US011693828B2

12 United States Patent (10) Patent No.: US 11,693.828 B2

Boshev et al. 45) Date of Patent: Jul. 4, 2023
(54) REAL-TIME DATA REPLICATION IN A (56) References Cited
MULTIPLE AVAILABILITY ZONE CLOUD U.S PATENT DOCUMENTS
PLATFORM T —
| 7,398,285 B2 7/2008 Kisley
(71) Applicant: SAP SE, Walldort (DE) 8.078.922 B2  12/2011 Yordanov et al.
8,527,992 B2 9/2013 Dokovski et al.
(72) Inventors: Stoyan Zhivkov Boshev, Sofia (BG); gfgéggg E% ?ggg ﬁe‘f et al. l
. . ,. , 1 olaro et al.
Stoyan Ivanov Veleshki, Sofia (BG); 0.602.521 B2  3/2017 Iliev et al.
Nikolay Georgiev Kabadzhov, Sofia 0.826.035 B2  11/2017 Genevski et al.
(BG); Divan Asparuhov Yordanov, 10,275,346 B2  4/2019 Boshev et al.
Sofia (BG); Nikola Angelov Popov 10,474,547 B2* 11/2019 McAlister ........... GOGF 11/1471
Qofin (BG)j " 10,528,624 B2  1/2020 Boshev
11,288,138 Bl  3/2022 Freilich et al.

11,314,717 Bl 4/2022 Certain et al.

(73) Assignee: SAP SE, Walldort (DE) (Continued)

*)  Notice: Subject to any disclaimer, the term of this
] y
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 195 days. U.S. Appl. No. 17/067,223, filed Oct. 9, 2020, Boshev.
(Continued)

OTHER PUBLICATIONS

(21) Appl. No.: 17/208,496
Primary Examiner — Chelcie L Daye

(22) Filed: Mar. 22, 2021 (74) Attorney, Agent, or Firm — Fish & Richardson P.C.

(65) Prior Publication Data (57) ABSTRACT
The present disclosure relates to computer-implemented
US 2022/0300459 Al Sep. 22, 2022

methods, software, and systems for managing data replica-
tion. A request associated with storing content of a file 1s

(51)  Int. CI. received at a storage service provided by in a multiple

GO6E 16/00 (2019.01) availability zone cloud platform. A lock request 1s sent to an
Gool 16/178 (2019.01) in-memory data grid at a first instance of the storage service
GO6l" 16/27 (2019.01) to lock the file for accessing. An 1mput stream of the file 1s
GO6F 9/54 (2006.01) received at the persistence interface to be read iteratively in
(52) U.S. CL portions. A read portion of the file 1s iteratively stored in a
CPC ... GO6F 16/178 (2019.01); GO6F 9/544 first file system storage associated with instances of the

(2013.01); GO6F 16/273 (2019.01); GO6F storage service at a first availability zone. The portions of the
16/275 (2019.01) file are provided iteratively to a replication executor at the

(58) Field of Classification Search first instance of the storage service to request replication of
CPC GO6F 16/178: GOGF 16/273: GOGF 16/275 the content of the file into a second file storage of a second
USPCHM | j 707/611 availability zone of the cloud platform.

See application file for complete search history. 20 Claims, 14 Drawing Sheets
BT
S = (R

...................................................................................
................................................................................

....................................................................................
................................................................................

.....................................................................
......................................
....................................................................

...................................................................

D ] v
1 1 LTt T S s T TRt T T ottt Tt -'--'--'-Zn_---'-'-..-.- :"':1":"':" KON T
vy L o Srage Sendeadinstape ko i S B o

T P . Ll:i{}h"{..'ﬂ}'f.‘i'!:}k Z i
E . : . . . . --- - - - ---:-HP:--: LT -v- --E- . . : : ...........

.....................

.......................................
...............................

...........................




US 11,693,828 B2
Page 2

(56)

References Cited

U.S. PATENT DOCUMENTS

2013/0339301 Al 12/2013 Saito et al.
2014/0244954 Al 8/2014 Amrhein et al.
2017/0235645 Al 8/2017 Theimer et al.
2022/0019350 Al 1/2022 Karr
2022/0147541 Al 5/2022 Mallipedd: et al.

U.S.
U.S.
U.S.
U.S.
U.S.
U.S.
U.S.
Dido

Appl.
Appl.
Appl.
Appl.
Appl.
Appl.

Appl.
na et al.,

No.
No.
No.
No.
No.
No.

No

L]
o

OTHER PUBLICATIONS

17/068,245, filed Oct. 12, 2020, Boshev.

17/098.618, filed Nov. 16, 2020, Boshev et al.
17/169,754, filed Feb. 8, 2021, Yousouf et al.
17/169,787, filed Feb. 8, 2021, Yousouf et al.
17/170,105, filed Feb. 8, 2021, Yousouf et al.
17/170,166, filed Feb. 8, 2021, Yousouf et al.
17/208,558, filed Mar. 22, 2021, Boshev et al.

Transactional auto scaler: Elastic scaling of repli-

cated in-memory transactional data grids.” ACM Transactions on
Autonomous and Adaptive Systems (TAAS) 9.2, Jul. 2014, 32

pages.

Non-Final O

Tice Action 1n U.S. Appl. No. 17/208,558, dated Aug.

29, 2022, 16 pages.
Sebbah et al., “Availability Optimization in Cloud-Based In-
Memory Data Grids” In: Rueher, M. (eds) Principles and Practice of

Constraint Programming. CP 2016. Lecture Notes i Computer
Science, vol. 9892, 42, 2016, 666-679.

* cited by examiner



US 11,693,828 B2

Sheet 1 of 14

Jul. 4, 2023

U.S. Patent

b OId

HOMISN

0Ll

Jlo&




US 11,693,828 B2

Sheet 2 of 14

Jul. 4, 2023

U.S. Patent

[ T S S g S S S A D S S S A S A S A A S I S D S i S S D S S S S S S S S S D g S A A S S D S S e D S S S S S D A S D A S S S R S D S G S G G S D S S S S N S S A S D A S G D S S G D S S S R S A S S A A S D D S S D S S G S S S S S A S S ) R S G S S S S S S S S A S S A A A A S D g S D S S S A S S S A S S A A S A A S S i S S S S S S R S S A S S G A S A S S S e S G S S S N S S A S A A R S G A S S S D S S A S G S T A A A A S g S D S S S S S S S N S S D A S D A S G G S S S

R O R T R T L TR e R T R R A A A O T Ty e T Tyl T T S T T T S T W S I G D S D T e R S T Sy Ty T S e Sy S e e S T A A D i e A N Q= Qe D e T R D e N S AT e N T Sy e Sy Sy S S

m 02z
BOBSHN m SoBLIaIU
uonedoy  BOURISIBIBY

Suelsiul B Sleusiul

SOLBISISIoH ¢ R 2 10 10 24 2R LOEaday

[ ¥4 |
Hleitealey pw ! | OLb
uonesdoy | e1ep Adotaiu-uy

3 T4
JoIN0axy
uoResldon

bz - W m 502

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

1

L O R L T T T O O I B R R R R T o e R R kT T TE T R T T e T I B R R T S e R T I T S e e e T T T TE e O Tk o Tl T e T T S T e T T T O e R R R T T T O R T T T e R R . T T T O R kT o e R N L Tk T T S T B T ST B T S B B T B e e L



U.S. Patent Jul. 4, 2023 Sheet 3 of 14 US 11,693,828 B2

300 '1

. . . _ _ _ _ (305
| recerve a request from a user, wherein the request i1s associated with storing content j
| of a file at a storage service provided by a multiple availability zone cloud platform |

P R R R R R R R R S R R R R R R R R R S S R S S R R S S R R R G R S S R R R S S S R R R R R R R R R R R R R S S R R R S R R R R G S R R S R R R S R R R S S S S R R R S R R S R R R R R S S R R R S R R R S R R S R R R R R S R R R R R R R S R R R S R S S R S R R R S S R R S R R R S e R S S R S S R R R R R R S R S R R R R S e S R S R S S R R R R R S G R R S R R R R e g g
T i i i T i i i i i i T T T P i F i P e i i i i e T i il T P i i i T T T P e P i i i T i i i T i i T T i P T T i i i i i i i T i i T i i T i i T i T i P T i i i i e T T il T P i i e T i T T i i i i i i i T i il T T i i T T i P T i i e T i e T P i T T i T T T i T i i T i i i Fip il il T il il T i il P P Tl T P T P Pl Tl il Pl gl Pl Pl Pl Pl Pl Pl gl Pl Pipl gl P FipF ripF

i response to recetving the request from the user, send a request through a
persistence interface to an in-memory data grid at a first mstance of the storage
service to lock the file for accessing

v

| receive, at the persistence interface, an input stream including the content of the file
' from the user based on the request

"310

315

320

###########################################################################################################################################################################

~325

iteratively store, by the persistence mterface, a read portion for the filein a
first tile system storage associated with mstances of the storage service at a
tirst availability zone, wherem during storing the read potion

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------

330

in response o stormg a portion of the file, provide, through the persistence
mnterface, the stored portion to a replication executor at the first instance of the
storage service, wherein each portion 1s provided to the replication executor to
request replication of read and stored portions of the content of the file from the
input stream into a second file storage of a second availability zone of the multiple
avatlability zone cloud plattorm

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

stream from the replication executor at the first mstance of the storage service J 335
running at the first avatiability zone to a replication interface at a second instance of

the replication executor, a request to store a read and stored portion of the input | {340

storage service, wherein the request is to store the read and stored poriion at the
second file storage of the second avadability zone




US 11,693,828 B2

Sheet 4 of 14

Jul. 4, 2023

U.S. Patent

b abeiolg WsIsAg m_”_ﬁm

GEY

IV uonesiday

|
|
|
_
|
_
|
|
UMLU3 1P S _
|
|
|
|
_
|
|
|

..,Ea_ﬁ 2iEp QUIES QM 1

v Ol

OEYy

LD BBP S Z

idv
anuelsisiag

T4 4

o e e e o e R .J wanhia: e BiA

gl gl wihgfighgt | ghgfighgh  Splfghally Sy o wiipfuy il g gl gy wihalighyt 0 gl aipfipfgh dgfigiglly gl alfgieallr

JOINDIOXY

<

uogeoijday

u P10 eSS 5onbay _

w

“

“

m |

L2V Ul ad1ases abeiolg m “
~

w

m

m

00v




U.S. Patent Jul. 4, 2023 Sheet 5 of 14 US 11,693,828 B2

Syachranous replicalion of 2 fiie from AZT fo AZ2

515 520 045 530 535
oo ‘,r“ ___________ - / /“ ;
- Fiie System

N N * l ___________________
f’?\?’l M - INDGAZ

Replication~ § L | File System

t‘wtmagﬂ AZ1

Cxecutor AZY § _ | | Storage AZZ

Ty

3

oo

- pliniie g |

L O

N o
I g
. : ;
g : . f
[ ]

[]

[]

[ ]

A vl L Ly Aty

iyl A A R, O

MM, Mg R GEaF

*"""/S@nd the file
¥ rd o
Store t hef e porson ol porton fo

~ feplication

Read a fiie portion ?"““ — 5 50

-'u.-\\

L bk

O

. | Wile e porion | e negaron |
573 L dosteam 0 M e e Ll
i Store file portion

e, mEE M mEE mE REE REE, B mEE mEE e s Rmm, momm, o momon mom, Rl ;

T UGRG CABGT ROy R BT BTG GBRGT  aBt Ay RO BORUR GG B BB gy i b :

!
:
;
i
}
;
$
}
¢
t
;

ook
§
{

il il il il il il il il il il

m
53
T
{:-:} oy, g,
=Y
ot
i
B
2
Bxd
a2
{T}
A
S
?‘3
s, Ot
2
@ ..
.
B
1
:
E
 eeeeemmomeoe

W AR MM SRR R SRR AR AR NaM  AaMu AR AR A MR AR W e TN MaM e,
vy e we s Cas Tahy wad e wr s wis 'we 'y rara s pas o war o we e

A e et el et Rl Aty i ot W Wl e Yt aite Ruls w
B ool G By Wl L R T RS R L Ly N R, R

‘,.-':‘:

J ]
590
Py :
H

1

H

5

FIG. 5



U.S. Patent Jul. 4, 2023 Sheet 6 of 14 US 11,693,828 B2

ﬁoo
/

Storage | Replication  §
Service A1 Cxecuior AT

Fiig Sgatem | Replication Flie Sys S
Soage 21 || 4PN || Swaehl |

i
i
:
;
:
:
'
i
i
i
i
i
i

in Mﬁ'ncry

Ga-;t mata-gata of f&lu '§ 645

_ nity for repication L. ——

fﬂﬂﬁww

649

3
{
3
:
i
§
§
§
3
$
$
i
:
:
}
¥
d

i Release :
,  epheaioniock 1.

o R G R R Gl Ry Ry B, R, R R R S R O g R Rl bRy Ry R, R, R R R O g g Rl by By R, BRI BRSO G R ol R Ry R, R R R R O R iR g Rl Ry Ry R, R ERE ERE R B R )

WL BEG B B IR R LS SRS RTINS i LI B Ry Ry R TR LR SN OGS T SRR oI L Ay
ol iy Ry Ry, BgR, QR R ORgR g R gy gp o Ry R g, BOR, RO RGR. R R R R Ry Ty RRa

Fi(z. 6



US 11,693,828 B2

Sheet 7 of 14

Jul. 4, 2023

U.S. Patent

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

WHO41V g GNO1T0

it obei0}s WalsAg 314 0¢ 1 abelo}g walsAg ofi4

204 ANOZ o SR S {0 [
CALTHEVTHYAY “ | d

mmm.mmmmm.mmm.ﬁ.mmm.m .ﬂﬂﬁt@wﬂm wnv.ﬂmﬁwmmm.n&n_ SR m S M R Go4

0 18anhay

eI (-RION

. - . P 1 v . . A L [ . R, =¥ R M S e . Tt Ty o ot o s ot ot ok ok o o s s s s
P13 . . i _ : : . IRttt R
. LT T . TR ) 1 . . B , R

Wmm_mmw,mm,mm, v dhiiiey

ol 44 8le~eisig 17
o __»_ jo deyy /1

H P

......................................

|| wewuonesndey | |

..................................................

RS I “ a0 Bt mw.h hawﬁuw.xw
mwmm_m”mmm”m”m__.___._”_.”__.___.___.___.__”.___._”_...._”_.___.___._”_.”__.___.___.”__.__”.___.___.__”._”_.___.__”._”_.”__ w M ............ ﬂﬁmumum—ﬂﬂw .

b 01l

B e e e e e D D D e e D e e T D T D e sl el i T e T e T T D D e e e D T —Umhm ﬁ“wﬁmu EQE@EIF:




U.S. Patent Jul. 4, 2023 Sheet 8 of 14 US 11,693,828 B2

R R R R R R R R R S S R R D R R R D R R R R S S S R S S R R R N R R S N R D D R S S D S S R S R M R S N R R B R R R D R R R S N R S R S S R R S D R R D R S R D R S S R R N S R S S R R S R R R S R S S D R R S D N R W R S S R R S R R R B N R R D R D S D D R S R S S M R S R R B D R R S D N B S D R R S R S S W R S R R R S R R R D R S S D R R S R S S W R SR R R SR R R R S D R S S D R R S R S R R R S R R R S g g

store metadata for one or more files for asynchronous replication at a second availability

zonge, wherein the metadata is stored at an in-memory data grid of a first instance ofa |

storage service at a first availability zone, the in-memory data grid includes a queue data /5— 810

structure of metadata records {e.g., corresponding to versions or operations performed on |

the one or more files) and a map of metadata records {list of the one or more files that are
relevant for the asynchronous replication}

N
» o » » w » » w » » w » » o » » o » » w » » w » » o » » o » » w » » w » » o » » o » » o » » w » » o » o » » o » » w » » o » » o » » o » » o » » o » » o » » o » » o » » o » » o » » o » » o » » o » » o » »

asynchronous data replication for files identified at the map (e.g., a connection between the ~y—820

first and the second avadability zone is available)

determine a file for replication that is identified at the map and reading the stored metadata a
D o . _ .- T — 830
for the file Tor replication from the queue data structure to determine a replication operation
based on one or more records identified for the file for replication at the queue data structure

............................................................................................................................................................................................................... 840
read, by a replication executor of the first instance of the storage service, the file from a first j o
file storage

)
1
1
1

the file at the second file storage at the second avatlability zone by providing the file to a f 850

Z0ne

FIG. 8



US 11,693,828 B2

Sheet 9 of 14

Jul. 4, 2023

U.S. Patent

g

ot

“WW“MM““WWW”MMWWW

ww#mmwwww

) gje

[UE €nonD 8y O]
UCHBIASS 30} B o)
0 BIEp-S10u 8108

AOsI Y

IRIIE

AT OYET AR W AT AT 4R O VERT SR ST TR BT R AR R A

= WRT ST AT R R ORERT OART OPRYT O SRT O RT RT ORT RTT AT

gggsggggsggggsggg....-._..m-. ........

= A% WA

mmwwwmmm

Joienydoy
10} 8ii4 Py

34 FRdday

wwmmmw

| 7% AOROENT
UORRoNIdaM

w
30

e, o e A A h, s o

Lw Ww e et Sar ey we afw et e el Sar e as a'e

- AW we et e Vel e

URISISIA




US 11,693,828 B2

Sheet 10 of 14

Jul. 4, 2023

U.S. Patent

" 3l pajRoRa pug
W mﬁ%m%@&mx
m_

L) WO ol
(18580 SAOLIDY

rg'a Jg'a dgla g e et et et e R R O Be we S S'F S wes we 'a'w ‘Bs we

MWl WY AT WP PP WP TR

e gine pans RaRY Rany owany mainy malnc :

mmS

E%Egggggég.l..,.l..,.l..,..-..,.l..,.l..,.l.l..,.l..,.l..r-..,.l..,.l..,.l.l..,.l..,.l..rr.,.l..,.l..,.l..l..,.l..,.l.._l..,.l..,.l..,.lE%Egégégégégégégégégn--
o

e L A S S—— _______

L

:
'
!
;
:

Q@Eﬁﬂﬁmﬂmwww A, e ) S

/ UOHRONURS
/e
DiLMEISL

WQN‘ QWQ% 388

Ol Sxam 2IRD-BIOW SEU SIM ¢

b uepunpeisig 1D-B1at DERS 3L A ___mm%m

R R R

day wpngy Mgy mpinc g mge mgn, g, mg g g g g gk gk g e gk g g e
e wWr ww 'wr w's ats Ya's Cwts el Cea ogts Sats et Fa FEY BT O FR wRT B

g i :mem
PiB(} UOHEN0RY

g |1 ebs | ] pomeg
ooy} weslgey g Aoy

‘
¢
!
'
!
!
;

080} 6701 020} G0} 0101 c00)




L "OId

US 11,693,828 B2

) ananr) ayj o}

= ¢} ojujuoyeoldey PPy

N

\ o

s

W

=

S ...............................................................................

dejn syl o} dejn sul ut ”

\ Ojujuoneoldey mau ppy | \ Ojujuonesljday syepdn

3 g _— S T S T P T P T e P P P L o

a 00L1 OLLl

3 depy ul papniou; Yied ojujuoneoljday s

<+ . Y,

=

—

JI%C

U.S. Patent



U.S. Patent Jul. 4, 2023 Sheet 12 of 14 US 11,693,828 B2

Pegk ihe nead
- Replicationinfo of the queue

s the path of the head of gueug
presented i Map
ANC
the head of Queus =
1860 Map.Repiicationinto object 12-50
—A— A R A —
Delste the head
EE Rephicationinte from the

Return Repiicationinfo

e 0N\ Whike Queue
s notemply
13158 |

Retum No Fie for e f 2 80
Repiication

FiG. 12




U.S. Patent Jul. 4, 2023 Sheet 13 of 14 US 11,693,828 B2

1300

i, 13




U.S. Patent Jul. 4, 2023 Sheet 14 of 14 US 11,693,828 B2

Input/Output
Devices

input/Output

FIG. 14

50

€3 |

Processor




US 11,693,828 B2

1

REAL-TIME DATA REPLICATION IN A
MULTIPLE AVAILABILITY ZONE CLOUD
PLATFORM

TECHNICAL FIELD

The present disclosure relates to computer-implemented
methods, software, and systems for data processing n a
cloud environment.

BACKGROUND

Software complexity 1s increasing and causes changes to
lifecycle management and maintenance of solftware appli-
cations and platform systems. Customer’s needs are trans-
forming, with increased requests for flexibility in terms of
processes and landscapes, and also high availability to
access software resources provided by the underlying plat-
form infrastructure. When an application or application
service 1s running, they can consume resources from a file
storage through execution of operations, such as a read
operation, a write operation, and an edit operation, among
others. When these applications and services execute, they
may read and write data from the file storage where one or
more file records reside. A failure 1n the data synchronization
processes may cause disruptions when providing services by
the software applications and reduction 1n their availability
and performance.

SUMMARY

The present disclosure mvolves systems, software, and
computer implemented methods for managing data replica-
tion 1n a cloud environment including multiple availability
zones. The data replication can be executed synchronously
and/or asynchronously to address different conditions deter-
mined for the connectivity between the availability zones of
the cloud environment.

In a first aspect, one example method may include opera-
tions such as receiving a request associated with storing
content of a file at a storage service provided by a multiple
availability zone cloud platform; 1n response to receiving the
request, sending a lock request through a persistence inter-
face to an in-memory data grid at a first instance of the
storage service to lock the file for accessing; receiving, at the
persistence 1nterface, an input stream including the content
of the file based on the request, wherein receiving the mput
stream 1ncludes: iteratively reading the input stream 1n
portions; and iteratively storing, by the persistence interface,
a read portion for the file 1n a first file system storage
associated with instances of the storage service at a {first
availability zone, wherein during storing the read potion, the
file 1s locked for accessing; 1n response to storing a portion
of the file, providing, through the persistence interface, the
stored portion of the file to a replication executor at the first
instance of the storage service, wherein each portion 1is
provided to the replication executor to request replication of
read and stored portions of the content of the file from the
input stream into a second file storage of a second avail-
ability zone of the multiple availability zone cloud platform;
determining a mode of replication for executing transfer of
portions of the mput stream from the replication executor at
the first istance of the storage service running at the first
availability zone to a replication interface at a second
instance of the storage service running at the second avail-
ability zone; and in response to determining that the mode of
replication 1s synchronous, providing, by the replication

10

15

20

25

30

35

40

45

50

55

60

65

2

executor, a request to store a stored portion of the input
stream by the persistence interface of the first instance of the
storage service at the first availability zone to the replication
interface of the second instance of the storage service,
wherein the request 1s to store the read and stored portion at
the second file storage of the second availability zone.

In some 1nstances, the request can be from a user. The
request can be recerved at the persistence interface 1nstan-
tiated at the first mnstance of the storage service, where the
first 1nstance of the storage service i1s running at the first
availability zone of the multiple availability zone cloud
platform. In some instances, the user can be associated with
instances running at the first availability zone as primary
storage service instances, where the multiple availability
zone cloud platform 1ncludes at least two availability zones.
In some instances, the storage service can be executed with
at least two 1nstances at each of the availability zones, and
the storage service can provide bi-directional replication
between instances running at the multiple availability zones
to maintain synchronized content at corresponding file stor-
ages.

In some 1nstances, storing content can include at least one
of adding, updating, modifying of content of the file.

In some 1nstances, the example method of the first aspect
can 1clude: receiving a delete request associated with the
file at a first mstance of the storage service provided at the
first availability zone of the multiple availability zone cloud
platiorm; 1n response to receiving the delete request, sending
a lock request through the persistence interface to the
in-memory data grid at the first instance of the storage
service to lock the file for accessing; sending an 1nstruction
for execution of a delete operation to delete the file at the
first file storage; and sending a request, by the replication
executor, to the replication interface of the second instance
of the storage service at the second availability zone to
delete the file at the second file storage; and 1n response to
determining that deleting at the second file storage 1is
executed successiully, sending a delete request to the 1n-
memory data grid at the first instance of the storage service
to delete metadata stored for the file.

In some instances, the stored portion of the file can be
provided to the replication executor for replication at the
second availability zone 1n parallel to reading a subsequent
portion of the input stream by the persistence intertace.

In some 1instances, the persistence interface can be an
application programming interface (API) implemented at
the first instance of the storage service. The request can be
dispatched for receiving by the first instance of the storage
service based on load balancing rules defined for the mul-
tiple availability zone cloud platform.

In some 1nstances, the example method of the first aspect
can include: 1n response to determining that the mode of
replication 1s synchronous on each 1iteration, providing 1tera-
tively each of the portions of the mput stream to the
replication interface of the second instance of the storage
service to replicate the stored content at the first file storage
of the first availability zone to the second file storage of the
second availability zone.

In some 1nstances, in response to determining that a
provided portion for replication at the second file storage
failed to be replicated, an asynchronous mode of replication
can be configured for a subsequent iteration for data transfer
from the first mnstance of the storage service at the first
availability zone; and reading and storing subsequent por-
tions of the file to store the content of the file at the fist file
storage at the first availability zone; and storing metadata for
the file that 1s stored at the first file storage at the first




US 11,693,828 B2

3

availability zone, wherein the metadata 1s stored at the
in-memory data grid of the first instance of the storage
service, wherein the in-memory data grid of the first instance
ol the storage service 1s synchronized with in-memory data
orids at other instances of the storage service running at the
multiple availability zones cloud platform.

In some instances the example method of the first aspect
can include: 1n response to determining that the mode of
replication 1s changed to synchronous from a previous
asynchronous mode: reading the stored metadata for the file;
locking the file for accessing by creating a lock record for
the file at the in-memory data grid at the first instance of the
storage service; reading the stored file at the first file storage;
and replicating the file at the second file storage at the
second availability zone by providing the file to the repli-
cation interface of the second 1nstance of the storage service
at the second availability zone, wherein the mode of repli-
cation 1s changed to synchronous mode in response to
successiul replication of at least a portion of stored changes
for replication during the asynchronous mode.

In some instances, the in-memory data grid stores the
metadata 1n a queue data structure, where data from the data
orid 1s read 1n a first-in-first-out mode.

Other implementations of this first aspect include corre-
sponding systems, apparatus, and computer programs, Con-
figured to perform the actions of the methods, encoded on
computer storage devices.

In a second aspect, an example method for managing
asynchronous data replication 1n a multiple availability zone
cloud environment can include: storing metadata for one or
more files for asynchronous replication at a second avail-
ability zone, wherein the metadata 1s stored at an in-memory
data grid of a first instance of a storage service at a {first
availability zone, wherein the first and the second availabil-
ity zones are included in a multiple availability cloud
platform providing storage services, wherein the in-memory
data grid includes a queue data structure of metadata records
and a map of metadata records, wherein the queue data
structure 1ncludes one or more records corresponding to one
or more operations executed on a file to define versions of
the file from the one or more files for replication from the
first availability zone to the second availability zone,
wherein a record from the queue data structure includes
metadata for a corresponding request for storing content for
a file, and wherein the map of metadata records 1dentifies the
files that are associated with requests for storing content that
are not replicated at the second availability zone of a
multiple availability zone cloud platform; in response to
determining that connection from the first availability zone
to the second availability zone 1s available, executing asyn-
chronous data replication for files identified at the map,
wherein the execution includes: determining a file for rep-
lication that 1s identified at the map; reading the stored
metadata for the file for replication from the queue data
structure to determine a replication operation based on one
or more records 1dentified for the file for replication at the
queue data structure; reading, by a replication executor at the
first 1nstance of the storage service, the file from a first file
storage; and providing for replication, by the replication
executor at the first instance of the storage service, the file
at a second file storage at the second availability zone by
providing the file to a replication interface of a second
instance of the storage service at the second availability
zone.

In some 1nstances, 1n response to determining the file for
replication, the file can be locked for accessing by creating,

10

15

20

25

30

35

40

45

50

55

60

65

4

a lock record for the file at the in-memory data grid at the
first 1instance of the storage service.

In some instances, the one or more files for replication can
include a file that 1s received at a first instance of a storage
service at the first availability zone.

In some 1nstances, the replication can be determined to be
performed asynchronously at a replication agent included 1n
the replication executor based on evaluation of metadata
stored at the in-memory data grid.

In some 1nstances, metadata stored at the mn-memory data
orid can be read iteratively to determine a record from the
records stored at the queue and associated with a file for
replication, wherein the record corresponds to the replica-
tion operation to be executed for the asynchronous data
replication of the file.

In some instances, the replication of the file by the
replication executor can be performed 1n portions read from
the file from the first file storage and stored 1n portions at the
second file storage at the second availability zone.

In some 1nstances, the metadata stored in the in-memory
data grid can be updated 1iteratively while evaluating the data
to determine the replication operation to be executed.

In some instances, the one or more operations includes an
operation of an operation type selected from the group of
adding, updating, modifying, and deleting of the file, and
wherein a version of a file corresponds to an operation type

Other implementations of this aspect include correspond-
ing systems, apparatus, and computer programs, configured
to perform the actions of the methods, encoded on computer
storage devices.

Similar operations and processes may be performed 1n a
system comprising at least one process and a memory
communicatively coupled to the at least one processor where
the memory stores mstructions that when executed cause the
at least one processor to perform the operations. Further, a
non-transitory computer-readable medium storing instruc-
tions which, when executed, cause at least one processor to
perform the operations may also be contemplated. In other
words, while generally described as computer implemented
soltware embodied on tangible, non-transitory media that
processes and transforms the respective data, some or all of
the aspects may be computer implemented methods or
turther included 1n respective systems or other devices for
performing this described functionality. The details of these
and other aspects and embodiments of the present disclosure
are set forth in the accompanying drawings and the descrip-
tion below. Other features, objects, and advantages of the
disclosure will be apparent from the description and draw-
ings, and from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 illustrates an example computer system architec-
ture that can be used to execute implementations of the
present disclosure.

FIG. 2 1s a block diagram for an example cloud platform
environment including a storage service running at multiple
availability zones that are provided with tools and tech-
niques to manage data replication between diflerent storages
at the different zones 1n accordance with implementations of
the present disclosure.

FIG. 3 1s a flowchart for an example method for managing
data replication in a cloud environment including multiple
availability zones 1n accordance with implementations of the
present disclosure.

FIG. 4 1s a block diagram for an example method for
processing a received mput stream for a data record that 1s




US 11,693,828 B2

S

replicated from one availability zone storage space to
another availability zone storage space 1n accordance with

implementations of the present disclosure.

FIG. 5 1s a block diagram for an example method for
performing a synchronous replication of a file in accordance
with implementations of the present disclosure.

FIG. 6 1s a block diagram for an example method for
performing an asynchronous replication of a file 1n accor-
dance with implementations of the present disclosure.

FIG. 7 1s a 1s a block diagram for an example cloud
platiorm environment provided with tools and techniques to
manage asynchronous data replication between diflerent
storages at the diflerent zones 1n accordance with 1mple-
mentations of the present disclosure.

FIG. 8 15 a flowchart for an example method for managing
asynchronous data replication in a cloud environment
including multiple availability zones 1n accordance with
implementations of the present disclosure.

FIG. 9 15 a block diagram for example method for storing
metadata for a file to be asynchronously replicated from one
availability zone to another in accordance with implemen-
tations of the present disclosure.

FIG. 10 1s a block diagram for an example method for
performing an asynchronous replication of a file 1n accor-
dance with implementations of the present disclosure.

FIG. 11 1s a block diagram for an example method for
executing an add operation for an element 1n a map of an
in-memory data grid at an instance of a storage service 1n
accordance with implementations of the present disclosure.

FIG. 12 1s a block diagram for an example method for
executing a peek operation on a queue data structure main-
tained at an in-memory data grid at an 1nstance of a storage
service 1n accordance with implementations of the present
disclosure.

FIG. 13 1s a block diagram for an example method for
executing a remove operation on a queue data structure
maintained at an in-memory data grid at an instance of a
storage service 1n accordance with implementations of the
present disclosure.

FIG. 14 1s a schematic illustration of example computer
systems that can be used to execute implementations of the
present disclosure.

DETAILED DESCRIPTION

The present disclosure describes various tools and tech-
niques for managing data replication in a cloud environment
including multiple availability zones. The data replication
can be executed at one availability zone 1n a synchronous or
an asynchronous mode, where the data 1s mitially stored at
another availability zone. The execution of the data storage
and replication can be performed by a storage service
provided with multiple instances running at different avail-
ability zones of the cloud environment.

In some 1nstances, a cloud platform may include multiple
availability zones (AZ) where users can distribute instance
nodes of applications to provide high availability of the
services provided by the applications. Since an application
can be executed at different instance nodes, risks of failure
to provide services through the application due to a down-
time can be reduced.

In some 1nstances, a cloud environment may be config-
ured to include multiple AZs, where one application or
service may include multiple instances runming 1n multiple
different AZs. The multiple AZs may share resources of the
cloud platform, and may be accessible from the outside
through the same address, for example, the same uniform

10

15

20

25

30

35

40

45

50

55

60

65

6

resource locator (URL). Cloud computing resources may be
provided in high availability data center facilities that may
represent the different AZs. In general, each AZ can repre-
sent an independent data center associated with 1ts own
hardware which 1s connected to other AZs through a net-
work connection, for example, a fast fiber optical connec-
tion.

To provide additional scalability and reliability, the data
centers (AZs) may be located in different physical locations.
In some instances, the AZs can be defined as distinct
locations and thus are 1solated, which also facilitates i1sola-
tion from failures at the different AZs. For example, a
network connectivity failure that may be experienced at one
data center representing one AZ may not affect another data
center representing another AZ. By executing applications,
services, databases, and other examples of entities that can
run on cloud platform 1 a multiple AZ setup, high avail-
ability for provided services and data 1s maintained. Main-
taining a cloud platform with multiple AZs supports pro-
viding low-latency network connectivity between diflerent
instances of applications executed at multiple zones.

In some 1nstances, when an application and/or an appli-
cation service that i1s running on a multiple AZ cloud
platform 1s accessed by a user and services are requested, 1t
can be accessed through a single access address (e.g., URL).
The request can be processed at any one of the AZs, thus 1f
one 1nstance of the application and/or the application service
1s running at an AZ that 1s down (e.g., non-operational),
another 1nstance running on an operational AZ can process
the received request. Thus, even 1f the cloud platform
experiences some outages at some of the data centers where
the platform 1s running, services can be provided to users
and operations can be not aflected.

In some 1nstances, maintaining high availability provided
by core services ol a cloud platform that 1s unaflected in
cases when some of the platform’s data centers experience
issues or outages can be associated with challenges to
maintain a highly reliable disaster recovery procedure and
low (close to zero) recovery latency.

In some instance, a storage service 1S a COre service
provided by a cloud platform that can be used to manage
files stored at the cloud platform. In some instances, the
storage service can be associated with storing and managing,
artifacts, for example, binary files, installation files, con-
figuration files, and other example files associated with
executed services at the cloud platform. In some cases, the
storage service can accept requests (e.g., from user that are
clients of the cloud platform) for storing artifacts 1n asso-
ciation with deploying client’s application on the cloud
plattorm. In some other cases, the storage service may
accept requests from users that are administrators of the
cloud platform. Such requests may be associated with stor-
ing platform artifacts related to platform provided service
that are deployed on the cloud platiorm and consumed by
end-users (e.g., directly or through user-defined applications
deployed on the cloud platform). In some instances, the
storage service can accept write requests and can store
provided data (including modifications to a file, or a file as
a whole) on a file system storage of the cloud platform. The
file system storage may be implemented to include distinct
instance of the storage for the different AZs, where those
instances are synchronized among each other to store equal
or corresponding content.

In some instances, providing reliable storage services
from a multiple AZ cloud platform 1s associated with
maintaining data replication between file system storages
located at different multiple AZs. In some instances, to




US 11,693,828 B2

7

support data replication between file system storages at
different AZs and 1n relation to a storage service provided by
the cloud platform, tools and techniques can be implemented
at the mstances of the storage service that run at the different
AZs to manage data replication that guarantees close to zero
data loss as a recovery point objective measure and near zero
recovery latency objective. In some instances, the replica-
tion can be performed bi-directionally, which means that
when data 1s stored through one 1nstance of a storage service
at one AZ, the data 1s replicated to the other AZs, and vice
versa—when data 1s stored at any one of the other AZs, 1t 1s
replicated at the first AZ.

In some instances, when content for a file 1s received at
one 1nstance of a storage service for storing the content at a
first file system storage of a first AZ, replication to file
system storages at another AZ can be performed simultane-
ously with the reading and storing of the content of the file.
In some 1nstances, the content of the file can be received
through an 1nput stream that can be processed 1n portions,
where once a portion 1s read and stored at one AZ, that
portion can be provided for replication at another AZ. In
some 1nstances, the replication can be performed with a very
small delay, as storing of a portion 1 at the second AZ can
overlap with storing a portion 1+1 at the first AZ. Thus, the
difference between time points when the content of the file
1s stored at the first AZ and at the second AZ can be close
to an average time period necessary to complete storing of
a single portion of the file.

In some instances, a cloud platiorm may experience
disruptions in the network connectivity. For example, a
disruption may be caused by a failure in the underlying
hardware and/or infrastructure where the cloud platform 1s
hosted. The disruptions may aflect the cloud platform, either
in part or as a whole. In some 1nstances, the disruptions may
allect some or all connection types associated with the cloud
platform. In some instances, the disruption may be associ-
ated with 1ssues that affect one data center of the cloud
plattorm. The disruption may affect connectivity between
AZs and performance of operations that aflect the cloud
platiorm as a whole. In some instances, 1f synchronization of
data 1s not maintained, disruption of connectivity can aflect
accuracy ol executed services. For example, based on a
network connectivity i1ssue, a determination based on
responses from different AZs of the cloud platiorm may lead
to false results 1f the data stored between at file system
storages at the different AZs 1s not synchromzed.

In some 1nstances, a data replication method can be
implemented at the storage service that manages continuous
replication based on an implemented replication executor
that can work 1n both synchronous and asynchronous mode.
In some instances, the replication can be configured to
correspond to a particular mode—synchronous or asynchro-
nous—based on the status of the connectivity between the
different AZs. The replication mode may be adjustable based
on determination of whether there are connectivity i1ssues
between the different AZs of the cloud platform. In some
instances, 1n response to determining that the connectivity
between those 1s operational, the synchronization can be
performed according to operations defined for a synchro-
nous mode. In some 1nstances, 1n response to determining,
that connectivity between at least two AZs 1s not operational
(e.g., there 1s a network connectivity outage), the replication
can be executed according to operations configured for
executing replication 1n an asynchronous mode.

FIG. 1 depicts an example architecture 100 in accordance
with 1mplementations of the present disclosure. In the
depicted example, the example architecture 100 includes a

10

15

20

25

30

35

40

45

50

55

60

65

8

client device 102, a client device 104, a network 110, and a
cloud environment 106 and a cloud environment 108. The
cloud environment 106 may include one or more server
devices and databases (e.g., processors, memory). In the
depicted example, a user 114 interacts with the client device
102, and a user 116 interacts with the client device 104.

In some examples, the client device 102 and/or the client
device 104 can communicate with the cloud environment
106 and/or cloud environment 108 over the network 110.
The client device 102 can include any appropriate type of
computing device such as a desktop computer, a laptop
computer, a handheld computer, a tablet computer, a per-
sonal digital assistant (PDA), a cellular telephone, a network
appliance, a camera, a smart phone, an enhanced general
packet radio service (EGPRS) mobile phone, a media player,
a navigation device, an email device, a game console, or an
appropriate combination of any two or more of these devices
or other data processing devices. In some implementations,
the network 110 can include a large computer network, such
as a local area network (LAN), a wide area network (WAN),
the Internet, a cellular network, a telephone network (e.g.,
PSTN) or an appropriate combination therecof connecting
any number of communication devices, mobile computing
devices, fixed computing devices and server systems.

In some implementations, the cloud environment 106
include at least one server and at least one data store 120. In
the example of FIG. 1, the cloud environment 106 1s
intended to represent various forms of servers including, but
not limited to, a web server, an application server, a proxy
server, a network server, and/or a server pool. In general,
server systems accept requests for application services and
provides such services to any number of client devices (e.g.,
the client device 102 over the network 110).

In accordance with implementations of the present dis-
closure, and as noted above, the cloud environment 106 can
host applications and databases running on host infrastruc-
ture. In some 1nstances, the cloud environment 106 can
include multiple cluster nodes that can represent physical or
virtual machines. A hosted application and/or service can
run on VMs hosted on cloud mfirastructure. In some
instances, one application and/or service can run as multiple
application 1nstances on multiple corresponding VMs,
where each instance 1s running on a corresponding VM.

In some 1nstances, the cloud environment 106 and/or the
cloud environment 108 can be configured in a multiple AZ
architecture. The cloud environment 106 may be configured
to include multiple AZs where one application or service
may include multiple instances running in corresponding
multiple AZs. In the cloud environment 106, an service may
be runming at one of the cloud environments to provide

end-user services, which can include, for example, services
associated with requests sent through the network 110 from
user 114 (or user 116) over device 102 (or device 104). The
applications and the databases that are running in the cloud
environment 106 may be designed, developed, executed,
and maintained 1n relation to different customers and based
on configured accounts that define process execution 1n
relation to the applications and the database.

In some 1nstances, the cloud environments 106 and/or 108
can host applications, service, databases, other, which are
associated with diflerent customers and/or accounts and may
be configured to interact in a particular way.

FIG. 2 1s a block diagram for an example cloud platform
environment 200 including a storage service running at
multiple AZs that are provided with tools and techniques to




US 11,693,828 B2

9

manage data replication between diflerent storages at the
different zones in accordance with implementations of the
present disclosure.

In some 1nstances, the cloud platform 200 may be similar
to the cloud environment 106 and/or the cloud environment
108 of FIG. 1. The cloud platform 200 can include multiple
AZs (only two presented on FIG. 2). In some instances, the
multiple AZs can be defined as multiple data centers that can
execute multiple instances of a single service, such as a
storage service to serve requests (e.g., from end-users and/or
through applications or services mvoking logic running on
the cloud platiorm) for storing content at file system stor-
ages.

In some 1nstances, the cloud platform 200 include a first
A7Z (AZ1) 201 and a second AZ (AZ2) 202. In some
instances, the cloud platform 200 provides services to store
artifacts (or files) at a persistence storage. The cloud plat-
form 200 implements a storage service that 1s executed with
multiple 1nstances that are run at the two AZs (or more but
not shown on FIG. 2). In some instances, one instance of the
storage service can be run at each AZ. In some other
instances, to provide improved reliability and responsive-
ness of execution of operations, the storage service may be
deployed with at least two 1nstances at each of the two AZs.

In some instances, the storage service includes a first
instance of the storage service 205 running at the AZ1 201
and a second 1nstance of the storage service 240 at AZ2 202.
In some 1nstances, a customer (for example, customer 212)
may communicate with the storage service through a first
instance ol the storage service 205. For example, the cus-
tomer 212 can send a write request to store or modily
content of a file.

In some 1nstances, the storage service may store content
of files at a persistence store that runs with multiple
instances at corresponding AZs. The persistence store can
include “File System Storage 17 230 at the AZ1 201 and the
“File System Storage 27 235 at AZ2 202 as two 1stances of
the persistence store that maintain separate copies of the
persisted files and/or content by the storage service. The first
instances of the storage service 205 1s associated with the
first instance of the persistence storage—"File System Stor-
age 17 230, and the second instance of the storage service
240 1s associated with the second 1nstance of the persistence
storage, “File System Storage 27 235.

In some 1nstances, a write request can be received at AZ1
(for example, as a primary AZ for customer 212). The write
request can be associated with storing content of a file at the
cloud platform 200. In response to the received request, the
requested content for storing can be stored at a correspond-
ing instance of the persistence storage at the AZ where the
request 1s processed, 1.e., AZ1 201, and at “File System
Storage 1”7 230. In some instances, the content can be
replicated to other AZs, for example, to AZ2 202 to maintain
synchronized storage of files at both availability zones (e.g.,
having corresponding content). In some other cases, when
content for storage 1s provided to the second instance of the
storage service 240 at the AZ2 202, that content can be also
replicated to the AZ1 201. The second instance of the storage
service 240 receives content from the replication executor
215 at a replication interface 255 that communicates with
the “File System Storage 27 2335 to store the receirved
content. Correspondingly, the first instance of the storage
service 203 has a replication interface 225 that can receive
content provided by other instances, for example, the second
instance of the storage service 240, for replicating content.

In some 1nstances, the storage service may be imple-
mented to handle continuous replication by including a

10

15

20

25

30

35

40

45

50

55

60

65

10

replication executor that can handle synchronization
between the persistence stores at different AZs. In some
instance, an mstance of the storage service, such as the first
instance of the storage service 205 1s provided with an
instance of the replication executor (i.e, replication executor
215). In some 1nstances, storage service instance run at
different AZs can have corresponding instance of a replica-
tion executor. The second 1nstance of the storage service 240
includes the replication executor 245 as a corresponding
instance.

In some instances, the replication executor can handle
synchronization between stored data at different instances of
the storage service at different AZs 1n a diflerent manner
based on considerations of the connectivity status between
the different AZs. In some 1nstances, the replication executor
may have implemented logic to handle synchronization 1n a
synchronous mode (e.g., AZ1 and AZ2 can establish con-
nection) and 1n an asynchronous mode (e.g., AZ1 and AZ2
experience connection issues and/or outages).

In some 1nstances, a synchronous mode for data replica-
tion can be performed 1n response to determining that the
AZs-AZ1 201 and AZ2 202—are operational (work) and
there are no connectivity 1ssues between them. In other
instances, an asynchronous mode for data replication can be
performed 1n response to determining that at least one of the
AZs 1s not operations (not working) and/or that there 1s a
connectivity 1ssue between the AZs.

In some 1nstances, when a request for storing content by
a storage service 1s received, the request can be processed by
one instance of the storage service, for example, the first
instance of the storage service instance 205. The request can
be processed at a persistence interface 220. In some
instances, the persistence interface 220 can be an application
programming interface (API) that can receive an input
stream from the customer 212 and process that input stream
in portions, then storing the portions in the “File System
Storage 17 220. In some 1nstance, the persistence interface
220 can also store metadata related to the file associated with
the request, to lock the file for accessing so that the file 1s not
read, modified, or otherwise accessed, while the persistence
interface 1s reading and storing the file.

In some 1instances, the second instance of the storage
service 240 (and any other instance of the storage service) 1s
also provided with a corresponding persistence interface 260
that receives requests and communicates with an mn-memory
data grid 250 and a replication executor to provide read and
stored content to another instance at another AZ to synchro-
nize the content at the corresponding persistence stores (e.g.,
file system storage). In some instances, the in-memory data
orid 250 can be implemented as a Java-based in-memory
data grid, such as HAZELCAST IMDG. In some 1nstances,
the in-memory data grid 250 can be implemented as a data
orid that provides central, predicable scaling of applications
through 1n-memory access to frequently used data through
an elastically scalable data grid. In those example, querying
the in-memory data grid may be executed with improved
speed and with reduced load for the searching procedure.

In some 1nstances, 1n response to receiving a request to
store content of a file and determiming that the data repli-
cation can be executed 1n a synchronous mode, the content
of the file can be stored at the “File System Storage 17 220
and at the same time (or substantially the same) and/or 1n
parallel, the content for the file from the request can be sent
from the persistence interface 220 through the replication
executor 215 to the second instance of the storage service
240 at the AZ2 202. In some instances, the second i1nstance
of the storage service 240 at the AZ2 202 can receive the




US 11,693,828 B2

11

re-sent content at a replication intertace 2355 and store the
received content at the “File System Storage 27 235.

In some 1nstances, when content from a request from the
first instance of the storage service 205 1s re-sent to the
second 1nstance of the storage service 240, the content can
be processed 1n portions and read portions at the first
instance can then be sent for storage at the second instance
without awaiting the complete processing of the provided
content associated with the request. In those case, perform-
ing of the storage at the two AZs based on a content received
at one 1nstance of a storage service at one AZ 1s done almost
in parallel. In some instances, the time needed to perform the
storage based on the request in the different stores has a tiny
difference (e.g., few milliseconds delay), and thus perfor-
mance of the storage service 1s maintained at a high level.
Since the synchronization between the two stores 230 and
235 1s performed faster and more efliciently using this
solution, requests received at the second instance of the
storage service 240 can also be performed faster and provide
higher service quality. For example, the “File System Stor-
age 27 235 can be provided with content of a file that was
created and/or modified through an instance of the storage
service at a different AZ faster than before, and requests
received at the second instance of the storage service 240
associated with that file can be processed faster and without
delay to await replication (and synchronization).

In some 1nstance, a connectivity 1ssue between the two
AZs can be determine that may not allow the synchronous
mode of data replication to be performed. For example, the
connectivity 1ssue may be associated with a network outage
or a failure 1n one of the AZs. In those cases, requests
received at one AZ that 1s still operational can be processed
in an asynchronous mode for data replication. In asynchro-
nous mode, 11 a request to provide content 1s processed at the
AZ1 (e.g., recerved request at persistence interface 220 of
the first mstance of the storage service 205 and executing,
corresponding writing operations 1n the “File System Stor-
age 17 230) but parallel synchronizing of content associated
with the request to another AZ cannot be accomplished, then
Replication Executor 215 can write metadata to an 1n-
memory data grid 210. For example, the synchronization of
content with another AZ may be determined as failed in
cases where a request from the replication executor 215 to
the replication interface 255 has failed. The in-memory data
orid 210 can include a data structure that can store metadata
storing information regarding which data entity (e.g., 1den-
tification of a file) has to be replicated (e.g., perform a write
or delete operation for the identified data entry). The data
structure can be stored into the in-memory data grid 210, to
which all instances of the storage service can have access, as
the grid 210 can be shared such that all AZs can have access
to the data. In some 1nstances, the data in the in-memory data
orid 210 can be synchronized with the data at other in-
memory data grids (e.g., in-memory data grid 250) at other
AZS.

In some instances, the m-memory data grid 210 can be
used to store metadata for files (or artifacts) that are stored
at the “File System Store 1”7 230 and replicated at other
stores at other AZs. In some 1nstances, the in-memory data
orid 210 can also store data to define which of the files that
are stored and are about to be replicated are also locked or
protected from change during the replication. In some
instances, the in-memory data grid 210 can store metadata to
indicate that a file 1s locked and cannot be accessed (e.g., for
review, for writing, for modifying, or other purpose) while
the replication 1s still ongoing and has not been completed.

5

10

15

20

25

30

35

40

45

50

55

60

65

12

In some 1nstances, when the replication 1s performed 1n an
asynchronous mode and 1t 1s determined that the connection
between AZs 1s restored, the replication executor 215 can
start to replicate files one by one. In some instances, before
executing replication of each file from the first instance of
the storage service 205 to the second instances of the storage
service 240, a lock on that file can be defined at the
in-memory data grid 210 of the first instances. In some
instances, i1f the file 1s replicating through the replication
executor 215 and at the same time a write request 1s received
at the persistence interface 220 (e.g., from the user), then the
request can be put on hold to wait until replication 1s
completed. In some other instances, the opposite situation
can be also possible. That 1s, 1f the write request 1s processed
at the persistence interface 220, then replication executor
215 can be configured to wait until the persistence interface
220 unlocks that file. In some instances, defining a lock on
a file, determining whether a file 1s locked, removing a lock
from a file, or other operations associated with defining
locks on files, can be performed through communication
with the in-memory data grid 210. The in-memory data grid
210 may store and organize metadata to keep a record of the
status of a file (e.g., 1s 1t currently locked, who locked 1t, time
stamp, etc.).

In some 1nstances, when a request i1s received at the
persistence mtertace 220, an mput stream can be provided to
the persistence interface 220 including content for a file. The
input stream can be read in portions that can each be
iteratively stored at the “File System Store 1”230, and a read
and stored portion can be provided for replication in parallel
to a subsequent read and store operation executed by the
persistence interface 220 for a subsequent portion of the
input stream. Further details for the execution of processing
of the input stream 1n portions and the parallel replication are
provided 1n the description for FIGS. 3 and 4.

FIG. 3 1s a flowchart for an example method 300 for
managing data replication 1n a cloud environment including
multiple AZs 1 accordance with implementations of the
present disclosure.

In some instances, applications, services, database,
among other entities that can be hosted in a cloud environ-
ment, may provide services for consumption within a cloud
platiorm or outside of the cloud platform. Entities running
on the cloud platform may execute logic that includes
processing received requests and providing resources or
data, dispatching received requests to other entities, query-
ing database entities, and accessing external resources to
gather data or to request services, among other examples of
implemented processing logic at running entities on the
cloud platform. For example, an application may execute
processes and access a storage (e.g., file system storage) to
provide services to end-users. The example method 300 may
be executed at a cloud platform that may be configured to
implement logic for executing data replication to maintain
consistency between file system storages at diflerent AZs of
the cloud platform. The logic can be implemented into the
storage service and can correspond to or be substantially
equivalent to the implementations discussed 1n association
of the storage service instances 205 and 240 described 1n
FIG. 2. In some instances, the cloud platform can be similar
to the cloud platiorm 200 of FIG. 2, and the first instance of
a storage service and the second instance of the storage
service can be similar to the first and second instance of the
storage service 205 and 240 of FIG. 2, where each of those
instances store received content for files at corresponding
storages similar to the file system storage described at FIG.

2.




US 11,693,828 B2

13

At 305, a request 1s received. The request can be associ-
ated with a request to store content of a file at a storage
service provided by a multiple AZ cloud platform. The
request can be received from a user or from an application
and/or service. The request can be received at an instance of
the storage service that 1s running at a first AZ of the cloud
platform. In some instances, the request can be recerved at
the first instance of the storage service 203 of FIG. 2 that 1s
running on the cloud platform 200. In some instances, the
user can be associated with instances running at the first AZ
as primary storage service mnstances. In some 1nstances, the
multiple AZ cloud platform includes at least two AZs, and
the storage service can be executed with at least two
instances at each of the AZs to provide higher availability of
store services.

In some 1nstances, when a request 1s received at an
istance of the storage service at the first AZ, the stored
content 1s replicated at other AZs. In some instances, the
storage service can provide bi-directional replication
between instances running at the multiple AZs to maintain
synchronized content at corresponding file storages.

In some 1nstances, the request to store content can include
at least one request, such as a request to add, update, and
modily content of the file associated with the request. For
example, the request can store an installation file, to add
turther configuration data to an existing configuration file, to
modily existing content of a configuration file, to update in
part or as a whole the content of a file, to update to replace
a portion and/or to add a new portion and/or to modily a
portion, to update a format of a file, among other examples
ol storing content related to a file.

At 310, 1n response to recerving the request, a request 1s
sent through a persistence interface to an in-memory data
orid at a {irst instance of the storage service to lock the file
for accessing. In some 1nstances, the persistence interface
can be similar to the persistence interface 220 of FIG. 2.

In some instances, the request at 305 1s received at the
persistence interface, where the persistence interface 1s an
application programming interface (API) implemented at
the first instance of the storage service. The request can be
dispatched for recerving by the first instance of the storage
service based on load balancing rules defined for the mul-
tiple AZ cloud platform, and, for example, for the first AZ
cloud platform. In some mstances, an AZ corresponding to
the request may be determined based on location consider-
ations between the location of the requestor and the prox-
imity to the location of the execution of the AZ as a data
center. In some more 1nstances, a request for storage services
that 1s associated with the first AZ can be dispatched to a
grven 1nstance of a storage service based on load balancing
criteria for equal or close to equal distribution of processing
requests for storing.

At 315, an mput stream 1ncluding the content of the file
based on the request 1s received. The mput stream can be
received at the persistence interface. In some 1instances,
receiving the input stream includes operations 320 and 325.

At 320, the input stream 1s 1teratively read. At 325, a read
portion of the nput stream 1s stored at a first file system
storage associated with instances of the storage service at the
first AZs. In some instances, the first file system storage
corresponds to the “File System Storage 17 230 of FIG. 2
and 1s associated with the first instance of the storage service
that 1s part of the instances at AZ1 (e.g., AZ1 201 of FIG. 2).
In some 1nstances, during storing the read potion at the first
file system, the file 1s locked for accessing. In some
instances, 1 order to lock the file for accessing, the persis-
tence interface can communicate with an mm-memory data

5

10

15

20

25

30

35

40

45

50

55

60

65

14

orid and create a record in a data structure that maintain
information for stored files at the cloud platiform. In some
instances, the m-memory data grid can be similar to the
in-memory data grid 210 of FIG. 2.

At 330, 1n response to storing a portion of the file, the
stored portion 1s provided through the persistence interface
to a replication executor at the first instance of the storage
service for replication to another AZ storage. In some
instances, the replication executor can be similar to the
replication executor 215 of FIG. 2, and the stored portion
can be provided from the replication executor to a replica-
tion interface at a second instance of the storage service
running at a second AZ. In some mstances, a read and stored
portion from the mput stream can be provided through the
replication executor to request replication of read and stored
portions 1nto a second file storage of the second AZ of the
multiple AZ cloud platform.

In some 1nstances, a stored portion can be provided to the
replication executor from the persistence interface for rep-
lication at the second AZ 1n parallel to reading a subsequent
portion of the input stream by the persistence interface.

At 335, a mode of replication can be determined for
executing a transier of portions of the input stream from the
replication executor at the first instance of the storage
service running at the first AZ to a replication interface at a
second 1nstance of the storage service runnming at the second
AZ. In some instances, the mode of replication can be
determined as synchronous or asynchronous.

At 340, 1n response to determining that the mode of
replication 1s synchronous, a request to store a read and
stored portion of the mput stream by the persistence inter-
face of the first instance of the storage service at the first AZ
1s provided (by the replication executor) to the replication
interface of the second instance of the storage service. The
request can be defined for storing the portion at the second
file storage of the second AZ. In some instances, the request
to store the already read and stored portion can be sent in
parallel to further processing of subsequent portions of the
input stream at the persistence interface 220. In some cases,
the replication to another AZ can be performed before the
requested content at the first instance 1s completely stored at
the first AZ.

In some 1instances, in response to determining that the
mode of replication 1s synchronous on each iteration, each of
the portions of the mput stream are provided iteratively to
the replication interface of the second instance of the storage
service to replicate the stored content at the first file storage
of the first AZ to the second file storage of the second AZ.

In some instances, in response to determining that a
provided portion for replication at the second file storage
failed to be replicated, an asynchronous mode of replication
can be configured. The asynchronous mode can be config-
ured for executing a subsequent iteration for data transier
from the first instance of the storage service at the first AZ.
In those instances, subsequent portions of the file can be read
and stored at the first file storage at the first AZ. In those
instances, metadata for the file that 1s stored at the first file
storage at the first AZ can be stored. The metadata can be
stored at the in-memory data grid of the first instance of the
storage service. The in-memory data grid of the first instance
ol the storage service can be synchronized with in-memory
data grids at other 1nstances of the storage service running at
the multiple AZs cloud platiorm.

In some instances, in response to determining that the
mode of replication 1s changed to synchronous from a
previous asynchronous mode, such as where the previous
issues have been remedied causing the mode to be an




US 11,693,828 B2

15

asynchronous mode, metadata for the file that has been
stored can be read and processed. In some instances, a
change to synchronous mode can be performed after suc-
cessiul replication of all (or a predefined portions of) queued
file changes via the asynchronous mode. In some 1nstances,
since the file 1s to be replicated, a lock for the file for limiting
accessing can be created. The locking of the file can be
created by storing metadata for the file at the in-memory data
orid at the first instance of the storage service. The stored file
at the first file storage can be read and replicated at the
second {file storage at the second AZ. The storage at the
second file storage can be performed by providing the file to
the replication interface of the second instance of the storage
service at the second AZ.

In some 1nstances, the mm-memory data grid can store the
metadata 1n a queue data structure, where data from the data
orid 1s read 1n a first-in-first-out mode.

FI1G. 4 1s a block diagram for an example method 400 for
processing a received input stream for a data record that 1s
replicated from one AZ storage space to another AZ storage
space 1n accordance with implementations of the present
disclosure. In some 1nstances, the example method 400 can
be executed at a cloud platform that can correspond to the
cloud platform 200 of FIG. 2. The method 400 can be
executed 1n association with a received request for storing
content through a storage service at the cloud platform. The
received request and the processing can at least partially
correspond to the described method 300 of FIG. 3.

In some 1nstances, 1n response to receive a request to store
content (e.g., a request to upload data through a request of
a user), a request mput stream of data can be received at a
first 1instance of a storage service 410 at a first AZ 401 of the
cloud platiform.

In some 1nstances, a persistence interface 423 at the first
instance of the storage service 410 can determine that a
current configured mode for replication 1s a synchronous
mode, and can start processing the received mput stream
while simultaneously (or near-simultaneously and/or con-
currently) creating a request to a second instance of the
storage service 420 at a second AZ 402 to perform replica-
tion and synchronization between file storages at both AZs.
In some instances, instances of the storage service that run
at the first AZ 401 store content at a file system storage 430,
and 1nstances of the storage service that run at the second AZ
402 store content at a file system storage 435.

In some 1nstances, 1 response to receiving a request at the
persistence 1nterface 425, the persistence interface 423 can
create a similar, new request to the second instance of the
storage service 420 1 AZ2 through a replication executor
415. The replication executor 415 can be similar to the
replication executor 215 of FIG. 2. The persistence interface
425 can start reading the data in chunks (e.g., each chunk can
have a size of eight (8) KB, or any other suitable size). In
some 1nstances, the persistence interface 425 can read a data
chunk and write that data chunk to a stream pointing to the
file system storage 430. In some instances, the persistence
interface 425 can transfer data chunks to the file system
storage 430 through an output stream request, for example
a FileOutputStream. In some instances, the persistence inter-
face 425 can write the same read data chunk to the replica-
tion executor 415, where the replication executor 415 writes
the same read data chunk in a stream that 1s part of a request
to the second 1nstance of the storage service 420 at AZ2 402.
In some 1nstances, the stream between the replication execu-
tor 415 and the second instance of the storage service 420
can be opened 1n response to determining by the persistence
interface 425 that a request for storing content 1s received

5

10

15

20

25

30

35

40

45

50

55

60

65

16

and that the replication mode 1s synchronous. In some
instances, the operation of writing read data chunks from the
persistence nterface 425 to the replication executor 415 and
later to the second instance of the storage service 420 can be
iteratively repeated (as shown on FIG. 4).

In some 1nstances, the replication interface 440 at AZ2
402 can read the data chunks from the stream that was
opened through the replication executor 415, and can store
the read chunks 1n the file system storage 435 1n AZ2. By
implementing such an approach where a stream to replicate
data at the file system storage 4335 in AZ2 1s processed 1n
parallel to processing an iput stream at the first instance of
the storage service to read the data, the solution can provide
improved efliciency in processing data and executing data
replication that saves time since the read and write opera-
tions are performed for smaller size data chunks compared
to a full file size and also does not delay replication as the
execution at both AZs 1s completed with a very small time
differences (e.g., approx. processing of one data chunk). As
such, an improvement measure value for an RPO (Recovery
Point Objective) can be achieved (close to 0). This 1is
supported by the fact that writing the last chunk of data 1n
the file system storage 430 in AZ1 401 and writing the same
data chunk at AZ2 402 differs just in a few milliseconds
delay. The last data chunk would be processed in AZ2 with
just a few milliseconds delay corresponding to the time
period needed to read and store that data chunk.

FIG. 5 1s a block diagram for an example method 500 for
performing a synchronous replication of a file 1n accordance
with 1mplementations of the present disclosure. In some
instances, the example method 500 may be executed at the
cloud platform 200 of FIG. 2. In some instances, a persis-
tence API AZ1 510 can correspond to the persistence
interface 220 of FIG. 2, an mn-memory data grid (IMDG)
AZ1 515 can correspond to the in-memory data grid 210 of
FIG. 2, the file system storage AZ1 520 can correspond to
the “File System Storage 17 230 of FIG. 2, the replication
executor AZ1 525 can correspond to the replication executor
215 of FIG. 2, the replication API AZ2 530 can correspond
to the replication interface 255 of FIG. 2, the file system
storage AZ2 535 can correspond to the “File System Storage
27 235 of FIG. 2. The execution of the method 500 may also
correspond to the described method 300 of FIG. 3, as well
as any other suitable methods and systems.

In some instances, at 537, a request can be recerved at the
persistence API AZ1 510. The request can be received from
the user 505 or can be received from an application or a
service, or the like (not shown). The request can be received
at an 1nstance of a storage service at one AZ ol multiple
availability zones of a cloud platiform. The received request
can be similar to the received request 305 of FIG. 3. The
received request can be associated with storing of a file at the
cloud platiform.

In some 1nstances, 1n response to recerving the file at the
persistence API AZ1 510, the persistence API AZ1 510
sends a request (540) to lock the file to the IMDG AZ1 515.
The persistence API AZ1 510 can read (at 550) one portion
(e.g., data chunks of FIG. 4) from the recetved input stream
from the user that streams the file content. The persistence
API AZ1 510 can request to store (at 535) the read file
portion in the file system storage AZ1 520. The persistence
API AZ1 510 can send (at 560) the same file portion to the
replication executor AZ1 523 for replication. The replication
executor AZ1 525 can check the mode of the replication.

In some case, 1t can be determined that synchronous
replication 1s enabled. In those instances, 1f the sent file
portion at 560 1s a first file portion of the file, then the




US 11,693,828 B2

17

replication executor AZ1 525 can create (at 565) a new
request to the replication API AZ2 530 to open a stream to
write file portions. The replication executor AZ1 525 can
write the file portion to replication API AZ2 530. If the
creation of a new request at 565 and/or the writing of a file
portion to the replication API AZ2 530 fail (at 575), then the
replication executor AZ1 525 can call (at 580) the IMDG
AZ1 515 to enable the asynchronous replication. The rep-
lication executor AZ1 525 can call the IMDG AZ1 515 to
store (at 382) the file metadata to a queue data structure for
execution of an asynchronous replication, for example,
when the connection between the two AZs can be recovered
and a stream for data transier can be established. In some
cases, a notification can be sent at 583 from the replication
executor AZ1 525 to the persistence API AZ1 510 to provide
information that the file portion replication has failed.

In some instances, when synchronous replication 1s
ecnabled and the file portion sent at 560 is the last file portion,
the output stream request can be closed to finalize the file
transfer.

In some 1nstances, the replication API AZ2 530 can store
(at 570) the file portion 1n File System Storage AZ2 535.

In some instances, and in response to determining that
asynchronous replication 1s enabled, the replication executor
AZ1 525 can call (at 585) the IMDG AZ1 5135 to store the
file metadata to add i1t to the queue data structure for
asynchronous replication. In some instances, the call to the
IMDG AZ1 5135 can be performed only once, and 1n relation
to a first file portion that 1s 1dentified as unable to be replaced
during a synchronous mode. Thus, 1 a subsequent file
portion fails to be replicated, no additional metadata for the
stored file would be added to the queue data structure at the
IMDG AZ1 515.

In some 1nstances, the process operations at 350, 555, and
560 can be repeated iteratively to read the whole content of
the file from the mnput stream, and corresponding writing,
operations as further described are correspondingly per-
formed based on the replication mode.

In some 1nstances, in response to fully storing a file
locally in AZ1 (and optionally remotely at AZ2), a notifi-

cation for successiul execution can be sent to the persistence
API 510 at 587. The persistence API AZ1 510 can call (at

590) the IMDG AZ1 515 to unlock the file and provide
access to the content.

In some 1nstances, a request to delete a file can be recerved
at a first instance of the storage service provided at the first
availability zone of the multiple availability zone cloud
plattorm. For example, the request can be received and
processed at the persistence API AZ1 510. In some
instances, 1 response to receiving the delete request, a lock
request can be sent through the persistence API AZ1 510 to
the IMDG AZ1 3515 to lock the file for accessing. An
instruction for execution of a delete operation to delete the
file at the first file storage can be sent to the file system
storage AZ1 3520. The persistence API AZ 510 can commu-
nicate with the replication executor AZ1 525, where the
replication executor AZ 525 can send a request to the
replication intertace AZ2 530 of the second instance of the
storage service at the second availability zone to delete the
file at the second file system storage AZ2 535. In response
to determining that deleting at the second file storage 1s
executed successiully, a delete request to the IMDG AZ1
515 can be sent to delete metadata stored for the file. For
example, the deletion request to the IMDG AZ1 5135 can be
sent 1 response to receiving a notification from the repli-
cation API AZ2 530 at the replication AZ1 525 for a

successiul execution of the deletion operation.

10

15

20

25

30

35

40

45

50

55

60

65

18

FIG. 6 1s a block diagram for an example method 600 for
performing an asynchronous replication of a file 1n accor-
dance with implementations of the present disclosure. In
some 1nstances, a storage service AZ1 610 can correspond to
the first instance of the storage service 205 of FIG. 2, a
replication executor AZ1 6135 can correspond to the repli-
cation executor 215 of FIG. 2, the in-memory data grid 620
can correspond to the in-memory data grid 210 of FIG. 2, the
file system storage AZ1 625 can correspond to the “File
System Storage 17 230 of FIG. 2, the replication API AZ2
630 can correspond to the replication interface 255 of FIG.

2, the file system storage AZ2 635 can correspond to the
“File System Storage 27 235 of FIG. 2.

The example method 600 defines operations that can be
executed when the first instance of a storage service, here,
storage service AZ1 610—at a first AZ of a cloud platform
(e.g., cloud platform 200 of FIG. 2) 1s enabled to execute
replication 1 an asynchronous mode. The enabling for
execution 1 asynchronous mode can be performed when a
connectivity issue or other technical failure does not support
establishing a connection between the first instance of the
storage service and a second instance of the storage service
at the second AZ.

In some 1nstances, the storage service AZ1 610 can be
associated with a specific property in the in-memory data
or1d 620 that define whether the storage service AZ1 610 can
execute replication 1n an asynchronous or a synchronous
mode. The mn-memory data grid 620 can store a value for the
property (e.g., enabled or disabled) to define whether asyn-
chronous mode of replication 1s enabled or disabled. The
property value can be used to notily replication executors at
different instances of the storage service for enabling or
disabling of the asynchronous replication.

In some instances, each instance of the storage service,
such as the storage service AZ1 610, includes a running
instance of the replication executor, such as the replication
executor AZ1 615. In some instances, replication executors
at instances of the storage service can be assigned to receive
notifications for changes in the property defining whether
asynchronous replication mode 1s enabled or disabled. In
some 1nstances, asynchronous replication can be enabled by
the storage service or by any instance of the replication
executor. For example, the replication executor can enable
asynchronous replication 1s cases ol failure 1n executing
synchronous replication. When asynchronous replication 1s
enabled, a replication executor can start storing asynchro-
nous replication requests 1n a queue data structure instead of
performing those replication request synchronously.

At 640, the storage service AZ1 610 sends a request to the
in-memory data grid 620 to enable asynchronous replication
mode. At 641, the mn-memory data grid 620 can send a
request to the replication executor AZ1 6135 to enable
asynchronous mode of replication. Such request can corre-
spond to the request 580 described 1n FIG. 5 and when an
asynchronous mode 1s configured for executing replication
for a file where a file portion has failed transterring. At 642,
the replication executor AZ1 615 can define a replication
lock at the in-memory data grid 620. The definition of a lock
at the replication executor instance 6135 can be defined to
guarantee that the replication executor AZ1 615 1s going to
replicate data from the first AZ to the second AZ.

At 643, the replication executor AZ1 6135 can start to
check whether the Replication API 630 1n AZ2 1s available.
In some instances, such a check 1s performed because 1n
some cases AZ2 can be down due to an outage or connec-
t1vity 1ssues.



US 11,693,828 B2

19

In some 1nstances, 1f 1t 1s determined that the replication
API AZ2 630 1s available (can be contacted), the replication
executor AZ1 615 can start replication (at 644) while there
1s metadata entries for files, where such metadata data 1s
stored 1n the queue data structure at the IMDG 620 for
replication.

At 645, the replication executor AZ1 615 can get metadata
for a file entry for replication from the mm-memory data grnid
620, for example, from a queue data structure that stores data
tor files that are to be replicated with an asynchronous mode.
For example, the metadata can be stored at the imn-memory
data grid 620 as described 1n 582 of FIG. 5. The replication
executor AZ1 615 can acquire metadata from the in-memory
data grid 620 until there are records in the data structure
associated with executing a replication.

At 646, the replication executor AZ1 613 can define a lock
for the file for which the metadata 1s taken (the file for
replication). In some instances, the lock can be defined by
using a file path.

At 647, the replication executor can read data from the file
system storage AZ1 623.

At 648, the replication executor AZ1 615 replicates the
data to the Replication API AZ2 630.

At 649, the replication API AZ2 630 stores the data in the
File System Storage AZ2 635.

At 650, 1n response to being notified for the stored file
from the replication API AZ2 630, the replication executor
AZ1 615 requests to unlock the file from the in-memory data
orid 620 (650). At 651, the replication executor AZ1 615
release the replication lock for the replicated file. The
replication executor AZ1 615 can disable (at 651) the
asynchronous replication once the asynchronous replication
1s completed. This can happen 11 all the data 1s replicated
from one zone to the other, for example, from AZ1 to AZ2.
Asynchronous Data Replication i a Multiple AZ Cloud
Platform

In some 1nstances, asynchronous replication of data
between different AZs of a cloud platform can be associated
with a large amount of network trathic. In some instances, 11
multiple operations are executed on a single file, replication
of all of the changes to the single file have to be replicated.
By processing all of the changes as separate data replication
executions, high volume of data transfer can be produced
between the diflerent AZs.

For example, a service can store files and a request to store
a file of 500 MB can be recerved, where the file 1s changed
four times and after that deleted. The changes can be
performed through one 1nstance of the service at a first AZ
and changes can be necessary to be replicated to provide
synchronization of the content at the different zones. In that
example, 1 all the changes are replicated (for example, 1n
sequence), five data replication executions can be performed
to save changes for the file five times and replicate each
change, while the last change would be a deletion. Thus, the
first four changes become obsolete (or unnecessarily), as
even 1f they are transferred the file 1s deleted 1n the end.

In some instances, replication of data executed by storage
services to provide data synchronization between data stores
at diflerent AZs can be associated with high load imposed on
the storage service istances runmng at the different zones of
the cloud platform. Such load on the service instances can
have an 1impact on the performance of the storage service
with respect to new requests. For example, speed for pro-
cessing new requests can be reduced, requests can get
interrupted, and instances of the storage service can expe-
rience downtime (or non-operational time). When data rep-
lication 1s performed, size of the storage 1s also relevant. In

10

15

20

25

30

35

40

45

50

55

60

65

20

some 1nstances, replication can be performed to optimize the
use of storage space to transier changes. In the example of
the file that 1s replicated and 1s associated with 5 changes
where the last one 1s a deletion, to be able to execute a
replication of one of the first four changes, storage space at
the store of the second AZ may be used, while such storage
space usage can be avoided 1f no replication 1s executed due
to a later delete operation that overrules the other changes.

In some instances, to optimize data replication operations
during asynchronous replication, filtering of obsolete or
redundant replications can be performed. Such filtering can
be performed by evaluating a data structure including meta-
data for the changes made to a given file within an AZ that
are all associated with replications to another AZ.

In some 1nstances, a data structure can be defined to store
data for executed store operations related to file storage at an
instance of a storage service, and such data structure can be
accessible or made otherwise shared with other instances of
the storage service. The data structure can be implemented
to support operations that can invoke data from the structure.
In some 1nstances, the data structure may support operations
such as adding, peeking (searching), and removing (or
deletion). These operations can be performed at a queue data
structure and also 1n association with a map structure.

In some instances, an in-memory data grid structure, as
discussed 1n association with FIGS. 2, 3, 4, 5 and 6, can be
implemented to include a queue data structure and a map
structure to store metadata for stored artifacts by an instance
ol a storage service at a corresponding file system storage at
the corresponding AZ of the cloud platform. The mn-memory
data grid includes the map and the queue data structure to
provide access to the stored data to all instances of the
storage service.

In some 1nstances, by executing an add operation 1n the
in-memory data grid, a record including metadata associated
with a file 1s stored. The metadata can be stored in the map
if information for the file does not already exist. In some
cases, 1f there 1s a record 1n the map that 1s related to the file,
that record can be updated to include metadata associated
with the current request for inclusion of metadata for the file.
Thus, the map can include a single instance record for a file
that has to be replicated.

In some instances, a peek operation can be executed on
the metadata stored at the in-memory data grid. By execut-
ing a peek operation, the queue data structure 1s queried to
determine whether a head element of the queue data struc-
ture ncludes corresponding metadata for a file determined in
the map. For example, it can be determined whether a head
clement associated with a file A of the queue includes
metadata defimng the same time stamp and/or operation, as
the metadata defined for the file A in the map (where there
1s only one record instance for file A with the latest operation
executed for file A).

In some 1nstances, i1t can be determined that the head
clement from the queue data structure 1s not present in the
map. In response to this determination, the file associated
with a record in the queue and not in the map may be
determined to be skipped/excluded from replication and a
next element from the queue can be evaluated. By applying
this configuration of executing replication, redundant opera-
tions that do not change the end result of the final version of
a file can be excluded, thus, optimization and resource
spending efliciency can be achieved.

In some 1nstances, a remove operation can be executed on
the in-memory data grid to delete metadata records for files
that are not relevant for executing replication.




US 11,693,828 B2

21

FIG. 7 1s a block diagram for an example cloud platform
700 provided with tools and techniques to manage asyn-
chronous data replication between different storages at the
different zones in accordance with implementations of the
present disclosure.

In some 1nstances, the cloud platform 700 include a first

AZ (AZ1) 701 and a second AZ (AZ2) 702. The cloud

plattorm 700 may correspond to the cloud platform 200
described 1n association with FIG. 2. The cloud platform 700
may provide services to store artifacts (or files) at a storage.
The cloud platiform 700 can implement a storage service that
1s executed with multiple mstances that are run at the two
AZs (as well as others not shown in FIG. 7). In some
instances, one instance of the storage service can be run at
cach AZ. In some other istances, to provide improved
reliability and responsiveness of execution of operations, the
storage service may be deployed with at least two 1instances
at each of the two AZs.

In some 1nstances, the persistence interfaces at the storage
service instances can correspond to the persistence interface
220 and 260 of FIG. 2, the replication interfaces can
correspond to the replication mterfaces 2235 and 2535 of FIG.
2, the replication executors can correspond to the replication
executors 215 and 245 of FIG. 2.

In some instances, the storage service includes a first
instance of the storage service 705 running at the AZ1 701
and a second 1nstance of the storage service 740 at AZ2 702.
In some 1nstances, a customer (for example, a user) may
communicate with the storage service through the first
instance of the storage service 705.

In some 1nstances, a persistence interface 720 mstantiated
at the first instance of the storage service 7035 can receive a
request (or more) for providing files (or artifacts) to be
stored 1n a file system storage. The file system storage may
be associated with multiple mnstances corresponding to the
different AZs. In some instances, the persistence interface
720 can be responsible to store data (e.g., a requested file)
on file system storage 730 that 1s one 1nstance of the storage
tor the cloud platform. The data that 1s stored corresponds to
the request and may be associated with uploading a new file,
modifying a file, adding content to a file, deleting a file, or
otherwise manipulating a file.

In some 1nstances, the file system storages at the different
AZs can be maintained synchronized between each other
and having corresponding content (e.g., the same content or
substantially the same) to support execution of correspond-
ing services through diflerent instances of the storage ser-
vice at different AZs. In some instances, the persistence
interface 720 can provide metadata for the file associated
with the received request for replication to the replication
executor 715. In some instances, the metadata can be stored
only when a mode for the data replication 1s defined as
asynchronous. In some instances, a determination of the
replication mode can be performed. The determination can
be performed by checking a parameter defined in the in-
memory data grid 710 to determine whether the asynchro-
nous replication 1s enabled. In some more instances, the
persistence interface can request to perform a lock for the
file associated with the received request and with replication
during asynchronous mode. In some instances, the lock for
the file can be performed before storing the file in the file
system storage 730. In some 1nstances, the lock to the file
can be performed by storing a record at the in-memory data
orid 710 to prevent the replication agent 735 (part of the
Replication Executor 715) from replicating data which 1s
modified at the same time.

10

15

20

25

30

35

40

45

50

55

60

65

22

In some instances, the replication executor 715 may
include a replication data manipulator 755 and the replica-
tion agent 735 that can be used when executing asynchro-
nous replication. In some instances, the replication data
mampulator 755 can support execution ol operations or
methods (for example, add, peek, or remove) for managing
and processing records stored at a queue data structure 765
and a map 760 (which are instances in in-memory data grid).
The queue data structure and the map store metadata for files
that are to be replicated 1n an asynchronous mode. Entries in
these data structures are performed when the mode for
replication 1s defined as asynchronous. In some instances,
the entries in these data structures can be evaluated in
response to determining that a replication from a first AZ
701 to a second AZ 702 1s possible. In some other instances,
the entries 1n these data structures are evaluated when 1t 1s
determined that connection between different instances of
the storage service can be established to execute replication.
In some 1nstances, the map and the queue data structure store
clements that are records including metadata for files that are
relevant for executing data replication.

In some 1nstances, evaluations over metadata stored at the
in-memory data grid 710 can be performed by executing
supported operations and methods (e.g., add, peek, remove,
etc.) to evaluate diflerent records within the queue data
structure and the map. The evaluation of the records in the
queue and the map can be performed to remove redundant
operations that are performed on the files and are recorded
in the queue data structure, but which can be determined as
obsolete for the final state of the file that 1s to be replicated.
For example, even 1f there are multiple modification for a
file, 11 a latest operation 1s deletion, then performing of
replications corresponding to the modifications done before
the deletion can be determined to be obsolete, and may be
excluded from replication. In doing so, the only executed
operation can be an operation to delete the record of the file
from the file system storage. Further detailed description of
methods for evaluating metadata at the in-memory data grid
710 are provided 1n association with the description of FIGS.
9 to 13.

In some 1nstances, the replication agent 735 can start
processing in response to determining that asynchronous
replication 1s enabled. The replication agent 735 can take
responsibility to replicate files for which there 1s stored
metadata 1 the mm-memory data grid 710. The replication
agent 7335 can access the imn-memory data grid 710 and can
evaluate the metadata stored in the map 760 and the queue
data structure 765. The replication agent 735 can acquire
metadata for files for replication, for example, on a single
processing basis (one-by-one), or in parallel processing,
through the replication data manipulator 755 and replicate
the files 1dentified based on evaluation of the metadata from
the file system storage 730 to file system storage 737 (or vice
versa). The replication agent 735 can also define a lock on
a file that 1s taken for replication in response to starting the
replication. By defimng the lock, modification of data on a
file that 1s currently being replicated can be avoided. In
response to successiully defining a lock for a given file, the
replication agent 735 can replicate the file 1n accordance
with the determined versions or operations for replication.

In some 1nstances, the replication agent 735 sends content
of the file for replication to a replication interface 775 at the
second 1nstance of the storage service 740. In some
instances, the replication iterface 775 can be implemented
as an API, for example, a restiul web service that 1is




US 11,693,828 B2

23

responsible to store data in the persistence store (1.e. file
system storage 737), which 1s located in the same AZ (1.e.,
AZ2 702).

In some instances, the queue data structure 765 may store
metadata for files for replication, where the metadata can be
stored 1n the form of records (or objects) including different
record attributes. For example, a replication metadata object
in the queue data structure 765 can be defined according to
a data model defined in Table 1 below:

TABLE 1

ReplicationInfo

Entity Type entity Type (File, Dir)
OperationType operationType (Delete, Upload)
Long timeStamp
String path

In some instances, the replication metadata object can
include metadata defining the type of the enftity to be
replicated. For example, the replication can be executed not
only for a file, but also for other entity types, such as a data
object, a directory, a component, among other examples or
artifacts that can be stored by a storage service provided on
a cloud platform. In some instances, the replication metadata
object can include also an operation type that 1s associated
with the stored operation performed for the entity by the
storage service, for example, deletion, uploading, modifica-
tion, others. In some 1instances, the metadata object can
include a time stamp to define when the operation for the file
was executed (or requested to be done) and a path for
locating the file. For example, the path can provide a
location of the file on the first system storage 730.

In some 1nstances, 1n order to store the metadata for files
for replication, replication metadata objects can be gener-
ated and stored at the queue data structure. In some
instances, the queue data structure 765 1n the mm-memory
data grid 710 includes one or more records corresponding to
replication metadata objects generated for files associated
with requests at the storage service at the first instance 705.
In some 1nstances, the metadata for the files 1s stored 1n a
queue data structure where each new element 1s added to the
tail of the queue. In some other instances, other types of data
structures can also be used to maintain metadata for files for
replication.

In some instances, the map 760 of the mn-memory data
orid 710 can include elements that include as a key a path to
locate the file (corresponding to the path attribute of the
metadata object at the queue 765) and the corresponding
metadata object.

FIG. 8 1s a flowchart for an example method 800 for
managing asynchronous data replication in a cloud environ-
ment including multiple AZs 1n accordance with implemen-
tations of the present disclosure. In some instances, the
method 800 may be executed at the cloud platform 700 of
FIG. 7.

In some 1nstances, the asynchronous data replication can
be executed as part of a data replication process that 1s
configured to include both asynchronous and synchronous
data replication based on a configured mode, as discussed 1n
the description for FIG. 5. In some 1nstances, the asynchro-
nous data replication 1s executed to synchronize file system
storages associated with instances of a storage service at
different AZs. For example, synchronization can be per-
formed at a first and a second AZs that are included 1n a
multiple availability cloud platform providing storage ser-
VICES.

10

15

20

25

30

35

40

45

50

55

60

65

24

At 810, metadata for one or more files for asynchronous
replication 1s stored at a second AZ. The metadata can be
stored at an mm-memory data grid of a first instance of a
storage service at a first AZ. For example, the metadata can
be stored as described for FIG. 7 and the in-memory data
orid 710 where metadata 1s stored 1n the queue data structure
765 and the map 760.

In some 1nstances, the in-memory data grid can include a
queue data structure ol metadata records and a map of
metadata records. The metadata records in the queue data
structure may correspond to the replication metadata objects
in the description of FIG. 7 and may correspond to the data
model 1n Table 1. The records 1n the map can be defined as
key pairs, where a key can be a path for the file, and a
corresponding value can be a metadata object for the repli-
cation of the file with the corresponding modification. In
some 1nstances, the queue data structure may include mul-
tiple records for a single file, where those records can be
associated with different requests 1n association to the file
that can include different changes of the content for the file.

In some instances, the queue data structure can include
one or more records corresponding to versions of a file from
the one or more files for replication from the first AZ to the
second AZ. In some instances, a record from the queue data
structure includes metadata for a corresponding request for
storing content for a file that has been received at the
instance of the storage service. In some instances, the map
ol metadata records can i1dentify the files that are associated
with requests for storing content that are not vet replicated
at the second AZ of the multiple AZ cloud platform.

At 820, 1t 1s determined whether replication to the second
AZ 1s able to execute asynchronous data replication for files
identified at the map. In some 1nstances, the determination
can include determining whether communication between
the two AZs can be performed, for example, when there 1s
a connection between the first and the second AZ. In some
of those instances, 11 a network outage 1s 1dentified between
the two AZs, the communication can be unavailable. For
example, a determination for an 1ssue 1n the communication
between two AZs can be determined 1f a network call from
one of the AZs to the other one has failed. In cases where 1t
1s determined that communication between the two AZs
cannot be established (or 1s not reliable), an asynchronous
mode for data replication can be defined. Once the connec-
tion between the different AZs 1s recovered, asynchronous
replication for files identified at the map during the period of
failing communication can be executed.

At 830, a file for replication that 1s 1dentified at the map
1s determined. The stored metadata for the identified file 1s
read for executing the replication. The reading 1s performed
through reading records from the queue data structure. The
read metadata 1s evaluated to determine a replication opera-
tion based on one or more records 1dentified for the file for
replication at the queue data structure.

At 840, the 1dentified file 1s read from a first file system
storage by a replication executor of the first instance of the
storage service.

At 850, the file 1s provided for replication at the second
file storage at the second AZ. The file can be provided to a
replication interface of a second instance of the storage
service at the second AZ by the replication executor.

FIG. 9 1s a block diagram for example method 900 for
storing metadata for a file to be asynchronously replicated
from one AZ to another 1n accordance with implementations
of the present disclosure.

The example method can be executed at a cloud platform
correspondingly similar to the cloud platform 700 of FIG. 7.




US 11,693,828 B2

25

The method 900 can be executed 1n relation to a persistence
API AZ1 910 that corresponds to the persistence intertace
720 of FIG. 7, a replication executor AZ1 920 that corre-
sponds to the replication executor 715 of FIG. 7, a replica-
tion agent AZ1 930 that corresponds to the replication agent
735 of FIG. 7, a replication data manipulator AZ1 940 that
corresponds to the replication data manipulator 755 of FIG.
7, and an mn-memory data grid 950 that corresponds to the
in-memory data grid 710 of FIG. 7.

At 960, the Persistence APl AZ1 910 executes a call the
Replication Executor AZ1 920 to provide a file for replica-
tion. In some 1nstances, i asynchronous replication 1s
cnabled for the data replication, the Replication Executor
AZ1 920 sends a request to the Replication Data Manipu-
lator AZ1 930 1n order to store metadata for the file for
replication. The storing of metadata may be performed at the
in-memory data grid 950 and 1n accordance with the descrip-
tion of the storing of metadata at the queue data structure and
the map as described for FIG. 7 and FIG. 8.

In some 1nstances, the Replication Data Manipulator 940
requests to store (add) a metadata record 1n the queue data
structure for the file for replication. The map in the in-
memory data grid 950 can be updated to include an element
for the file that corresponds to the file as requested. The
map’s element may be based on metadata for the operation
executed for the file as stored 1n the metadata record 1n the
queue data structure.

FIG. 10 1s a block diagram for an example method 1000
for performing an asynchronous replication of a file 1n
accordance with implementations of the present disclosure.

The method 1000 can be executed over a multiple AZ
cloud platform corresponding to the cloud platform 700 of
FIG. 7. The replication agent AZ 1003, the replication data
manipulator AZ1 1010, the in-memory data grid 1015, the
file system storage Azl 1020, the replication API Az2 1025,
and the file system storage AZ2 1030 can correspond to the
similar components discussed for FIG. 7. The method 1000
can be executed iteratively (looped in 1035) while there 1s
metadata stored for files for replication that are not yet
replicated asynchronously from a first AZ (AZ1) to a second
AZ (AZ2). The in-memory data grid 10135 can store meta-
data for files that are awaiting asynchronous replication. The
stored metadata may be similar to the described metadata
stored at the in-memory data gnd 710 of FIG. 7.

At 1040, the replication agent AZ1 1005 can invoke a
peek operation to be performed for metadata of a file for
replication by the Replication Data Manipulator AZ1 1010.
At 1050, and 1n response to the mnvoked peek operation, the
replication data manipulator AZ1 1010 can iitiate a call
according to the peek operation to the in-memory grid 1013
to 1terate over the stored records 1n the queue data structure
and the map, and to acquire metadata. In some 1nstances, the
execution of the peek operation can be executed as described
in further details for FIG. 12.

In response to executing the peek operation by the repli-
cation data manipulator AZ1 1010 at the in-memory data
orid 1015, metadata 1s taken out of the map and the queue
data structure 1iteratively. In those instances, the head object
of the queue data structure 1s taken for processing if a
corresponding element exists in the map. At 1050, metadata
for an element from the map and a head object 1n the queue
data structure including a replication data object are taken.
In some instances, 1f there are no elements 1n the queue data
structure and the map, the replication data manipulator AZ1
1010 can return no files for replication and the replication
method can be terminated or temporary paused until further
metadata 1s generated 1n the m-memory data grid 1015. In

10

15

20

25

30

35

40

45

50

55

60

65

26

cases where the queue data structure and the map include
clements, then at 1055, the replication agent AZ1 1005
initiates a lock on the file.

At 1060, the file can be read. In some instances, the file
can be read 1n portions, such as the data chunks as discussed
for FIGS. 2 and 3. The file can be read from the file system
storage AZ1 1020. The Replication Agent AZ1 can execute
a call to the Replication API AZ2 1025 to write the read file
(or file portions). Thus, the reading operation 1060 and the
writing operation 10635 can be executed iteratively. In some
instances, those operations can be executed in parallel, and
a write operation can be initiated once a portion has been
already read and while a subsequent portion 1s currently
read. In some 1nstances, the replication agent AZ1 1005 can
provide the file portion for writing to the replication API
AZ2 1025 that can take care of providing and storing the file
portion at the file system storage AZ2 1030.

In some instances, 1f a call to the Replication API AZ2
1025 fails or becomes otherwise unsuccessiul while the file
1s transferred from AZ1 to AZ2, then the replication can be
retried (or executed subsequently). The Replication API
AZ2 1025 stores the file portion in the file system storage in
AZ2 1030 that can provide a response to the replication
agent AZ1 upon successiul completion of the storing. The
execution of operations 1060 and 10635 can be performed
multiple times corresponding to the number of portions
defined for a replicated file.

At 1070, the Replication Agent AZ1 1010 releases the file
lock once the replication (write operation) 1s performed. At
1075, 11 the replication 1s successiul, then the Replication
Agent AZ1 1005 can call the Replication Data Manipulator
AZ1 1010 and provide the peeked element (at 1040 and
1050) 1n order to remove 1t from the queue and the map. At
1080, the replication data manipulator AZ1 1010 can request
a remove operation for the peeked file from the queue and
the map at the mn-memory data grid 10135.

In some instances, 1 case of unsuccessiul replication,
records from the queue data structure and the map that
correspond to the peeked replication metadata object may
not be removed from the queue data structure and the map.
The records from the queue data structure and the map can
be removed 1n response to successiul replication of the file.

FIG. 11 1s a block diagram for an example method 1100

for executing an add operation for an element 1n a map of an
in-memory data grid at an instance of a storage service 1n
accordance with implementations of the present disclosure.
In some stances, the map of the in-memory data grid can
correspond to the map 760 of the in-memory data grid 710
of FIG. 7.
The add operation can be executed to add an element 1n
the map that corresponds to a file that 1s for replication. The
clement can include metadata for the file that can be used to
execute the replication. In some 1nstances, the map includes
value pairs that include as key a path for the file to be
replicated and as value the replication metadata object that
1s correspondingly stored in a queue data structure at the
in-memory data grid including data for the operation
executed 1n association with storing the file (e.g., type of
operation such as upload or delete, time stamp, others).

In some 1nstances, by executing an add operation, a new
replication metadata object can be created. The new repli-
cation metadata object can correspond to the described
objects for storing in the queue data structure and may be
defined according to the model of Table 1. In some
instances, to execute the add operation to the map in the
in-memory data grid, the map can be evaluated to determine
whether there 1s an element 1n the map that corresponds to




US 11,693,828 B2

27

the same file. At 1110, 11 1t 1s determined that there 1s already
an element into the map that includes as a key corresponding
to the path for new replication metadata object, an object
value corresponding to the key in the element of the map can
be updated. In other cases, where a determination 1s made
that the map does not include an element associated with the
file for replication, at 1120, then a new element can be added
to the map. The new element can be populated with the path
tor the file from the new replication metadata object for the
key, and with the new replication metadata object for the
value. At 1130, the new replication metadata object can be
added to the queue data structure.

FIG. 12 1s a block diagram for an example method 1200
for executing a peek operation on a queue data structure
maintained at an in-memory data grid at an instance of a
storage service 1n accordance with implementations of the
present disclosure. In some instances, the map of the in-
memory data grid can correspond to the map 760 of the
in-memory data gnd 710 of FIG. 7. In some 1nstances, when
the peek operation 1s executed on the queue data structure,
the peek operation returns a replication metadata object
including metadata for a file for replication. The replication
metadata object can include metadata for the file that can be
used to execute the replication. In some 1nstances, the map
includes value pairs that include as key a path for the file to
be replicated and as value the replication metadata object
that 1s correspondingly stored 1n a queue data structure at the
in-memory data grid including data for the operation
executed 1n association with storing the file (e.g., type of
operation such as upload or delete, time stamp, others).

At 1210, 1n response to invoking a peek operation for a
file for replication, 1t can be determined whether the queue
data structure at the in-memory grid 1s empty. If the queue
data structure 1s empty, then at 1280, no file for replication
can be returned as 1t 1s not existing. The peek operation as
executed 1s an 1terative operation that 1s executed on the
queue data structure and 1t provides replication metadata
objects for files for replication and also reduces the stored
data in the queue data structure. The peek operation ends 1ts
iterative execution when the queue data structure 1s empty
(determined at either 1210 or 1270).

At 1230, the head element of the queue data structure 1s
peeked to determine (1240) whether the head element of the
queue corresponds to an element present in the map. In some
instances, based on executing the peek operation, metadata
associated with a peeked file 1s returned only 1f metadata at
the head of the queue data structure includes data corre-
sponding to the metadata at the map, for example, i the
metadata stored for the head element 1n the queue data
structure corresponds to the metadata stored for the file at the
map. As the map metadata 1s associated with a latest
execution for a given file, if the metadata 1n the map and 1n
the queue data structure for the given file corresponds, then
the replication metadata object corresponds to an operation
that 1s executed as a latest operation for the file. For
example, comparison between a record (or element) in the
map and a record 1n the queue to determine whether they
correspond can be performed based on information such as
timestamp, operation type, path, or other metadata stored in
the corresponding records. If, at 1240, 1t 1s determined that
the head element of the queue does not correspond to a
record stored 1n the map (that 1s, to a record associated with
a file corresponding to the head element of the queue), then
method 1200 continues at 1250, where the head element of
the queue 1s deleted, and then to 1270, where the queue 1s
iteratively processed with respect to a subsequent head
clement of the queue. Thus, 11 the head element of the queue

10

15

20

25

30

35

40

45

50

55

60

65

28

data structure 1s not presented in the map, then the head
clement can be removed and a next element from the queue
1s processed as a head of the queue data structure.

If, at 1240, 1t 1s determined that the head element of the
queue corresponds to an element 1n the map, then the
metadata replication object representing the head element of
the queue 1s provided for execution of replication (at 1260).
Once processing of the head element 1s done, the process 1s
finished.

FIG. 13 1s a block diagram for an example method 1300
for executing a remove operation on a queue data structure
maintained at an mm-memory data grid at an instance of a
storage service 1n accordance with implementations of the
present disclosure. In some instances, the map of the in-
memory data grid can correspond to the map 760 of the
in-memory data grid 710 of FIG. 7. In some instances, when
the remove operation 1s executed on the queue data struc-
ture, the remove operation deletes a replication metadata
object including metadata for the file for replication at the
queue data structure and an element at the map that corre-
sponds to the replication metadata object. The replication
metadata object can include metadata for the file that can be
used to execute the replication. In some 1nstances, the map
includes value pairs that include as key a path for the file to
be replicated and as value the replication metadata object
that 1s correspondingly stored 1n a queue data structure at the
in-memory data grid including data for the operation
executed 1n association with storing the file (e.g., type of
operation such as upload or delete, time stamp, others). In
some 1nstances, the removal of records from both the map
and the queue data structure can be performed 1n response to
execution of replications for the associated file with the
objects (elements) in the structures of the m-memory data
or1d.

In some instances, the remove operation accepts as 1nput
a replication metadata object associated with a file, and
performed operation to delete a corresponding element from
the map and the replication metadata object from the queue
data structure.

At 1310, 1t 1s determined whether there 1s a replication
metadata object for a given file that 1s associated with an
clement 1n the map, where the file has been replicated
asynchronously.

If 1t 1s determined that there 1s a replication metadata
object, method 1300 continues at 1320, where the corre-
sponding element 1n the map 1s removed from the map. The
method 1300 then continues at 1330.

If 1t 15 determined that there 1s no replication metadata
object for a given file in the map, then method 1300
continues to 1330, where the queue data structure 1s peeked
(according to the peek operation as described in FIG. 12) to
determine a head element of the queue data structure. 11 the
peeked element from the queue data structure 1s equal to the
metadata object (that 1s provided as input for the replication)
to the remove operation, the head element of the queue data
structure 1s removed (at 1340). Otherwise, no actions for
removal of elements 1n the data structure of the in-memory
data grid may be necessary to be performed, and method
1300 can end.

Referring now to FIG. 14, a schematic diagram of an
example computing system 1400 1s provided. The system
1400 can be used for the operations described in association
with the implementations described herein. For example, the
system 1400 may be included 1n any or all of the server
components discussed herein. The system 1400 includes a
processor 1410, a memory 1420, a storage device 1430, and
an input/output device 1440. The components 1410, 1420,




US 11,693,828 B2

29

1430, and 1440 are interconnected using a system bus 1450.
The processor 1410 1s capable of processing istructions for
execution within the system 1400. In some implementations,
the processor 1410 1s a single-threaded processor. In some
implementations, the processor 1410 1s a multi-threaded
processor. The processor 1410 1s capable ol processing
instructions stored in the memory 1420 or on the storage
device 1430 to display graphical information for a user
interface on the mput/output device 1440.

The memory 1420 stores information within the system
1400. In some implementations, the memory 1420 1s a
computer-readable medium. In some implementations, the
memory 1420 1s a volatile memory unit. In some 1implemen-
tations, the memory 1420 1s a non-volatile memory unit. The
storage device 1430 1s capable of providing mass storage for
the system 1400. In some implementations, the storage
device 1430 1s a computer-readable medium. In some 1mple-
mentations, the storage device 1430 may be a floppy disk
device, a hard disk device, an optical disk device, or a tape
device. The mput/output device 1440 provides input/output
operations for the system 1400. In some implementations,
the mput/output device 1440 includes a keyboard and/or
pointing device. In some 1implementations, the mnput/output
device 1440 includes a display unit for displaying graphical
user interfaces.

The features described can be implemented 1n digital
clectronic circuitry, or in computer hardware, firmware,
soltware, or 1n combinations of them. The apparatus can be
implemented in a computer program product tangibly
embodied 1n an information carrier (e.g., 1n a machine-
readable storage device, for execution by a programmable
processor), and method operations can be performed by a
programmable processor executing a program of 1nstruc-
tions to perform functions of the described implementations
by operating on input data and generating output. The
described features can be implemented advantageously 1n
one or more computer programs that are executable on a
programmable system including at least one programmable
processor coupled to receive data and structions from, and
to transmit data and instructions to, a data storage system, at
least one mput device, and at least one output device. A
computer program 1s a set ol instructions that can be used,
directly or indirectly, in a computer to perform a certain
activity or bring about a certain result. A computer program
can be written 1n any form of programming language,
including compiled or interpreted languages, and 1t can be
deployed 1n any form, including as a stand-alone program or
as a module, component, subroutine, or other unit suitable
for use 1n a computing environment.

Suitable processors for the execution of a program of
instructions include, by way of example, both general and
special purpose microprocessors, and the sole processor or
one of multiple processors of any kind of computer. Gen-
erally, a processor will receive imstructions and data from a
read-only memory or a random access memory or both.
Elements of a computer can include a processor for execut-
ing 1instructions and one or more memories for storing
instructions and data. Generally, a computer can also
include, or be operatively coupled to communicate with, one
or more mass storage devices for storing data files; such
devices include magnetic disks, such as internal hard disks
and removable disks; magneto-optical disks; and optical
disks. Storage devices suitable for tangibly embodying
computer program instructions and data include all forms of
non-volatile memory, including by way of example semi-
conductor memory devices, such as EPROM, EEPROM,
and flash memory devices; magnetic disks such as internal

10

15

20

25

30

35

40

45

50

55

60

65

30

hard disks and removable disks; magneto-optical disks; and
CD-ROM and DVD-ROM disks. The processor and the
memory can be supplemented by, or incorporated in, ASICs
(application-specific integrated circuits).

To provide for interaction with a user, the features can be
implemented on a computer having a display device such as
a cathode ray tube (CRT) or liquid crystal display (LCD)
monitor for displaying information to the user and a key-
board and a pointing device such as a mouse or a trackball
by which the user can provide mput to the computer.

The features can be implemented 1n a computer system
that includes a back-end component, such as a data server,
or that includes a middleware component, such as an appli-
cation server or an Internet server, or that includes a front-
end component, such as a client computer having a graphical
user interface or an Internet browser, or any combination of
them. The components of the system can be connected by
any form or medium of digital data communication such as
a communication network. Examples of communication
networks include, for example, a LAN, a WAN, and the
computers and networks forming the Internet.

The computer system can include clients and servers. A

client and server are generally remote from each other and
typically interact through a network, such as the described
one. The relationship of client and server arises by virtue of
computer programs running on the respective computers and
having a client-server relationship to each other.
In addition, the logic flows depicted 1n the figures do not
require the particular order shown, or sequential order, to
achieve desirable results. In addition, other operations may
be provided, or operations may be eliminated, from the
described tlows, and other components may be added to, or
removed from, the described systems. Accordingly, other
implementations are within the scope of the following
claims.

A number of implementations of the present disclosure
have been described. Nevertheless, 1t will be understood that
various modifications may be made without departing from
the spirit and scope of the present disclosure. Accordingly,
other implementations are within the scope of the following
claims.

In view of the above described implementations of subject
matter this application discloses the Ifollowing list of
examples, wherein one feature of an example 1n 1solation or

more than one feature of said example taken in combination
and, optionally, in combination with one or more features of
one or more further examples are further examples also
falling within the disclosure of this application.

EXAMPLES

Although the present application 1s defined 1n the attached
claims, 1t should be understood that the present mmvention
can also (alternatively) defined in accordance with the
following examples:

Real-Time Data Replication 1n a Multiple
Availability Zone Cloud Platform

Example 1. A computer-implemented method for manag-
ing data replication in a multiple availability zone cloud
environment, the method comprising:

recerving a request associated with storing content of a

file at a storage service provided by a multiple avail-
ability zone cloud platiorm;



US 11,693,828 B2

31

in response to receiving the request, sending a lock
request through a persistence interface to an in-memory
data grid at a first instance of the storage service to lock
the file for accessing;

receiving, at the persistence interface, an input stream

including the content of the file based on the request,

wherein receiving the mput stream includes:

iteratively reading the mput stream in portions; and

iteratively storing, by the persistence interface, a read
portion for the file 1n a first file system storage
associated with instances of the storage service at a
first availability zone, wherein during storing the
read potion, the file 1s locked for accessing;

in response to storing a portion of the file, providing,

through the persistence interface, the stored portion of
the file to a replication executor at the first instance of
the storage service, wherein each portion 1s provided to
the replication executor to request replication of read
and stored portions of the content of the file from the
iput stream nto a second {file storage of a second
availability zone of the multiple availability zone cloud
platform;

determining a mode of replication for executing transier

of portions of the mput stream from the replication
executor at the first mnstance of the storage service
running at the first availability zone to a replication
interface at a second instance of the storage service
running at the second availability zone; and

in response to determining that the mode of replication 1s

synchronous, providing, by the replication executor, a
request to store a stored portion of the mput stream by
the persistence interface of the first instance of the
storage service at the first availability zone to the
replication interface of the second instance of the
storage service, wherein the request is to store the read
and stored portion at the second file storage of the
second availability zone.

Example 2. The method of Example 1, wherein the
request 1s from a user, and wherein the request 1s recerved at
the persistence interface instantiated at the first instance of
the storage service, wherein the first instance of the storage
service 1s runmng at the first availability zone of the multiple
availability zone cloud platform, wherein the user 1s asso-
ciated with 1nstances running at the first availability zone as
primary storage service instances, wherein the multiple
availability zone cloud platform includes at least two avail-
ability zones, where the storage service 1s executed with at
least two 1nstances at each of the availability zones, and
wherein the storage service provides bi-directional replica-
tion between instances running at the multiple availability
zones to maintain synchronized content at corresponding file
storages.

Example 3. The method of any one of the preceding
Examples, wherein storing content includes at least one of
adding, updating, modifying of content of the file.

Example 4. The method of any one of the preceding
Examples, further comprising:

receiving a delete request associated with the file at a first

instance of the storage service provided at the first
availability zone of the multiple availability zone cloud
platform;

in response to receiving the delete request,

sending a lock request through the persistence interface
to the in-memory data grid at the first instance of the
storage service to lock the file for accessing;

sending an mstruction for execution of a delete opera-
tion to delete the file at the first file storage; and

10

15

20

25

30

35

40

45

50

55

60

65

32

sending a request, by the replication executor, to the
replication interface of the second instance of the
storage service at the second availability zone to
delete the file at the second file storage; and

in response to determining that deleting at the second file

storage 1s executed successiully, sending a delete
request to the in-memory data grid at the first instance
of the storage service to delete metadata stored for the
file.

Example 5. The method of any one of the preceding
Examples, wherein the stored portion of the file 1s provided
to the replication executor for replication at the second
availability zone 1n parallel to reading a subsequent portion
of the mput stream by the persistence interface.

Example 6. The method of any one of the preceding
Examples, wherein the persistence interface 1s an applica-
tion programming interface (API) implemented at the first
instance of the storage service, and wherein the request 1s
dispatched for recerving by the first instance of the storage
service based on load balancing rules defined for the mul-
tiple availability zone cloud platform.

Example 7. The method of any one of the preceding
Examples, further comprising:

in response to determining that the mode of replication 1s

synchronous on each iteration, providing iteratively
cach of the portions of the input stream to the replica-
tion interface of the second instance of the storage
service to replicate the stored content at the first file
storage of the first availability zone to the second {ile
storage of the second availability zone.

Example 8. The method of any one of the preceding
Examples, further comprising:

in response to determining that a provided portion for

replication at the second file storage failed to be rep-

licated:

configuring an asynchronous mode of replication for a
subsequent 1teration for data transier from the first
instance of the storage service at the first availability
zone:; and

reading and storing subsequent portions of the file to
store the content of the file at the fist file storage at
the first availability zone; and

storing metadata for the file that 1s stored at the first file

storage at the first availability zone, wherein the meta-
data 1s stored at the in-memory data grid of the first
instance of the storage service, wherein the in-memory
data grid of the first instance of the storage service is
synchronized with mm-memory data grids at other
instances of the storage service running at the multiple
availability zones cloud platiorm.

Example 9. The method of Example 8, further compris-
ng:

in response to determining that the mode of replication 1s

changed to synchronous from a previous asynchronous

mode:

reading the stored metadata for the file;

locking the file for accessing by creating a lock record
for the file at the in-memory data grid at the first
instance of the storage service;

reading the stored file at the first file storage; and

replicating the file at the second file storage at the
second availability zone by providing the file to the
replication interface of the second instance of the
storage service at the second availability zone,




US 11,693,828 B2

33

wherein the mode of replication 1s changed to synchro-
nous mode 1n response to successiul replication of at
least a portion of stored changes for replication during

the asynchronous mode.
Example 10. The method of any one of the preceding

Examples, wherein the mm-memory data grnid stores the
metadata 1n a queue data structure, where data from the data
orid 1s read 1n a first-in-first-out mode.

Asynchronous Data Replication in a Multiple
Availability Zone Cloud Platform

Example 1. A computer-implemented method for manag-
ing asynchronous data replication 1n a multiple availability

zone cloud environment, the method comprising:

storing metadata for one or more files for asynchronous
replication at a second availability zone, wherein the meta-
data 1s stored at an in-memory data grid of a first instance of
a storage service at a {irst availability zone, wherein the first
and the second availability zones are included 1n a multiple
availability cloud platform providing storage services,
wherein the m-memory data grid includes a queue data
structure ol metadata records and a map of metadata records,
wherein the queue data structure includes one or more
records corresponding to one or more operations executed
on a file to define versions of the file from the one or more
files for replication from the first availability zone to the
second availability zone, wherein a record from the queue
data structure includes metadata for a corresponding request
for storing content for a file, and wherein the map of
metadata records 1dentifies the files that are associated with
requests for storing content that are not replicated at the
second availability zone of a multiple availability zone cloud
platform; and

in response to determining that connection from the first

availability zone to the second availability zone 1is

available, executing asynchronous data replication for

files 1dentified at the map, wherein the execution

includes:

determining a file for replication that 1s identified at the
map;,

reading the stored metadata for the file for replication
from the queue data structure to determine a repli-
cation operation based on one or more records 1den-
tified for the file for replication at the queue data
structure;

reading, by a replication executor at the first instance of
the storage service, the file from a first file storage;
and

providing for replication, by the replication executor at
the first mnstance of the storage service, the file at a
second file storage at the second availability zone by
providing the file to a replication interface of a
second 1nstance of the storage service at the second
availability zone.

Example 2. The method of Example 1, wherein in
response to determining the file for replication, locking the
file for accessing by creating a lock record for the file at the
in-memory data grid at the first istance of the storage
service.

Example 3. The method of any one of the preceding
Examples, wherein the one or more files for replication
include a file that 1s received at a first instance of a storage
service at the first availability zone.

Example 4. The method of any one of the preceding
Examples, wherein the replication 1s determined to be per-

5

10

15

20

25

30

35

40

45

50

55

60

65

34

formed asynchronously at a replication agent included 1n the
replication executor based on evaluation of metadata stored
at the mn-memory data grid.

Example 5. The method of any one of the preceding
Examples, wherein metadata stored at the in-memory data
or1d 1s read 1teratively to determine a record from the records
stored at the queue and associated with a file for replication,
wherein the record corresponds to the replication operation
to be executed for the asynchronous data replication of the
file.

Example 6. The method of any one of the preceding
Examples, wherein the replication of the file by the repli-
cation executor 1s performed 1n portions read from the file
from the first file storage and stored 1n portions at the second
file storage at the second availability zone.

Example 7. The method of any one of the preceding
Examples, wherein the metadata stored in the in-memory
data grid 1s updated iteratively while evaluating the data to
determine the replication operation to be executed.

Example 8. The method of any one of the preceding
Examples, wherein the one or more operations includes an
operation of an operation type selected from the group of
adding, updating, modifying, and deleting of the file, and
wherein a version of a file corresponds to an operation type.

What 1s claimed 1s:
1. A computer-implemented method for managing data
replication 1n a multiple availability zone cloud environ-
ment, the method comprising:
recerving a request associated with storing content of a
file at a storage service provided by a multiple avail-
ability zone cloud platiorm;
in response to receiving the request, sending a lock
request through a persistence interface to an mn-memory
data grid at a first instance of the storage service to lock
the file for accessing;
recerving, at the persistence interface, an mput stream
including the content of the file based on the request,
wherein receiving the mput stream includes:
iteratively reading the input stream 1n portions; and
iteratively storing, by the persistence interface, a read
portion for the file n a first file system storage
associated with instances of the storage service at a
first availability zone, wherein during storing the
read potion, the file 1s locked for accessing;
in response to storing a portion of the file, providing,
through the persistence interface, the stored portion of
the file to a replication executor at the first instance of
the storage service, wherein each portion 1s provided to
the replication executor to request replication of read
and stored portions of the content of the file from the
iput stream mnto a second file storage of a second
availability zone of the multiple availability zone cloud
platiorm:;
determinming a mode of replication for executing transfer
of portions of the input stream from the replication
executor at the first instance of the storage service
running at the first availability zone to a replication
interface at a second instance of the storage service
running at the second availability zone; and
in response to determining that the mode of replication 1s
synchronous, providing, by the replication executor, a
request to store a stored portion of the mput stream by
the persistence interface of the first instance of the
storage service at the first availability zone to the
replication interface of the second instance of the




US 11,693,828 B2

35

storage service, wherein the request 1s to store the read
and stored portion at the second file storage of the
second availability zone.

2. The method of claim 1, wherein the request 1s from a
user, and wherein the request 1s received at the persistence
interface instantiated at the first instance of the storage
service, wherein the first instance of the storage service 1s
running at the first availability zone of the multiple avail-
ability zone cloud platform, wherein the user 1s associated
with instances running at the first availability zone as
primary storage service instances, wherein the multiple
availability zone cloud platform includes at least two avail-
ability zones, where the storage service 1s executed with at
least two 1nstances at each of the availability zones, and
wherein the storage service provides bi-directional replica-
tion between instances running at the multiple availability
zones to maintain synchronized content at corresponding file
storages.

3. The method of claim 1, wherein storing content
includes at least one of adding, updating, modilying of
content of the file.

4. The method of claim 1, further comprising;:

receiving a delete request associated with the file at a first

instance of the storage service provided at the first
availability zone of the multiple availability zone cloud
platform;

in response to receiving the delete request,

sending a lock request through the persistence interface
to the in-memory data grid at the first instance of the
storage service to lock the file for accessing;

sending an instruction for execution of a delete opera-
tion to delete the file at the first file storage; and

sending a request, by the replication executor, to the
replication interface of the second instance of the
storage service at the second availability zone to
delete the file at the second file storage; and

in response to determining that deleting at the second file

storage 1s executed successiully, sending a delete
request to the in-memory data grid at the first instance
of the storage service to delete metadata stored for the
file.

5. The method of claim 1, wherein the stored portion of
the file 1s provided to the replication executor for replication
at the second availability zone in parallel to reading a
subsequent portion of the input stream by the persistence
interface.

6. The method of claim 1, wherein the persistence inter-
face 1s an application programming interface (API) imple-
mented at the first instance of the storage service, and
wherein the request 1s dispatched for recerving by the first
instance of the storage service based on load balancing rules
defined for the multiple availability zone cloud platiorm.

7. The method of claim 1, further comprising;:

in response to determining that the mode of replication 1s

synchronous on each iteration, providing iteratively
cach of the portions of the input stream to the replica-
tion 1nterface of the second instance of the storage
service to replicate the stored content at the first file
storage of the first availability zone to the second file
storage of the second availability zone.

8. The method of claim 1, turther comprising;:

in response to determining that a provided portion for
replication at the second file storage failed to be rep-
licated:

10

15

20

25

30

35

40

45

50

55

60

65

36

configuring an asynchronous mode of replication for a
subsequent iteration for data transier from the first
instance of the storage service at the first availability
zone:; and

reading and storing subsequent portions of the file to
store the content of the file at the fist file storage at
the first availability zone; and

storing metadata for the file that 1s stored at the first file

storage at the first availability zone, wherein the meta-
data 1s stored at the in-memory data grid of the first
instance of the storage service, wherein the in-memory
data grid of the first instance of the storage service 1s
synchronized with n-memory data grids at other
instances of the storage service running at the multiple
availability zones cloud platiorm.

9. The method of claim 8, further comprising;:

in response to determining that the mode of replication 1s

changed to synchronous from a previous asynchronous

mode:

reading the stored metadata for the file;

locking the file for accessing by creating a lock record
for the file at the in-memory data grid at the first
instance of the storage service;

reading the stored {file at the first file storage; and

replicating the file at the second file storage at the
second availability zone by providing the file to the
replication interface of the second instance of the
storage service at the second availability zone,

wherein the mode of replication 1s changed to synchro-
nous mode 1n response to successiul replication of at
least a portion of stored changes for replication during
the asynchronous mode.

10. The method of claim 7, wherein the in-memory data
or1d stores the metadata 1n a queue data structure, where data
from the data grid is read in a first-in-first-out mode.

11. A non-transitory, computer-readable medium coupled
to one or more processors and having instructions stored
thereon which, when executed by the one or more proces-
sors, cause the one or more processors to perform opera-
tions, the operations comprising:

receiving a request associated with storing content of a

file at a storage service provided by a multiple avail-

ability zone cloud platiorm;

in response to receiving the request, sending a lock

request through a persistence interface to an in-memory

data grid at a first instance of the storage service to lock
the file for accessing;

recerving, at the persistence interface, an mput stream

including the content of the file based on the request,

wherein recerving the mput stream 1ncludes:

iteratively reading the mput stream 1n portions; and

iteratively storing, by the persistence interface, a read
portion for the file mn a first file system storage
associated with instances of the storage service at a
first availability zone, wherein during storing the
read potion, the file 1s locked for accessing;

in response to storing a portion of the file, providing,

through the persistence interface, the stored portion of
the file to a replication executor at the first instance of
the storage service, wherein each portion 1s provided to
the replication executor to request replication of read
and stored portions of the content of the file from the
mput stream nto a second {file storage of a second
availability zone of the multiple availability zone cloud
platform;

determining a mode of replication for executing transfer

of portions of the mput stream from the replication




US 11,693,828 B2

37

executor at the first instance of the storage service
running at the first availability zone to a replication
interface at a second instance of the storage service
running at the second availability zone; and

in response to determining that the mode of replication 1s

synchronous, providing, by the replication executor, a
request to store a stored portion of the mput stream by
the persistence interface of the first instance of the
storage service at the first availability zone to the
replication interface of the second instance of the
storage service, wherein the request is to store the read
and stored portion at the second file storage of the
second availability zone.

12. The computer-readable medium of claim 11, wherein
the request 1s from a user, and wherein the request 1s
received at the persistence interface instantiated at the first
instance of the storage service, wherein the first instance of
the storage service 1s running at the first availability zone of
the multiple availability zone cloud platform, wherein the
user 1s associated with instances running at the first avail-
ability zone as primary storage service instances, wherein
the multiple availability zone cloud platform includes at
least two availability zones, where the storage service is
executed with at least two 1instances at each of the avail-
ability zones, and wherein the storage service provides
bi-directional replication between instances running at the
multiple availability zones to maintain synchronized content
at corresponding file storages.

13. The computer-readable medium of claim 11, further
comprising instructions which when executed by the one or
more processors, cause the one or more processors to
perform operations, the operations comprising:

receiving a delete request associated with the file at a first

instance of the storage service provided at the first
availability zone of the multiple availability zone cloud
platform;

in response to receiving the delete request,

sending a lock request through the persistence interface
to the in-memory data grid at the first instance of the
storage service to lock the file for accessing;

sending an instruction for execution of a delete opera-
tion to delete the file at the first file storage; and

sending a request, by the replication executor, to the
replication interface of the second instance of the
storage service at the second availability zone to
delete the file at the second file storage; and

in response to determining that deleting at the second file

storage 1s executed successiully, sending a delete

request to the in-memory data grid at the first instance
of the storage service to delete metadata stored for the
file.

14. The computer-readable medium of claim 11, wherein
the persistence interface 1s an application programming,
interface (API) implemented at the first instance of the
storage service, and wherein the request 1s dispatched for
receiving by the first instance of the storage service based on
load balancing rules defined for the multiple availability
zone cloud platform.

15. The computer-readable medium of claim 11, further
comprising instructions which when executed by the one or
more processors, cause the one or more processors to
perform operations, the operations comprising:

in response to determining that a provided portion for

replication at the second file storage failed to be rep-
licated:

10

15

20

25

30

35

40

45

50

55

60

65

38

configuring an asynchronous mode of replication for a
subsequent iteration for data transier from the first
instance of the storage service at the first availability
zone:; and

reading and storing subsequent portions of the file to
store the content of the file at the fist file storage at
the first availability zone; and

storing metadata for the file that 1s stored at the first file

storage at the first availability zone, wherein the meta-
data 1s stored at the in-memory data grid of the first
instance of the storage service, wherein the in-memory
data grid of the first instance of the storage service 1s
synchronized with n-memory data grids at other
instances of the storage service running at the multiple
availability zones cloud platiorm.

16. The computer-readable medium of claim 11, further
comprising instructions which when executed by the one or
more processors, cause the one or more processors to
perform operations, the operations comprising:

in response to determining that the mode of replication 1s

changed to synchronous from a previous asynchronous

mode:

reading the stored metadata for the file;

locking the file for accessing by creating a lock record
for the file at the in-memory data grid at the first
instance of the storage service;

reading the stored file at the first file storage; and

replicating the file at the second file storage at the
second availability zone by providing the file to the
replication interface of the second instance of the
storage service at the second availability zone,

wherein the mode of replication 1s changed to synchro-
nous mode 1n response to successiul replication of at
least a portion of stored changes for replication during
the asynchronous mode.

17. A system comprising

a computing device; and

a computer-readable storage device coupled to the com-

puting device and having instructions stored thereon

which, when executed by the computing device, cause
the computing device to perform operations, the opera-
tions comprising:

receiving a request associated with storing content of a
file at a storage service provided by a multiple
availability zone cloud platiform;

in response to receiving the request, sending a lock
request through a persistence interface to an 1n-
memory data grid at a first instance of the storage
service to lock the file for accessing;

receiving, at the persistence interface, an input stream
including the content of the file based on the request,
wherein receiving the mput stream includes:
iteratively reading the mput stream in portions; and
iteratively storing, by the persistence interface, a

read portion for the file 1n a first file system storage
associated with instances of the storage service at
a first availability zone, wherein during storing the
read potion, the file 1s locked for accessing;

in response to storing a portion of the file, providing,
through the persistence interface, the stored portion
of the file to a replication executor at the first
instance of the storage service, wherein each portion
1s provided to the replication executor to request
replication of read and stored portions of the content
of the file from the input stream into a second {ile
storage of a second availability zone of the multiple
availability zone cloud platform;




US 11,693,828 B2

39

determining a mode of replication for executing trans-
fer of portions of the mput stream from the replica-
tion executor at the first instance ol the storage
service running at the first availability zone to a
replication 1interface at a second instance of the
storage service running at the second availability
zone; and

in response to determining that the mode of replication
1s synchronous, providing, by the replication execu-
tor, a request to store a stored portion of the mput
stream by the persistence interface of the first
instance of the storage service at the first availability
zone to the replication interface of the second
instance of the storage service, wherein the request 1s
to store the read and stored portion at the second file
storage of the second availability zone.

18. The system of claim 17, wherein the computer-
readable storage device further comprises nstructions which
when executed by the computing device, cause the comput-
ing device to perform operations, the operations comprising:

receiving a delete request associated with the file at a first

instance of the storage service provided at the first
availability zone of the multiple availability zone cloud
platform;

in response to receiving the delete request,

sending a lock request through the persistence interface
to the in-memory data grid at the first instance of the
storage service to lock the file for accessing;

sending an mstruction for execution of a delete opera-
tion to delete the file at the first file storage; and

sending a request, by the replication executor, to the
replication interface of the second instance of the
storage service at the second availability zone to
delete the file at the second file storage; and

in response to determining that deleting at the second file

storage 1s executed successiully, sending a delete
request to the in-memory data grid at the first instance
of the storage service to delete metadata stored for the
file.

19. The system of claim 17, wherein the computer-
readable storage device further comprises instructions which

10

15

20

25

30

35

40

40

when executed by the computing device, cause the comput-
ing device to perform operations, the operations comprising:
in response to determining that a provided portion for
replication at the second file storage failed to be rep-
licated:

configuring an asynchronous mode of replication for a
subsequent iteration for data transier from the first
instance of the storage service at the first availability
zone:; and

reading and storing subsequent portions of the file to
store the content of the file at the fist file storage at
the first availability zone; and

storing metadata for the file that 1s stored at the first file

storage at the first availability zone, wherein the meta-
data 1s stored at the in-memory data grid of the first
instance of the storage service, wherein the in-memory
data grid of the first instance of the storage service is
synchronized with in-memory data grids at other
instances of the storage service running at the multiple
availability zones cloud platiorm.

20. The system of claam 17, wherein the computer-
readable storage device further comprises instructions which
when executed by the computing device, cause the comput-
ing device to perform operations, the operations comprising:

in response to determining that the mode of replication 1s

changed to synchronous from a previous asynchronous
mode:

reading the stored metadata for the file;

locking the file for accessing by creating a lock record
for the file at the in-memory data grid at the first
instance of the storage service;

reading the stored {file at the first file storage; and

replicating the file at the second file storage at the
second availability zone by providing the file to the
replication interface of the second instance of the
storage service at the second availability zone,

wherein the mode of replication 1s changed to synchro-
nous mode in response to successiul replication of at
least a portion of stored changes for replication during
the asynchronous mode.

G ex x = e



	Front Page
	Drawings
	Specification
	Claims

