12 United States Patent

USO011693726B2

(10) Patent No.:

US 11,693,726 B2

Lozano et al. 45) Date of Patent: Jul. 4, 2023
(54) ERROR DOCUMENTATION ASSISTANCE (38) Field of Classification Search
CPC GO6F 11/3447; GO6F 11/0793; GO6F
(71) Applicant: State Farm Mutual Automobile 11/079; GO6F 11/0772: GO6N 20/00:
Insurance Company, Bloomington, IL GO6K 9/6256
(US) See application file for complete search history.

(72) Inventors: Javier Lozano, Wylie, TX (US); (56) References Cited

William Luo, Garland, TX (US); -
Carlos Gonzalez, Allen, TX (US); Bing U.S. PAIENT DOCUMENTS

(Aaron) Lin, Allen, TX (US) 5,446,880 A * 8/1995 Balgeman ... GOG6F 16/258
707/999.009

(73) Assignee: State Farm Mutual Automobile 7,475,286 B2 1/2009 Altaf et al.
Insurance Company, Bloomington, IL 8,332,765 B2 12/2012 Ergan et al.
(US) 9,275,358 Bl 3/2016 Yap et al.
10,175,979 Bl 1/2019 Elwell et al.
(*) Notice: Subject. to any disclaimer,. the term of this ig:gggﬁg E% 1%3823 g;;@lbei al
patent 1s extended or adjusted under 35 10,565,077 B2* 2/2020 Hayden GO6F 11/2257
U.S.C. 154(b) by 0 days. 10,572,374 B2 2/2020 Sharma et al
(Continued)
(21) Appl. No.: 17/370,968 Primary Examiner — Yolanda L. Wilson
(22) Filed: Jul. 8. 2021 (74) Attorney, Agent, or Firm — Lee & Hayes, P.C.
(57) ABSTRACT
(65) Prior Publication Data An error documentation system including tools to collect
US 2022/0019496 Al Jan. 20, 2022 and analyze application error data for imndividual develop-
ment teams and tools to share documented defects and
solutions across development teams during any stage of
Related U.S. Application Data development cycle. The system may receive and analyze
(60) Provisional application No. 63/051,739, filed on Jul. event logs for error events triggered by applications on
14. 2020 T end-user devices. The system may automatically generate
’ ' defect tickets and/or ticket entries for defects identified in
event logs. The system may train one or more machine
(51) Int. CL 108 M M . ore A
GOGF 11/07 (2006.01) learning (ML) models to correlate immput with identified
GO6N 20/00 (2019.01) defects from a defects database. In response to i1dentifying
GOGF 18/214 (2023.01) correlated 1dentified defects, the system may generate ticket
(52) US. Cl entries indicating the correlated 1dentified defects and asso-
CPC ' GOGF 11/079 (2013.01); GO6F 11/0772 ciated solutions for the defects. The system may provide an
"""(5013 01); GOGF 11 0703 (’2013 01): GOGF interface for users to query the data stored in the database.
187214 (2023.01); GO6N 20/00 (2019.01) 19 Claims, 6 Drawing Sheets
- 100
~ {2 y
&';El':iefectif}: 600.0123
@ . 2ppiD: CPu?SDi{
T @ mSg:.E;;rpSiIin'g |
DEVICE(S) i N 118(1)
102(1 ’ .
U 168(1) - RROR DOCUMENTATION EH
. COMPONENT & defectiD; 000.0124
4 s appl D ClientG Ui
oo _ tie - Eerr-::r: nul pointer |
-H ~t S DEFECT ANALYZER | | ™~ < rosg: Errortad - String2
- = >—-f 11_'{1 = CDM?;CTENT .x"’;) . 118(2)
DEVICE(S VENT 134 1% .
%g"g}b) 106(2) : ; E
£ * defectiD: 000.0123
.. ?;ﬁiz :;:S; _ ap;ifp: CEGU?SDK
116 mf-‘.;Errc;'EEiEg ”
1 :) | eatry: logiD.000. 1 B
g\le | = T
Event h e i | o
IO 1G8(N) e et vor E
DEVICE(S) How may | direct your :
102(N) E'E' : ' {“ ooy [@
\ / ER‘.-*ER(S) o org.intercepior, Faull @ 5

]

i

' A
-'1‘_‘...-

NETWORK(S) T~ 120
106

US 11,693,726 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS

10,635,409 B2* 4/2020 Pradhan GO6F 8/33

10,740,216 Bl 8/2020 Parent

10,771,314 B2 9/2020 Misra et al.
2004/0199828 Al 10/2004 Cabezas et al.
2012/0246623 Al 9/2012 Creel
2017/0046246 Al1* 2/2017 Kaulgud GO6F 8/30
2017/0344413 Al 11/2017 Chakra et al.
2018/0121808 Al1* 5/2018 Ramakrishna GO6F 11/0709
2019/0089577 Al1* 3/2019 Misra GO6F 16/9024
2019/0347282 Al* 11/2019 Cai GO6K 9/6215
2020/0073738 Al 3/2020 Gaida
2020/0293946 Al1* 9/2020 Sachan GO6N 5/04
2020/0409819 Al 12/2020 Acharyya et al.

* cited by examiner

726 B2

2

US 11,693

Sheet 1 of 6

Jul. 4, 2023

U.S. Patent

L Old

01 (SPIANIS

901

Al Y (SHHOMLIN

Iine -4 jojdasialuibio

)
;. ABpOo} Yyoless

JNOA 10041p | ABW MOH
Y

(N)ZO1
(8)301A3Q

_ (N)SOL \
N INIAT

B E g S S S Sy S S T S T S T Sy S S Sy Sy SR S s S Ty S g Sy Syt S Sy g Sty

GG 1'000°QIBo} Anus | J |
BuiS 10443 Bsw | Gl
uondasxa ous m ININOJINOD
Maspnod aidde | T 004 AMIND ”
£21.0°000 :anosep Kj) N J

_ — x Ll - - Ll - - Ll - - Ll - - Ll - - Ll - - Ll - - Ll - - Ll - - Ll - J A ”m v.wo _

, %) INIAT
.) . il
(2)81l // 7 ININOJNOD \i/

ZBUMG - £7 110437 Bew T~ L || ¥3ZATWNY 103430

jejuod jny lous N
noweD qidde chl
_ ¥Z10°000 :Qiosgep a ININOdWNOD
___ r NOILYLNIWN00G HOMY L

(2)201

=
0>

(1)801 (1)z01

(1)8L1 N ANSAT (8)30IA3Q

L
LR

L
\

-~ y

Bulg Joui Bsu \.L
uondaoxs (Jolie
MASPNojD (giade
€c10°000 ‘(Qhosjxp

U.S. Patent Jul. 4, 2023 Sheet 2 of 6 US 11,693,726 B2

— 200
y

PROCESSOR(S) 202
COMPUTER-READABLE MEDIA 204
ettt ¥ | | e o
COMMUNICATIONS COMPONENT
206 ~ DATA STORE 218
4 ™ _ |
MODEL(S) (event legdsa t;iei’:;ii céittaa }solutions 5
216 N
e e y \ _________ /
ERROR DOCUMENTATION COMPONENT
112
USER PORTAL COMPONENT TICKETING COMPONENT
208 212
\. A J
RULES COMPONENT WORKFLOW COMPONENT
210 214
_ J .
4 ™y ™
DEFECT ANALYZER COMPONENT QUERY TooL COMPONENT
114 116
N e it ettt it i ittt ittt ettt et B N /
w,
_ Y,

SERVER(S) 104

FIG. 2

US 11,693,726 B2

Sheet 3 of 6

Jul. 4, 2023

U.S. Patent

AN
0ct

8le -

& Ol

lllll
.....

r
llllll
.
......
......

......
..........
111111
111111
111111
111111
111111
111111
111111
111111
111111
......
111111
111111
111111
111111
111111
......
111111
111111
111111
111111
111111
......
111111

SiNOY $7 158y

Il'J
Akl

NOA pInoMm aules) swul) JeUYAA jJeelb ime\

§)
| ; uonesydde 10

| SW AG UDIBSS NOA 183j1 0] 8311 NOA PINOAA
ﬁgog_om LIOUItIO) 350U o) 0 Syullf Sil] y

alifai

A/J
Ainbupxspupuswesife suondeoxs

J

.

N zLe

~OLE

SNOLLATIOS INAWNO0QO

80¢

\\m

LINOLL N3dO

/m 90¢

u\

c

p0g
™ zog

-

U.S. Patent Jul. 4, 2023 Sheet 4 of 6 US 11,693,726 B2

400

402

IDENTIFY, BASED AT LEAST IN PART ON THE EVENT LOG, A DEFECT
AND CORRESPONDING DEFECT INFORMATION

IDENTIFY A SOLUTION OF THE RESOLVED DEFECT INDICATED IN THE
DEFECTS DATABASE
408

(GENERATE A DEFECT TICKET FOR THE DEFECT INCLUDING THE DEFECT
INFORMATION AND INDICATING THE SOLUTION
410

l

STORE THE DEFECT TICKET IN THE DEFECTS DATABASE
412

U.S. Patent

Jul. 4, 2023

hhh

EVENT

'RECEIVE EVENT LOG ASSOCIATED WITH AN ERROR

Sheet 5 of 6

ADD LOG IDENTIFIER TO IDENTIFIED DEFECT

TICKET
508

- DEFECT

PR T R R S g

US 11,693,726 B2

500

GENERATE NEW DEFECT TICKET
514

RESOLVED?
510

YES

Y

DETERMINE ESCALATION
016

AR

U.S. Patent Jul. 4, 2023 Sheet 6 of 6 US 11,693,726 B2

600

CREATE TRAINING DATA BY IDENTIFYING SAMPLE DATA FROM |
A DEFECTS DATABASE *
602

' TRAIN A MACHINE LEARNING (ML) MODEL WITH THE TRAINING |
DATA TO CORRELATE INPUT TO IDENTIFIED DEFECTS AND

604

i, . r e . r e . i e . i e . r e . r e . i e e i e . i e . r e . i e . i e a_la_ e . r e . i e . i e . i e . i e . i e . i e . i e . i e . i e . i e . i

A S ——

4 D

(GENERATE A DEFECT TICKET FOR THE DEFECT INCLUDING
THE SOLUTION OF THE RESOLVED DEFECT
610

'

' Y

612

| v

CREATE NEW TRAINING DATA INCLUDING THE DEFECT TICKET
LABELED WITH THE REVIEW RESULTS
614

RETRAIN THE ML MODEL WITH THE NEW TRAINING DATA y

rrrrr

US 11,693,726 B2

1
ERROR DOCUMENTATION ASSISTANCE

CROSS-REFERENCE TO RELATED
APPLICATION

The present application 1s a nonprovisional of and claims
priority to U.S. Provisional Patent Application No. 63/051,
739, filed on Jul. 14, 2020, which 1s incorporated herein by

reference in 1ts entirety.

BACKGROUND

In many organizations, individual development teams are
often tasked with developing various applications and com-
ponents for use by other teams within the organization.
When 1t comes to addressing errors or “bugs” within the
developed applications, the team that developed the appli-
cation 1s typically also tasked with fixing such bugs so that
the application can continue to be used. Accordingly, within
the organization, each development team may utilize one or
more respective databases to track and manage the various
bugs associated with their applications and the correspond-
ing fixes that the team develops. Although different devel-
opment teams for the same or similar applications may share
best practices with each other, when 1t comes to error
documentation and solution finding, the databases described
above commonly remain siloed within individual teams.
Such siloed databases can result in the duplication of eflorts
and can reduce the efliciency of the teams as a whole,
particularly as applications grow more complex and inter-
dependent. Accordingly, there 1s a need for an error docu-
mentation system that could assist in documenting the errors
and solutions across multiple teams to promote solution
sharing.

SUMMARY

This disclosure 1s directed to an error documentation
system, including an analysis tool configured to assist with
collecting application defect data triggered by error events
and a query tool configured to share defect data and solu-
tions. The error events may be triggered by computer errors
(e.g., null pointers, code exceptions, etc.) or triggered by
preconfigured rules for alerts. In some examples, the pre-
configured rules may include rules generated by operators
(e.g., software developers) to track specific events occurring
on their application. In additional examples, the system may
use a logging tool to assist the analysis tool with data
collecting. In response to the error event, the logging tool
may log metrics from the applications running on end-user
devices and may push the metrics to a data repository (e.g.,
a cloud server) for analysis. In some examples, an end-user
device may include any user device able to execute the
application and may include a developer testing device
during any stage of development cycle for the application.

In various examples, the error documentation system may
document individual error events as event logs and may
generate log 1dentifiers to associate with the event logs. An
event log, which includes the data logged for the error event,
may be tagged or otherwise associated with a respective log
identifier (e.g., writing the log identifier to the metadata).
The system may analyze the event log to determine if the
error event 1s associated with a new unidentified defect or an
existing 1dentified defect. It the error event 1s associated with
an unidentified defect, the system may generate a new defect
ticket.

10

15

20

25

30

35

40

45

50

55

60

65

2

In various examples, the system may automatically gen-
crate and/or populate information on a defect ticket. The
system may populate a defect ticket with information gath-
ered based on analyzing the event log and additional infor-
mation inferred. The information may include but 1s not
limited to an error type, an error message, time stamp, user
identifier, response, a stack trace, an exposed endpoint,
identifier for a line of code, application and/or application
component that triggered the alert, developer 1dentifier (e.g.,
name ol a coder or a team lead), end-user device type,
operating system, related and/or dependent applications,
infrastructure defect, defect identifier, severity level, priority
level, tasks, correlated defects, correlated solutions, and the
like.

In some examples, the system may generate a task to
review a ticket and may automatically publish notifications
to any subscribers (e.g., project managers, developers, qual-
ity assurance members, operators, etc.). If the error event 1s
associated with an identified defect, the system may append
the input event log to the existing defect ticket by adding the
log 1dentifier to the ticket. In various examples, the system
may determine whether the identified defect 1s resolved or
unresolved based on whether a solution 1s found as indicated
on the ticket. In some examples, 1f new event log informa-
tion 1s added to an unresolved defect ticket, the system may
automatically generate a notification to alert a subscriber to
review the new event log. In various examples, the system
may escalate a ticket by automatically increasing the priority
level of the ticket based on a predetermined criterion. The
criterion may include determining that the number of event
logs added to the defect ticket has exceeded a threshold
escalation count.

In various examples, the error documentation system may
train one or more machine learning (ML) models using
training data from stored event logs and defects databases to
classily input data based on correlated defects. The ML
models may use the training data to learn various error
patterns and corresponding solutions to generate suggested
solutions. In some examples, the ML models may provide a
suggested solution for a new defect found 1 a first appli-
cation based on a verified solution for an identified defect
found 1n a second application. In some examples, the error
documentation system may provide a query tool, including
a chatbot, for operators to query the defects database for
similar defects and solutions. In additional examples, the
error documentation system may automatically generate a
suggested solution entry, add 1t to the defect ticket, and
publish a noftification for a subscriber to review the sug-
gested solution.

Implementations of the techniques and systems described
herein can improve existing error documentation technolo-
gies and related systems. In particular, the implementations
described herein enable an error documentation system to
assist operators i gathering defect data, analyzing the defect
data, generating defect tickets, and populating the tickets
with the gathered information. Additionally, the system
provides a query tool for different teams to share their
identified detects and solutions. Moreover, the system may
train ML models to classily mput data by correlating the
input data with identified defects based on patterns and may
suggest correlated solutions based on fixes identified 1n
correlated defect data. By classifying and correlating defect
data, the system improves the error documentation process
by timely analyzing and i1dentifying defects from input data,
automatically generating defect tickets, and populating the
tickets with information extracted from the input data,
including any correlated defects and/or solutions. The afore-

US 11,693,726 B2

3

mentioned process can reduce costly development time
associated with ticket writing and information gathering.
Additionally, by correlating defect data from diflerent appli-
cation teams, the system can minimize the costly develop-
ment time associated with the error fixing process by sharing,
documented resolutions across the different application
teams. Implementations of this disclosure can also conserve
resources, such as processing resources, for example, by
refraining from performing repeat defect analysis and/or
repeat solution-finding. These techniques will be described
in more detail below.

BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description 1s described with reference to the
accompanying figures. In the figures, the left-most digit(s) of
a reference number 1dentifies the figure 1n which the refer-
ence number first appears. The same reference numbers 1n
different figures indicate similar or identical 1tems.

FI1G. 1 1llustrates an example error documentation system,
including an analysis tool and a query tool.

FIG. 2 1s a block diagram of an example computing
architecture associated with the system of FIG. 1.

FIG. 3 illustrates an example user interface of the present
disclosure.

FIG. 4 1llustrates an example process for generating a
defect ticket to request a solution, as discussed herein.

FIG. 5 1llustrates an example defect handling process, as
discussed herein.

FIG. 6 illustrates an example process for training ML
models, as discussed herein.

DETAILED DESCRIPTION

In the following detailed description, references are made
to the accompanying drawings that form a part hereot, and
that show, by way of illustration, specific configurations or
examples. The drawings herein are not drawn to scale. Like
numerals represent like elements throughout the several
figures (which might be referred to heremn as a “FIG.” or
“FIGS.”).

FIG. 1 1llustrates an example system 100 (e.g., an error
documentation system), including an analysis tool and a
query tool. In some examples, the analysis tool may be
configured to analyze application error data and to extract
defect mformation from such data. Additionally, in some
examples, the query tool may be configured to facilitate
sharing such defect imnformation and/or documented errors
among various groups within an organization. As shown 1n
FIG. 1, the system 100 may include one or more device(s)
102(1)-102(N) (individually and/or collectively referred to
herein as “devices 102,” where N 1s any integer greater than
or equal to 2) and one or more server(s) 104.

In various examples, the error documentation system 100
can include any number of devices 102 and servers 104 to
assist 1 error data collecting, analyzing, and sharing. The
error documentation system 100 may be configured to
provide error documentation assistance to operators (“us-
ers”’), from one of the multiple development teams, working
on different application components executing on the
devices 102 associated with end-users. The end-users may
include any users, including, but not limited to, testers,
developers, beta-testers, development team members, pro-
duction team members, agents, subscribers, clients, and the
like.

The devices 102 may be configured to log data triggered
by error events that are pushed to one or more server(s) 104.

10

15

20

25

30

35

40

45

50

55

60

65

4

The devices 102 can be any type of computing device,
including but not limited to a laptop, a desktop computer, a
tablet computing device, a server, a kiosk device, a smart-
phone, and the like. The device(s) 102 may include an
application that includes a logging tool that may log data
triggered by error events and may push data to the server(s)
104 and/or any interim data repository. The application
and/or any component of the application may be 1n any stage
ol a software development cycle, including a development
stage, a beta stage, a production stage, and the like. The
device(s) 102 may communicate with the server(s) 104
through any network(s) 106.

The server(s) 104 may include any number and combi-
nation of devices, including but not limited to, laptops,
desktop computers, servers, and the like. The server(s) 104
can include any number of devices and/or computing
resources on local servers and/or cloud servers that are
accessed over an appropriate data communications
network(s) 106.

The server(s) 104 can include an error documentation
component 112 and associated components. As described
herein, the error documentation system 100 may be config-
ured to provide error documentation assistance on diflerent
application components. The error documentation compo-
nent 112 may be configured to collect event logs from the
different application components, parse data included in the
event logs to 1dentily defects and extract relevant informa-
tion, and share the error data.

In some examples, the error documentation component
112 may be configured to receive data (e.g., data 110)
associated with error events from the devices 102 and
analyze the data for defects and defect information. In
various examples, the data may include a data stream that 1s
being pushed to the server(s) 104 in real-time, or 1n near
real-time. The example data 110 could include event logs
108(1)-108(N) (individually and/or collectively referred to
herein as “event logs 108,” where N 1s any integer greater
than or equal to 2) triggered by error events from one or
more applications and/or application components runming
on the devices 102. In various examples, the error docu-
mentation component 112 may receive an event log and
generate a log 1dentifier to identity the event log. The error
documentation component 112 may tag, or otherwise asso-
ciate, the metadata of the event log with the log identifier
(e.g., writing the log 1dentifier to the metadata). By tagging
the metadata with the log identifier, the error documentation
component 112 may reference the event log by indicating 1ts
log 1dentifier from a defect ticket and may search for the
event log as needed for further analysis. As illustrated, the
error documentation component 112 can include a defect
analyzer component 114 and a query tool component 116,
which are described 1n turn.

The defect analyzer component 114 may analyze an input
event log and determine an input defect associated with the
input event log, as described herein. In some examples, the
defect analyzer component 114 may analyze the input event
log 1n real-time or 1n near real-time, and the system may
notify a subscriber with analysis information. For example,
the defect analyzer component 114 may parse the event log
and extract relevant defect information from the event log.
For example, an event log may include an error message
and/or stack trace, and the defect analyzer component 114
may parse the strings of the error message and/or stack trace
to 1dentily extracted imnformation. The extracted information
may include error types (e.g., code exceptions, null pointers,
SDK 1ssues, etc.), error code, error messages, stack traces,
time stamps, runtime, the response time of requests, exposed

US 11,693,726 B2

S

endpoints, hashtags and/or other indicators, application
identifiers, software version 1dentifiers, application compo-
nent 1dentifiers, developer 1dentifier(s) (e.g., developer(s) of
the code), infrastructure defect, end-user device types, oper-
ating system, and the like. In various examples, a software
version 1dentifier may include an indicator of the stage of the
soltware development cycle and the defect analyzer com-
ponent 114 may determine the stage. In a non-limiting
example, the software version identifier may include strings
“DEV_.” or “BETA_” to indicate the application 1s 1n a
development stage or a beta stage, respectively. In some
examples, the defect analyzer component 114 may infer
additional relevant defect information based on the extracted
information using look-up tables and/or machine learning
(ML) models. The inferred information may include related
and/or dependent applications, developer 1dentifier(s) (e.g.,
name of application team lead(s)), defect identifier, severity
level, prionty level, tasks, correlated defects, correlated
solutions, and the like. Accordingly, the relevant defect
information may include both extracted and inferred infor-
mation and may be included on a defect ticket to assist
development teams in documenting defects and solutions.

In various examples, the defect analyzer component 114
may determine whether or not the mput defect has previ-
ously been identified. The defect analyzer component 114
may determine whether the input defect correlates with
previously i1dentified defects from a defects database. In
some examples (e.g., examples 1n which the defect analyzer
component 114 determines that the input defect does not
match or otherwise correlate with a previously identified
defect included 1n the defects database), the defect analyzer
component 114 may determine the mput defect 1s an umden-
tified defect and generate a new defect ticket. The defect
analyzer component 114 may populate the new defect ticket
with information extracted from the event log. In additional
and/or alternate examples, the defect analyzer component
114 may determine the mput defect matches an identified
defect based on the correlation. In response to 1dentifying a
match, the defect analyzer component 114 may append the
event log to the defect ticket by adding an entry citing the log
identifier. The defect analyzer component 114 and associ-
ated processes will be discussed herein, i greater detail,
with respect to FIG. 2.

The query tool component 116 may generate a user
interface to allow a user to browse the defects database, as
described herein. In some examples, the query tool compo-
nent 116 may include a chatbot to interact with and guide the
user. In response to the user mput of an error type or
message, the chatbot may 1dentity and link the most com-
mon solution if multiple solutions could be located.

As a non-limiting example, the example event logs 108
are used to illustrate the data flow for example data 110
received by the error documentation component 112. In the
present example, 1 response to an example error event
triggered at each device(s) 102, the event logs 108 are
pushed to the server(s) 104. The server(s) 104 may receive
the event logs 108 at different times or together as the
example data 110. The error documentation component 112
may analyze the example data 110 and determine the defect
and defect information. The example defect information 118
may include first example defect information 118(1), second
example defect information 118(2), and third example defect
information 118(IN).

A first example event log 108(1) may be triggered by an
error event on an application running on the device(s)
102(1). The error documentation component 112 may
receive the first example event log 108(1), and the defect

10

15

20

25

30

35

40

45

50

55

60

65

6

analyzer component 114 may determine the first example
defect information 118(1). The error documentation com-
ponent 112 can generate a ticket to document the first
example defect information 118(1) and indicate the defect
identifier. The first example defect information 118(1)

includes the ticket identifier, application i1dentifier, the error
type, and message.

A second example event log 108(2) may be triggered by
an error event on an application running on the device(s)
102(2). The error documentation component 112 may
receive the second example event log 108(2), and the defect
analyzer component 114 may determine the second example
defect information 118(2). The error documentation com-
ponent 112 may generate a ticket to document the second
example defect information 118(2). The second example
defect information 118(2) may indicate a new defect found
with a different defect identifier.

A third example event log 108(N) may be triggered by an
error event on an application running on the device(s)
102(N). The error documentation component 112 may
receive the third example event log 108(N), and the defect
analyzer component 114 may determine the third example
defect mformation 118(N). The error documentation com-
ponent 112 may determine the defect associated with the
third example event log 108(N) 1s an existing identified
defect and determine to append the log 1identifier for the third
example event log 108(N) to the i1dentified defect ticket.

In the present non-limiting example, the error documen-
tation component 112 may receirve the example data 110
logged for the example event logs 108 at different points 1n
time. In response to recerving and documenting the data 110,
the error documentation component 112 may determine
whether to notily one or more users about the documentation
and/or about a follow-up review or remedial action to take.
In additional examples, the query tool component 116 may
generate a user interface, including the example chatbot Ul
120 to recerve query input from a user. The example chatbot
UI 120 may recerve user mput of error type or message and
return the associated solutions.

The techniques and systems described herein improve
existing error documentation technologies and related sys-
tems by assisting in documenting the errors and solutions
across multiple teams to promote solutions sharing. In
particular, the error documentation component 112 may
collect event logs from the devices 102. The error docu-
mentation component 112 may include the defect analyzer
component 114 and the query tool component 116. The
defect analyzer component 114 may analyze the event logs
to 1dentily the defects and defect information to assist in
documenting the defects on defect tickets. This documen-
tation assistance can reduce costly development time asso-
ciated with ticket writing and information gathering. The
query tool component 116 may provide a user interface to
receive query inputs to search for defects and retrieve
documented solutions from a shared database to promote
solutions sharing across teams.

FIG. 2 1s a block diagram of an 1illustrative computing
architecture 200 associated with the server(s) of the example
error detection system 100. The computing architecture 200
may be mmplemented mm a distributed or non-distributed
computing environment.

The computing architecture 200 may include one or more
processors 202, and one or more computer-readable media
204 that stores various components, applications, programes,
or other data. The computer-readable media 204 may
include instructions that, when executed by the one or more

US 11,693,726 B2

7

processors 202, cause the one or more processors 202 to
perform the operations described herein.

The computer-readable media 204 may include non-
transitory computer-readable storage media, which may
include hard drives, tfloppy diskettes, optical disks, CD-
ROMs, DV Ds, read-only memories (ROMs), random access
memories (RAMs), EPROMs, EEPROMs, flash memory,
magnetic or optical cards, solid-state memory devices, or
other types of storage media appropriate for storing elec-
tronic instructions. In addition, in some examples, the com-
puter-readable media 204 may include a transitory com-
puter-readable signal (1in compressed or uncompressed
form). Examples of computer-readable signals, whether
modulated using a carrier or not, include, but are not limited
to, signals that a computer system hosting or running a
computer program may be configured to access, including
signals downloaded through the Internet or other networks.
The order in which the operations are described 1s not
intended to be construed as a limitation, and any number of
the described operations may be combined 1 any order
and/or 1n parallel to implement the process. Furthermore, the
operations described below may be implemented on a single
device or multiple devices.

As shown in FIG. 2, in some configurations, the com-
puter-readable media 204 may store a communication com-
ponent 206, the error documentation component 112 and
associated components, model(s) 216, and a data store 218,
which are described 1n turn. The components may be stored
together or 1n a distributed arrangement.

The communication component 206 can include function-
ality to conduct communications with one or more other
devices to collect data, as discussed herein. The communi-
cation component 206 can be configured to receive data
(e.g., event logs) directly from an end-user device and/or
receive data stored in an interim data repository. In some
examples, the communication component 206 can include
functionality to serve as a logging tool. The logging tool may
include webhook functionality and may receive data stream,
representative of metrics logged from error events triggered
on the device(s) 102 via a communication session on the
network(s) 106. In some examples, the data stream may be
added to a log, 1n real-time or 1n near real-time. The error
events may be triggered by computer errors (e.g., null
pointers, code exceptions, etc.) or triggered by preconfig-
ured rules for alerts. The preconfigured rules may include
rules generated by operators (e.g., software developers) to
track specific events occurring on theiwr application. In
response to the error event, the logging tool may log metrics
from the applications running on end-user devices and may
push the metrics to a server, 1n real-time or 1n near real-time,
and/or data repository for analysis. In some examples, 1n
response to the metrics being pushed to the server, in
real-time or 1n near real-time, the system may notily a
subscriber. In additional examples, the communication com-
ponent 206 can be configured to receive stored event logs
from a data repository. In various examples, the communi-
cation component 206 can conduct communication via the
network(s) 106. In various examples, the communication
component 206 can authenticate the data source(s) of the
example data 110.

The error documentation component 112 may include a
user portal component 208, a rules component 210, the
defect analyzer component 114, a ticketing component 212,
a worktlow component 214, and the query tool component
116. In some examples, the error documentation component
112 may receive an event log and may generate a log
identifier to tag a log 1dentifier 1n the metadata of the event

10

15

20

25

30

35

40

45

50

55

60

65

8

log. By tagging the metadata with the log identifier, the error
documentation component 112 may reference the event log
from a defect ticket and may search for the event log when
needed for further analysis. The error documentation com-
ponent 112 may process the event log to extract information
relevant to error documentation, create tickets and/or entries
to document the errors and solutions found and provide a
tool to share the data. In various examples, the error docu-
mentation component 112 and/or associated components
may execute as part of a standalone application or as an API
in a browser.

The user portal component 208 may generate a user

interface for creating application teams and/or user
accounts, document errors and solutions for the applications,
and provide a query tool for error data. In some examples,
the user portal component 208 may be configured to track
application teams, users assigned to the teams, and team
roles held by the users. The users may include any human
operators with permission to access the error documentation
component 112, including application team members, proj-
ect managers, analysts, administrative stail, product manag-
ers, studio leads, etc. An individual user account may be
assigned to one or more application teams based on projects
that the user 1s working on or has worked on. The user portal
component 208 may 1dentity the team role held by the user
for each assigned development team.
The user portal component 208 may also manage user
authorizations and/or user access levels. In some examples,
a user may be authorized to access data related only to
specific applications. In various examples, the user portal
component 208 may provide user access to view stored
defect data and/or solutions found through a user interface,
as described herein with respect to FIG. 3. In some
examples, the user accounts may be assigned a user access
level with access to view only certain files and/or resources
availlable to the team and/or user. For instance, a user
account may have writing access to edit tickets based on the
assigned team but may only have viewing access to other
team’s tickets. Additionally, certain leading team roles (e.g.,
project manager, lead developer, scheduler, etc.) may have
higher user access level to edit portions of the ticket that a
non-lead team role may not have, including creating/remov-
ing tasks, assigning/reassigning tasks, escalating/de-escalat-
ing a ticket, and the like.

In some examples, the user portal component 208 may
include a subscription notification system for defect notifi-
cation. In various examples, the user portal component 208
may automatically subscribe a user, via an associated user
account, for notifications of events based on an application
team associated with the user. In some examples, the user
portal component 208 may allow a user to subscribe to
notifications for specific error events related to a diflerent
application. A user account assigned to a specific application
team may automatically subscribe to publications of changes
to defect tickets related to the specific application, by a
defect 1dentifier, and/or by solutions found.

In various examples, the user portal component 208 may
receive and store the preferred communication method and/
or notification frequency for each user account. For instance,
the user portal component 208 may notify a user based on
specific changes to defects documentation, including a sud-
den surge of defects detected or detection of new defects
with high severity (e.g., application crashing bugs). A sever-
ity level of the defect may be determined based on meeting
a criterion or a rule (e.g., application crashing bugs are high
severity, interface glitch bugs are low severity). The notifi-
cation may be sent without delay if the defect has high

US 11,693,726 B2

9

severity, or 1t may be collected 1n a notification log and sent
according to a notification frequency designated by the user
preference.

In some examples, the user portal component 208 may
provide an interface for a user to interact with the error
documentation component 122 and associated components
to view event logs and defect analysis. As described herein,
data associated with a new event may be pushed from a
device(s) 102 to the server for analysis 1n real-time or 1n near
real-time; the user portal component 208 may determine one
or more subscribers to notity about the new event. In various
examples, the application and/or application component that
triggered the new event may be 1n any stage of a software
development cycle, including a development stage, a beta
stage, a production stage, and the like. In response to a
non-production stage, the user portal component 208 may
serve as a debugger iterface by notifying and/or triggering
a view ol a ticket for the new event for a user account
associated with the device(s) 102 that pushed the data. For
instance, during the development stage of an application, a
developer associated with the user account may use the
device(s) 102 to test a new build of the application, and the
user portal component 208 may determine to notity the user
account about the ticket and/or analysis results associated
with the new event.

The rules component 210 may be configured to allow a
user to create rules to trigger alerts. In some examples, the
rules component 210 may include rules to populate a detect
ticket with specific information, including users or groups of
users to notily, defect type, severity level, and the like. The
user may generate a rule that triggers an alert based on a
function call from an application and may include a user
and/or a group of users (e.g., backend developers on the
application) to be notified when the alert 1s received based
on the user-generated rule. When an event log 1s received 1n
response to the trigger created by the user-generated rule, the
rules component 210 may publish a notification to all
subscribers.

As noted above with respect to FIG. 1, the defect analyzer
component 114 may analyze the event log and identify the
defect information from the event log. In some examples,
defect analyzer component 114 may parse the event log and
extract relevant defect information from the event log. For
example, an event log may include an error message and/or
stack trace, and the defect analyzer component 114 may
parse the strings of the error message and/or stack trace to
identily extracted information. The extracted information
may include error types (e.g., code exceptions, null pointers,
SDK 1ssues, etc.), error code, error messages, stack traces,
time stamps, runtime, the response time of requests, exposed
endpoints, hashtags and/or other indicators, application
identifiers, software version i1dentifiers, application compo-
nent identifiers, developer 1dentifier(s) (e.g., developer(s) of
the code), end-user device types, operating system, and the
like. In some examples, the defect analyzer component 114
may infer additional relevant defect information based on
the extracted information using look-up tables and/or ML
models. The inferred information may include related and/or
dependent applications, developer identifier(s) (e.g., name
of application team lead(s)), defect identifier, severity level,
priority level, tasks, correlated defects, correlated solutions,
and the like. Accordingly, the relevant defect information
may include both extracted and inferred information and
may be mncluded on a defect ticket to assist development
teams 1n documenting defects and solutions.

In some examples, the defect analyzer component 114
may determine whether the defect has previously been

5

10

15

20

25

30

35

40

45

50

55

60

65

10

identified or not. In various examples, the defect analyzer
component 114 may interact with the ticketing component
212 to store and/or retrieve data or tickets from a defects
database. The defect analyzer component 114 may use the
event log and/or extracted information to determine whether
the associated defect matches or correlates to an existing
identified defect from a defects database. In some examples,
the defect analyzer component 114 may use one or more
models to classify imput by known defects and to generate a
confidence score for each classification. The one or more
models may determine whether there 1s a matching or
correlated defect from the database based on models that
perform simple match and/or pattern correlation. For
example, a matching model may perform a simple match by
comparing strings in defects information, including appli-
cation 1dentifier, the error message header, the error type,
and the like. In the present example, the defect analyzer
component 114 may determine an input defect 1s a match, by
exact or near exact match with a high confidence score, for
an 1dentified defect 1f they both occur on the same applica-
tion with the same error type and the same error message
header. In an additional example, a correlation model may
perform pattern correlation by comparing the patterns of an
input defect with patterns of identified defects and may
generate a confidence score for each correlation. The pattern
correlation may include but 1s not limited to: comparing
similarities in the content of error messages, sequence logs,
runtime, the response time of a request, sequence code, stack
traces, exposed endpoints, and the like. For instance, the
correlation model may use probabilistic classification to
perform pattern recognition on an input defect and output a
probability of the input defect being a match for the selected
identified defect and output a confidence value associated
with the selected i1dentified defect. In the present example,
the defect analyzer component 114 may determine an input
defect 1s a match for an i1dentified defect 11 the generated
confidence score 1s at or above a high threshold. The defect
analyzer component 114 may determine the input defect
fails to match any identified defect and the ticketing com-
ponent 212 to generate a new defect ticket for the nput
defect.

In some examples, the defect analyzer component 114
may train and use one or more correlation models to
correlate an mput defect to a defect 1dentified 1n a defects
database. As described herein, the defect analyzer compo-
nent 114 may create traiming data for ML models by 1den-
tifying sample data from a defects database. The trained ML
model can comprise a classifier that 1s tasked with classi-
tying input data (e.g., event log with unknown defect) by
known defects (e.g., identified defects from a defects data-
base) and may output a confidence score associated with the
classification. The classiiying may include pattern correlat-
ing, as described herein. As will be described with greater
details herein with respect to the model(s) 216, the confi-
dence score 1s generated by the trained ML model based on
the classification method used and indicates a statistical
probability for the classification. Accordingly, a low confi-
dence score, defined by a confidence score that 1s at or below
a low threshold, may indicate a low correlation; a high
confidence score, defined by a confidence score that 1s at or
above a high threshold, may indicate a high correlation (e.g.,
statistical likelihood for a near or exact match); and a
confidence score that 1s between the high and low threshold
may indicate a strong correlation but not a near or exact
match.

In response to i1dentifying a defect as a match for an
existing 1dentified defect, the defect analyzer component 114

US 11,693,726 B2

11

may retrieve the ticket for the identified defect and append
the event log to the defect ticket by adding an entry
indicating the log identifier associated with the event log.
The defect analyzer component 114 may also determine
from the defect ticket if the ticket was marked “resolved”
with a solution or 11 the ticket was marked “unresolved.” As
described herein, a ticket may be generated to automatically
indicate “unresolved,” and this indication may be changed to
“resolved” manually by an operator. In various examples, 1
a defect ticket was marked resolved, the defect analyzer
component 114 may determine if the ticket needs to be
reopened based on the number of new defects added since
the ticket was marked resolved. For instance, 11 a ticket was
marked resolved, the defect should have been fixed, but 1t
the defect analyzer component 114 adds a number of entries
for new event logs above a threshold number to this ticket,
the ticket may be reopened for defect review. In some
examples, a ticket may be marked as “Do Not F1x” by a team
member, and the ticket will not be reopened for defect
review. The ticket marked as “Do Not Fix” may include
defects deemed not worth fixing or may be dependent on a
fix from a different soitware component.

In additional examples, the defect analyzer component
114 may increase the priority level of an unresolved defect
ticket based on adding a threshold number of entries citing,
additional log identifiers. In various examples, the defect
analyzer component 114 may escalate a defect ticket based
on increasing the prionty level, and this increase may be
determined imndependent of time references or dependent on
a time frame. For example, the defect analyzer component
114 may increase the priority level of an unresolved defect
ticket based on having added over a threshold number (e.g.,
1000) of additional logs since the defect ticket was created.
In another mstance, the defect analyzer component 114 may
increase the priority level of an unresolved defect ticket
based on adding over a threshold number of additional logs
over a time period (e.g., 100 within 24 hours).

In various examples, the defect analyzer component 114
may determine an input defect correlates to but 1s not a
match for an i1dentified defect. As described herein, the
defect analyzer component 114 may use a correlation model
to correlate mput to identified defects and to generate a
confldence score for each classification. To correlate defects,
the correlation model may analyze the content of the event
log 1n order to 1dentily one or more patterns associated with
the defects described by the event log (e.g., comparing
similarity 1n the content of error messages, using time
stamps to determine runtime and/or the response time of
requests, stack traces, exposed endpoints, etc.). The corre-
lation model may also determine 1 the two patterns have a
strong correlation or a high correlation value. The correla-
tion value may be based on the confidence score generated
by a correlation model. As described herein, a low correla-
tion 1s defined by a confidence score that 1s at or below a low
threshold; a high correlation 1s defined by a confidence score
that 1s at or above a high threshold; and a strong correlation
1s defined by a confidence score that 1s between the high and
low threshold.

If an mput defect correlates to an identified defect, the
defect analyzer component 114 may identify a possible
solution for the mput defect. The defect analyzer component

114 may interact with the ticketing component 212 to
retrieve a defect ticket associated with the 1dentified defect
and determine whether the defect ticket 1s marked resolved.
I1 the 1dentified defect has been resolved, the defect analyzer
component 114 may i1dentily a solution for the identified
defect as a possible solution for the mput defect. The defect

10

15

20

25

30

35

40

45

50

55

60

65

12

analyzer component 114 may indicate the possible solution
on the defect ticket generated for the mput defect. In some
examples, the defect analyzer component 114 may flag the
defect ticket for review. Additionally and/or alternatively, 1f
the application associated with the identified defect 1s 1n a
non-production stage, the present system may serve as a
debugger by notifying a developer of the code of the defect
ticket. For istance, during the development stage of an
application, a developer may be testing a new build of the
application. The defect analyzer component 114 may ana-
lyze the mput defect and indicate a possible solution 1n the
defect ticket and the user portal component 208 may notily
the developer about the possible solution 1n the defect ticket.

The defect analyzer component 114 may continuously
train and retrain correlation models. As described herein, the
defect analyzer component 114 may create traiming data for
models by identifying sample data from a defects database.
The defect analyzer component 114 may use the models to
identify a possible solution for the mnput defect and indicate
the possible solution on the defect ticket. The defect ana-
lyzer component 114 may flag the defect ticket for review.
A user (e.g., application developer) may review the solution
and label the ticket with the review results for the possible
solution and the review results for this defect ticket may be
stored 1n the defects database. The defect analyzer compo-
nent 114 may pull new traiming data from the defects
database, and the data, including the review results for this
defect ticket, may be used to retrain the models as a
continuous feedback loop.

The ticketing component 212 may generate new tickets or
entries for input defects. The ticketing component 212 may
automatically generate a new defect ticket for new umden-
tified defects. The ticketing component 212 may generate a
new ticket to mndicate default information including, but not
limited to, low seventy level, low priority level, unresolved
status, unassigned, etc. The unresolved status may be
changed to “resolved” manually by an operator (e.g., devel-
oper, tester, etc.) to indicate that the solution documented on
the ticket provides a resolution for the defect. The ticketing,
component 212 may interact with the defect analyzer com-
ponent 114 to populate the new defect ticket with informa-
tion extracted from the event log or imnformation gathered
from a database. For instance, the ticket component 212 may
determine the defect occured 1n a particular application and
may determine the account assignment for the defects 1n the
particular application. In some examples, the ticketing com-
ponent 212 may generate a new entry to add to an existing
defect ticket for 1dentified defects and add the new entry for
log 1dentifiers for identified defects. In some examples, the
ticketing component 212 may determine a count of log
identifiers associated with the defect ticket exceeds a thresh-
old and may increase a priority level of the defect ticket
based at least 1n part on the count of log 1dentifiers exceeding
a predetermined threshold. The ticketing component 212
may store new defect tickets and/or new entries to the tickets
in a defects database 1n the data store 218. The ticketing
component 212 may retrieve tickets from the defects data-
base 1n the data store 218.

In some examples, the ticketing component 212 may
perform routine data association and clean-up. The ticketing
component 212 may determine based on lack of activity
and/or age of a ticket to remove data from a database or
move the data to an archive. In various examples, the
ticketing component 212 may trigger a routine defects
database check to determine if any unresolved defects may
have a new correlated resolved defect. For instance, the
system may trigger a periodic correlated solutions search

US 11,693,726 B2

13

(e.g., weekly, bi-weekly, monthly, etc.) to attempt to find
potential correlated solutions from a database of resolved
defects for unresolved defects. The periodic correlated solu-
tions search may be triggered during slow network traflic
hours, including after work hours, weekends, holidays, eftc.

The workflow component 214 may determine a task in
response to recerving an input event log. As described
herein, the worktlow component 214 may determine a task
based on whether the mput defect associated with the input
event log 1s: (1) 1dentified or umidentified; and (2) resolved
or unresolved. In some examples, the workilow component
214 may determine the input defect 1s an umdentified defect
and may generate a task entry to review and/or resolve the
defect. In some examples, the worktlow component 214 may
generate a notification regarding the task.

In various examples, the workflow component 214 may
determine to append the event log to the identified defect
ticket. As described herein, the defect analyzer component
114 may determine whether an input defect 1s identified
and/or resolved. I the input defect 1s an 1dentified defect, the
workilow component 214 may append the event log to the
identified defect ticket. If the 1dentified defect 1s unresolved,
the workflow component 214 may determine based on the
severity level or priority level of the ticket whether to
generate a task for someone to review this ticket. If the
identified defect 1s marked as a resolved defect, the work-
flow component 214 may have to determine whether a user
should be notified based on the error type of the detect. For
instance, there may be alerts that trigger event logging even
though the event 1s not related to a defect in the code or the
development team has marked the ticket as “do not fix,” then
the worktlow component 214 may determine no more task
1s needed. If the resolved defect 1s a high severity defect such
as a hard crash, and 1t 1s reappearing after it was marked
resolved, the worktlow component 214 may generate a task
for review and generate a notification marked as high
priority to escalate the task for review.

In some examples, the worktlow component 214 may
generate notifications for the new detect tickets or new ticket
entries. In additional examples, the workflow component
214 may interact with the user portal component 208 and/or
the rules component 210 to determine that the team role to
be notified 1s a project manager and/or a user-designated as
task scheduler for the team and push all tasks to the task
scheduler’s queue for reassignment.

The workiflow component 214 may generate tasks based
on the user-generated rule that triggered the event log. In
various examples, the workflow component 214 may inter-
act with the rules component 210 to determine whether a
notification should be generated and published. For instance,
a developer for a particular application may create a user-
generated rule that triggers an alert, and the rule may specity
the notification and the user that should receive the notifi-
cation. The workflow component 214 may publish the
notification to a user account based on the user’s team role
as described herein. In some examples, the worktlow com-
ponent 214 may interact with the user portal component 208
to determine the preferred communication method and/or
notification frequency and send the notification based on the
user prelference.

The query tool component 116 may generate a user
interface to allow a user to browse the defects database. The
query tool component 116 may allow a user to search for
defects and/or solutions. In some examples, 1f the current
user’s access level allows, the user may edit or create tickets
to document errors and/or solutions. The query tool com-
ponent 116 may contact a team member associated with a

10

15

20

25

30

35

40

45

50

55

60

65

14

defect or solution. The query tool component 116 may
interact with the user portal component 208 to determine the
team role designated as the contact person for a particular
application or components team and automatically generate
an email to contact the user. In some examples, the query
tool component 116 may generate a chatbot to interact with
and guide the user. In response to the user input of an error
type or message, the chatbot may identity and link a
solution. If multiple solutions could be located, the query
tool component 116 may select a top-ranked solution based
on one or more ranking schemes, including a solution that
was referenced the most 1n tickets, a solution that was
confirmed to fix other defects the most, and the like. The
query tool component 116 may include a user interface to
allow a user to browse the defects database using filters
including, but not limited to, dates, applications, error types,
keywords, and the like.

In various examples, the present system may train one or
more ML model(s) 216 using labeled data as training data.
In some examples, 1nitial training data may include samples
of data from resolved defects data containing event logs and
solutions associated with the defect. In additional and/or
alternative examples, the data may be manually classified,
reclassified, and/or created by labeling (or tagging) samples
of data with various defect information and/or solutions. The
labels applied to the samples of data may indicate error types
and may 1ndicate the application and/or task dependency
based on whether finding a solution for the defect was
dependent on resolving a different defect. For example, an
cvent log may be triggered by a frontend user interface
clement, but the defect was caused by a change in the
backend element. In the present example, a crash may
appear to be caused by an end-user clicking on a button, but
the crash was caused by a null pointer attributable to a
change 1n the backend.

In some examples, the training data may also be labeled
with severity and/or priority such as “severity level 1,” “high
severity,” or a score, value, code, that indicates the severity
level of the defect. In general, the different types of defects
with which the samples of data can be labeled may span a
spectrum of severity and/or priority.

Machine learning generally involves processing a set of
examples (called “training data”) in order to train one or
more ML models 216. The model(s) 216, once trained, 1s a
learned mechanism that can receive new data as input and
estimate or predict a result as output. Additionally, the
model(s) 216 may output a confidence score associated with
the predicted result. The confidence score may be deter-
mined using probabilistic classification and/or weighted
classification. For example, a trained ML model(s) 216 can
comprise a classifier that 1s tasked with classitying unknown
iput (e.g., an unknown defect) as one of multiple class
labels by error types (e.g., exceptions, null pointers, etc.) and
defects. In additional examples, the model(s) 216 can be
retrained with additional and/or new training data labeled
with one or more new defects and/or error types to teach the
model(s) 216 to classity unknown input by defects that may
now include the one or more new error types and defects. In
the context of the present disclosure, the unknown mput may
include, data that 1s to be handled according to 1ts level of
severity, and the tramed ML model(s) 216 may be tasked
with classitying the unknown input (a subject for classifi-
cation) as one of multiple error types with diflerent levels of
severity.

In some examples, the trained ML model(s) 216 may
classily an mput defect as one of the identified defects and
determine an associated confidence score. In various

US 11,693,726 B2

15

examples, 11 the trammed ML model(s) 216 has low confi-
dence (e.g., a confidence score 1s at or below a low thresh-
old) 1n 1ts correlation for an unknown defect to an 1dentified
defect, this low confidence may return no correlated defect
found. An extremely high confidence score (e.g., a confi-
dence score 1s at or exceeds a high threshold) may indicate
the mput defect 1s an exact or near-exact match for an
identified defect. It the trained ML model(s) 216 has strong
confidence (e.g., a confidence score 1s above a low threshold
but below a high threshold) in the correlation but the defect
1s not an exact or near-exact match, the system may still
return the correlated defect and any correlated solution and
may link them to the new defect ticket as possible solution
found. After the correlated solution has been applied and/or
a similar 1Ix has been applied to resolve or not resolve the
new defect, the data with the correlated solution may be
labeled as correct or incorrect correlation, the data may be
used as additional training data to retrain the model(s) 216.
Thus, the system may retrain the ML model(s) 216 with the
additional training data to generate the new ML model(s)
216. The new ML model(s) 216 may be applied to new 1nput
data as a continuous retraining cycle to improve the classi-
fier.

The ML model(s) 216 may represent a single model or an
ensemble of base-level ML models and may be implemented
as any type of model(s) 216. For example, suitable ML
model(s) 216 for use with the techniques and systems
described herein include, without limitation, tree-based
models, k-Nearest Neighbors (KNN), support vector
machines (SVMs), kernel methods, neural networks, ran-
dom forests, splines (e.g., multivariate adaptive regression
splines), hidden Markov model (HMMs), Kalman {filters (or
enhanced Kalman filters), Bayesian networks (or Bayesian
beliel networks), expectation maximization, genetic algo-
rithms, linear regression algorithms, nonlinear regression
algorithms, logistic regression-based classification models,
or an ensemble thereof. An “ensemble” can comprise a
collection of model(s) 216 whose outputs (classifications)
are combined, such as by using weighted averaging or
voting. The imndividual ML models of an ensemble can differ
in their expertise, and the ensemble can operate as a com-
mittee of 1ndividual ML models that 1s collectively
“smarter” than any individual machine learning model of the
ensemble.

The data store 218 may store at least some data including,
but not limited to, data collected from the communications
component 206, the error documentation component 112,
and the model(s) 216, including data associated with team
data, event logs, defects data, and training data. In some
examples, the data may be automatically added via a com-
puting device (e.g., device(s) 102, server(s) 104). Team data
may include user data and may correspond to one or more
users with error documentation access. In various examples,
user data may include information associated with the user,
such as the name, preferred contact information, notification
settings and subscriptions, assigned application team(s), and
associated team role(s), etc. Event logs may include the data
received 1n association with error events triggered on appli-
cations running on end-user devices and may include log
identifiers. Defects data may include data used by the system
to document errors and solutions, including the tickets and
defect information and/or any look-up table generated for
the notification system. Training data may include any
portion of the data in the data store 218 that 1s selected to be
used to train one or more ML models. In additional and/or
alternative examples, at least some of the data may be stored
in a storage system or other data repository.

10

15

20

25

30

35

40

45

50

55

60

65

16

FIG. 3 illustrates example user interfaces (UI) 300 of a
device implementing the error documentation component, as
discussed herein. In some instances, the example Ul 300
may present a user mnterface including an example naviga-
tion window 302 and associated components to interface
with the error documentation system. The example naviga-
tion window 302 may include example Ul buttons 304, 306,
308, 310, and 312, and an example chatbot window 314.

As a non-limiting example, the query tool component 116
may generate the example navigation window 302 and
associated components to allow a user to interact with the
error documentation system, including open defect tickets,
document solutions, and search for defects and/or solutions.
The example navigation window 302 may include naviga-
tion elements for the system. The example UI buttons 304,
306, 308, 310, and 312 may present different user interac-
tions available to the current user account. In some
examples, 11 the user account has access privilege, the
operator may edit or create tickets to document errors and/or
solutions.

The example user interaction button 304 includes an
option to open a ticket. In some examples, the system may
allow a user to open a ticket. In some examples, 11 the current
user’s access level allows, the user may open, edit, and/or
create tickets.

The example user interaction button 306 includes an
option to document solutions. In some examples, if the
current user’s access level allows, the user may edit tickets
to document solutions. The query tool component 116 may
present tickets with suggested solutions that are flagged for
review, and the user may provide the requested review and
document whether the suggested solution was a valid solu-
tion for the defect. For instance, the user may open a ticket
and fix the defect using a suggested solution or a different
solution that the user came up with and documented. After
determining the defect has been fixed, the user may mark the
ticket as “resolved.”

The example user interaction button 308 includes an
option to contact a team. In response to a selection of the
example user interaction button 308, indicated by to “con-
tact team,” the query tool component 116 may interact with
the user portal component 208 to trigger an email window to
contact a team member associated with a defect or solution.
The query tool component 116 may interact with the user
portal component 208 to determine the team role designated
as the contact person for a particular application or compo-
nents team and automatically generate an email to contact
the user.

The example user interaction button 310 includes an
option to browse solutions. In response to a selection of the
example user interaction button 310, the query tool compo-
nent 116 may trigger a window to browse documented
solutions for defects manually without the guidance of the
chatbot. The query tool component 116 may include a user
interface to allow a user to browse the defects database using
filters including, but not limited to, dates, applications, error
types, keywords, and the like.

The example user interaction button 312 indicates the
current user interaction as selected by the user 1s “CHAT-
BOT.” In some examples, the example user interaction
buttons 312 may present the example chatbot window 314 to
browse solutions and/or tickets based on selection.

In the present example, the example chatbot window 314
may include an example user-chatbot interaction and may
include an example user mput 316, an example chatbot
output 318, an example user input window 320, and an
example search filter button 322. The example chatbot

US 11,693,726 B2

17

window 314 may provide a chatting interface for the user to
interact with the chatbot to search the defects database. The
example user input 316 indicates the user input “exception-
s.agreementIndexInquiry” as the error to search for. In
response to the user mput of an error type or message, the
chatbot may identily and link a solution. ITf multiple solu-
tions could be located, the query tool component 116 may
select a top-ranked solution based on one or more ranking
schemes, including a solution that was referenced the most
in tickets, a solution that was confirmed to fix other defects
the most, and the like. In some examples, the example
chatbot output 318 may present the solution as a hyperlink
to the ticket in response to user mput. In an additional
example, the example chatbot output 318 may also include
guidance to help the user filter the search results 11 there 1s
more than one solution found.

The example user mput window 320 may receive user
input to perform a search or filter the search. Although the
example chatbot output 318 may help the user refine their
search by asking the user-specific filtering question, the user
may also filter their search by selecting the example search
filter button 322.

FIGS. 4, 5, and 6 are flow diagrams of illustrative
processes. The processes are illustrated as a collection of
blocks 1n a logical flow graph, which represents a sequence
of operations that can be implemented 1n hardware, sofit-
ware, or a combination thereof. In the context of software,
the blocks represent computer-executable mstructions stored
on one or more computer-readable storage media that, when
executed by one or more processors, perform the recited
operations. Generally, computer-executable instructions
include routines, programs, objects, components, data struc-
tures, and the like that perform particular functions or
implement particular abstract data types. The order 1n which
the operations are described 1s not mtended to be construed
as a limitation, and any number of the described blocks can
be combined 1n any order and/or 1n parallel to implement the
processes. The processes discussed below may be combined
in any way to create derivative processes that are still within
the scope of this disclosure.

FIG. 4 1s a flow diagram of an illustrative process 400 for
receiving data logged in response to an error event and
generating an 1ssue ticket to request a solution. The process
400 1s described with reference to the system 100 and may
be performed by the server(s) 104. Of course, the process
400 may be performed 1n other similar and/or different
environments.

At 402, the system 100 may receive an event log associ-
ated with an error event. As described herein, the commu-
nication component 206 can include functionality to conduct
communications with one or more other devices to collect
data. The communication component 206 can be configured
to receive data (e.g., event logs) directly from an end-user
device and/or receive data stored in an interim data reposi-
tory. In some examples, the communication component 206
can include functionality to serve as a logging tool. The
logging tool may include webhook functionality and may
receive data stream, representative of metrics logged from
error events triggered on the device(s) 102 via a communi-
cation session on the network(s) 106. The error events may
be triggered by computer errors (e.g., null pointers, code
exceptions, etc.) or triggered by preconfigured rules for
alerts. The preconfigured rules may include rules generated
by operators (e.g., software developers) to track specific
events occurring on their application. In response to the error
event, the logging tool may log metrics from the applications
running on end-user devices and may push the metrics to a

10

15

20

25

30

35

40

45

50

55

60

65

18

server and/or data repository for analysis. In additional
examples, the communication component 206 can be con-
figured to receive stored event logs from a data repository.

At 404, the system 100 may 1dentity, based at least in part
on the event log, a defect and corresponding defect infor-
mation. As described herein, defect analyzer component 114
may analyze the event log and identify the defect from the
event log. In some examples, defect analyzer component 114
may parse the event log and extract relevant defect infor-
mation from the event log. For example, an event log may
include an error message and/or stack trace, and the defect
analyzer component 114 may parse the strings of the error
message and/or stack trace for error code, tags, and/or other
indicators. In some examples, the defect analyzer compo-
nent 114 may infer additional relevant defect information
based on the extracted information using look-up tables
and/or ML models. The relevant defect information may
include any information included on a defect ticket that
helps guide development team members to document
defects and solutions. For instance, the extracted informa-
tion may include identifying the error type (e.g., code
exceptions, null pointers, SDK issues, etc.), the error mes-
sage, stack trace, exposed endpoint, application and/or
application component that triggered the alert, end-user
device type, operating system, and the like. The inferred
information may include identifying related and/or depen-
dent applications, defect identifier, severity level, priority
level, tasks, correlated defects, correlated solutions, and the
like.

At 406, the system 100 may determine, by inputting the
defect information 1into one or more correlation models, the
defect correlates to a resolved defect 1dentified 1n a defects
database. As described herein, the defect analyzer compo-
nent 114 may use the event log and/or extracted information
to determine whether the associated defect matches or
correlates to an existing identified defect from a defects
database. In some examples, the defect analyzer component
114 may train and use one or more correlation models to
correlate an mput defect to a defect 1dentified 1n a defects
database. As described herein, the defect analyzer compo-
nent 114 may determine an input defect correlates to but 1s
not a match for an identified defect. The defect analyzer
component 114 may use a correlation model to correlate
input to 1dentified defects and to generate a confidence score
for each classification. To correlate defects, the correlation
model may analyze a pattern of the content of the event log
with respect to patterns of the identified defects (e.g.,
comparing similarity in the content of error messages, stack
traces, exposed endpoints, etc.) and determine 1f the two
patterns have a strong correlation. A strong correlation 1s
defined by a confidence score that 1s between a high and low
threshold. The defect analyzer component 114 may interact
with the ticketing component 212 to retrieve a defect ticket
associated with the i1dentified defect and determine whether
the defect ticket 1s marked resolved.

At 408, the system 100 may identily a solution of the
resolved defect indicated 1n the defects database. If an input
defect correlates to a resolved defect, the defect analyzer
component 114 may 1dentify a possible solution for the input
defect. The defect analyzer component 114 may interact

with the ticketing component 212 to retrieve a defect ticket
associated with the 1dentified defect and determine whether
the defect ticket 1s marked resolved. 11 the 1dentified defect
has been resolved, the defect analyzer component 114 may
identify a solution for the identified defect as a possible
solution for the input defect.

US 11,693,726 B2

19

At 410, the system 100 may generate a defect ticket for
the defect including the defect information and indicating
the solution. The ticketing component 212 may automati-
cally generate a new defect ticket for new unidentified
defects. The ticketing component 212 may interact with the
defect analyzer component 114 to populate the new defect
ticket with information extracted from the event log or
information gathered from a database. As described herein,
the defect analyzer component 114 may 1dentily a solution
tor the 1dentified defect as a possible solution for the mput
defect. The defect analyzer component 114 may indicate the
possible solution on the defect ticket generated for the input
defect.

At 412, the system 100 may store the defect ticket in the
defects database. The ticketing component 212 may store
new defect tickets and/or new entries to the tickets 1n a
defects database in the data store 218.

FIG. 5 1s a flow diagram of an illustrative process 500 for
receiving mput event log and determining defect handling
process based on whether it was 1dentified and/or resolved.
The process 500 1s described with reference to the system
100 and may be performed by the server(s) 104. Of course,
the process 500 may be performed 1n other similar and/or
different environments.

At 502, the system 100 may receive an event log associ-
ated with an error event. As described herein, the commu-
nication component 206 can include functionality to conduct
communications with one or more other devices to collect
data. The communication component 206 can be configured
to receive data (e.g., event logs) directly from an end-user
device and/or receive data stored in an mterim data reposi-
tory. In some examples, the communication component 206
can include functionality to serve as a logging tool. The
logging tool may include webhook functionality and may
receive data stream, representative of metrics logged from
error events triggered on the device(s) 102 via a communi-
cation session on the network(s) 106. The error events may
be triggered by computer errors (e.g., null pointers, code
exceptions, etc.) or triggered by preconfigured rules for
alerts. The preconfigured rules may include rules generated
by operators (e.g., software developers) to track specific
events occurring on their application. In response to the error
event, the logging tool may log metrics from the applications
running on end-user devices and may push the metrics to a
server and/or data repository for analysis. In additional
examples, the communication component 206 can be con-
figured to receive stored event logs from a data repository.

At 504, the system 100 may identify, using a model, a
defect associated with the event log. As described herein, the
defect analyzer component 114 may analyze the event log
and i1dentily the defect from the event log. In some
examples, defect analyzer component 114 may parse the
event log and extract relevant defect information from the
event log. In some examples, the defect analyzer component
114 may infer additional relevant defect information based
on the extracted information using look-up tables and/or ML
models.

At 506, the system 100 may determine whether the defect
was 1dentified. As described herein, the defect analyzer
component 114 may determine whether the defect has
previously been identified or not. In some examples, the
defect analyzer component 114 may interact with the tick-
cting component 212 to store and/or retrieve data or tickets
from a defects database. The defect analyzer component 114
may use the event log and/or extracted information to
determine whether the associated defect matches or corre-
lates to an existing 1dentified defect from a defects database.

10

15

20

25

30

35

40

45

50

55

60

65

20

In various examples, the defect analyzer component 114
may use one or more models to classily mput by known
defects and to generate a confidence score for each classi-
fication. The one or more models may determine whether
there 1s a matching or correlated defect from the database
based on models that perform simple match and/or pattern
correlation. For example, a matching model may perform a
simple match by comparing strings 1in defects information,
including application identifier, the error message header,
the error type, and the like. In an additional example, a
correlation model may perform pattern correlation by com-
paring the patterns of an input defect with identified defects
(e.g., comparing similarity in the content of error messages,
stack traces, exposed endpoints, etc.) and may generate a
confidence score for each correlation. In the present
example, the defect analyzer component 114 may determine
an mput defect 1s a match for an identified defect i1 the
generated confidence score 1s at or above a high threshold.
The defect analyzer component 114 may determine the mput
defect fails to match any 1dentified defect, and the ticketing
component 212 may generate a new defect ticket for the
input defect.

At 508, the system 100 may, 1n response to process 506
determining the defect matching an i1dentified defect, add a
log identifier associated with the event log to a ticket
associated with the 1dentified defect. As described herein, 1n
response to 1dentifying a defect as a match for an existing
identified defect, the defect analyzer component 114 may
retrieve the ticket for the identified defect and append the
event log to the defect ticket by adding an entry indicating
the log identifier associated with the event log. The defect
analyzer component 114 may also determine from the defect
ticket if the ticket was marked resolved with a solution or it
the ticket was unresolved.

At 510, the system 100 may determine whether the
identified defect 1s resolved. As described herein, the defect
analyzer component 114 may determine from the defect
ticket 11 the ticket was marked resolved with a solution or 1t
the ticket was unresolved.

At 512, the system 100 may, in response to the identified
defect being resolved, determine if a notification 1s needed.
As described herein, it a defect ticket was marked resolved,
the defect analyzer component 114 may determine if the
ticket needs to be reopened based on the number of new
defects added since the ticket was marked resolved. For
instance, 1f a ticket was marked resolved, the defect should
have been fixed, but if the defect analyzer component 114
adds a number of entries for new event logs above a
threshold number to this ticket, the ticket may be reopened
for defect review. In some examples, a ticket may be marked
as “Do Not Fix” by a team member, and the ticket will not
be reopened for defect review. The ticket marked as “Do Not
Fix” may include defects deemed not worth fixing or may be
dependent on a fix from a different soitware component.

At 514, the system 100 may, 1n response to process 506
determining the defect 1s an umdentified defect, generate a
new defect ticket. The ticketing component 212 may auto-
matically generate a new defect ticket for new unidentified
defects. The ticketing component 212 may interact with the
defect analyzer component 114 to populate the new defect
ticket with information extracted from the event log or
information gathered from a database. The ticketing com-
ponent 212 may store new defect tickets mm a defects
database 1n the data store 218.

At 516, the system 100 may, 1n response to process 510
determining the identified defect 1s unresolved, determine 1f
the ticket associated with the identified defect needs to be

US 11,693,726 B2

21

escalated. The defect analyzer component 114 may increase
the prionty level of an unresolved defect ticket based on
adding a threshold number of entries citing additional log
identifiers. In various examples, the defect analyzer compo-
nent 114 may escalate a defect ticket based on increasing the
priority level, and this increase may be determined indepen-
dent of time references or dependent on a time frame.

FIG. 6 1s a flow diagram of an illustrative process 600 for
training ML models to classity input data to correlated
defects and to retrain the ML models. The process 600 is
described with reference to the system 100 and may be
performed by the server(s) 104 and/or 1n cooperation with
any one or more of the device(s) 102. Of course, the process
600 may be performed in other similar and/or different
environments.

At 602, the system 100 may create training data by
identifying sample data from a defects database. The defect
analyzer component 114 may train and use one or more
correlation models to correlate an mput defect to a defect
identified 1n a defects database. As described herein, the
defect analyzer component 114 may create training data for
ML models by identifying sample data from a defects
database.

At 604, the system 100 may train a machine learning
(ML) model with the training data to correlate mput to
identified defects and determine associated confidence
scores. As described herein, the defect analyzer component
114 may create training data for ML models by identifying
sample data from a defects database. The trained machine
learning (ML) model can comprise a classifier that 1s tasked
with classifying mput data (e.g., event log with unknown
defect) by known defects (e.g., identified defects from a
defects database) and may generate a confidence score for
the classification. The classiiying may include pattern cor-
relating, as described herein. The confidence score 1s gen-
erated by the tramned ML model based on the classification
method used and indicates a statistical likelthood of correct
classification. Accordingly, a low confidence score, defined
by a confidence score that 1s at or below a low threshold,
may indicate a low correlation; a high confidence score,
defined by a confidence score that 1s at or above a high
threshold, may indicate a high correlation (e.g., statistical
likelihood for a near or exact match); and a confidence score
that 1s between the high and low threshold may indicate a
strong correlation but not a near or exact match.

At 606, the system 100 may receive an event log associ-
ated with an error event. The system 100 may perform
functions similar to the process 402, as described herein.

At 608, the system 100 may determine, using the ML
model, a defect associated with the event log correlates to a
resolved defect. As described herein, the defect analyzer
component 114 may use a correlation model to correlate
input to 1dentified defects and to generate a confidence score
for each classification. To correlate defects, the correlation
model may analyze a pattern of the content of the event log
with respect to patterns of the identified defects (e.g.,
comparing similarity 1n the content of error messages, stack
traces, exposed endpoints, etc.) and determine if the two
patterns have a strong correlation or a high correlation value.
The correlation value may be based on the confidence score
generated by a correlation model. As described herein, a low
correlation 1s defined by a confidence score that 1s at or
below a low threshold; a high correlation 1s defined by a
confldence score that 1s at or above a high threshold, and a
strong correlation 1s defined by a confidence score that 1s
between the high and low threshold. The defect analyzer
component 114 may interact with the ticketing component

10

15

20

25

30

35

40

45

50

55

60

65

22

212 to retrieve a defect ticket associated with the 1dentified
defect and determine whether the defect ticket 1s marked

resolved.

At 610, the system 100 may generate a defect ticket for
the defect including the solution of the resolved defect. The
system may perform functions similar to the process 410, as
described herein.

At 612, the system 100 may receive review results from
applying the solution as a fix for the defect. The defect
analyzer component 114 may use the models to i1dentily a
possible solution for the input defect and indicate the
possible solution on the defect ticket. The defect analyzer
component 114 may flag the defect ticket for review. A user
(e.g., application developer) may review the solution and
label the ticket with the review results for the possible
solution, and the review results for this defect ticket may be
stored 1n the defects database.

At 614, the system 100 may create new training data to
include the defect ticket labeled with the review results. The
defect analyzer component 114 may flag the defect ticket for
review. A user (e.g., application developer) may review the
solution and label the ticket with the review results for the
possible solution, and the review results for this defect ticket
may be stored in the defects database. The defect analyzer
component 114 may pull new training data from the defects
database, and this data from the newly resolved defects may
be used to retrain the models as a continuous feedback loop.

At 616, the system 100 may retrain the ML model with the
new training data. The defect analyzer component 114 may
continuously tramn and retrain correlation models. As
described herein, the defect analyzer component 114 may
create training data for models by 1dentifying sample data
from a defects database. The defect analyzer component 114
may tlag the defect ticket for review. A user (e.g., application
developer) may review the solution and label the ticket with
the review results for the possible solution, and the review
results for this defect ticket may be stored in the defects
database. The defect analyzer component 114 may pull new
training data from the defects database, and the data includ-
ing the review results for this defect ticket may be used to
retrain the models as a continuous feedback loop. Accord-
ingly, the process 616 may return to process 606 to receive
a new event log and retrain the model(s) to continuously
improve the model(s) 1n this data processing loop.

CONCLUSION

The technmiques and systems described herein improve
existing error documentation technologies and related sys-
tems. In particular, the communications component 206
gathers event logs from end-user devices. The defect ana-
lyzer component 114 analyzes an event log to identify the
defect and defect information. Moreover, the defect analyzer
component 114 may train ML models to correlate input
defect to 1dentified defects based on patterns and may
suggest probable solutions based on solutions 1dentified 1n
the 1dentified defect. The ticketing component 212 automati-
cally generates tickets for new defects and populates the
tickets with defect information. By correlating defect data,
the error documentation component 112 and associated
components improve the error documentation process by
timely analyzing and identifying defects from input data,
automatically generating defect tickets, and populating the
tickets with information extracted from the input data,
including any correlated defects and/or solutions. The tick-
cting component 212 can reduce costly development time
associated with ticket writing and information gathering.

US 11,693,726 B2

23

The workflow component 214 can further reduce costly
development time by notitying the appropnate application
team and/or developer of defects found. Additionally, the
query tool component 116 may receirve query inputs and
share documented resolutions across the different applica-
tion teams.

It should be appreciated that the subject matter presented
herein can be implemented as a computer process, a com-
puter-controlled apparatus, a computing system, or an article
of manufacture, such as a computer-readable storage
medium. While the subject matter described herein is pre-
sented 1n the general context of program components that
execute on one or more computing devices, those skilled 1n
the art will recognize that other implementations can be
performed 1n combination with other types of program
components. Generally, program components include rou-
tines, programs, components, data structures, and other
types of structures that perform particular tasks or imple-
ment particular abstract data types.

Those skilled 1n the art will also appreciate that aspects of
the subject matter described herein can be practiced on or in
conjunction with other computer system configurations
beyond those described herein, including multiprocessor
systems, microprocessor-based or programmable consumer
clectronics, minicomputers, mainframe computers, hand-
held computers, personal digital assistants, e-readers, mobile
telephone devices, tablet computing devices, special-pur-
posed hardware devices, network appliances, and the like.
As mentioned briefly above, the configurations described
herein can be practiced 1 distributed computing environ-
ments, such as a service provider network, where tasks can
be performed by remote computing devices that are linked
through a communications network. In a distributed com-
puting environment, program components can be located in
both local and remote memory storage devices.

Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, 1t 1s to be understood that the subject matter defined 1n
the appended claims 1s not necessarily limited to the specific
features or acts described. Rather, the specific features and
acts are disclosed as 1llustrative forms of implementing the
claims.

What 1s claimed 1s:

1. A system comprising: one or more processors; and a
non-transitory computer-readable media storing a plurality
ol soltware components that, when executed by the one or
more processors, cause the one or more processors to
perform operations comprising: receiving, {from one or more
computing devices, an event log associated with an error
event, the event log including data logged 1n response to the
error event triggered on an application; identifying, based at
least 1 part on the event log, a defect and corresponding
defect information; determining, by inputting the defect
information into one or more correlation models, the defect
correlates to a resolved defect 1dentified 1n a defects data-
base; identifying a correlated solution from the resolved
defect indicated 1n the defects database; determining, by a
defect analyzer component of the plurality of software
components and based at least in part on identifying the
correlated solution, to generate a defect ticket to associate
the defect with the correlated solution; generating the defect
ticket for the defect including the defect information and
indicating the correlated solution; storing the defect ticket 1n
the defects database; recerving confirmation that the corre-
lated solution 1s a resolution for the defect; creating training
data that includes the defect ticket, the correlated solution,

10

15

20

25

30

35

40

45

50

55

60

65

24

and the confirmation; and retraining the one or more corre-
lation models using the training data.

2. The system of claim 1, the defect information including
one or more ol: an error type, an error message, a sequence
log, a response time of a request, a sequence code, a stack
trace, an exposed endpoint, an application i1dentifier, a stage
of development cycle, and a severity level.

3. The system of claim 1, the operations further compris-
ng:

generating a task to request review of the defect ticket;

generating a notification for the task;

publishing the notification to a subscriber of events asso-

ciated with the application; and

sending the notification to a device associated with the

subscriber.

4. The system of claim 3, wherein determining the defect
correlates to the resolved defect includes:

generating a confidence score associated with the defect

correlating to the resolved defect; and

determiming the confidence score 1s above a threshold.

5. The system of claim 1, the operations further compris-
ng:

receiving a query indicating one ol an error type or an

error message; and

retrieving, from the defects database, one or more solu-

tions associated with the query.

6. The system of claim 1, the operations further compris-
ng:

recerving, from the one or more computing devices, an

additional event log associated with an additional error
cvent,

determining an additional defect associated with the addi-

tional event log matches the defect; and

adding a log 1dentifier associated with the additional event

log to the defect ticket.

7. The system of claim 6, the operations further compris-
ng:

determiming a count of log 1dentifiers associated with the

detfect ticket exceeds a threshold; and

increasing a priority level of the defect ticket based at

least 1n part on the count of log 1dentifiers exceeding the
threshold.

8. A method, comprising: training, by one or more pro-
cessors, a correlation model with training data to correlate
input data to identified defects and to output associated
conildence scores; recerving, by the one or more processors,
an event log associated with an error event, the event log
including data logged 1n response to the error event, and the
error event being detected on an application; identifying, by
the one or more processors and based at least 1n part on the
event log, a defect and corresponding defect information;
determining, by the one or more processors and by mputting
the defect information into the correlation model, the defect
correlates to an i1dentified defect from a defects database;
generating, by the one or more processors, a confidence
score associated with the defect correlating to the 1dentified
defect; determining, by the one or more processors, the
confidence score 1s above a threshold; determining, by a
defect analyzer component of a plurality of software com-
ponents when executed by the one or more processors and
based at least 1n part on the confidence score being above the
threshold, to generate a defect ticket to associate the defect
with the 1dentified defect; and generating, by the one or more
processors, the defect ticket for the defect and indicating the

1dentified defect.

US 11,693,726 B2

25

9. The method of claim 8, further comprising:

identifying, by the one or more processors, a solution of

the 1dentified defect indicated 1n the defects database;:
and

indicating, by the one or more processors, the solution on

the defect ticket.
10. The method of claim 9, turther comprising:
generating, by the one or more processors, a task to
request review lor the solution on the defect ticket;

receiving, by the one or more processors, a review result
that 1ndicates applying the solution failed to fix the
defect;

creating, by the one or more processors, new training data

that includes the defect ticket, the solution, and the
review result; and

retraining, by the one or more processors, the correlation

model using the new training data.

11. The method of claim 9, further comprising:

generating, by the one or more processors, a task to

request review lfor the solution on the defect ticket;
receiving, by the one or more processors, confirmation
that the solution 1s a resolution for the defect;
creating, by the one or more processors, new training data
that includes the defect ticket, the solution, and the
confirmation; and

retraining, by the one or more processors, the correlation

model using the new training data.

12. The method of claim 11, further comprising:

indicating, by the one or more processors, a resolve status

on the defect ticket;

storing, by the one or more processors, the defect ticket 1n

the defects database; and

generating, by the one or more processors, a user intertace

including a query tool for the defects database.

13. The method of claim 8, the defect information indi-
cating a high severity level and further comprising:

generating, by the one or more processors, a high alert

notification for the defect ticket based at least 1n part on
the high seventy level; and

pushing, by the one or more processors, the high alert

notification to at least one user account having a lead
team role associated with the application.

14. The method of claim 8, the event log associated with
the error event being received in real-time or in near
real-time, and further comprising:

determining, by the one or more processors and based at

least 1n part on the corresponding defect information, a
developer 1dentifier associated with the error event and
a stage ol development cycle 1s associated with a
development stage; and

pushing, by the one or more processors, a high alert

notification to at least a user account associated with
the developer identifier.

15. A method, comprising: creating, by one or more
processors, training data by 1dentifying sample data from a
defects database; training, by the one or more processors, a
machine learning (ML) model with the traiming data to
correlate mput to 1dentified defects; recerving, by the one or
more processors, an event log; determining, by the one or
more processors and using the ML model, a defect associ-
ated with the event log correlates to an 1dentified defect from

10

15

20

25

30

35

40

45

50

55

60

26

the defects database; determining, by a defect analyzer
component of a plurality of software components when
executed by the one or more processors and based at least 1n
part on the defect correlating to the identified defect, to
generate a defect ticket to associate the defect with the
identified defect; generating, by the one or more processors,
the defect ticket for the defect with information including a
solution of the identified defect indicated in the defects
database; receiving, by the one or more processors, review
results for applying the solution as a fix for the defect;
creating, by the one or more processors, new training data
including the defect ticket labeled with the review results;
and training, by the one or more processors, a second ML
model with the new training data.
16. The method of claim 15, further comprising:
recerving, by the one or more processors, an additional
event log;
determining, by the one or more processors and using the
second ML model, an additional defect associated with
the additional event log fails to correlate to a second
identified defect from the defects database; and
generating, by the one or more processors, an additional
defect ticket for the additional defect.
17. The method of claim 15, further comprising:
recerving, by the one or more processors, an additional
event log;
determining, by the one or more processors and using the
second ML model, an additional defect associated with
the additional event log 1s a match for a second i1den-
tified defect from the defects database;:
retrieving, by the one or more processors, a second defect
ticket for the second 1dentified defect from the defects
database:
generating, by the one or more processors, a log 1dentifier
for the additional event log; and
indicating, by the one or more processors, the log 1den-
tifier on the second defect ticket.
18. The method of claim 15, further comprising:
recerving, by the one or more processors, an additional
event log;
determining, by the one or more processors and using the
second ML model, an additional defect associated with
the additional event log correlates to a second 1dentified
defect from the defects database;
retrieving, by the one or more processors, a second defect
ticket for the second 1dentified defect from the defects
database:
determining, by the one or more processors, a severity
level of the additional defect 1s high based at least 1n
part on the second defect ticket indicating a high
severity level; and
generating, by the one or more processors, an additional
defect ticket for the additional defect indicating the
high severity level.
19. The method of claim 18, further comprising:
generating, by the one or more processors, a high alert
notification for first subscribers of events for a first
application associated with the second 1dentified defect
and second subscribers of events for a second applica-
tion associated with the additional defect.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

