIG. 5, Container 1 502 1s forbid-

den to be co-located with Container 6 512. Container 2 504
1s not forbidden to be co-located with any other container.
Contaimner 6 512 i1s forbidden from being co-located with
Container 1 502, Container 3 506, or Container 5 510.
Contaimner 3 506 i1s forbidden from being co-located with
Contaimner 6 512. Container 5 510 1s forbidden from being
co-located with Container 6 312 and Container 4 508.
Container 4 3508 1s forbidden from being co-located with
Container 5 510.

From the “Allowed grouping” example above, the node
group’s access needs are 1dentified, representing the union
of access needs of containers, and can be scheduled as
shown 1n Table 2:

TABLE 2

Node Group Service/Request

Service B
Service D
Service C/Resource X
Service A
Service B
Service C/Resource Y

Node group 1

Node group 2

FIG. 6 illustrates an example diagram 600 of an allowed
grouping. This grouping follows the prescribed access rules.
Also, this grouping provides a natural separation of con-
tainers that emerges from the rules. The access needs for the
individual containers, as well as node groups, are captured
in respective policies and packaged with respective contain-
ers. Cloud orchestration system, such as Terraform, may be
used to automatically deploy the policies to cloud IAM, and
perform any required node grouping using the mechanism
specific to a particular cloud infrastructure. I the system
operates 1 a mode 1 which the policies for the compute
nodes are not set, the system may examine existing node
groups, 1dentifying ones that match the containers, and
subsequently report insuflicient or excessive permissions.

US 11,695,776 B2

17

FIG. 6 illustrates Node Group 1 602 and Node Group 2
604. Node group 1 602 can include Container 2 608,
Container 4 612, and Container 6 616. Node Group 2 can
include Container 1 606, Container 3 610, Container 5 614,
and Container 2 608.

The allowed groups diagram 600 1s from the point of view
of implementation. The system can analyze the diagram 600
to determine the allowed arrangements. For example, the
first group of machines can host Containers 2, 6 and 4 and

the second group can host Container 1, 3, 5 and 2. As
depicted, Container 2 can be hosted i both Group 1 and
Group 2 of machines, which may be useful for performance
reasons. For example, there may be excess capacity 1in node
Group 2 and Container 2 can be placed there. This 1s merely
one possibility.

In an example, every container can get its own node
group. That also works, but that 1s not optimal and helpful.
As the system knows that this 1s the allowed grouping of
containers, the system can now create node groups; can
schedule containers 1n those node groups; can i1dentify a
combined policy of each of the groups because the system
knows what are the specific needs of the containers; and can
assume that the node 1itself does not need any access.

But 1n general, that the combined need of a group of
machines are only the needs of all of the containers on that
machine. So node Group 1 gets access to service BDC, and
resource X node group 2 gets access to service ABC
resource Y. This results 1n a policy. By 1dentifying the needs
of containers, the system creates a logical 1solation within
the application that respects those rules. The logical 1solation
of applications can be created by containers being placed 1n
the groups of nodes and those containers in that group of
nodes, 1s something that like a security engineer would do in
the review with the team. The system can infers that logical
separation of the environment through completely different
mechanisms through those rules that 1t wanted to achieve.
And those rules will be held like 11, for example, the system
keeps adding more containers that have other access needs
and so on.

There can be a situation where this problem cannot be
solved graph-wise; this 1s 1n a case where one container
violates some of the rules. If the system were to separate
access to service C resource X from service resource Y, the
system would have a container that accesses both resources
in the service. This problem cannot be solved because i1t
cannot access both service resources and the system waill fail.
It will fail at the aggregation step, which 1s probably
beneficial. For this reason, the system will determine that it
cannot actually proceed because the designer has created a
container that violates the rules that the system had estab-
lished.

FIG. 7 1s a flowchart of an example process 700 associ-
ated with techniques for automatically configuring minimal
cloud service access rights for container applications. In
some 1implementations, one or more process blocks of FIG.
7 may be performed by a computer system (e.g., computer
system 1200 as shown in FIG. 12). Additionally, or alter-
natively, one or more process blocks of FIG. 7 may be
performed by one or more components of device 1200, such
as processing unit 1204, storage subsystem 1218, commu-
nications subsystem 1224, Input/Output subsystem 1208,
and bus subsystem 1202. The processing umt 1204 can
include sub-processing units 1232, 1234. The storage sub-
system 1218 can include a system memory 1210. The
system memory 120 can include application programs 1212,
program data 1214, and an operating system 1216. The

10

15

20

25

30

35

40

45

50

55

60

65

18

storage subsystem 1218 can include a computer readable
storage media reader 1220 and a computer readable storage
media 1222.

As shown 1n FIG. 7, process 700 may include receiving
one or more requests for access to one or more cloud
services (block 710). For example, the computer system may
receive one or more requests for access to one or more cloud
services, as described above.

As further shown in FIG. 7, process 700 may include
storing the one or more requests 1n a request log (block 720).
For example, the computer system may store the one or
more requests 1n a request log, as described above.

As further shown in FIG. 7, process 700 may include
receiving one or more access rules applicable to cloud
service access rights (block 730). For example, the computer
system may receive one or more access rules applicable to
cloud service access rights, as described above.

As further shown in FIG. 7, process 700 may include
aggregating the one or more requests of the request log to
determine access requirements for a container, the container
being configured to store one or more applications (block
740). For example, the computer system may aggregate the
one or more requests of the request log to determine access
requirements for a container, the container being configured
to store one or more applications, as described above.

As further shown in FIG. 7, process 700 may include
generating container access policies that define access of a
container and the one or more cloud services, the container
access policies based at least 1n part on the aggregated one
or more requests and the one or more access rules (block
750). For example, the computer system may generate
container access policies that define access of a container
and the one or more cloud services, the container access
policies based at least in part on the aggregated one or more
requests and the one or more access rules, as described
above.

As further shown in FIG. 7, process 700 may include
storing the container access policies 1n a memory (block
760). For example, the computer system may store the
container access policies 1n a memory, as described above.

As further shown in FIG. 7, process 700 may include
sending the container access policies to a request forwarder
of a compute instance i a production environment, the
request forwarder accessing the container access policies to
grant access rights of containers to the one or more cloud
services (block 770). For example, the computer system may
send the container access policies to a request forwarder of
a compute mstance in a production environment, the request
forwarder accessing the container access policies to grant
access rights of containers to the one or more cloud services,
as described above.

Process 700 may include additional implementations,
such as any single implementation or any combination of
implementations described below and/or 1n connection with
one or more other processes described elsewhere herein.

The process 700 may operate i two modes. In the first
mode, the process 700 controls access to cloud services. In
the first node, both the access for the container as well as the
access for the node are set dynamically by the system. All
access requirements for containers and nodes, used by the
cluster, are automatically configured. The system may be
coniigured to tune how the access 1s granted to nodes. In the
simplest case, all nodes are equal and any container can be
scheduled on any node. In this case, each node needs access
permissions equal to the combined access of all the con-
tainers. However, 1t 1s common for application designers to
separate containers so that an attack on one container (1.e.,

US 11,695,776 B2

19

one that 1s more exposed or less trusted) does not expose
other containers in the same node. The process for separat-
ing containers can be a manual process and depends on
expert understanding of the system and security constraints.
In the disclosed system, the requirement for deciding how
individual containers should be separated can be eliminated.
A system may be configured with general rules regarding
how access should be granted (for example, one system must
not have access to two specific services, or resources). With
such rules in place, the system automatically partitions the
cluster 1nto groups of nodes with distinct access and assigns
the containers to correct nodes with suflicient access. At the
same time, 1t retains flexibility i assigning containers that
can operate i multiple groups to any of the nodes in the
cluster. While this mechanism has i1ts benefits, some users
may have a strong preference towards manual configuration
of the nodes’ access 1n the system, or may not be willing to
delegate any IAM access management to the automated
system.

In a first implementation, process 700 1includes generating
node access policies, the node access policies specilying
access policies for granting groups of compute instances a
combined access of one or more containers on a node, and
storing the container access policies 1n the memory.

In a second implementation, alone or 1n combination with
the first 1mplementation, process 700 includes granting
access permissions equal to combined access of the one or
more containers assigned to the node.

In a third implementation, alone or 1n combination with
one or more of the first and second implementations, process
700 includes partitioning the compute instance with a plu-
rality of compute instances into groups of nodes, each of the
nodes having distinct access, and assigning one or more
containers to a node with suflicient access based at least 1n
part on the node access policies.

In a second mode, the process 700 1s not controlling node
access 1o cloud services. In a fourth implementation, alone
or 1n combination with one or more of the first through third
implementations, access 1s pre-determined and container
access within each node 1s dynamically configured. Where
the user prefers not to delegate access management to an
automated system, the nodes’ access can be pre-configured
and known to the system. Here, only the container access
granted within the node 1s dynamically configured. The
system may then place containers with specific access needs
to nodes with suflicient access when needed. Because the
access granted to compute nodes 1s pre-defined and 1mmu-
table by the system, 1t may happen that the container wall
require access which no node 1n the cluster can allow. This
can be detected in the testing phase. If a forwarder 1is
unsuccessiul 1n making a request, the failure 1s logged,
indicating that changes must be made to the compute
instance’s permissions. There are multiple ways to deter-
mine 1f the forwarder’s requests are failing. In a testing
environment, failure of the test itsell would be suflicient
evidence, presuming the test instance and production
instance have identical permissions.

In a fifth implementation, alone or 1n combination with
one or more of the first through fourth implementations,
process 700 includes testing access requirements for a cloud
system, detecting a failure of a specific application to access
the one or more cloud services based at least 1n part on an
entry 1n the request log, and changing permissions of a
compute instance to remedy the failure.

In a sixth implementation, alone or in combination with
one or more ol the first through fifth implementations,
process 700 includes setting the request forwarder for each

10

15

20

25

30

35

40

45

50

55

60

65

20

container type in the production environment to a permissive
mode, the permissive mode granting access of the one or

more applications stored in the container to the one or more
cloud services, receiving the one or more requests from the
request forwarder, and 1n accordance with a number of the
one or more requests exceeding a threshold requirement,
switching the request forwarder to a restrictive mode, the
restrictive mode granting access of the one or more appli-
cations to the one or more cloud services based 1n part on the
container access policies.

Although FIG. 7 shows example blocks of process 700, 1n
some 1mplementations, process 700 may include additional
blocks, fewer blocks, different blocks, or differently
arranged blocks than those depicted 1n FIG. 7. Additionally,
or alternatively, two or more of the blocks of process 700
may be performed in parallel.

III. Centralized Request Forwarder

Separate centralized nodes, or separate sets of request
forwarders supporting multiple nodes, or any combination
of nodes are all permissible. The disclosed system can
support all of these options, by managing container policy
with the forwarder assigned to that container, and node
policy for the node that hosts that forwarder, regardless of
where that node 1s located. Similarly, the system may
support a centralized cloud version of the request forwarder,
by granting access to that entity based on combined con-
tainer needs.

There can be multiple ways of locating the request
forwarder. In one example, the request forwarder can be
centrally located. In another example, the request forwarder
can be outside of the machine as long as there 1s a mecha-
nism to provision that policy and identify the container. In
some examples, there may be no request forwarder in the
production model. Finally, the container policy can acquire
the container policy 1n the production environment. This can
be done 1f a client does not believe the tests are compre-
hensive enough or that there 1s no test environment. In this
case, the technique may be implemented only 1n the pro-
duction environment having a permissive mode initially,
and, as additional requests are received, it learns the access
needs. When the access needs have been 1dentified, 1t obtains
enough mformation that 1t knows all of the access needs and
it can begin to enforce those needs.

In one example, over the last number of requests, there 1s
no request that 1s new. There can be diflerent thresholds that
can be configured to say that enough access was achieved,
and was i1dentified. Then the system starts enforcing the
access rights. The system can run with an overly permissive
policy at the beginnming, but eventually that policy becomes
more restrictive. This 1s preferable to runming 1n a permis-
stve mode forever.

If the container 1s removed, the access may be removed.
If the system 1s provided a new container, then access may
not be available and the process will understand the lifecycle
of the container and remove previously established rules 1f,
for example, a new version of the container 1s deployed.

The cloud network architecture can include multiple
compute mstances. One or more compute istances can store
various containers. Another separate compute instance can
include a request forwarder, a Metadata Service, and one or
more policies. The cloud network architecture can include
various cloud services (e.g., Cloud Service A, Cloud Service
B, and Cloud Service C). The cloud network architecture can
also 1nclude a container orchestrator. The request forwarder
can be either centralized for multiple nodes or each node can

US 11,695,776 B2

21

have i1ts own request forwarder. The centralized/dedicated
request forwarder node implies that different nodes (that
may contain multiple containers) can forward their requests
to the cloud services via a centralized node. The instance
credentials do not need to be stored on every node, only on
the node on which the request forwarder i1s present. The
request forwarder does not necessarily need to be located on
the same node as the container 1t supports.

There are pros and cons for both of these architectures.
With regard to the centralized/dedicated request forwarders,
the nodes’ resources can be dedicated to just performing the
duties of the request forwarder while other nodes can focus
on using their resources to perform their tasks. Apart from
this, the instance credentials need not be stored on every
node, just on a centralized instance. However, the drawback
of this approach can be that the centralized request for-
warder acts as a single point of failure. It 1t goes down, none
of the containers can make requests to the cloud services. As
for having the request forwarder on every node, the network
rules/architecture will be much simpler to create and get
functioning. Another advantage of the per-node forwarder
would be that each node has its own request forwarder,
resulting in each node only processing the workload for its
containers. One disadvantage of this design is that per node
credentials must be maintained for access to cloud services.
This makes the 1ssue of proper key rotation and revocation
harder by a factor of the number of nodes involved. A hybrid
approach may involve using a subset of cluster nodes to host
the request forwarder.

In various embodiments, there 1s no request forwarder in
production. The system may be also useful 1n a situation
when there 1s no request forwarder in production. In this
case, 11 the containers have all the access that the node has,
there 1s no policy for individual containers to be set. How-
ever, the access of the node will be constrained to the union
of all the containers on the node. This, while not restricting
container access to a minimum, still restricts the node access
automatically, which 1s a major advantage over configuring
that access manually.

In various embodiments, the container policy can be
acquired 1n the production environment. While the system 1s
most likely to be used 1n two phases, where the data required
to construct the policy 1s acquired 1n a trusted test environ-
ment and then deployed to production system together with
the container, an alternative mechanism 1s possible with just
the production environment.

This mechanism involves switching the permissive/re-
strictive mode of the request forwarder individually for each
container type in the production environment. The first time
a container 1s deployed, the request forwarder sends all the
requests to the cloud service while also producing a log of
the requests. After suflicient data 1s gathered, 1t switches to
the restrictive mode for that specific container. This 1mple-
mentation does not provide the same level of security, as
there 1s a period of time 1n which all the access to the cloud
services 1s allowed. It does, however, reduce the cost of
system operations and may be suilicient for some users,
especially when the turnaround of containers i1s low. The
decision for when enough data 1s acquired to switch modes
can be done manually, or based on time, or by analysis of
how many new types of requests are being forwarded. For
example, 1f all the requests sent to the forwarder contain no
new requests given a specilied number of requests, the
gathered data may be considered suflicient. Access to the
node may be managed in a similar fashion, starting with
excessive access (within a reasonable boundary set by the
administrator) and reduced to specific permissions required

10

15

20

25

30

35

40

45

50

55

60

65

22

by individual containers, provided that the access needs for
all containers on the node were fully established.

IV. Infrastructure as a Service (IAAS)

As noted above, infrastructure as a service (IaaS) 1s one
particular type of cloud computing. IaaS can be configured
to provide virtualized computing resources over a public
network (e.g., the Internet). In an IaaS model, a cloud
computing provider can host the infrastructure components
(e.g., servers, storage devices, network nodes (e.g., hard-
ware), deployment software, platform virtualization (e.g., a
hypervisor layer), or the like). In some cases, an laaS
provider may also supply a variety of services to accompany
those infrastructure components (e.g., billing, monitoring,
logging, security, load balancing and clustering, etc.). Thus,
as these services may be policy-driven, 1aaS users may be
able to implement policies to drive load balancing to main-
tain application availability and performance.

In some 1nstances, IaaS customers may access resources
and services through a wide area network (WAN), such as
the Internet, and can use the cloud provider’s services to
install the remaining elements of an application stack. For
example, the user can log 1n to the IaaS platform to create
virtual machines (VMs), install operating systems (OSs) on
cach VM, deploy middleware such as databases, create
storage buckets for workloads and backups, and even 1nstall
enterprise software into that VM. Customers can then use
the provider’s services to perform various functions, includ-
ing balancing network traflic, troubleshooting application
1ssues, monitoring performance, managing disaster recov-
ery, €lc.

In most cases, a cloud-computing model will require the
participation of a cloud provider. The cloud provider may,
but need not be, a third-party service that specializes in
providing (e.g., oflering, renting, selling) IaaS. An entity
might also opt to deploy a private cloud, becoming 1ts own
provider of infrastructure services.

In some examples, IaaS deployment i1s the process of
putting a new application, or a new version of an application,
onto a prepared application server or the like. It may also
include the process of preparing the server (e.g., installing
libraries, daemons, etc.). This 1s often managed by the cloud
provider, below the hypervisor layer (e.g., the servers,
storage, network hardware, and virtualization). Thus, the
customer may be responsible for handling (OS), middle-
ware, and/or application deployment (e.g., on self-service
virtual machines (e.g., that can be spun up on demand) or the
like.

In some examples, IaaS provisioning may refer to acquir-
ing computers or virtual hosts for use, and even installing
needed libraries or services on them. In most cases, deploy-
ment does not include provisioning, and the provisioning
may need to be performed first.

In some cases, there are two different problems for IaaS
provisioming. First, there 1s the initial challenge of provi-
sioning the initial set of infrastructure before anything 1s
running. Second, there 1s the challenge of evolving the
existing infrastructure (e.g., adding new services, changing
services, removing services, etc.) once everything has been
provisioned. In some cases, these two challenges may be
addressed by enabling the configuration of the infrastructure
to be defined declaratively. In other words, the infrastructure
(e.g., what components are needed and how they interact)
can be defined by one or more configuration files. Thus, the
overall topology of the infrastructure (e.g., what resources
depend on which, and how they each work together) can be

US 11,695,776 B2

23

described declaratively. In some instances, once the topol-
ogy 1s defined, a workflow can be generated that creates
and/or manages the different components described 1n the
configuration files.

In some examples, an infrastructure may have many
interconnected elements. For example, there may be one or
more virtual private clouds (VPCs) (e.g., a potentially on-
demand pool of configurable and/or shared computing
resources), also known as a core network. In some examples,
there may also be one or more security group rules provi-
sioned to define how the security of the network will be set
up and one or more virtual machines (VMs). Other inira-
structure elements may also be provisioned, such as a load
balancer, a database, or the like. As more and more inira-
structure elements are desired and/or added, the infrastruc-
ture may incrementally evolve.

In some 1nstances, continuous deployment techniques
may be employed to enable deployment of infrastructure
code across various virtual computing environments. Addi-
tionally, the described techniques can enable infrastructure
management within these environments. In some examples,
service teams can write code that 1s desired to be deployed
to one or more, but often many, different production envi-
ronments (e.g., across various different geographic loca-
tions, sometimes spanning the entire world). However, in
some examples, the infrastructure on which the code will be
deployed must first be set up. In some 1nstances, the provi-
sioning can be done manually, a provisioning tool may be
utilized to provision the resources, and/or deployment tools
may be utilized to deploy the code once the infrastructure 1s
provisioned.

FIG. 8 1s a block diagram 800 illustrating an example
pattern of an IaaS architecture, according to at least one
embodiment. Service operators 802 can be communicatively
coupled to a secure host tenancy 804 that can include a
virtual cloud network (VCN) 806 and a secure host subnet
808. In some examples, the service operators 802 may be
using one or more client computing devices, which may be
portable handheld devices (e.g., an 1Phone®, cellular tele-
phone, an 1Pad®, computing tablet, a personal digital assis-
tant (PDA)) or wearable devices (e.g., a Google Glass®
head mounted display), running software such as Microsoit
Windows Mobile®, and/or a varniety of mobile operating
systems such as 10S, Windows Phone, Android, BlackBerry
8, Palm OS, and the like, and being Internet, e-mail, short
message service (SMS), Blackberry®, or other communi-
cation protocol enabled. Alternatively, the client computing
devices can be general-purpose personal computers includ-
ing, by way of example, personal computers and/or laptop
computers running various versions of Microsoft Win-
dows®, Apple Macintosh®, and/or Linux operating sys-
tems. The client computing devices can be workstation
computers running any of a variety of commercially-avail-
able UNIX® or UNIX-like operating systems, including
without limitation the variety of GNU/Linux operating sys-
tems, such as for example, Google Chrome OS. Alterna-
tively, or 1n addition, client computing devices may be any
other electronic device, such as a thin-client computer, an
Internet-enabled gaming system (e.g., a Microsolt Xbox
gaming console with or without a Kinect® gesture input
device), and/or a personal messaging device, capable of
communicating over a network that can access the VCN 806
and/or the Internet.

The VCN 806 can include a local peering gateway (LPG)
810 that can be communicatively coupled to a secure shell
(SSH) VCN 812 via an LPG 810 contained 1n the SSH VCN
812. The SSH VCN 812 can include an SSH subnet 814, and

10

15

20

25

30

35

40

45

50

55

60

65

24

the SSH VCN 812 can be communicatively coupled to a
control plane VCN 816 via the LPG 810 contained 1n the

control plane VCN 816. Also, the SSH VCN 812 can be
communicatively coupled to a data plane VCN 818 via an
LPG 810. The control plane VCN 816 and the data plane
VCN 818 can be contained 1n a service tenancy 819 that can
be owned and/or operated by the IaaS provider.

The control plane VCN 816 can include a control plane
demilitarized zone (DMZ) tier 820 that acts as a perimeter
network (e.g., portions of a corporate network between the
corporate intranet and external networks). The DMZ-based
servers may have restricted responsibilities and help keep
security breaches contained. Additionally, the DMZ tier 820
can include one or more load balancer (LB) subnet(s) 822,
a control plane app tier 824 that can include app subnet(s)
826, a control plane data tier 828 that can include database
(DB) subnet(s) 830 (ec.g., frontend DB subnet(s) and/or
backend DB subnet(s)). The LB subnet(s) 822 contained in
the control plane DMZ tier 820 can be commumnicatively
coupled to the app subnet(s) 826 contained in the control
plane app tier 824 and an Internet gateway 834 that can be
contained 1n the control plane VCN 816, and the app
subnet(s) 826 can be communicatively coupled to the DB
subnet(s) 830 contained in the control plane data tier 828 and
a service gateway 836 and a network address translation
(NAT) gateway 838. The control plane VCN 816 can include
the service gateway 836 and the NAT gateway 838.

The control plane VCN 816 can include a data plane
mirror app tier 840 that can include app subnet(s) 826. The
app subnet(s) 826 contained 1n the data plane mirror app tier
840 can 1include a virtual network interface controller
(VNIC) 842 that can execute a compute instance 844. The
compute 1stance 844 can communicatively couple the app
subnet(s) 826 of the data plane mirror app tier 840 to app
subnet(s) 826 that can be contained 1n a data plane app tier
846.

The data plane VCN 818 can include the data plane app
tier 846, a data plane DMZ tier 848, and a data plane data
tier 850. The data plane DMZ tier 848 can include LB
subnet(s) 822 that can be communicatively coupled to the
app subnet(s) 826 of the data plane app tier 846 and the
Internet gateway 834 of the data plane VCN 818. The ap
subnet(s) 826 can be communicatively coupled to the ser-
vice gateway 836 of the data plane VCN 818 and the NAT
gateway 838 of the data plane VCN 818. The data plane data
tier 850 can also include the DB subnet(s) 830 that can be
communicatively coupled to the app subnet(s) 826 of the
data plane app tier 846.

The Internet gateway 834 of the control plane VCN 816
and of the data plane VCN 818 can be communicatively
coupled to a metadata management service 852 that can be
communicatively coupled to public Internet 8354. Public
Internet 854 can be communicatively coupled to the NAT
gateway 838 of the control plane VCN 816 and of the data
plane VCN 818. The service gateway 836 of the control
plane VCN 816 and of the data plane VCN 818 can be
communicatively couple to cloud services 856.

In some examples, the service gateway 836 of the control
plane VCN 816 or of the data plan VCN 818 can make
application programming interface (API) calls to cloud
services 856 without going through public Internet 8354. The
API calls to cloud services 856 from the service gateway 836
can be one-way: the service gateway 836 can make API calls
to cloud services 856, and cloud services 856 can send
requested data to the service gateway 836. But, cloud
services 836 may not iitiate API calls to the service
gateway 836.

US 11,695,776 B2

25

In some examples, the secure host tenancy 804 can be
directly connected to the service tenancy 819, which may be
otherwise 1solated. The secure host subnet 808 can commu-
nicate with the SSH subnet 814 through an LPG 810 that
may enable two-way communication over an otherwise
1solated system. Connecting the secure host subnet 808 to
the SSH subnet 814 may give the secure host subnet 808
access to other entities within the service tenancy 819.

The control plane VCN 816 may allow users of the
service tenancy 819 to set up or otherwise provision desired
resources. Desired resources provisioned in the control
plane VCN 816 may be deployed or otherwise used 1n the
data plane VCN 818. In some examples, the control plane
VCN 816 can be 1solated from the data plane VCN 818, and
the data plane mirror app tier 840 of the control plane VCN
816 can communicate with the data plane app tier 846 of the
data plane VCN 818 via VNICs 842 that can be contained
in the data plane mirror app tier 840 and the data plane app
tier 846.

In some examples, users of the system, or customers, can
make requests, for example create, read, update, or delete
(CRUD) operations, through public Internet 854 that can
communicate the requests to the metadata management
service 8352. The metadata management service 832 can
communicate the request to the control plane VCN 816
through the Internet gateway 834. The request can be
received by the LB subnet(s) 822 contained in the control
plane DMZ tier 820. The LB subnet(s) 822 may determine
that the request 1s valid, and 1n response to this determina-
tion, the LB subnet(s) 822 can transmit the request to app
subnet(s) 826 contained in the control plane app tier 824. If
the request 1s validated and requires a call to public Internet
854, the call to public Internet 854 may be transmitted to the
NAT gateway 838 that can make the call to public Internet
854. Memory that may be desired to be stored by the request
can be stored in the DB subnet(s) 830.

In some examples, the data plane mirror app tier 840 can
tacilitate direct communication between the control plane
VCN 816 and the data plane VCN 818. For example,
changes, updates, or other suitable modifications to configu-
ration may be desired to be applied to the resources con-
tained 1in the data plane VCN 818. Via a VNIC 842, the
control plane VCN 816 can directly communicate with, and
can thereby execute the changes, updates, or other suitable
modifications to configuration to, resources contained 1n the
data plane VCN 818.

In some embodiments, the control plane VCN 816 and the
data plane VCN 818 can be contained 1n the service tenancy
819. In this case, the user, or the customer, of the system may
not own or operate either the control plane VCN 816 or the
data plane VCN 818. Instead, the IaaS provider may own or
operate the control plane VCN 816 and the data plane VCN
818, both of which may be contained 1n the service tenancy
819. This embodiment can enable 1solation of networks that
may prevent users or customers from interacting with other
users’, or other customers’, resources. Also, this embodi-
ment may allow users or customers of the system to store
databases privately without needing to rely on public Inter-
net 854, which may not have a desired level of security, for
storage.

In other embodiments, the LB subnet(s) 822 contained in
the control plane VCN 816 can be configured to receive a
signal from the service gateway 836. In this embodiment,
the control plane VCN 816 and the data plane VCN 818 may
be configured to be called by a customer of the IaaS provider
without calling public Internet 854. Customers of the IaaS
provider may desire this embodiment since database(s) that

10

15

20

25

30

35

40

45

50

55

60

65

26

the customers use may be controlled by the IaaS provider
and may be stored on the service tenancy 819, which may be
isolated from public Internet 854.

FIG. 9 1s a block diagram 900 illustrating another example
pattern of an IaaS architecture, according to at least one
embodiment. Service operators 902 (e.g. service operators
802 of FIG. 8) can be communicatively coupled to a secure
host tenancy 904 (e.g. the secure host tenancy 804 of FIG.
8) that can include a virtual cloud network (VCN) 906 (e.g.
the VCN 806 of FIG. 8) and a secure host subnet 908 (e.g.
the secure host subnet 808 of FIG. 8). The VCN 906 can
include a local peering gateway (LPG) 910 (e.g. the LPG
810 of FIG. 8) that can be communicatively coupled to a
secure shell (SSH) VCN 912 (e.g. the SSH VCN 812 of FIG.
6) via an LPG 810 contained 1n the SSH VCN 912. The SSH
VCN 912 can include an SSH subnet 914 (e.g. the SSH
subnet 814 of FIG. 8), and the SSH VCN 912 can be
communicatively coupled to a control plane VCN 916 (e.g.
the control plane VCN 816 of FIG. 8) via an LPG 910
contained 1n the control plane VCN 916. The control plane
VCN 916 can be contained in a service tenancy 919 (e.g. the
service tenancy 819 of FIG. 8), and the data plane VCN 918
(e.g. the data plane VCN 818 of FIG. 8) can be contained 1n
a customer tenancy 921 that may be owned or operated by

users, or customers, of the system.

The control plane VCN 916 can include a control plane
DMZ tier 920 (e.g. the control plane DMZ tier 820 of FIG.
8) that can 1include LB subnet(s) 922 (e.g. LB subnet(s) 822
of FIG. 8), a control plane app tier 924 (e.g. the control plane
app tier 824 of FIG. 8) that can include app subnet(s) 926
(e.g. app subnet(s) 826 of FIG. 8), a control plane data tier
928 (e.g. the control plane data tier 828 of FIG. 8) that can
include database (DB) subnet(s) 930 (e.g. similar to DB
subnet(s) 830 of FIG. 8). The LB subnet(s) 922 contained 1n
the control plane DMZ tier 920 can be commumnicatively
coupled to the app subnet(s) 926 contained in the control
plane app tier 924 and an Internet gateway 934 (e.g. the
Internet gateway 834 of FIG. 8) that can be contained 1n the
control plane VCN 916, and the app subnet(s) 926 can be
communicatively coupled to the DB subnet(s) 930 contained
in the control plane data tier 928 and a service gateway 936
(c.g. the service gateway of FIG. 8) and a network address
translation (NAT) gateway 938 (e.g. the NAT gateway 838
of FIG. 8). The control plane VCN 916 can include the
service gateway 936 and the NAT gateway 938.

The control plane VCN 916 can include a data plane
mirror app tier 940 (e.g. the data plane mirror app tier 840
of FIG. 8) that can include app subnet(s) 926. The app
subnet(s) 926 contained in the data plane mirror app tier 940
can include a virtual network interface controller (VNIC)
942 (e.g. the VNIC of 842) that can execute a compute
instance 944 (e.g. similar to the compute instance 844 of
FIG. 8). The compute istance 944 can facilitate communi-
cation between the app subnet(s) 926 of the data plane
mirror app tier 940 and the app subnet(s) 926 that can be
contained 1n a data plane app tier 946 (e.g. the data plane app
tier 846 of FIG. 8) via the VNIC 942 contained in the data
plane mirror app tier 940 and the VNIC 942 contained 1n the
data plan app tier 946.

The Internet gateway 934 contained in the control plane
VCN 916 can be communicatively coupled to a metadata
management service 9352 (e.g. the metadata management
service 852 of FIG. 8) that can be communicatively coupled
to public Internet 954 (e.g. public Internet 854 of FIG. 8).
Public Internet 954 can be commumnicatively coupled to the
NAT gateway 938 contained in the control plane VCN 916.
The service gateway 936 contained in the control plane VCN

US 11,695,776 B2

27

916 can be communicatively couple to cloud services 956
(e.g. cloud services 856 of FIG. 8).

In some examples, the data plane VCN 918 can be
contained 1n the customer tenancy 921. In this case, the IaaS
provider may provide the control plane VCN 916 for each
customer, and the IaaS provider may, for each customer, set
up a unique compute instance 944 that 1s contained in the
service tenancy 919. Each compute instance 944 may allow
communication between the control plane VCN 916, con-
tained 1n the service tenancy 919, and the data plane VCN
918 that 1s contained 1n the customer tenancy 921. The
compute 1nstance 944 may allow resources, which are
provisioned in the control plane VCN 916 that 1s contained
in the service tenancy 919, to be deployed or otherwise used
in the data plane VCN 918 that i1s contained 1n the customer

tenancy 921.

In other examples, the customer of the IaaS provider may
have databases that live 1n the customer tenancy 921. In this
example, the control plane VCN 916 can include the data
plane mirror app tier 940 that can include app subnet(s) 926.
The data plane mirror app tier 940 can reside in the data
plane VCN 918, but the data plane mirror app tier 940 may
not live in the data plane VCN 918. That 1s, the data plane
mirror app tier 940 may have access to the customer tenancy
921, but the data plane mirror app tier 940 may not exist 1in
the data plane VCN 918 or be owned or operated by the
customer of the IaaS provider. The data plane mirror app tier
940 may be configured to make calls to the data plane VCN
918 but may not be configured to make calls to any entity
contained 1n the control plane VCN 916. The customer may
desire to deploy or otherwise use resources 1n the data plane
V(N 918 that are provisioned in the control plane VCN 916,
and the data plane mirror app tier 940 can {facilitate the
desired deployment, or other usage of resources, of the
customer.

In some embodiments, the customer of the IaaS provider
can apply filters to the data plane VCN 918. In this embodi-
ment, the customer can determine what the data plane VCN
918 can access, and the customer may restrict access to
public Internet 954 from the data plane VCN 918. The IaaS
provider may not be able to apply filters or otherwise control
access of the data plane VCN 918 to any outside networks
or databases. Applying filters and controls by the customer
onto the data plane VCN 918, contained in the customer
tenancy 921, can help 1solate the data plane VCN 918 from
other customers and from public Internet 954.

In some embodiments, cloud services 956 can be called
by the service gateway 936 to access services that may not
exist on public Internet 954, on the control plane VCN 916,
or on the data plane VCN 918. The connection between
cloud services 956 and the control plane VCN 916 or the
data plane VCN 918 may not be live or continuous. Cloud
services 956 may exist on a different network owned or
operated by the IaaS provider. Cloud services 956 may be
configured to receive calls from the service gateway 936 and
may be configured to not recerve calls from public Internet
954. Some cloud services 956 may be 1solated from other
cloud services 956, and the control plane VCN 916 may be
1solated from cloud services 956 that may not be in the same
region as the control plane VCN 916. For example, the
control plane VCN 916 may be located 1n “Region 1,” and
cloud service “Deployment 6,” may be located in Region 1
and 1 “Region 2.” If a call to Deployment 6 1s made by the
service gateway 936 contained in the control plane VCN 916
located 1n Region 1, the call may be transmitted to Deploy-
ment 6 1n Region 1. In this example, the control plane VCN

10

15

20

25

30

35

40

45

50

55

60

65

28

916, or Deployment 6 1n Region 1, may not be communi-
catively coupled to, or otherwise 1n communication with,
Deployment 6 1n Region 2.

FIG. 10 1s a block diagram 1000 illustrating another
example pattern of an IaaS architecture, according to at least
one embodiment. Service operators 1002 (e.g. service opera-
tors 802 of FIG. 8) can be commumcatively coupled to a

secure host tenancy 1004 (e.g. the secure host tenancy 804
of FIG. 8) that can include a virtual cloud network (VCN)

1006 (c.g. the VCN 806 of FIG. 8) and a secure host subnet
1008 (e.g. the secure host subnet 808 of FIG. 8). The VCN
1006 can include an LPG 1010 (e.g. the LPG 810 of FIG. 8)
that can be communicatively coupled to an SSH VCN 1012
(e.g. the SSH VCN 812 of FIG. 8) via an LPG 1010
contained 1n the SSH VCN 1012. The SSH VCN 1012 can
include an SSH subnet 1014 (e.g. the SSH subnet 814 of
FIG. 8), and the SSH VCN 1012 can be communicatively
coupled to a control plane VCN 1016 (e.g. the control plane
VCN 816 of FIG. 8) via an LPG 1010 contained in the
control plane VCN 1016 and to a data plane VCN 1018 (e.g.
the data plane 818 of FIG. 8) via an LPG 1010 contained in
the data plane VCN 1018. The control plane VCN 1016 and
the data plane VCN 1018 can be contained 1n a service
tenancy 1019 (e.g. the service tenancy 819 of FIG. 8).

The control plane VCN 1016 can include a control plane
DMZ tier 1020 (e.g. the control plane DMZ tier 820 of FIG.
8) that can include load balancer (LB) subnet(s) 1022 (e.g.
LB subnet(s) 822 of FIG. 8), a control plane app tier 1024
(c.g. the control plane app tier 824 of FIG. 8) that can
include app subnet(s) 1026 (e.g. similar to app subnet(s)

1026 of FIG. 8), a control plane data tier 1028 (e.g. the
control plane data tier 828 of FIG. 8) that can include DB
subnet(s) 1030. The LB subnet(s) 1022 contained in the
control plane DMZ tier 1020 can be communicatively
coupled to the app subnet(s) 1026 contained 1n the control
plane app tier 1024 and to an Internet gateway 1034 (e.g. the
Internet gateway 834 of FIG. 8) that can be contained 1n the
control plane VCN 1016, and the app subnet(s) 1026 can be
communicatively coupled to the DB subnet(s) 1030 con-
tained 1n the control plane data tier 1028 and to a service
gateway 1036 (e.g. the service gateway of FIG. 8) and a
network address translation (NAT) gateway 1038 (e.g. the
NAT gateway 838 of FIG. 8). The control plane VCN 1016
can 1nclude the service gateway 1036 and the NAT gateway
1038.

The data plane VCN 1018 can include a data plane app
tier 1046 (e.g. the data plane app tier 846 of FIG. 8), a data
plane DMZ tier 1048 (¢.g. the data plane DMZ tier 848 of
FIG. 8), and a data plane data tier 1050 (e.g. the data plane
data tier 850 of FIG. 8). The data plane DMZ tier 1048 can
include LB subnet(s) 1022 that can be communicatively
coupled to trusted app subnet(s) 1060 and untrusted app
subnet(s) 1062 of the data plane app tier 1046 and the
Internet gateway 1034 contained in the data plane VCN
1018. The trusted app subnet(s) 1060 can be communica-
tively coupled to the service gateway 1036 contained in the

data plane VCN 1018, the NAT gateway 1038 contained 1n
the data plane VCN 1018, and DB subnet(s) 1030 contained
in the data plane data tier 1050. The untrusted app subnet(s)
1062 can be communicatively coupled to the service gate-
way 1036 contained in the data plane VCN 1018 and DB
subnet(s) 1030 contained 1n the data plane data tier 10350.
The data plane data tier 1050 can include DB subnet(s) 1030
that can be communicatively coupled to the service gateway
1036 contained 1n the data plane VCN 1018.

The untrusted app subnet(s) 1062 can include one or more
primary VNICs 1064(1)-(N) that can be communicatively

US 11,695,776 B2

29
coupled to tenant virtual machines (VMs) 1066(1)-(IN). E

Each
tenant VM 1066(1)-(N) can be communicatively coupled to
a respective app subnet 1067(1)-(N) that can be contained 1n
respective container egress VCNs 1068(1)-(N) that can be
contained 1n respective customer tenancies 1070(1)-(IN).
Respective secondary VNICs 1072(1)-(N) can facilitate
communication between the untrusted app subnet(s) 1062
contained 1n the data plane VCN 1018 and the app subnet
contained 1n the container egress VCNs 1068(1)-(IN). Each
container egress VCNs 1068(1)-(N) can include a NAT
gateway 1038 that can be communicatively coupled to
public Internet 1054 (e.g. public Internet 854 of FIG. 8).

The Internet gateway 1034 contained 1n the control plane
VCN 1016 and contained 1n the data plane VCN 1018 can
be communicatively coupled to a metadata management
service 1052 (e.g. the metadata management system 852 of
FIG. 8) that can be communicatively coupled to public
Internet 1054. Public Internet 1054 can be communicatively
coupled to the NAT gateway 1038 contained in the control
plane VCN 1016 and contained in the data plane VCN 1018.
The service gateway 1036 contained in the control plane
VCN 1016 and contained 1n the data plane VCN 1018 can
be communicatively couple to cloud services 1056.

In some embodiments, the data plane VCN 1018 can be
integrated with customer tenancies 1070. This integration
can be useful or desirable for customers of the IaaS provider
in some cases such as a case that may desire support when
executing code. The customer may provide code to run that
may be destructive, may communicate with other customer
resources, or may otherwise cause undesirable eflects. In
response to this, the IaaS provider may determine whether to
run code given to the IaaS provider by the customer.

In some examples, the customer of the IaaS provider may
grant temporary network access to the IaaS provider and
request a function to be attached to the data plane tier app
1046. Code to run the function may be executed in the VMs
1066(1)-(N), and the code may not be configured to run
anywhere else on the data plane VCN 1018. Each VM
1066(1)-(N) may be connected to one customer tenancy
1070. Respective containers 1071(1)-(N) contained in the
VMs 1066(1)-(N) may be configured to run the code. In this

case, there can be a dual isolation (e.g., the containers
1071(1)-(N) running code, where the containers 1071(1)-(N)

may be contained in at least the VM 1066(1)-(IN) that are
contained 1n the untrusted app subnet(s) 1062), which may
help prevent incorrect or otherwise undesirable code from
damaging the network of the IaaS provider or from damag-
ing a network of a different customer. The containers 1071
(1)-(N) may be communicatively coupled to the customer
tenancy 1070 and may be configured to transmit or receive
data from the customer tenancy 1070. The containers 1071
(1)-(N) may not be configured to transmit or receive data
from any other entity in the data plane VCN 1018. Upon
completion of running the code, the IaaS provider may kill
or otherwise dispose of the containers 1071(1)-(N).

In some embodiments, the trusted app subnet(s) 1060 may
run code that may be owned or operated by the IaaS
provider. In this embodiment, the trusted app subnet(s) 1060
may be communicatively coupled to the DB subnet(s) 1030
and be configured to execute CRUD operations 1n the DB
subnet(s) 1030. The untrusted app subnet(s) 1062 may be
communicatively coupled to the DB subnet(s) 1030, but 1n
this embodiment, the untrusted app subnet(s) may be con-
figured to execute read operations 1n the DB subnet(s) 1030.

The containers 1071(1)-(IN) that can be contained 1n the VM

10

15

20

25

30

35

40

45

50

55

60

65

30

1066(1)-(N) of each customer and that may run code from
the customer may not be communicatively coupled with the
DB subnet(s) 1030.

In other embodiments, the control plane VCN 1016 and
the data plane VCN 1018 may not be directly communica-
tively coupled. In this embodiment, there may be no direct
communication between the control plane VCN 1016 and
the data plane VCN 1018. However, communication can
occur indirectly through at least one method. An LPG 1010
may be established by the IaaS provider that can facilitate
communication between the control plane VCN 1016 and
the data plane VCN 1018. In another example, the control
plane VCN 1016 or the data plane VCN 1018 can make a
call to cloud services 1056 via the service gateway 1036. For
example, a call to cloud services 1056 from the control plane
VCN 1016 can include a request for a service that can
communicate with the data plane VCN 1018.

FIG. 11 1s a block diagram 1100 illustrating another
example pattern of an IaaS architecture, according to at least
one embodiment. Service operators 1102 (e.g. service opera-
tors 802 of FIG. 8) can be commumcatively coupled to a

secure host tenancy 1104 (e.g. the secure host tenancy 804
of FIG. 8) that can include a virtual cloud network (VCN)

1106 (e.g. the VCN 806 of FIG. 8) and a secure host subnet
1108 (e.g. the secure host subnet 808 of FIG. 8). The VCN
1106 can include an LPG 1110 (e.g. the LPG 810 of FIG. 8)
that can be communicatively coupled to an SSH VCN 1112
(e.g. the SSH VCN 812 of FIG. 8) via an LPG 1110
contained 1n the SSH VCN 1112. The SSH VCN 1112 can
include an SSH subnet 1114 (e.g. the SSH subnet 814 of
FIG. 8), and the SSH VCN 1112 can be communicatively
coupled to a control plane VCN 1116 (¢.g. the control plane
VCN 816 of FIG. 8) via an LPG 1110 contained in the
control plane VCN 1116 and to a data plane VCN 1118 (e.g.
the data plane 818 of FIG. 8) via an LPG 1110 contained in
the data plane VCN 1118. The control plane VCN 1116 and
the data plane VCN 1118 can be contained in a service
tenancy 1119 (e.g. the service tenancy 819 of FIG. 8).

The control plane VCN 1116 can include a control plane
DMZ tier 1120 (e.g. the control plane DMZ tier 820 of FIG.
8) that can include LB subnet(s) 1122 (e¢.g. LB subnet(s) 822
of FIG. 8), a control plane app tier 1124 (e.g. the control
plane app tier 824 of FIG. 8) that can include app subnet(s)
1126 (e.g. app subnet(s) 826 of FIG. 8), a control plane data
tier 1128 (e.g. the control plane data tier 828 of FIG. 8) that
can include DB subnet(s) 1130 (e.g. DB subnet(s) 830 of
FIG. 8). The LB subnet(s) 1122 contained in the control
plane DMZ tier 1120 can be communicatively coupled to the
app subnet(s) 1126 contained 1n the control plane app tier
1124 and to an Internet gateway 1134 (e.g. the Internet
gateway 834 of FIG. 8) that can be contained in the control
plane VCN 1116, and the app subnet(s) 1126 can be com-
municatively coupled to the DB subnet(s) 1130 contained in
the control plane data tier 1128 and to a service gateway
1136 (e.g. the service gateway of FIG. 8) and a network
address translation (NAT) gateway 1138 (e.g. the NAT
gateway 838 of FIG. 8). The control plane VCN 1116 can
include the service gateway 1136 and the NAT gateway
1138.

The data plane VCN 1118 can include a data plane app tier
1146 (c.g. the data plane app tier 846 of FIG. 8), a data plane
DMZ tier 1148 (e.g. the data plane DMZ tier 848 of FIG. 8),
and a data plane data tier 1150 (e.g. the data plane data tier
850 of FIG. 8). The data plane DMZ tier 1148 can include
LB subnet(s) 1122 that can be commumnicatively coupled to
trusted app subnet(s) 1160 (e.g. trusted app subnet(s) 860 of
FIG. 8) and untrusted app subnet(s) 1162 (e.g. untrusted app

US 11,695,776 B2

31

subnet(s) 862 of FIG. 8) of the data plane app tier 1146 and
the Internet gateway 1134 contained in the data plane VCN
1118. The trusted app subnet(s) 1160 can be communica-

tively coupled to the service gateway 1136 contained in the
data plane VCN 1118, the NAT gateway 1138 contained 1n

the data plane VCN 1118, and DB subnet(s) 1130 contained
in the data plane data tier 1150. The untrusted app subnet(s)
1162 can be commumnicatively coupled to the service gate-
way 1136 contained in the data plane VCN 1118 and DB
subnet(s) 1130 contained 1n the data plane data tier 1150.
The data plane data tier 1150 can include DB subnet(s) 1130
that can be communicatively coupled to the service gateway
1136 contained in the data plane VCN 1118.

The untrusted app subnet(s) 1162 can include primary
VNICs 1164(1)-(IN) that can be communicatively coupled to
tenant virtual machines (VMs) 1166(1)-(N) residing within
the untrusted app subnet(s) 1162. Each tenant VM 1166(1)-
(N) can run code 1n a respective container 1167(1)-(IN), and
be communicatively coupled to an app subnet 1126 that can
be contained 1n a data plane app tier 1146 that can be
contained 1 a container egress VCN 1168. Respective
secondary VNICs 1172(1)-(IN) can facilitate communication
between the untrusted app subnet(s) 1162 contained 1n the
data plane VCN 1118 and the app subnet contained in the
container egress VCN 1168. The container egress VCN can
include a NAT gateway 1138 that can be communicatively
coupled to public Internet 1154 (e.g. public Internet 854 of
FIG. 8).

The Internet gateway 1134 contained 1n the control plane
VCN 1116 and contained 1n the data plane VCN 1118 can be
communicatively coupled to a metadata management ser-
vice 1152 (e.g. the metadata management system 8352 of
FIG. 8) that can be communicatively coupled to public
Internet 1154. Public Internet 1154 can be communicatively
coupled to the NAT gateway 1138 contained in the control
plane VCN 1116 and contained in the data plane VCN 1118.
The service gateway 1136 contained in the control plane
VCN 1116 and contained 1n the data plane VCN 1118 can be
communicatively couple to cloud services 1156.

In some examples, the pattern 1llustrated by the architec-
ture of block diagram 1100 of FIG. 11 may be considered an
exception to the pattern illustrated by the architecture of
block diagram 800 of FIG. 8 and may be desirable for a
customer of the IaaS provider 1f the IaaS provider cannot
directly communicate with the customer (e.g., a discon-
nected region). The respective containers 1167(1)-(IN) that
are contained 1n the VMs 1166(1)-(N) for each customer can
be accessed 1n real-time by the customer. The containers
1167(1)-(N) may be configured to make calls to respective
secondary VNICs 1172(1)-(N) contained in app subnet(s)
1126 of the data plane app tier 1146 that can be contained 1n
the container egress VCN 1168. The secondary VNICs
1172(1)-(N) can transmit the calls to the NAT gateway 1138
that may transmit the calls to public Internet 1154. In this
example, the containers 1167(1)-(N) that can be accessed 1n
real-time by the customer can be 1solated from the control
plane VCN 1116 and can be isolated from other entities
contained 1 the data plane VCN 1118. The containers
1167(1)-(N) may also be 1solated from resources from other
customers.

In other examples, the customer can use the containers
1167(1)-(N) to call cloud services 1156. In this example, the
customer may run code 1n the containers 1167(1)-(N) that
requests a service from cloud services 1156. The containers
1167(1)-(N) can transmit this request to the secondary
VNICs 1172(1)-(N) that can transmait the request to the NAT

gateway that can transmit the request to public Internet 1154.

10

15

20

25

30

35

40

45

50

55

60

65

32

Public Internet 1154 can transmit the request to LB subnet(s)
1122 contained in the control plane VCN 1116 via the
Internet gateway 1134. In response to determining the
request 1s valid, the LB subnet(s) can transmit the request to
app subnet(s) 1126 that can transmit the request to cloud
services 1156 via the service gateway 1136.

It should be appreciated that IaaS architectures 800, 900,
1000, 1100 depicted 1n the figures may have other compo-
nents than those depicted. Further, the embodiments shown
in the figures are only some examples of a cloud infrastruc-
ture system that may incorporate an embodiment of the
disclosure. In some other embodiments, the IaaS systems
may have more or fewer components than shown in the
figures, may combine two or more components, or may have
a different configuration or arrangement of components.

In certain embodiments, the IaaS systems described
herein may i1nclude a suite of applications, middleware, and
database service oflerings that are delivered to a customer 1n
a self-service, subscription-based, elastically scalable, reli-
able, highly available, and secure manner. An example of
such an IaaS system 1s the Oracle Cloud Infrastructure (OCI)
provided by the present assignee.

FIG. 12 illustrates an example computer system 1200, 1n
which various examples of the present disclosure may be
implemented. The system 1200 may be used to implement
any of the computer systems described above. As shown 1n
the figure, computer system 1200 includes a processing unit
1204 that communicates with a number of peripheral sub-
systems via a bus subsystem 1202. These peripheral sub-
systems may include a processing acceleration unit 1206, an
I/O subsystem 1208, a storage subsystem 1218 and a com-
munications subsystem 1224. Storage subsystem 1218
includes tangible computer-readable storage media 1222 and
a system memory 1210.

Bus subsystem 1202 provides a mechanism for letting the
various components and subsystems of computer system
1200 communicate with each other as intended. Although
bus subsystem 1202 1s shown schematically as a single bus,
alternative embodiments of the bus subsystem may utilize
multiple buses. Bus subsystem 1202 may be any of several
types of bus structures including a memory bus or memory
controller, a peripheral bus, and a local bus using any of a
variety of bus architectures. For example, such architectures
may nclude an Industry Standard Architecture (ISA) bus,
Micro Channel Architecture (IMCA) bus, Enhanced ISA
(EISA) bus, Video Flectronics Standards Association
(VESA) local bus, and Peripheral Component Interconnect
(PCI) bus, which can be implemented as a Mezzanine bus
manufactured to the IEEE P1386.1 standard.

Processing unit 1204, which can be implemented as one
or more integrated circuits (e.g., a conventional micropro-
cessor or microcontroller), controls the operation of com-
puter system 1200. One or more processors may be included
in processing unit 1204. These processors may include
single core or multicore processors. In certain embodiments,
processing umt 1204 may be implemented as one or more
independent processing units 1232 and/or 1234 with single
or multicore processors included 1n each processing unit. In
other embodiments, processing unit 1204 may also be
implemented as a quad-core processing unit formed by
integrating two dual-core processors into a single chip.

In various examples, processing umt 1204 can execute a
variety of programs 1n response to program code and can
maintain multiple concurrently executing programs or pro-
cesses. At any given time, some or all of the program code
to be executed can be resident 1n processor(s) 1204 and/or in
storage subsystem 1218. Through suitable programming,

US 11,695,776 B2

33

processor(s) 1204 can provide various functionalities
described above. Computer system 1200 may additionally
include a processing acceleration unit 1206, which can
include a digital signal processor (DSP), a special-purpose
processor, and/or the like.

I/O subsystem 1208 may include user interface input
devices and user interface output devices. User interface
input devices may include a keyboard, pointing devices such
as a mouse or trackball, a touchpad or touch screen incor-
porated 1nto a display, a scroll wheel, a click wheel, a dial,
a button, a switch, a keypad, audio mput devices with voice
command recognition systems, microphones, and other
types of mput devices. User interface input devices may
include, for example, motion sensing and/or gesture recog-
nition devices such as the Microsoit Kinect® motion sensor
that enables users to control and interact with an input
device, such as the Microsoit Xbox® 360 game controller,
through a natural user interface using gestures and spoken
commands. User interface mput devices may also include
eye gesture recognition devices such as the Google Glass®
blink detector that detects eye activity (e.g., ‘blinking” while
taking pictures and/or making a menu selection) from users
and transforms the eye gestures as mput mto an mput device
(e.g., Google Glass®). Additionally, user interface input
devices may include voice recognition sensing devices that
enable users to mteract with voice recognition systems (e.g.,
S1r1® navigator), through voice commands.

User imterface mput devices may also include, without
limitation, three dimensional (3D) mice, joysticks or point-
ing sticks, gamepads and graphic tablets, and audio/visual
devices such as speakers, digital cameras, digital camcord-
ers, portable media players, webcams, 1mage scanners, {in-
gerprint scanners, barcode reader 3D scanners, 3D printers,
laser rangefinders, and eye gaze tracking devices. Addition-
ally, user interface mput devices may include, for example,
medical 1imaging mput devices such as computed tomogra-
phy, magnetic resonance 1maging, position emission tomog-
raphy, medical ultrasonography devices. User interface
input devices may also include, for example, audio mput
devices such as MIDI keyboards, digital musical instru-
ments and the like.

User iterface output devices may include a display
subsystem, indicator lights, or non-visual displays such as
audio output devices, etc. The display subsystem may be a
cathode ray tube (CRT), a flat-panel device, such as that
using a liquid crystal display (LCD) or plasma display, a
projection device, a touch screen, and the like. In general,
use of the term “output device” 1s mtended to include all
possible types of devices and mechanisms for outputting
information from computer system 1200 to a user or other
computer. For example, user interface output devices may
include, without limitation, a variety of display devices that
visually convey text, graphics and audio/video information
such as monitors, printers, speakers, headphones, automo-
tive navigation systems, plotters, voice output devices, and
modems.

Computer system 1200 may comprise a storage subsys-
tem 1218 that comprises software elements, shown as being
currently located within a system memory 1210. System
memory 1210 may store program instructions that are load-
able and executable on processing unit 1204, as well as data
generated during the execution of these programs.

Depending on the configuration and type of computer
system 1200, system memory 1210 may be volatile (such as
random access memory (RAM)) and/or non-volatile (such as
read-only memory (ROM), flash memory, etc.) The RAM

typically contains data and/or program modules that are

10

15

20

25

30

35

40

45

50

55

60

65

34

immediately accessible to and/or presently being operated
and executed by processing unit 1204. In some implemen-
tations, system memory 1210 may include multiple different
types of memory, such as static random access memory
(SRAM) or dynamic random access memory (DRAM). In
some 1mplementations, a basic input/output system (BIOS),
containing the basic routines that help to transfer informa-
tion between elements within computer system 1200, such
as during start-up, may typically be stored in the ROM. By
way of example, and not limitation, system memory 1210
also 1llustrates application programs 1212, which may
include client applications, Web browsers, mid-tier applica-
tions, relational database management systems (RDBMS),
etc., program data 1214, and an operating system 1216. By
way of example, operating system 1216 may include various
versions of Microsoit Windows®, Apple Macintosh®, and/
or Linux operating systems, a variety of commercially-
available UNIX® or UNIX-like operating systems (includ-
ing without limitation the variety of GNU/Linux operating
systems, the Google Chrome® OS, and the like) and/or
mobile operating systems such as 10S, Windows® Phone,
Android® OS, BlackBerry® 10 OS, and Palm® OS oper-
ating systems.

Storage subsystem 1218 may also provide a tangible
computer-readable storage medium for storing the basic
programming and data constructs that provide the function-
ality of some embodiments. Software (programs, code mod-
ules, instructions) that when executed by a processor pro-
vide the functionality described above may be stored in
storage subsystem 1218. These software modules or instruc-
tions may be executed by processing unit 1204. Storage
subsystem 1218 may also provide a repository for storing
data used 1n accordance with the present disclosure.

Storage subsystem 1200 may also include a computer-
readable storage media reader 1220 that can further be
connected to computer-readable storage media 1222.
Together and, optionally, 1n combination with system
memory 1210, computer-readable storage media 1222 may
comprehensively represent remote, local, fixed, and/or
removable storage devices plus storage media for temporar-
1ly and/or more permanently containing, storing, transmit-
ting, and retrieving computer-readable information.

Computer-readable storage media 1222 containing code,
or portions of code, can also 1include any appropriate media
known or used in the art, including storage media and
communication media, such as but not limited to, volatile
and non-volatile, removable and non-removable media
implemented 1n any method or technology for storage and/or
transmission of information. This can include tangible com-
puter-readable storage media such as RAM, ROM, elec-
tronically erasable programmable ROM (EEPROM), flash
memory or other memory technology, CD-ROM, digital
versatile disk (DVD), or other optical storage, magnetic
cassettes, magnetic tape, magnetic disk storage or other
magnetic storage devices, or other tangible computer read-
able media. This can also include nontangible computer-
readable media, such as data signals, data transmissions, or
any other medium which can be used to transmit the desired
information and which can be accessed by computing sys-
tem 1200.

By way of example, computer-readable storage media
1222 may include a hard disk drive that reads from or writes
to non-removable, nonvolatile magnetic media, a magnetic
disk drive that reads from or writes to a removable, non-
volatile magnetic disk, and an optical disk drive that reads
from or writes to a removable, nonvolatile optical disk such

as a CD ROM, DVD, and Blu-Ray® disk, or other optical

US 11,695,776 B2

35

media. Computer-readable storage media 1222 may include,
but 1s not limited to, Zip® drives, flash memory cards,
universal serial bus (USB) flash drives, secure digital (SD)
cards, DVD disks, digital video tape, and the like. Com-
puter-readable storage media 1222 may also include, solid-
state drives (SSD) based on non-volatile memory such as
flash-memory based SSDs, enterprise flash drives, solid state
ROM, and the like, SSDs based on volatile memory such as
solid state RAM, dynamic RAM, static RAM, DRAM-based
SSDs, magnetoresistive RAM (MRAM) SSDs, and hybnd
SSDs that use a combination of DRAM and flash memory
based SSDs. The disk drives and their associated computer-
readable media may provide non-volatile storage of com-
puter-readable instructions, data structures, program mod-
ules, and other data for computer system 1200.

Communications subsystem 1224 provides an interface to
other computer systems and networks. Communications
subsystem 1224 serves as an interface for receirving data
from and transmitting data to other systems from computer
system 1200. For example, communications subsystem
1224 may enable computer system 1200 to connect to one or
more devices via the Internet. In some embodiments com-
munications subsystem 1224 can include radio frequency
(RF) transceiver components for accessing wireless voice
and/or data networks (e.g., using cellular telephone technol-
ogy, advanced data network technology, such as 3G, 4G or
EDGE (enhanced data rates for global evolution), Wi-Fi
(IEEE 802.11 family standards, or other mobile communi-
cation technologies, or any combination thereof), global
positioning system (GPS) recerver components, and/or other
components. In some embodiments communications sub-
system 1224 can provide wired network connectivity (e.g.,
Ethernet) 1n addition to or instead of a wireless interface.

In some embodiments, communications subsystem 1224
may also receive input communication in the form of
structured and/or unstructured data feeds 1226, event
streams 1228, event updates 1230, and the like on behalf of
one or more users who may use computer system 1200.

By way of example, communications subsystem 1224
may be configured to receive data feeds 1226 in real-time
from users of social networks and/or other communication
services such as Twitter® feeds, Facebook® updates, web
feeds such as Rich Site Summary (RSS) feeds, and/or
real-time updates from one or more third party information
sources.

Additionally, communications subsystem 1224 may also
be configured to receive data i the form of continuous data
streams, which may include event streams 1228 of real-time
events and/or event updates 1230, that may be continuous or
unbounded in nature with no explicit end. Examples of
applications that generate continuous data may include, for
example, sensor data applications, financial tickers, network
performance measuring tools (e.g. network monitoring and
trailic management applications), clickstream analysis tools,
automobile trailic monitoring, and the like.

Communications subsystem 1224 may also be configured
to output the structured and/or unstructured data feeds 1226,
event streams 1228, event updates 1230, and the like to one
or more databases that may be in communication with one
or more streaming data source computers coupled to com-
puter system 1200.

Computer system 1200 can be one of various types,
including a handheld portable device (e.g., an 1Phone®
cellular phone, an 1Pad® computing tablet, a PDA), a
wearable device (e.g., a Google Glass® head mounted
display), a PC, a workstation, a mainframe, a kiosk, a server
rack, or any other data processing system.

10

15

20

25

30

35

40

45

50

55

60

65

36

Due to the ever-changing nature of computers and net-
works, the description of computer system 1200 depicted in
the figure 1s intended only as a specific example. Many other
configurations having more or fewer components than the
system depicted 1n the figure are possible. For example,
customized hardware might also be used and/or particular
clements might be implemented in hardware, firmware,
software (including applets), or a combination. Further,
connection to other computing devices, such as network
input/output devices, may be employed. Based on the dis-
closure and teachings provided herein, a person of ordinary
skill 1n the art will appreciate other ways and/or methods to
implement the various examples.

Any of the software components or functions described 1n
this application, may be implemented as software code to be
executed by a processor using any suitable computer lan-
guage such as, for example, Java, C++ or Perl using, for
example, conventional or object-oriented techniques. The
soltware code may be stored as a series of instructions, or
commands on a computer readable medium for storage
and/or transmission, suitable media include random access
memory (RAM), a read only memory (ROM), a magnetic
medium such as a hard-drive or a tloppy disk, or an optical
medium such as a compact disk (CD) or DVD (digital
versatile disk), flash memory, and the like. The computer
readable medium may be any combination of such storage or
transmission devices.

Such programs may also be encoded and transmitted
using carrier signals adapted for transmission via wired,
optical, and/or wireless networks conforming to a variety of
protocols, including the Internet. As such, a computer read-
able medium according to an embodiment of the present
disclosure may be created using a data signal encoded with
such programs. Computer readable media encoded with the
program code may be packaged with a compatible device or
provided separately from other devices (e.g., via Internet
download). Any such computer readable medium may reside
on or within a single computer program product (e.g. a hard
drive or an entire computer system), and may be present on
or within different computer program products within a
system or network. A computer system may include a
monitor, printer, or other suitable display for providing any
of the results mentioned herein to a user.

Although specific embodiments of the disclosure have
been described, various modifications, alterations, alterna-
tive constructions, and equivalents are also encompassed
within the scope of the disclosure. Embodiments of the
present disclosure are not restricted to operation within
certain specific data processing environments, but are free to
operate within a plurality of data processing environments.
Additionally, although embodiments of the present disclo-
sure have been described using a particular series of trans-
actions and steps, 1t should be apparent to those skilled 1n the
art that the scope of the present disclosure 1s not limited to
the described series of transactions and steps. Various fea-
tures and aspects of the above-described embodiments may
be used individually or jointly.

Further, while embodiments of the present disclosure
have been described using a particular combination of
hardware and software, it should be recognized that other
combinations of hardware and software are also within the
scope of the present disclosure. Embodiments of the present
disclosure may be implemented only in hardware, or only 1n
soltware, or using combinations thereof. The various pro-
cesses described herein can be implemented on the same
processor or different processors 1 any combination.
Accordingly, where components or modules are described as

US 11,695,776 B2

37

being configured to perform certain operations, such con-
figuration can be accomplished, e.g., by designing electronic
circuits to perform the operation, by programming programs-
mable electronic circuits (such as microprocessors) to per-
form the operation, or any combination thereof. Processes
can communicate using a variety of techmques including but
not limited to conventional techniques for inter process
communication, and different pairs of processes may use
different techniques, or the same pair of processes may use
different techniques at different times.

The specification and drawings are, accordingly, to be
regarded 1n an illustrative rather than a restrictive sense. It
will, however, be evident that additions, subtractions, dele-
tions, and other modifications and changes may be made
thereunto without departing from the broader spirit and
scope as set forth i1n the claims. Thus, although specific
disclosure embodiments have been described, these are not
intended to be limiting. Various modifications and equiva-
lents are within the scope of the following claims.

The use of the terms “a” and “an” and *“‘the” and similar
referents 1n the context of describing the disclosed embodi-
ments (especially 1n the context of the following claims) are
to be construed to cover both the singular and the plural,
unless otherwise indicated herein or clearly contradicted by
context. The terms “‘comprising,” “having,” “including,”
and “containing’” are to be construed as open-ended terms
(1.e., meaning “including, but not limited to,”) unless oth-
erwise noted. The term “connected” 1s to be construed as
partly or wholly contained within, attached to, or joined
together, even 11 there 1s something intervening. Recitation
of ranges of values herein are merely intended to serve as a
shorthand method of referring individually to each separate
value falling within the range, unless otherwise indicated
herein and each separate value 1s incorporated into the
specification as if it were individually recited herein. All
methods described herein can be performed 1n any suitable
order unless otherwise imdicated herein or otherwise clearly
contradicted by context. The use of any and all examples, or
exemplary language (e.g., “such as™) provided herein, is
intended merely to better 1lluminate embodiments of the
disclosure and does not pose a limitation on the scope of the
disclosure unless otherwise claimed. No language in the
specification should be construed as indicating any non-
claimed element as essential to the practice of the disclosure.

Disjunctive language such as the phrase ““at least one of X,
Y, or Z,” unless specifically stated otherwise, 1s intended to
be understood within the context as used 1 general to
present that an 1tem, term, etc., may be either X, Y, or Z, or
any combination thereof (e.g., X, Y, and/or 7). Thus, such
disjunctive language 1s not generally imntended to, and should
not, imply that certain embodiments require at least one of
X, at least one ol Y, or at least one of Z to each be present.

Preferred embodiments of this disclosure are described
herein, including the best mode known to the inventors for
carrying out the disclosure. Variations of those preferred
embodiments may become apparent to those of ordinary
skill 1n the art upon reading the foregoing description. The
inventors expect skilled artisans to employ such variations
as appropriate and the inventors mtend for the disclosure to
be practiced otherwise than as specifically described herein.
Accordingly, this disclosure includes all modifications and
equivalents of the subject matter recited in the claims
appended hereto as permitted by applicable law. Moreover,
any combination ol the above-described elements 1n all
possible varniations thereot 1s encompassed by the disclosure
unless otherwise indicated herein or otherwise clearly con-
tradicted by context.

10

15

20

25

30

35

40

45

50

55

60

65

38

All references, including publications, patent applica-
tions, and patents, cited herein are hereby incorporated by
reference to the same extent as if each reference were
individually and specifically indicated to be incorporated by
reference and were set forth 1n 1ts entirety herein.

In the foregoing specification, aspects of the disclosure
are described with reference to specific embodiments
thereof, but those skilled 1n the art will recognize that the
disclosure 1s not limited thereto. Various features and aspects
of the above-described disclosure may be used individually
or jomntly. Further, embodiments can be utilized in any
number ol environments and applications beyond those
described herein without departing from the broader spirit
and scope of the specification. The specification and draw-
ings are, accordingly, to be regarded as illustrative rather
than restrictive.

The specific details of particular embodiments may be
combined in any suitable manner or varied from those
shown and described herein without departing from the
spirit and scope of embodiments of the disclosure.

The above description of exemplary embodiments of the
disclosure has been presented for the purposes of illustration
and description. It 1s not intended to be exhaustive or to limait
the disclosure to the precise form described, and many
modifications and variations are possible 1 light of the
teaching above. The embodiments were chosen and
described 1n order to best explain the principles of the
disclosure and 1ts practical applications to thereby enable
others skilled in the art to best utilize the disclosure 1n
vartous examples and with various modifications as are
suited to the particular use contemplated.

All publications, patents, and patent applications cited
herein are hereby incorporated by reference 1n their entirety
for all purposes.

What 1s claimed 1s:

1. A method, comprising:

receiving one or more requests for access to one or more

cloud services:
storing the one or more requests 1n a request log;
receiving one or more access rules applicable to cloud
service access rights for the one or more cloud services;

aggregating the one or more requests of the request log to
determine access requirements for a container, the
container being configured to store one or more appli-
cations;

generating container access policies that define access

rights of for containers to the one or more cloud
services, the container access policies generated based
at least in part on the aggregated one or more requests
and the one or more access rules;

generating node access policies, the node access policies

defining a combined access right for one or more
containers on a node comprising a group ol compute
instances; and

storing the node access policies 1n a memory;

storing the container access policies in the memory; and

sending the container access policies to a request for-

warder of a compute 1stance 1n a production environ-
ment, the request forwarder accessing the container
access policies to grant the access rights for the one or
more containers to the one or more cloud services.

2. The method of claim 1, further comprising:

granting access permissions equal to combined access of

the one or more containers assigned to the node.

3. The method of claim 1, further comprising:

partitioning the compute instance into groups of nodes,

cach of the nodes having distinct access; and

US 11,695,776 B2

39

assigning one or more containers to a node with sutlicient
access based at least 1n part on the node access policies.
4. The method of claim 1, wherein node access 1s pre-
determined and container access within each node 1s
dynamically configured.
5. The method of claim 1, turther comprising;:
testing access requirements for a cloud system:;
detecting a failure of a specific application to access the
one or more cloud services based at least 1n part on an
entry 1n the request log; and
changing permissions of a compute instance to remedy
the failure.
6. The method of claim 1, further comprising:
setting the request forwarder for each container type in the
production environment to a permissive mode, the
permissive mode granting access of the one or more
applications stored in the container to the one or more
cloud services;
receiving the one or more requests from the request
forwarder; and
in accordance with a number of the one or more requests
exceeding a threshold requirement, switching the
request forwarder to a restrictive mode, the restrictive
mode granting access of the one or more applications to
the one or more cloud services based i1n part on the
container access policies.
7. A non-transitory computer-readable medium storing a
set of instructions, the set of 1nstructions comprising:
one or more instructions that, when executed by one or
more processors ol a computer system, cause the com-
puter system to:
receive one or more requests for access to one or more
cloud services;
store the one or more requests 1n a request log;
receive one or more access rules applicable to cloud
service access rights for the one or more cloud
services;
aggregate the one or more requests of the request log to
determine access requirements for a container, the
container being configured to store one or more
applications;
generate container access policies that define access
rights for containers to the one or more cloud ser-
vices, the container access policies generated based
at least 1 part on the aggregated one or more
requests and the one or more access rules;
generate node access policies, the node access policies
defining a combined access right for one or more
containers on a node comprising a group of compute
instances; and
store the node access policies 1n a memory;
store the container access policies in the memory; and
send the container access policies to a request for-
warder ol a compute instance 1 a production envi-
ronment, the request forwarder accessing the con-
tainer access policies to grant the access rights for
the one or more containers to the one or more cloud
SEIvICeS.
8. The non-transitory computer-readable medium of claim
7, wherein the one or more instructions further cause the
computer system to:
grant access permissions equal to combined access of the
one or more containers assigned to the node.
9. The non-transitory computer-readable medium of claim
7, wherein the one or more instructions further cause the
computer system to:

5

10

15

20

25

30

35

40

45

50

55

60

65

40

partition the compute nstance into groups of nodes, each
of the nodes having distinct access; and

assign one or more containers to a node with suflicient
access based at least 1n part on the node access policies.

10. The non-transitory computer-readable medium of

.

claiam 7, wherein node access 1s pre-determined and con-
tainer access within each node 1s dynamically configured.

11. The non-transitory computer-readable medium of

claim 7, wherein the one or more instructions further cause
the computer system to:

test access requirements for a cloud system;

detect a failure of a specific application to access the one
or more cloud services based at least in part on an entry
in the request log; and

change permissions of a compute nstance to remedy the
failure.

12. The non-transitory computer-readable medium of

claim 7, wherein the one or more instructions further cause
the computer system to:

set the request forwarder for each container type in the
production environment to a permissive mode, the
permissive mode granting access of the one or more
applications stored in the container to the one or more
cloud services:
receirve the one or more requests from the request for-
warder; and
in accordance with a number of the one or more requests
exceeding a threshold requirement, switch the request
forwarder to a restrictive mode, the restrictive mode
granting access ol the one or more applications to the
one or more cloud services based in part on the con-
tainer access policies.
13. A computer system, comprising:
one or more memories; and
one or more processors, communicatively coupled to the
one or more memories, configured to perform opera-
tions comprising:
receiving one or more requests for access to one or
more cloud services;
storing the one or more requests 1n a request log;
receiving one or more access rules applicable to cloud
service access rights for the one or more cloud
services;
aggregating the one or more requests of the request log
to determine access requirements for a container, the
container being configured to store one or more
applications;
generating container access policies that define access
rights for containers and to the one or more cloud
services, the container access policies generated
based at least 1n part on the aggregated one or more
requests and the one or more access rules;
generating node access policies, the node access poli-
cies defining a combined access right for one or more
containers on a node comprising a group of compute
instances; and
storing the node access policies 1n a memory;
storing the container access policies 1n the memory;
and
sending the container access policies to a request
forwarder of a compute instance 1 a production
environment, the request forwarder accessing the
container access policies to grant the access rights
for the containers to the one or more cloud services.
14. The computer system of claim 13, wherein the one or

more processors are further configured to perform opera-
tions comprising:

US 11,695,776 B2

41

granting access permissions equal to combined access of

the one or more containers assigned to the node.

15. The computer system of claim 13, wherein the one or
more processors are further configured to perform opera-
tions comprising:

partitioning the compute instance nto groups of nodes,

cach of the nodes having distinct access; and
assigning one or more containers to a node with suflicient
access based at least 1n part on the node access policies.

16. The computer system of claim 13, wherein node
access 1s pre-determined and container access within each
node 1s dynamically configured.

17. The computer system of claim 13, wherein the one or
more processors are further configured to perform opera-
tions comprising:

testing access requirements for a cloud system;

detecting a failure of a specific application to access the

one or more cloud services based at least 1n part on an
entry 1n the request log; and

10

15

changing permissions of a compute instance to remedy 20

the failure.

42

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 11,695,776 B2 Page 1 of 1
APPLICATIONNO. :17/177159

DATED July 4, 2023
INVENTOR(S) : Pieczul et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Specification

In Column 3, Line 21, delete “system” and insert -- system. -- therefor.

In Column 22, Line 49, delete “like.” and insert -- like). -- therefor.

In Column 335, Line 27, delete “evolution),” and insert -- evolution)), -- therefor.
In the Claims

In Column 38, Line 47, in Claim 1, after “rights” delete “of™.

In Column 40, Line 49, in Claim 13, after “containers” delete “and”.

Signed and Sealed this
‘Twenty-eighth Day ot May,

2024

|

Katherine Kelly Vidal
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

