12 United States Patent

Dastidar et al.

US011693805B1

US 11,693.805 B1
*Jul. 4, 2023

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)

(73)

(%)

(21)
(22)

(63)

(1)

(52)

(58)

ROUTING NETWORK USING GLOBAL
ADDRESS MAP WITH ADAPTIVE MAIN
MEMORY EXPANSION FOR A PLURALITY
OF HOME AGENTS

Applicant: XILINX, INC., San Jose, CA (US)

Inventors: Jaideep Dastidar, San Jose, CA (US);
Millind Mittal, Saratoga, CA (US)

Assignee: XILINX, INC., San Jose, CA (US)

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by O days.

Notice:

This patent 1s subject to a terminal dis-
claimer.

Appl. No.: 17/373,620

Filed: Jul. 12, 2021

Related U.S. Application Data

Continuation of application No. 16/555,146, filed on
Aug. 29, 2019, now Pat. No. 11,074,208.

(Continued)
Int. CL
GO6F 13/00 (2006.01)
GO6F 13/40 (2006.01)
(Continued)
U.S. CL
CPC GO6F 13/4022 (2013.01); GO6F 9/30043

(2013.01); GO6F 13/1663 (2013.01);

(Continued)

Field of Classification Search
CPC GO6F 13/4022; GO6F 9/30043; GO6F

13/1663; GO6F 13/1668
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

8/2003 Chiussi et al.
7/2005 Bhardwaj et al.

(Continued)

6,608,813 Bl
0,914,907 Bl

FOREIGN PATENT DOCUMENTS

10/2012
9/2014
7/2015

EP
JP
WO

2515294 A2
2014160502 A
2015099730 Al

OTHER PUBLICATTONS

U.S. Appl. No. 15/967,473, filed Apr. 30, 2018, Entitled: “Circuit

for and Method of Providing a Programmable Connector of an
Integrated Circuit Device”.

(Continued)

Primary Examiner — Tammara R Peyton

(74) Attorney, Agent, or Firm — Patterson + Sheridan,
LLP

(57) ABSTRACT

An adaptive memory expansion scheme 1s proposed, where
one or more memory expansion capable Hosts or Accelera-
tors can have their memory mapped to one or more memory
expansion devices. The embodiments below describe dis-
covery, configuration, and mapping schemes that allow
independent SCM 1mplementations and CPU-Host 1mple-
mentations to match their memory expansion capabilities.
As a result, a memory expansion host (e.g., a memory
controller in a CPU or an Accelerator) can declare multiple
logical memory expansion pools, each with a unique capac-
ity. These logical memory pools can be matched to physical
memory in the SCM cards using windows in a global
address map. These windows represent shared memory for
the Home Agents (HAs) (e.g., the Host) and the Slave Agent
(SAs) (e.g., the memory expansion device).

20 Claims, 8 Drawing Sheets

HA 1054 HA 1058 HA 105G 100
MEMORY EXPANSION -u MEMORY EXPANSION JJ MEMORY EXPANSION -"| 4/
POOL 1104 POOL 1108 POOL 110C
HBAT ENTRY 115A JJ HBATENTRY 1158 -U HBATENTRY 115C -H
MATCH MAKER
150
|!
GLOBAL
ROUTING NETWORK EE_ ADDRESS
- —]J MAP 150
SWITCH 125 —
— WINDOW
170
SA 1304 SA 1308 SA 130C
MEMORY POOL 135A JJ MEMORY POOL 1358 JJ MEMORY POOL 135C -'J
SBAT ENTRY 1404 -u SBAT ENTRY 1408 -IJ SBATENTRY 140C -'J
MEMORY EXPANSION MEMORY EXPANSION MEMORY EXPANSION
DEVICE 1E0A DEVICE 1808 DEVICE 180C

US 11,693,805 B1

Page 2
Related U.S. Application Data 2019/0042425 Al 2/2019 Shifer
2019/0042455 Al 2/2019 Agarwal et al.
o ot 2019/0042518 Al 2/2019 Marolia et al.
(60) Provisional application No. 62/878,302, filed on Jul. 5010/00654% Al 27010 Das Sharma of al
24, 2019. 2019/0102295 Al 4/2019 Sury et al.
2019/0102303 Al 4/2019 Wang et al.
(531) Imt. CI. 2019/0102311 Al 4/2019 Gupta et al.
GO6F 13/16 (2006.01) 2020/0042446 Al 2/2020 Mittal et al.
GO6F 9/30 (2018.01) 2020/0044895 Al 2/2020 Mittal et al.
2020/0125384 Al 4/2020 Serebrin et al.
(52) US. Cl. 2020/0133898 Al 4/2020 Therene et al.
CPC .. GO6F 13/1668 (2013.01); GO6F 2209/5011 2020/0213228 Al 7/2020 Cheng
(2013.01); GO6F 2213/0038 (2013.01)
OTHER PUBLICATTONS
(56) References Cited
. U.S. Appl. No. 16/025,762, filed Jul. 2, 2018, Entitled: “Logical
U.S. PATENT DOCUMENTS Transport Overlayed Over a Physical Transport Having a Tree
| Topology”.
8,422,493 B2 4/2013 Kono et al US. Appl. No. 16/053,384, filed Aug. 2, 2018, Entitled: “Logical
g’ggg’gzg E% zggg D”K/Il?;iagaeit :tl‘al Transport Over a Fixed PCIE Physical Transport N_etwork’ﬁ
9"336’142 . 5/20T6 Chai ot al ‘ U.S. Appl. No. 16/141,704, filed Sep. 25, 2018, Entitled: “Scalable
9"3 91ﬁ83 5 B 719016 Aoshima ét ol Coherence Management Independent of Transport Protocol”. |
9"525’591 By 12/2016 Yasuda et al. | U.S. Appl. No. 16/053,488, filed Aug. 2, 2018, Enfitled: “Hybrid
0794194 B? 10/2017 Yasuda et al. Precise and Imprecise Cache Snoop Filtering”.
10:097:466 R?2 10/2018 Tang et al. U.S. Appl. No. 16/208,260, filed Dec. 3, 2018, Entitled: “SCI’&’[Chp&d
10,409,743 B1 9/2019 Mittal et al. Memory Management in a Computing System”.
10,445,659 B2 10/2019 Bowers et al. Yunlong Xu et al: “Lock-based Synchronization for GPU Architec-
10,528,513 Bl 1/2020 Chan et al. tures”, CF’ 16 Proceedings of the ACM International Conference on
10,698,824 Bl 6/2020 Mittal et al. Computing Frontiers, ACM, 2 Penn Plaza, Suite 701 New York NY
10,698,842 Bl 6/2020 Dastidar et al. 10121-0701 USA, May 16, 2016, pp. 205-213, XP058259517, DOI:
11,074,208 B1* 7/2021 Dastidar GOG6F 13/1668 10.1145/2903150.2903155, ISBN: 978-1-4503-4128-8 p. 205-p.
2007/0294485 Al 12/2007 Zefter et al. 207
ggogﬁgggﬁjggg i éggog Ezzu:te;?n et al. David Koenen et al: .“United St.::lt@Si Cadence Introduces First
5017/0060606 Al 39017 Hollingef Interface and Verification IP solution for CCIX to Advance New
20:7/0068626 A 3/203:7 T ais et al. Class of Datacenter Servers” Mena Report, May 5, 2017, XP055483333,
2018/0131637 Al 5/2018 Hughes et al. London. Retrieved from teh the Internet: URL:http://www.armtechform.
2018/0287964 Al 10/2018 Gray com./attached/article/c7_ccix20171226161995.pdf pp. 11-p. 15.
2019/0004990 Al 1/2019 Van Doren et al.
2019/0042292 Al 2/2019 Palermo et al. * cited by examiner

US 11,693,805 Bl

Sheet 1 of 8

Jul. 4, 2023

U.S. Patent

L Ol

041
MOGNIM

9l

S544ddy
va019

JINVIN HOLVIA

001

Y081 40IN30
NOISNVdXd AdOWN

| J0pL AYINT LvES

||

—— 06¢l 100d AdOWd

q081 3OIA3d
NOISNVdXd AdOWZN

a0y, AYIN3T 1vas

| EET_ 1004 A¥OMN .

—— D4l AdIN- 1VdH

J0L1 100d

_ — NOISNVYdXd AdONAW

GCl HOLIMS

|

MHOMLIN ONILNOY

a0l 100d |

— NOISNVdXd AdOW-N

V081 JOIA3C
NOISNVdXd AdOWZN

YopL AMIN3 Lvas || |

—Illul—i.

— véelL 100d AdOWIN _

V0Ll 100d

— NOISNVdXd AJONAN

U.S. Patent Jul. 4, 2023 Sheet 2 of 8 US 11,693,805 B1

IDENTIFY A PLURALITY OF SLAVE AGENTS IN THE MEMORY 205
EXPANSION DEVICES

IDENTIFY A NUMBER AND SIZE OF EACH MEMORY POOL IN THE 210
MEMORY EXPANSION DEVICES

IDENTIFY A PLURALITY OF HOME AGENTS CAPABLE OF COHERENTLY 215
MANAGING THE MEMORY EXPANSION DEVICES

IDENTIFY THE NUMBER AND SIZE OF MEMORY POOLS THAT EACH

HOME AGENT CAN MANAGE 220

MATCH THE MEMORY POOLS IN THE MEMORY EXPANSION DEVICES 295
AND THE HOME AGENTS TO WINDOWS

GENERATE A GLOBAL ADDRESS MAP USING THE WINDOWS 230

PERFORM LOAD/STORE OPERATIONS USING A ROUTING NETWORK 235

USING THE GLOBAL ADDRESS MAP

FIG. 2

GOl 0Ll Gll m mV_H_ Ol Gl 0t

700dWaN | 1 1

US 11,693,805 Bl

PRI EIE | -MOGNIM ~AYING | N3OV
NOISNYD| | ||| ABINI] AYSHS 1ves | INVIS

700d | - .
NOISNYdX3| AdLN ¢"MOANIM AINT | ” IN3OV
OISNEAAIC T yan |© WSO | s] Lves ¢ 100dNAN C 1 Jas [

INJOV
JNOH

| INTOV _
| JNOH

100d | _ |\

o | INFOV |, noisnvaxale N AYINT ¢ e-MOANIM | AMING ¢ e N\ N3OV |¢
S [Omzm_n_w,_ . 1YaH NVYSHO 1vas | 100dAEA VIS
2 NOISNYXa|y AN |y oodwan|y

INFOV |,

IAVIS
o
= 100d | _
& NOISNVdX3| 1-q A 82 Mins |8 | 100dnan|1-a wﬂwm._uw v
+ . - (1-ormoaNim | <> |
= NYSH-© .
= NOISNYdX3| g |AdLNA g _ Joon._s_m_\,__m

1vdH D-MOANIM

NVSH-9

~

m NVSH
m w8019
P]
s \
U. 0L1 001

v Ol

- <0'8> | OAYIN3 <@v> | 0AYMINS
Z1Y8-S 1Y8-S

AZ1S
01004 01004

CVS

US 11,693,805 Bl

-1d0d %0] 48] ¢-140d

Sheet 4 of 8

¢-1d0d

adA | udxgWa\ adA [udxwa

1 10043 010044

3713 w 37IS
|- 140d

Jul. 4, 2023

01lva-H
¢1d0d <O-8>

1 1H0d <q.Y>

Ke] OVH NVS-H

U.S. Patent

e "

- G 'Ol
—

o <0'8> | 0AYINI

m _ lves

- 6Tl
2 | s | he
= 3205 £-140d

010043

7O

v o
I
-
\f,
2
=
)
1-1d0d
. ”
S
al 471S
M adA | udxqwe
-
—

01004

2]

OVH

U.S. Patent

1V8-S

Z-140d SR
0T00dININ

¢l

010043

US 11,693,805 Bl

eVS

o
=
= | £1d0d
,_w _
=
)

-
e,
g
—
gl
M 471S
= adA Judxqway

010043

¢VH

¢l

U.S. Patent

£l

9 Ol

 dvaH |

4715
adA judxqwsiy

2]

= VAR
L TOOdWEIN 0 100aNdIN

<4-(> LAG 1IN
1v8-S

US 11,693,805 Bl

evS 0]
v o
-~
Ny p-140d e-140d
.w .
et
79
e,
g
—
g |
= 37IS
=
p—

070043 ¢-1d0d

wm_hu_.cn_xm_.tm_\ﬁ l
1-1d0d

CVH

¢Ol

U.S. Patent

L Ol

_<8Y> JOAMING
_ lvaH |

4715
adA judxgway

0100dNdIN

| VH

2]

US 11,693,805 Bl

Sheet 8 of 8

Jul. 4, 2023

U.S. Patent

0¢8

NSRS

N

NVS-O

MAIA

INJOV
JAVIS

N\

Gl8

8 Old

NVYS-D

M4IA

INJOV
JINOH

ST
1020 %0 0 v e

SR

ooooooow
10202 % % % %

SRRXIRKKR
19050770 % %%

BRI
IORKHRRKS
SRRKXRKKS
SRARHXHAKKS
XIIRK

SRARRXHRKS

N NN NN NN

NVS-D

MJIN

INJOV
1S3N03Y

G038

I/ 008

US 11,693,805 Bl

1

ROUTING NETWORK USING GLOBAL
ADDRESS MAP WITH ADAPTIVE MAIN
MEMORY EXPANSION FOR A PLURALITY
OF HOME AGENTS

CROSS-REFERENCE TO RELATED
APPLICATION

The present application claims the benefit of U.S. Provi-
sional application Ser. No. 16/355,146 filed Aug. 29, 2019,
the contents of which are hereby incorporated by reference
in its entirety.

TECHNICAL FIELD

Examples of the present disclosure generally relate to
mapping expansion capable home agents to expansion

memory devices 1n a coherent memory environment.

BACKGROUND

Server CPU-Accelerator systems, such as those enabled
by the Compute eXpress Link (CXL), Cache Coherent
Interconnect for Accelerators (CCIX), QuickPath Intercon-
nect/Ultra Path Interconnect (QPI/UPI), Infinity Fabric,
NVLmk™, and Open Coherent Accelerator Processor Inter-
tace (OpenCAPI) connected SoCs are all inherently hard-
ware cache-coherent systems—i.e. the hardware maintains a
universal, coherent view of accessed, modified, and cached
data regardless of whether the processor or accelerator 1s
acting as the producer or consumer of the data and metadata
(information about the data) and regardless whether the
memory 1s directly attached to the Server or remotely
attached with for example, the CCIX or CXL protocol.

Meanwhile, Storage Class Memory (SCM) cards, with
comparably lower latencies than hard drives as well as
higher capacity than main memory, are icreasingly bridg-
ing the gap between low latency DRAMs (e.g., main
memory) that have limited capacity (GB) to high latency
disk/non-volatile memory that have large capacities (1B)
(e.g., hard drnives). These SCM cards allow for the server to
not be limited to the capacity and volatile nature of conven-
tional memory technologies such as DDR and High Band-
width Memory (HBM).

CPU and Accelerator implementations without protocols
such as CCIX or CXL, standardize on one type of standard
memory technology, such as DDR or HBM, for integration
in their SoCs or CPU and Accelerator implementations and
may have their own proprietary technology, such as MRAM
or 3-D Crosspoint.

CPU SoCs that are built with the attributes summarized
above have physical constraints to their memory capacity
either due to die size constraints on monolithic dies where
only a limited number of memory controllers can be offered,
or pin/port constraints, even for chiplet based designs, that
allow only a limited number of (DDR or HBM) memory
controller pins from a single socket. Meanwhile, SCM based
devices have one of two options: be implemented with the
SCM 1terface built mto the CPU SoC using a proprietary
memory protocol or be implemented using an industry or
consortium protocol such as CCIX or CXL.

There are several disadvantages with this approach. First,
proprietary schemes do not allow other industry SCM 1nno-
vators to participate. Second, industry or consortium proto-
col attached SCM schemes may be dimensioned such that,
depending on the Host SoC implementation, the amount of
SCM memory available 1 a physical CCIX or CXL card 1s

10

15

20

25

30

35

40

45

50

55

60

65

2

oversubscribed or undersubscribed due to mismatches
between the memory expansion capabilities of the Host (the
Home Agent), and the memory capacity of the SCM card
(the Slave Agent).

SUMMARY

Techniques for managing memory expansion devices.
One example 1s a method that includes identifying a plural-
ity of memory expansion devices, identitying a plurality of
home agents capable of coherently managing the plurality of
memory expansion devices, 1dentifying a type of least one
memory pool 1 each of the plurality of memory expansion
devices, 1dentitying the plurality of home agents that can
manage that type, generating a global address map compris-
ing a plurality of windows based on the type of the at least
one memory pool in each of the plurality of memory
expansion devices and the plurality of home agents that can
manage that type where each window maps at least one of
the plurality of memory expansion devices to at least one of
the plurality of home agents, and accessing, by the plurality
of home agents, the memory pools in the plurality of
memory expansion devices.

Another example 1s a computing system that includes a
plurality of memory expansion devices comprising diflerent
types of memory pools, a plurality of home agents config-
ured to coherently manage the plurality of memory expan-
sion devices based on the different types ol memory pools,
and a global address map comprising a plurality of windows,
wherein each window maps at least one of the plurality of
memory expansion devices to at least one of the plurality of
home agents.

Another example 1s a method that includes 1dentifying a
plurality of memory expansion devices, 1dentifying a plu-
rality of home agents capable of coherently managing the
plurality of memory expansion devices, identifving a size of
at least one memory pool 1n each of the plurality of memory
expansion devices, 1dentifying an amount of memory that
can be managed by each of the plurality of home agents,
generating a global address map comprising a plurality of
windows based on the size of at least one memory pool in
cach of the plurality of memory expansion devices and the
amount of memory that can be managed by each of the
plurality of home agents where each window maps at least
one of the plurality of memory expansion devices to at least
one of the plurality of home agents, and accessing, by the
plurality of home agents, the memory pools 1n the plurality
of memory expansion devices.

BRIEF DESCRIPTION OF DRAWINGS

So that the manner 1n which the above recited features can
be understood 1n detail, a more particular description, briefly
summarized above, may be had by reference to example
implementations, some of which are illustrated in the
appended drawings. It 1s to be noted, however, that the
appended drawings 1llustrate only typical example imple-
mentations and are therefore not to be considered limiting of
its scope.

FIG. 1 1s a block diagram of a computing system that
maps home agents to slave agents implemented using
memory expansion devices, according to an example.

FIG. 2 1s a flowchart for matching home agents to
memory expansion devices, according to an example.

FIG. 3 1llustrates a logical mapping between home agents
and slave agents, according to an example.

US 11,693,805 Bl

3

FIGS. 4-7 illustrate hardware implementations for map-
ping home agents to slave agents, according to an example.

FIG. 8 illustrates various views of a global address map,
according to examples.

DETAILED DESCRIPTION

Various features are described hereinafter with reference
to the figures. It should be noted that the figures may or may
not be drawn to scale and that the elements of similar
structures or functions are represented by like reference
numerals throughout the figures. It should be noted that the
figures are only intended to facilitate the description of the
various features. They are not intended as an exhaustive
description or as a limitation on the scope of the claims. In
addition, an 1llustrated example need not have all the aspects
or advantages shown. An aspect or an advantage described
in conjunction with a particular example 1s not necessarily
limited to that example and can be practiced 1n any other
examples even 1f not so 1illustrated, or if not so explicitly
described.

An adaptive memory expansion scheme 1s proposed,
where one or more memory expansion capable Hosts or
Accelerators can have their memory mapped to one or more
memory expansion devices. The embodiments herein are
applicable to any computing system including a heteroge-

neous compute environment where a cache coherent proto-
col 1s used, such as the CXL, CCIX, QPI/UPI, AMD Infinity

Fabric, NVLink, and OpenCAPI (particularly the CXL.mem
extensions intended for main memory expansion). Referring
particular to CXL and CCIX, the embodiments herein apply
to multi-socket CCIX or CXL (Processor) hosts, adaptively
expanding their memory from one host socket to multiple
memory expansion CCIX or CXL cards (e.g., types of
memory expansion devices). The embodiments herein also
apply to multi-socket CCIX or CXL hosts adaptively
expanding their memory to a single memory expansion
CCIX or CXL card.

The embodiments below describe discovery, configura-
tion, and mapping schemes that allow independent SCM
implementations and CPU-Host implementations to match
their memory expansion capabilities. As a result, a memory
expansion host (e.g., a memory controller in a CPU or an
Accelerator) can declare multiple logical memory expansion
pools, each with a unique capacity. These logical memory
pools can be matched to physical memory in the SCM cards
using windows 1n a global address map. These windows
represent shared memory for the Home Agents (HAs) (e.g.,
the Host) and the Slave Agent (SAs) (e.g., the memory
expansion device). Multiple ports/pins and memory expan-
sion pools 1 the HA can be mapped to the same window.
Similarly, multiple memory pools in the memory expansion
devices (and multiple memory expansion devices) can be
mapped to the same window. Put differently, the memory
expansion destination (e.g., a memory expansion device)
can also declare multiple logical memory expansion desti-
nations, each also with a unique capacity or size.

Unlike prior techniques, this invention does not rely on
both static capacity mapping or one-to-one physical Host to
memory expansion destination mapping. Instead, the
embodiments herein create a dynamic mapping and remap-
ping scheme between multiple candidate Memory Expan-
sion Hosts (e.g., HAs), and multiple candidate Memory
Expansion Destinations (e.g., Memory Expansion Devices
or SAs). The system strives for an optimal capacity match
between the Hosts and Destinations, efficient use of their
resources, and also an improvement in the overall perfor-

10

15

20

25

30

35

40

45

50

55

60

65

4

mance of the system since the scheme allows for maximum
memory expansion capability across the system regardless
of the physical limitations of the specific components within
the system.

FIG. 1 1s a block diagram of a computing system 100 that
maps HAs to SAs implemented using memory expansion
devices, according to an example. The computing system
100 includes a plurality of HAs 105 coupled to a plural of
SAs 130 via a routing network 120. The routing network 120
includes one or more switches 123 that communicatively
couple the HAs 105 to the SAs 130. However, 1n other
embodiments, the HAs 105 and the SAs 130 may be directly
connected to each other (e.g., through one or more hard
wired routing traces).

The HAs 103 each include one or more memory expan-
sion pools 110 and Home Agent Base Address Table (HBAT)
entries 115. The memory expansion pools 110 represent the
amount of memory that can be externally managed by the
HA 105. For example, the HA 105A may have a first
memory expansion pool 110A representing an 8 gigabyte
memory block that can be managed by the HA 105A. In
another example, the HA 105A may have first and second
memory expansion pools 110A that each represent two 8
gigabyte (or two 4 gigabyte) logical memory blocks. For
example, the memory expansion pools 110 may include data
describing how many, and what size, external memory
blocks (which are physically located on the memory expan-
sion devices 180) can be managed the HA 105.

In one embodiment, the HA 103 includes one HBAT entry
for each memory expansion pool. The HBAT entries 115 are
control structures that map one of the memory expansion
pools (e.g., a logical block of memory) to a window 170 1n
a global address map 160 which 1s described later. For
example, the HBAT entries 115 may include memory
addresses (or a range of memory addresses) 1n the global
address map 160 that are assigned to 1ts corresponding
memory expansion pool 110.

In one embodiment, the HA 105 1s a memory controller.
The HA 105 may be integrated into a processor (e.g., a CPU)
or an Accelerator implemented 1n a field programmable gate
array (FPGA) or system-on-a-chip (SoC). In any case, the
HA 105 may be part of an mtegrated circuit (IC). The HA
105 can be any hardware element that coherently manages
external memory.

The memory expansion devices 180 include SAs 130
which 1n turn include one or more memory pools 135 (also
referred to as MemPool) and corresponding Slave Agent
Base Address Table (SBAT) entries 140. The memory pools
135 represent the physical memory in the SAs 130 and the
memory expansion devices 180. For example, the SA 130A
may include a first memory pool 135 with a capacity of 4
gigabytes. The SA 130B may include two memory pools 135
cach with a capacity of 8 gigabytes. As discussed later, the
memory pools 135 are mapped to the HAs 105. Specifically,
the memory pools 135 are assigned to the memory expan-
s1on pools 110 so that the physically memory pools 135 can
be managed and accessed by the HAs 105 (e.g., to perform
load/store operations).

In one embodiment, there 1s a one-to-one relationship
between the SBAT entries 140 in an SA 130 and the memory
pools 135. The SBAT entries 140 are control structures
which map a corresponding memory pool 135 to a window
170 1n the global address map 160.

In one embodiment, the memory expansion devices 180
are SCM cards, but can be any external memory that is
pluggable or attachable into the computing system 100. The
memory expansion devices 180 are separate from the HAs

US 11,693,805 Bl

S

105 but may be enclosed 1n the same structure or different
structure as the HAs 105. In one embodiment, a coherent

protocol for heterogeneous compute elements, such as
CCIX, CXL, QPI/UPI, AMD Infinity Fabric, NVLink, or
OpenCAPI 1s used to communicatively couple the SA 130 to
the HA 105 so the memory pools 135 1n the SAs 130 can be

coherently managed by the HAs 105.

The computing system 100 also includes a match maker
150 which generates the global address map 160 and its
memory windows 170. That 1s, using the techniques below,
the match maker 150 (e.g., a software application, a hard-
ware element, or combinations thereof) identifies the capa-
bilities of each of the HAs 105 (using information contained
in the memory expansion pools 110), the number and size of
the memory pools 135 1n the SAs 130, and matches them to
form windows 170. In some embodiments, on or multiple
HAs are mapped to the same window 170. Stmilarly, one or
more memory pools 135 may be mapped to the same
window 170. Thus, the HAs 105 can have any number of
memory expansion pools 110 that represent different sizes of
logical memory blocks and the memory expansion devices
180 can have any number of memory pools 135 with any
different sizes and the match maker 150 can mix-and-match
the memory pools 135 to satisiy the capabilities of the HAs
105. In that way, the computing system 100 can include HAs
105 and SAs 130 from different vendors, manufactures, and
different models and still efliciently map the HAs and SAs
130 to the windows 170 so the memory 1s not oversub-
scribed or undersubscribed.

FI1G. 2 1s a flowchart of a method 200 for matching home
agents to memory expansion devices, according to an
example. For clarity, the blocks of method 200 are discussed
in tandem with FIG. 3 which 1llustrates a logical mapping
between home agents and slave agents, according to an
example. At block 205, the match maker identifies a plural-
ity of SAs 1n the memory expansion devices. Each memory
expansion can include one or more SAs which are repre-
sented by SAs 1-A in FIG. 3.

At block 210, the match maker 1dentifies a number and
s1ze of each memory pool in the memory expansion devices.
Each SA can include one or more memory pools (or Mem-
Pool 1n FIG. 3). Thus, there may be more MemPools 1-B 1n
the computing system than SAs 1-A (1.e., B can be greater
than A). That 1s, the SAs can declare 1 to B number Memory
Pool Capabilities & Status data structures. In one embodi-
ment, each Slave Agent declares at least one Memory Pool.

The memory pools declare to the match maker their
memory attributes including their size and memory type
(e.g., volatile or non-volatile). As shown 1n FIG. 1, each of
the memory pools have corresponding SBAT entries.

At block 215, the match maker i1dentifies a plurality of
HAs capable of coherently managing external memory (e.g.,
the SAs on the memory expansion devices). As mentioned
above, these HAs can be memory controllers 1n processors
or accelerator devices and are represented i FIG. 3 as HAs
1-E.

At block 220, the match maker identifies the number and
size of memory pools that each HA can manage. This
information may be declared in the memory expansion
pools. For example, the HA may be capable of managing
only one 8 gigabyte memory pool. Alternatively, the HA
may have two ports and can manage two 8 gigabyte memory
pools. As such, the number of Memory Expansion Pools
(e.g., Pools 1-D) can difler from the number of HAs. Further,
the HA may prefer a particular type of memory pool—
nonvolatile rather than volatile.

10

15

20

25

30

35

40

45

50

55

60

65

6

At block 225, the match maker matches the memory pools
in the memory expansion devices and the HAs to windows.
For example, 1f the HA can manage one 8 gigabyte memory,
it may be mapped to the same window as two memory pools
in an SA that are 4 gigabytes each. Alternatively, the HA can
be mapped to the same window as a first SA with a 4
gigabyte memory pool and a second SA with a 4 gigabyte
memory pool. Thus, one HA can be mapped to multiple SAs.
In another example, multiple HAs are mapped to the same
window as a single SA. For example. first and second HAs
that are each capable of managing an 8 gigabyte memory
block may be mapped to the same window as a single SA
with an 16 gigabyte memory pool. In yet another example,
multiple HAs and multiple SAs can be mapped to the same
window. Thus, as shown 1n FIG. 3, there can be a diflerent
number of windows 1-C than MemPools 1-B and Mem
Expansion Pools 1-D. With this flexibility, the match maker
can generate windows that provide more eflicient use of the
memory pools than a one-to-one match as used 1n previous
solutions.

In addition to considering size when matching the
memory expansion pools in the HA to the memory pools in
the SA, the match maker can consider the type of memory
detailed in the information contained 1n the memory expan-
sion pools. For example, some HAs may want to manage
nonvolatile external memory pools (or a specific type of
nonvolatile memory—e.g., resistive memory). The match
maker can select an SA with the same type of memory to
match to the same window as the HA.

At block 230, the match maker generates the global
address map using the windows. In one embodiment, the
global address map 1s within the system address space. The
global address map provides an intermediate map between
the HAs and SAs so that different numbers of HAs and SAs
can be mapped to the same window using their correspond-
ing SBAT and HBAT entries.

In one embodiment, the memory in the 1-to-B memory
pools 1s mapped to the HA System Address Map (G-HSAM)
in FIG. 3 by programming the SBAT Entry control struc-
tures. An SBAT Entry can be programmed with the
addresses contained in one G-HSAM window, or multiple
SBAT Entries can be programmed with the addresses con-
tained 1n one G-HSAM Window, thus C can be less than or
equal to B.

Similarly, the memory 1n the 1-to-D memory expansion
pools 1s mapped to the G-HSAM by programming the
HBAT Entry control structures. An HBAT Entry can be
programmed with the addresses contained 1n one G-HSAM
window, or multiple HBAT Entries can be programmed with
the addresses contained in one G-HSAM window, thus C
can be less than or equal to D.

In one embodiment, multiple BAT Entries are mapped to
a single G-HSAM window. The expansion memory for
multiple HAs can come from a single SA because multiple
HBAT memory expansion entries can be programmed with
the addresses contained 1n one G-HSAM window, while at
the same time, a single SBAT Entry can be programmed with
the addresses contained 1n the same G-HSAM window. The
expansion memory for a single HA can come from multiple
SA because multiple SBAT entries can be programmed with
the non-overlapping addresses contained in one G-HSAM
window, while at the same time, a single HBAT memory
expansion entry can be programmed with the addresses
contained 1n the same G-HSAM window.

At block 235, the computing system performs load/store
operations using a routing network configured using the

global address map. That 1s, the global address map can

US 11,693,805 Bl

7

configure the HBAT and SBAT entries, along with the
routing network, so that requesting agents (RAs) can access
the memory pools 1n the SAs which are managed by the
HAs. That 1s, the HAs permit RAs to perform load/store
operations using the memory expansion devices. The
switches 1n the routing network may have routing informa-
tion so that a particular SA 1s managed by a particular HA
(or multiple HAs) as defined in the global address map—
e.g., 1f the HA and SA are mapped to the same window 1n
the global address map.

In one embodiment, FIG. 3 shows the G-HSAM (e.g., a
global address map) generated within a system address
space that 1s generated by CCIX Configuration Software
after i1dentitying the capabilities of the CCIX Memory
Devices as well as the addressing capabilities of the CCIX
Requesting Devices. FIG. 4 illustrates G-HSAM and 1ts
relation to HAs, MemPools, and HA Base Address Table
(HBAT) Entries.

For a given CCIX topology with 1-to-E number of HAs
discovered, a corresponding 1-to-D number of memory pool
capabilities and status data structures are declared across the
HAs. In one embodiment, each HA declares at least one
Memory Pool Entry, thus D 1s greater than or equal to E.

The 1-to-D number of memory expansion pools declare
the memory attributes hosted by their corresponding HAs.
Memory attributes declared include the memory size,
memory type, and addressing capability of the memory
expansion pool.

The 1-to-D number of memory expansion pool capabili-
ties and status data structures have a one-to-one relationship
with their corresponding 1-to-D number of HBAT entry
control structures.

As mentioned above at block 230, the match maker
generates a G-HSAM with 1-to-C number of G-HSAM
windows. In one embodiment, each G-HSAM window 1s
defined by a 4 GB aligned Start and End Address, but this
1s design choice and is not required.

The memory in the 1-to-D memory expansion pools are
mapped to the G-HSAM by programming the HBAT Entry
control structures. Depending on the attributes declared 1n
the 1-to-D number of memory expansion pool entries, an

HBAT Entry can be programmed with the addresses con-

tained 1n one G-HSAM Window, or multiple HBAT Entries
can be programmed with the addresses contained in one
G-HSAM window, thus C 1s less than or equal to D.

FIGS. 4-6 1llustrate hardware implementations for map-
ping home agents to slave agents, according to an example.
FIG. 4 illustrates a physical implementation of one HA
(HAO0) mapped to the same window as two SAs (SA1 and
SA2). The IC1 includes a HA that can manage two separate
logical memory pools (MemPool0 and MemPooll). For
example, MemPool0 represents a 4 gigabyte logical memory
block while MemPooll represents an 8 gigabyte logical
memory block. The IC1 also includes correspondmg HBAT
entries (H-BAT0 and H-BAT1) which assigns the address
range of A:B to MemPool0 and the address range of B:C to
MemPooll. These address ranges can correspond to the
same window 1n the global address map (with the address
range ol A:C) or to two windows (one with address range
A:B and another with range B:C).

In any case, the MemPool0 for HA0 maps to the Mem-
Pool0 i IC2 corresponding to the SA1 while the MemPool1l
tor HAO maps to the MemPool0 1n IC3. The IC2 includes an
SBAT entry (S-BAT1) which maps the MemPool0 to the
same address range (A:B) as the MemPool0 1n IC1 while
IC3 has an SBAT entry (S-BAT?2) that maps the MemPool0
to the same address range (B:C) as the MemPooll in IC1.

10

15

20

25

30

35

40

45

50

55

60

65

8

For example, the size of the MemPool0 1n IC1 and Mem-
Pool0 in IC2 may be the same and the size of the MemPooll
in 11 and MemPooll 1n IC3 may be the same.

Moreover, 1n FIG. 4, there 1s no routing network between
the ICs. That 1s, 1 1s hardwired to IC2 via ports 1 and 3 and
to IC3 via ports 2 and 4. Thus, a switchable routing network
1s not required; instead, the embodiments herein can be
accomplished using a hard-wired routing network as shown
in FIG. 4.

FIG. 4 also includes a system address map (SAM) table
that, 1n one embodiment, resolves a destination CCIX com-
ponent (CCIX PortID) for a given address. The SAM table
1s referenced by CCIX ports and CCIX agents for address
routed packets. The SAM table structure contains one or
more entries. The SAM table size along with the SAM table
type supported by the CCIX component indicates the num-
ber of SAM entries available for setup and the index into
cach SAM entry.

In one embodiment, each SAM entry has a valid bit to
indicate whether that entry 1s enabled. Software sets the
valid bit for non-contiguous SAM entries. The address range
mapped by a particular valid SAM entry does not overlap
with an address range mapped 1n any other valid SAM entry.
However, when the HA and SA address spaces are indepen-
dent of each other, overlap of address name-space between
HBAT/RSAM and SBAT/HSAM Tables 1s allowed.

Memory pool capability data (which can be stored as part
of the memory pools) describes the size, type, and attributes
of the memory pools. The Base Address Table (BAT) 1s the
corresponding control structure associated with the memory
pool capability data. The BAT 1s used to resolve the desti-
nation memory pool for a given address 1n the SAM.

Memory pool capability data may be declared by HAs and
SAs (e.g., as part of the memory expansmn pool 1n the HA
and as part of the memory pool in the SA). Similarly, the
corresponding BAT control structure 1s referenced by HAs
and SAs. There may be a one-to-one correspondence
between memory pool capability data stored 1n the memory
expansion pool or memory pool and a BAT control structure,
also known as a BAT Entry (e.g., the HBAT and SBAT
entries as shown in FIG. 4). Therefore, HAs and SAs may
have the same number of memory pool entries and BAT
entries.

In CCIX, the BAT structure contains one or more entries
where the entries are formatted either as base address type
entries or fixed oflset type entries based on a memory pool
addressing capability field i the agent’s corresponding
memory pool capabilities and status structure. When the
memory pool addressing capability field indicated 1s fixed
oflset type, the enabled BAT entry 1s at a fixed offset from
the base address of the previous enabled BAT entry associ-
ated with a memory pool that has base address type address-
ing capability.

In FIG. 5, the MemPool0 1n IC1 1s mapped to the same
window 1n the global address map as the MemPool0 1n IC2
and the MemPool0 1n IC3. As shown, IC1 includes an HBAT
entry that maps MemPool0 1n IC1 to the address rang A:C
(which may be the address range of the window). In contrast,
IC2 has an SBAT entry that maps 1ts MemPool0 to the
address range A:B while IC3 has an SBAT entry that maps
its MemPool0 to the address range B:C.

Because the 1Cs are not hardwired 1n this case, the routing
network includes a switch 125 which ensures the correct
data 1s routed to the proper IC. That 1s, the global address
map can configure the switch 125 so that data in the address
range A:B received from IC1 1s routed to IC2 while data in
the address range B:C 1s routed to 1C3.

US 11,693,805 Bl

9

FIG. 6 1llustrates a three IC system where two HAs are
mapped to the same window as a single SA. As shown, IC1
and IC2 both have respective HAs (HA1 and HA2). HA1
has MemPool0 which 1s mapped to address range A:B by an
HBAT entry. HA2, on the other hand, has MemPool0 which
1s mapped to address range B:C. Thus, the window has an

combined address range of A:C.
The IC3 has SA3 that has a MemPool0 mapped to address

range A:C as shown by 1ts corresponding SBAT entry. For
example, the MemPools 1 IC1 and IC2 may represents a
logical size of 4 gigabytes while the MemPool0 1n IC3 has
a physical size of 8 gigabytes (or more).

The switch 125 routes data traflic received from IC3 in
address range A:B to IC1 and the data traflic 1n address range

B:C to IC2. All the tratlic received from both IC1 and IC2
1s routed to the I1C3. Thus, FIG. 6 illustrates a hardware
implementation where multiple HAs (and corresponding

memory expansion pools) are mapped to a single SA (and

corresponding memory pool).

FIG. 7 illustrates two HA ICs (IC1 and 1C2) that com-
municate with one SA IC (IC3) that has two Mem Pools and
two Ports. In this type, the SA IC can have both Ports
receiving Memory Traflic destined for only one Memory
Pool from two HA ICs. As shown, the memory ranges of the
two Mem Pools does not need to be contiguous (e.g., A:B
and D:F) although 1t can be. However, 1n another embodi-
ment, the two HA ICs can communicate with one SA IC that
has two Ports but a single Mem Pool. In that case, the
memory ranges assigned to the two HAs 1s contiguous (e.g.,
the total memory of the Mem Pool 1s A:C where one HA IC
uses A:B and the other uses B:C).

FIGS. 4-7 1illustrate four different types of ICs: (A) one
HA IC with two Mem Expansion Pools and two Ports (B)
one HA IC with one Mem Expansion Pool and one Port (C)
One SA IC with one Mem Pool and one Port and (D) one SA
IC with two Mem Pools and two Ports. The techniques
discussed above allow for the same three example mappings
and capabilities 1llustrated in FIGS. 4-7 to be achieved by
different subsets of the same four types of ICs. For example,
the Type-A IC with one HA with two Mem Expansion Pools
and two Ports can have only one Mem Expansion Pool
mapped to one Port that ends up going via a switch to two
Type-C SA ICs. In another example, the Type-D SA IC with
two Mem Pools and two Ports can have both ports receiving
Memory Traflic destined for only one Memory Pool from
two HA ICs. In summary, the embodiments herein allow for
the creation of logical connection bindings between the
memory expansion pools of one or more HAs to the memory
pools of one or more SAs not only at configuration time, but
the same components can also be reconfigured to create new
logical connection bindings at a later time.

Further, the ICs containing the HAs may be ICs forming
(or are part of) a processor—e.g., CPU—or accelerator. The
ICs containing the SAs, however, IC2 may be 1Cs disposed
on respective SCM cards.

FIG. 8 illustrates various views of a global address map,
according to one or more embodiments. In one embodiment,
the global address map 800 1s created with different “views”™
of the address map, depending on the component 1n the
system. A request agent (the coherency or load-store seman-
tics 1nitiator of memory operations) has a Request Agent-
System Address Map (R-SAM) 805. The home agent (the
coherency or load-store semantics target of memory opera-
tions) has either a H-BAT 810 to map request agent accesses
to local memory or H-SAM 815 to map request agent
accesses to expansion memory. The slave agent (the memory

5

10

15

20

25

30

35

40

45

50

55

60

65

10

expansion target of memory operations) has a S-BAT 820 to
map request agent accesses to expansion memory.

Both the home agent and slave agent have the ability to
declare the memory capacity supported via memory pool
capability data structures. The memory pool data structures
contain attributes of the memory including memory type,
capacity/size and, 1n the case of home agents, whether that
memory pool 1s capable of memory expansion and the
capacity/size of memory expansion for that pool. In one
embodiment, each memory pool capability data structure
has a corresponding BAT control data structure, described as
a BAT entry, where the system provides the system address
information that maps the G-SAM to that particular memory
pool.

In the preceding, reference 1s made to embodiments of the
disclosure. However, the disclosure 1s not limited to specific
described embodiments. Instead, any combination of the
preceding features and elements, whether related to diflerent
embodiments or not, 1s contemplated to implement and
practice the disclosure. Furthermore, although embodiments
of the disclosure may achieve advantages over other pos-
sible solutions and/or over the prior art, whether or not a
particular advantage 1s achieved by a given embodiment 1s
not limiting of the disclosure. Thus, the preceding aspects,
features, embodiments, and advantages are merely 1llustra-
tive and are not considered elements or limitations of the
appended claims except where explicitly recited 1n a
claim(s). Likewise, reference to “the disclosure™ shall not be
construed as a generalization of any inventive subject matter
disclosed herein and shall not be considered to be an element
or limitation of the appended claims except where explicitly
recited 1n a claim(s).

Aspects of the present disclosure may be embodied as a
system, method, or computer program product. Accordingly,
aspects of the present disclosure may take the form of an
entirely hardware embodiment, an entirely software embodi-
ment (including firmware, resident software, micro-code,
etc.) or an embodiment combining software and hardware
aspects that may all generally be referred to herein as a
“circuit,” “module,” or “system.” Furthermore, aspects of
the present disclosure may take the form of a computer
program product embodied 1n one or more computer read-
able medium(s) having computer readable program code
embodied thereon.

Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor system, apparatus, or device, or any suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: an electrical connec-
tion having one or more wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any
tangible medium that can contain, or store a program for use
by or 1n connection with an instruction execution system,
apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code

US 11,693,805 Bl

11

embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
computer readable signal medium may be any computer
readable medium that 1s not a computer readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, includ-
ing but not limited to wireless, wireline, optical fiber cable,
RF, etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects ol the present disclosure may be written 1n any
combination of one or more programming languages,
including an object oriented programming language such as
Java, Smalltalk, C++ or the like and conventional procedural
programming languages, such as the “C” programming
language or similar programming languages. The program
code may execute entirely on the users computer, partly on
the users computer, as a stand-alone software package,
partly on the users computer and partly on a remote com-
puter or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
users computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service
Provider).

Aspects of the present disclosure are described above with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the disclosure. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart 1llustrations and/or block diagrams, can be 1mple-
mented by computer program instructions. These computer
program 1nstructions may be provided to a processor of a
general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor ol the computer or other programmable data
processing apparatus, create means for implementing the
functions/acts specified 1n the flowchart and/or block dia-
gram block or blocks.

These computer program instructions may also be stored
in a computer readable medium that can direct a computer,
other programmable data processing apparatus, or other
devices to function 1n a particular manner, such that the
instructions stored in the computer readable medium pro-
duce an article of manufacture including mstructions which
implement the function/act specified 1n the tflowchart and/or
block diagram block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series ol operational steps
to be performed on the computer, other programmable
apparatus or other devices to produce a computer 1mple-
mented process such that the instructions which execute on
the computer or other programmable apparatus provide
processes for implementing the functions/acts specified in
the flowchart and/or block diagram block or blocks.

The tflowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the

10

15

20

25

30

35

40

45

50

55

60

65

12

present disclosure. In this regard, each block 1n the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for 1mplementing the specified logical
function(s). In some alternative implementations, the func-
tions noted in the block may occur out of the order noted in
the figures. For example, two blocks shown in succession
may, i fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. Each block of
the block diagrams and/or flowchart illustration, and com-
binations of blocks 1n the block diagrams and/or flowchart
illustration, can be implemented by special-purpose hard-
ware-based systems that perform the specified functions or
acts, or combinations of special purpose hardware and
computer instructions.

While the foregoing 1s directed to embodiments of the
present invention, other and further embodiments of the
invention may be devised without departing from the basic

scope thereof, and the scope thereof 1s determined by the
claims that follow.

What 1s claimed 1s:

1. A method, comprising:

identitying a plurality of memory expansion devices;

identifying a plurality of home agents capable of coher-

ently managing the plurality of memory expansion
devices:

identifying a type of at least one memory pool 1n each of

the plurality of memory expansion devices;
identifying the plurality of home agents that can manage
that type;

generating a global address map comprising a plurality of

windows based on the type of the at least one memory
pool 1n each of the plurality of memory expansion
devices and the plurality of home agents that can
manage that type, wherein each window maps at least
one of the plurality of memory expansion devices to at
least one of the plurality of home agents; and
accessing, by the plurality of home agents, the memory
pools 1n the plurality of memory expansion devices.

2. The method of claim 1, wherein the type of the at least
one memory pool in each of the plurality of memory
expansion devices 1s one of volatile or non-volatile memory.

3. The method of claim 1, further comprising;:

identifying a size of the at least one memory pool 1n each

of the plurality of memory expansion devices; and
identilfying an amount of memory that can be managed by
cach of the plurality of home agents.

4. The method of claim 1, wherein at least two memory
pools 1n a first expansion device of the plurality of memory
expansion devices map to a same window 1n the plurality of
windows as a first home agent of the plurality of home
agents.

5. The method of claim 1, wherein at least one memory
pool 1n a first expansion device of the plurality of memory
expansion devices and at least one memory pool 1n a second
expansion device of the plurality of memory expansion
devices map to a same window 1n the plurality of windows
as a first home agent of the plurality of home agents.

6. The method of claim 1, wherein only one memory pool
in a first expansion device of the plurality of memory
expansion devices maps to a same window in the plurality
of windows as a first home agent of the plurality of home
agents and a second home agent of the plurality of home
agents.

7. The method of claim 1, wherein a plurality of memory
pools 1n multiple ones of the plurality of memory expansion

US 11,693,805 Bl

13

devices maps to a same window 1n the plurality of windows
as a lirst home agent of the plurality of home agents and a
second home agent of the plurality of home agents.

8. The method of claim 1, wherein the plurality of home
agents are memory controllers integrated into respective
Processors.

9. The method of claim 1, wherein the plurality of home
agents 1s each disposed in a diflerent integrated circuit.

10. The method of claim 1, wherein the memory expan-
sion devices are storage class memory (SCM) cards.

11. A computing system, comprising:

a plurality of memory expansion devices comprising

different types of memory pools;

a plurality of home agents configured to coherently man-
age the plurality of memory expansion devices based
on the different types of memory pools; and

a global address map comprising a plurality of windows,
wherein each window maps at least one of the plurality
of memory expansion devices to at least one of the
plurality of home agents.

12. The computing system of claim 11, wherein the
different types of memory pools include volatile and non-
volatile memory.

13. The computing system of claim 11, wherein at least
two memory pools 1n a first expansion device of the plurality
of memory expansion map to a same window 1n the plurality
of windows as a first home agent of the plurality of home
agents.

14. The computing system of claim 11, wherein at least
one memory pool 1n a first expansion device of the plurality
of memory expansion devices and at least one memory pool
in a second expansion device of the plurality of memory
expansion devices map to a same window 1n the plurality of
windows as a first home agent of the plurality of home
agents.

15. The computing system of claim 11, wherein only one
memory pool 1n a first expansion device of the plurality of
memory expansion devices maps to a same window 1n the

10

15

20

25

30

35

14

plurality of windows as a first home agent of the plurality of
home agents and a second home agent of the plurality of
home agents.

16. The computing system of claim 11, wherein a plurality
of memory pools in multiple ones of the plurality of memory
expansion devices maps to a same window in the plurality
of windows as a first home agent of the plurality of home
agents and a second home agent of the plurality of home
agents.

17. The computing system of claim 11, wherein the
plurality of home agents are memory controllers integrated
into respective processors.

18. The computing system of claim 11, wherein the
plurality of home agents 1s each disposed in a different
integrated circuit.

19. A method, comprising;

identitying a plurality of memory expansion devices;

identifying a plurality of home agents capable of coher-

ently managing the plurality of memory expansion
devices:

identifying a size of at least one memory pool 1n each of

the plurality of memory expansion devices;
identifying an amount of memory that can be managed by
cach of the plurality of home agents;

generating a global address map comprising a plurality of

windows based on the size of the at least one memory
pool 1 each of the plurality of memory expansion
devices and the amount of memory that can be man-
aged by each of the plurality of home agents, wherein
cach window maps at least one of the plurality of
memory expansion devices to at least one of the
plurality of home agents; and
accessing, by the plurality of home agents, the memory
pools 1n the plurality of memory expansion devices.
20. The method of claim 19, wherein at least two memory
pools 1n a first expansion device of the plurality of memory
expansion devices map to a same window 1n the plurality of
windows as a first home agent of the plurality of home
agents.

	Front Page
	Drawings
	Specification
	Claims

