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COLLABORATIVE VISUAL PROGRAMMING
ENVIRONMENT WITH CUMULATIVE
LEARNING USING A DEEP FUSION
REASONING ENGINE

TECHNICAL FIELD

The present disclosure relates generally to computer net-
works, and, more particularly, to a collaborative visual
programming environment with cumulative learning using a
deep fusion reasoning engine.

BACKGROUND

The creation of models, ontologies, diagrams, soiftware
programs, and other similar artifacts remains a very time
consuming and resource intensive activity. While there have
been many attempts at creating visual programming sys-
tems, these have largely failed due to the relatively low
productivity that results from their point-and-click inter-
taces. Another source of failure of these visual programming
systems has been caused by the referential integrity prob-
lem. More specifically, once an artifact 1s created via the
visual programming system, any editing of the artifact
cannot be automatically parsed into the visual representa-
tion.

Although new computer languages with higher expressive
power are continually being introduced, e.g., functional
programming languages such as Haskell and Rust, these
more expressive languages also require increasing sophisti-
cation on the part of the software developer. This limits the
usability of these more expressive languages. Indeed, the
gap between the supply of computer scientists, program-
mers, and other experts that can produce high quality digital
artifacts and the demand for such individuals 1s growing

rapidly.

BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments herein may be better understood by
referring to the following description in conjunction with the
accompanying drawings in which like reference numerals

indicate identically or functionally similar elements, of

which:
FIGS. 1A-1B illustrate an example computer network;

FIG. 2 1illustrates an example network device/node;

FIG. 3 illustrates an example hierarchy for a deep fusion
reasoning engine (DFRE);

FIG. 4 illustrates an example DFRE architecture;

FIG. 5 illustrates an example of various inference types;

FIG. 6 1llustrates an example architecture for multiple
DFRE agents;

FI1G. 7 illustrates an example DFRE metamodel;

FIG. 8 illustrates an example DFRE-based architecture
for a visual programming environment;

FI1G. 9 illustrates an example of the mteraction of a DFRE
system with a visual programming environment;

FIG. 10 illustrates an example data pipeline to populate a
DFRE knowledge base;

FIG. 11 illustrates an example of the collaboration of

users 1n a visual programming environment; and
FIG. 12 illustrates an example simplified procedure for
using a DFRE with a visual programming environment.

DESCRIPTION OF EXAMPLE EMBODIMENTS

Overview

According to one or more embodiments of the disclosure,
a device obtains data models and worktlow logic for a visual
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2

programming environment. The device constructs, based on
the data models and workflow logic for the visual program-

ming environment, a metamodel that comprises a knowl-
edge graph. The device makes, using the metamodel, an
evaluation of an interaction between a user and the visual
programming environment. The device provides, based on
the evaluation, visualization data to a user interface of the
visual programming environment.

Description

A computer network 1s a geographically distributed col-
lection of nodes interconnected by communication links and
segments for transporting data between end nodes, such as
personal computers, cellular phones, workstations, or other
devices, such as sensors, etc. Many types of networks are
available, with the types ranging from local area networks
(LANs) to wide area networks (WANs). LANs typically
connect the nodes over dedicated private communications
links located 1n the same general physical location, such as
a building or campus. WANSs, on the other hand, typically
connect geographically dispersed nodes over long-distance
communications links, such as common carrier telephone

lines, optical lightpaths, synchronous optical networks
(SONET), or synchronous digital hierarchy (SDH) links, or
Powerline Communications (PLC) such as IEEE 61334,
IEEE P1901.2, and others. The Internet 1s an example of a
WAN that connects disparate networks throughout the
world, providing global communication between nodes on
various networks. The nodes typically communicate over
the network by exchanging discrete frames or packets of
data according to predefined protocols, such as the Trans-
mission Control Protocol/Internet Protocol (TCP/IP). In this
context, a protocol consists of a set of rules defining how the
nodes interact with each other. Computer networks may be
further interconnected by an intermediate network node,
such as a router, to forward data from one network to
another.

Smart object networks, such as sensor networks, in par-
ticular, are a specific type of network having spatially
distributed autonomous devices such as sensors, actuators,
etc., that cooperatively monitor physical or environmental
conditions at different locations, such as, e€.g., energy/power
consumption, resource consumption (e.g., water/gas/etc. for
advanced metering infrastructure or “AMI” applications)
temperature, pressure, vibration, sound, radiation, motion,
pollutants, etc. Other types of smart objects mclude actua-
tors, €.g., responsible for turning on/ofl an engine or perform
other actions. Sensor networks, a type of smart object
network, are typically shared-media networks, such as wire-
less or PLC networks. That 1s, in addition to one or more
sensors, each sensor device (node) in a sensor network may
generally be equipped with a radio transceiver or other
communication port such as PLC, a microcontroller, and an
energy source, such as a battery. Often, smart object net-
works are considered field area networks (FANs), neighbor-
hood area networks (NANs), personal area networks
(PANSs), etc. Generally, size and cost constraints on smart
object nodes (e.g., sensors) result in corresponding con-
straints on resources such as energy, memory, computational
speed and bandwidth.

FIG. 1A 1s a schematic block diagram of an example
computer network 100 1illustratively comprising nodes/de-
vices, such as a plurality of routers/devices iterconnected
by links or networks, as shown. For example, customer edge

(CE) routers 110 may be mterconnected with provider edge
(PE) routers 120 (e.g., PE-1, PE-2, and PE-3) 1n order to
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communicate across a core network, such as an illustrative
network backbone 130. For example, routers 110, 120 may
be interconnected by the public Internet, a multiprotocol
label switching (MPLS) virtual private network (VPN), or
the like. Data packets 140 (e.g., trathic/messages) may be
exchanged among the nodes/devices of the computer net-
work 100 over links using predefined network communica-
tion protocols such as the Transmission Control Protocol/
Internet Protocol (TCP/IP), User Datagram Protocol (UDP),
Asynchronous Transier Mode (ATM) protocol, Frame Relay
protocol, or any other suitable protocol. Those skilled 1n the
art will understand that any number of nodes, devices, links,
ctc. may be used 1n the computer network, and that the view
shown herein 1s for simplicity.

In some implementations, a router or a set of routers may
be connected to a private network (e.g., dedicated leased
lines, an optical network, etc.) or a virtual private network
(VPN), such as an MPLS VPN utilizing a Service Provider
network, via one or more links exhibiting very diflerent
network and service level agreement characteristics. For the
sake of 1llustration, a given customer site may fall under any
of the following categories:

1.) Site Type A: a site connected to the network (e.g., via
a private or VPN link) using a single CE router and a single
link, with potentially a backup link (e.g., a 3G/4G/5G/LTE
backup connection). For example, a particular CE router 110
shown 1n network 100 may support a given customer site,
potentially also with a backup link, such as a wireless
connection.

2.) Site Type B: a site connected to the network using two
MPLS VPN links (e.g., from different Service Providers)
using a single CE router, with potentially a backup link (e.g.,
a 3G/4G/5G/LTE connection). A site of type B may 1tself be
of different types:

2a.) Site Type Bl: a site connected to the network using
two MPLS VPN links (e.g., from different Service Provid-
ers), with potentially a backup link (e.g., a 3G/4G/5G/LTE
connection).

2b.) Site Type B2: a site connected to the network using
one MPLS VPN link and one link connected to the public
Internet, with potentially a backup link (e.g., a 3G/4G/5G/
LTE connection). For example, a particular customer site
may be connected to network 100 via PE-3 and via a
separate Internet connection, potentially also with a wireless
backup link.

2¢.) Site Type B3: a site connected to the network using
two links connected to the public Internet, with potentially
a backup link (e.g., a 3G/4G/5G/LTE connection).

Notably, MPLS VPN links are usually tied to a committed
service level agreement, whereas Internet links may either
have no service level agreement or a loose service level
agreement (e.g., a “Gold Package” Internet service connec-
tion that guarantees a certain level of performance to a
customer site).

3.) Site Type C: a site of type B (e.g., types B1, B2 or B3)
but with more than one CE router (e.g., a first CE router
connected to one link while a second CE router 1s connected
to the other link), and potentially a backup link (e.g., a
wireless 3G/4G/5G/LTE backup link). For example, a par-
ticular customer site may include a first CE router 110
connected to PE-2 and a second CE router 110 connected to
PE-3.

FIG. 1B 1llustrates an example of network 100 in greater
detail, according to various embodiments. As shown, net-
work backbone 130 may provide connectivity between
devices located in different geographical areas and/or dii-
ferent types of local networks. For example, network 100
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may comprise local/branch networks 160, 162 that include
devices/nodes 10-16 and devices/nodes 18-20, respectively,
as well as a data center/cloud environment 150 that includes
servers 152-154. Notably, local networks 160-162 and data
center/cloud environment 150 may be located in different
geographic locations.

Servers 152-154 may include, in various embodiments, a
network management server (NMS), a dynamic host con-
figuration protocol (DHCP) server, a constrained application
protocol (CoAP) server, an outage management system
(OMS), an application policy inifrastructure controller
(APIC), an application server, etc. As would be appreciated,
network 100 may include any number of local networks,
data centers, cloud environments, devices/nodes, servers,
etc.

In some embodiments, the techniques herein may be
applied to other network topologies and configurations. For
example, the techniques herein may be applied to peering
points with high-speed links, data centers, etc.

In various embodiments, network 100 may include one or
more mesh networks, such as an Internet of Things network.
Loosely, the term “Internet of Things” or “loT” refers to
umiquely 1dentifiable objects (things) and their virtual rep-
resentations 1n a network-based architecture. In particular,
the next frontier 1n the evolution of the Internet 1s the ability
to connect more than just computers and communications
devices, but rather the ability to connect “objects” 1n gen-
eral, such as lights, appliances, vehicles, heating, ventilating,
and air-conditioning (HVAC), windows and window shades
and blinds, doors, locks, etc. The “Internet of Things™ thus
generally refers to the interconnection of objects (e.g., smart
objects), such as sensors and actuators, over a computer
network (e.g., via IP), which may be the public Internet or
a private network.

Notably, shared-media mesh networks, such as wireless or
PLC networks, etc., are often deployed on what are referred
to as Low-Power and Lossy Networks (LLNs), which are a
class of network 1n which both the routers and their inter-
connect are constrained: LLN routers typically operate with
constraints, €.g., processing power, memory, and/or energy
(battery), and their interconnects are characterized by, 1llus-
tratively, high loss rates, low data rates, and/or instability.
LLNs are comprised of anything from a few dozen to
thousands or even millions of LLN routers, and support
point-to-point traflic (between devices inside the LLN),
point-to-multipoint traflic ({rom a central control point such
at the root node to a subset of devices mside the LLN), and
multipoint-to-point traflic (from devices inside the LLN
towards a central control point). Often, an IoT network 1s
implemented with an LLN-like architecture. For example, as
shown, local network 160 may be an LLN 1n which CE-2
operates as a root node for nodes/devices 10-16 1n the local
mesh, 1n some embodiments.

In contrast to traditional networks, LI.Ns face a number of
communication challenges. First, LLNs communicate over a
physical medium that 1s strongly affected by environmental
conditions that change over time. Some examples include
temporal changes in interference (e.g., other wireless net-
works or electrical appliances), physical obstructions (e.g.,
doors opening/closing, seasonal changes such as the foliage
density of trees, etc.), and propagation characteristics of the
physical media (e.g., temperature or humidity changes, etc.).
The time scales of such temporal changes can range between
milliseconds (e.g., transmissions from other transceivers) to
months (e.g., seasonal changes of an outdoor environment).
In addition, LLN devices typically use low-cost and low-
power designs that limit the capabilities of their transceirvers.
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In particular, LLN ftransceivers typically provide low
throughput. Furthermore, LLN transceivers typically sup-
port limited link margin, making the effects of interference
and environmental changes visible to link and network
protocols. The high number of nodes in LLNs in comparison
to traditional networks also makes routing, quality of service
(Qo0S), security, network management, and trailic engineer-
ing extremely challenging, to mention a few.

FIG. 2 1s a schematic block diagram of an example
node/device 200 that may be used with one or more embodi-
ments described heremn, e.g., as any of the computing
devices shown 1n FIGS. 1A-1B, particularly the PE routers
120, CE routers 110, nodes/device 10-20, servers 152-154
(e.g., a network controller located 1n a data center, etc.), any
other computing device that supports the operations of
network 100 (e.g., switches, etc.), or any of the other devices
referenced below. The device 200 may also be any other
suitable type of device depending upon the type of network
architecture in place, such as IoT nodes, etc. Device 200
comprises one or more network interfaces 210, one or more
processors 220, and a memory 240 interconnected by a
system bus 230, and 1s powered by a power supply 260.

The network interfaces 210 include the mechanical, elec-
trical, and signaling circuitry for communicating data over
physical links coupled to the network 100. The network
interfaces may be configured to transmit and/or receive data
using a variety of different communication protocols. Nota-
bly, a physical network interface 210 may also be used to
implement one or more virtual network interfaces, such as
for virtual private network (VPN) access, known to those
skilled 1n the art.

The memory 240 comprises a plurality of storage loca-
tions that are addressable by the processor(s) 220 and the
network interfaces 210 for storing software programs and
data structures associated with the embodiments described
herein. The processor 220 may comprise necessary elements
or logic adapted to execute the software programs and
manipulate the data structures 245. An operating system 242
(e.g., the Internetworking Operating System, or IOS®, of
Cisco Systems, Inc., another operating system, etc.), por-
tions of which are typically resident in memory 240 and
executed by the processor(s), functionally orgamizes the
node by, 1nter alia, invoking network operations in support
of software processors and/or services executing on the
device. These software processors and/or services may coms-
prise a deep fusion reasoming engine (DFRE) process 248, as
described herein.

It will be apparent to those skilled in the art that other
processor and memory types, including various computer-
readable media, may be used to store and execute program
instructions pertaining to the techniques described herein.
Also, while the description illustrates various processes, 1t 1s
expressly contemplated that various processes may be
embodied as modules configured to operate 1n accordance
with the techniques herein (e.g., according to the function-
ality of a similar process). Further, while processes may be
shown and/or described separately, those skilled 1n the art
will appreciate that processes may be routines or modules
within other processes.

DFRE process 248 includes computer executable mnstruc-
tions that, when executed by processor(s) 220, cause device
200 to provide cognitive reasoning services to a network. In
vartous embodiments, DFRE process 248 may utilize
machine learning techniques, in whole or 1n part, to perform
its analysis and reasoning functions. In general, machine
learning 1s concerned with the design and the development
of techniques that take as input empirical data (such as
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network statistics and performance indicators) and recog-
nize complex patterns in these data. One very common
pattern among machine learming techniques 1s the use of an
underlying model M, whose hyper-parameters are optimized
for minimizing the cost function associated to M, given the
input data. The learning process then operates by adjusting
the hyper-parameters such that the number of misclassified
points 1s minimal. After this optimization phase (or learming,
phase), the model M can be used very easily to classily new
data points. Often, M 1s a statistical model, and the mini-
mization of the cost function i1s equivalent to the maximi-
zation of the likelihood function, given the input data.

In various embodiments, DFRE process 248 may employ
one or more supervised, unsupervised, or self-supervised
machine learning models. Generally, supervised learning
entails the use of a training large set of data, as noted above,
that 1s used to train the model to apply labels to the input
data. For example, in the case of video recognition and
analysis, the training data may include sample video data
that depicts a certain object and 1s labeled as such. On the
other end of the spectrum are unsupervised techniques that
do not require a traiming set ol labels. Notably, while a
supervised learming model may look for previously seen
patterns that have been labeled as such, an unsupervised
model may stead look to whether there are sudden changes
in the behavior. Self-supervised 1s a representation learning
approach that eliminates the pre-requisite requiring humans
to label data. Self-supervised learning systems extract and
use the naturally available relevant context and embedded
metadata as supervisory signals. Self-supervised learming
models take a middle ground approach: it 1s different from
unsupervised learning as systems do not learn the inherent
structure of data, and it 1s different from supervised learning
as systems learn entirely without using explicitly-provided
labels.

Example machine learning techniques that DFRE process
248 can employ may include, but are not limited to, nearest
neighbor (NN) techniques (e.g., K-NN models, replicator
NN models, etc.), statistical techniques (e.g., Bayesian net-
works, etc.), clustering techniques (e.g., k-means, mean-
shift, etc.), neural networks (e.g., reservoir networks, artifi-
cial neural networks, etc.), support vector machines (SVMs),
logistic or other regression, Markov models or chains,
principal component analysis (PCA) (e.g., for linear mod-
cls), multi-layer perceptron (MLP) artificial neural networks
(ANNSs) (e.g., for non-linear models), replicating reservoir
networks (e.g., for non-linear models, typically for time
series ), random forest classification, or the like. Accordingly,
DFRE process 248 may employ deep learning, in some
embodiments. Generally, deep learning 1s a subset of
machine learning that employs ANNs with multiple layers,
with a given layer extracting features or transforming the
outputs of the prior layer.

The performance of a machine learning model can be
evaluated 1n a number of ways based on the number of true
positives, false positives, true negatives, and/or false nega-
tives of the model. For example, the false positives of the
model may refer to the number of times the model incor-
rectly 1dentified an object or condition within a video feed.
Conversely, the false negatives of the model may refer to the
number of times the model failed to identify an object or
condition within a video feed. True negatives and positives
may refer to the number of times the model correctly
determined that the object or condition was absent 1n the
video or was present 1n the video, respectively. Related to
these measurements are the concepts of recall and precision.
Generally, recall refers to the ratio of true positives to the
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sum ol true positives and false negatives, which quantifies
the sensitivity of the model. Similarly, precision refers to the
ratio of true positives the sum of true and false positives.
According to various embodiments, FIG. 3 illustrates an
example hierarchy 300 for a deep fusion reasoning engine

(DFRE). For example, DFRE process 248 shown 1n FIG. 2

may execute a DFRE for any number of purposes. In
particular, DFRE process 248 may be configured to analyze
sensor data 1n an IoT deployment (e.g., video data, etc.), to
analyze networking data for purposes ol network assurance,
control, enforcing security policies and detecting threats,
tacilitating collaboration, or, as described in greater detail
below, to aid in the development of a collaborative knowl-
edge generation and learning system for visual program-
ming.

In general, a reasoning engine, also known as a ‘semantic
reasoner,” ‘reasoner,” or ‘rules engine,” 1s a specialized form
of machine learming software that uses asserted facts or
axioms to infer consequences, logically. Typically, a reason-
ing engine 1s a form of inference engine that applies infer-
ence rules defined via an ontology language. As introduced
herein, a DFRE 1s an enhanced form of reasoning engine that
turther leverages the power of sub-symbolic machine leamn-
ing techniques, such as neural networks (e.g., deep leamn-
ing), allowing the system to operate across the tull spectrum
ol sub-symbolic data all the way to the symbolic level.

At the lowest layer of hierarchy 300 1s sub-symbolic layer
302 that processes the sensor data 312 collected from the
network. For example, sensor data 312 may include video
feed/stream data from any number of cameras located
throughout a location. In some embodiments, sensor data
312 may comprise multimodal sensor data from any number
of different types of sensors located throughout the location.
At the core of sub-symbolic layer 302 may be one or more
DNNs 308 or other machine learning-based model that
processes the collected sensor data 312. In other words,
sub-symbolic layer 302 may perform sensor fusion on

sensor data 312 to identily hidden relationships between the
data.

At the opposing end of hierarchy 300 may be symbolic
layer 306 that may leverage symbolic learning. In general,
symbolic learning includes a set of symbolic grammar rules

specifying the representation language of the system, a set of

symbolic inference rules specilying the reasoming compe-
tence of the system, and a semantic theory containing the
definitions of “meaning.” This approach differs from other
learning approaches that try to establish generalizations
from facts as 1t 1s about reasoming and extracting knowledge
from knowledge. It combines knowledge representations
and reasoning to acquire and ground knowledge from obser-
vations 1n a non-axiomatic way. In other words, in sharp
contrast to the sub-symbolic learning performed in layer
302, the symbolic learning and generalized intelligence
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60

65

8

Linking sub-symbolic layer 302 and symbolic layer 306
may be conceptual layer 304 that leverages conceptual
spaces. In general, conceptual spaces are a proposed frame-
work for knowledge representation by a cognitive system on
the conceptual level that provides a natural way of repre-
senting similarities. Conceptual spaces enable the interac-
tion between diflerent type of data representations as an
intermediate level between sub-symbolic and symbolic rep-
resentations.

More formally, a conceptual space 1s a geometrical struc-
ture which 1s defined by a set of quality dimensions to allow
for the measurement of semantic distances between
instances of concepts and for the assignment of quality
values to their quality dimensions, which correspond to the
properties of the concepts. Thus, a point in a conceptual
space S may be represented by an n-dimensional conceptual
vector v=<d,, . . ., d, ..., d > where d, represents the
quality value for the i”* quality dimension. For example,
consider the concept of taste. A conceptual space for taste
may include the following dimensions: sweet, sour, bitter,
and salty, each of which may be 1ts own dimension in the
conceptual space. The taste of a given food can then be
represented as a vector of these qualities 1n a given space
(e.g., 1ce cream may fall farther along the sweet dimension
than that of peanut butter, peanut butter may fall farther
along the salty dimension than that of ice cream, etc.). By
representing concepts within a geometric conceptual space,
similarities can be compared 1n geometric terms, based on
the Manhattan distance between domains or the Euclidean
distance within a domain in the space. In addition, similar
objects can be grouped into meaningful conceptual space
regions through the application of clustering techniques,
which extract concepts from data (e.g., observations).

Said differently, a conceptual space 1s a framework for
representing information that models human-like reasoning
to compose concepts using other existing concepts. Note
that these representations are not competing with symbolic
or associationistic representations. Rather, the three kinds
can be seen as three levels of representations of cognition
with different scales of resolution and complementary.
Namely, a conceptual space 1s built up from geometrical
representations based on a number of quality dimensions
that complements the symbolic and deep learning models of
symbolic layer 306 and sub-symbolic layer 302, represent-
ing an operational bridge between them. Each quality
dimension may also include any number of attributes, which
present other features of objects in a metric subspace based
on their measured quality values. Here, similarity between
concepts 1s just a matter of metric distance between them 1n
the conceptual space 1n which they are embedded.

In other words, a conceptual space 1s a geometrical
representation which allows the discovery of regions that are
physically or functionally linked to each other and to
abstract symbols used 1n symbolic layer 306, allowing for
the discovery of correlations shared by the conceptual
domains during concepts formation. For example, an alert
prioritization module may use connectivity to directly
acquire and evaluate alerts as evidence. Possible enhance-
ments may include using volume of alerts and novelty of
adjacent (spatially/temporally) alerts, to tune level of alert-
ness.

In general, the conceptual space at conceptual layer 304
allows for the discovery of regions that are naturally linked
to abstract symbols used 1n symbolic layer 306. The overall
model 1s bi-directional as it 1s planned for predictions and
action prescriptions depending on the data causing the
activation in sub-symbolic layer 302.
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Layer hierarchy 300 shown 1s particularly appealing when
matched with the attention mechanism provided by a cog-
nitive system that operates under the assumption of limited
resources and time-constraints. For practical applications,
the reasoning logic 1 symbolic layer 306 may be non-
axiomatic and constructed around the assumption of msui-
ficient knowledge and resources (AIKR). It may be imple-
mented, for example, with a Non-Axiomatic Reasoning,
System (open-NARS) 310. However, other reasoning
engines can also be used, such as Auto-catalytic Endogenous
Reflective Architecture (AERA), OpenCog, and the like, 1n
symbolic layer 306, 1n further embodiments. Even Prolog
may be suitable, in some cases, to implement a reasoning,
engine 1n symbolic layer 306. In turn, an output 314 coming
from symbolic layer 306 may be provided to a user interface
(UI) for review. For example, output 314 may comprise a
video feed/stream augmented with inferences or conclusions
made by the DFRE, such as the locations of unstocked or
under-stocked shelves, etc.

By way of example of symbolic reasoming, consider the
ancient Greek syllogism: (1.) All men are mortal, (2.)
Socrates 1s a man, and (3.) therefore, Socrates 1s mortal.
Depending on the formal language used for the symbolic
reasoner, these statements can be represented as symbols of
a term logic. For example, the first statement can be repre-
sented as “man—|mortal]” and the second statement can be
represented as “{Socrates}—man.” Thus, the relationship
between terms can be used by the reasoner to make infer-
ences and arrive at a conclusion (e.g., “Socrates 1s mortal”).
Non-axiomatic reasoning systems (NARS) generally differ
from more traditional axiomatic reasoners 1n that the former
applies a truth value to each statement, based on the amount
of evidence available and observations retrieved, while the
latter relies on axioms that are treated as a baseline of truth
from which inferences and conclusions can be made.

In other words, a DFRE generally refers to a cognitive
engine capable of taking sub-symbolic data as mput (e.g.,
raw or processed sensor data regarding a monitored system),
recognizing symbolic concepts from that data, and applying
symbolic reasoning to the concepts, to draw conclusions
about the monitored system.

According to various embodiments, FIG. 4 illustrates an
example DFRE architecture 400. As shown, architecture 400
may be implemented across any number of devices or fully
on a particular device, as desired. At the core of architecture
400 may be DFRE middleware 402 that offers a collection
of services, each of which may have its own interface. In
general, DFRE middleware 402 may leverage a library for
interfacing, configuring, and orchestrating each service of
DFRE middleware 402.

In various embodiments, DFRE middleware 402 may also
provide services to support semantic reasoning, such as by
an AIKR reasoner. For example, as shown, DFRE middle-
ware 402 may include a NARS agent that performs semantic
reasoning for structural learning. In other embodiments,
OpenCog or another suitable AIKR semantic reasoner could
be used.

One or more DFRE agents 404 may interface with DFRE
middleware 402 to orchestrate the various services available
from DFRE middleware 402. In addition, DFRE agent 404
may feed and interact with the AIKR reasoner so as to
populate and leverage a DFRE knowledge graph with
knowledge.

More specifically, in various embodiments, DFR.
middleware 402 may obtain sub-symbolic data 408. In turn,
DFRE middleware 402 may leverage various ontologies,
programs, rules, and/or structured text 410 to translate
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sub-symbolic data 408 into symbolic data 412 for consump-
tion by DFRE agent 404. This allows DFRE agent 404 to
apply symbolic reasoning to symbolic data 412, to populate
and update a DFRE knowledge base (KB) 416 with knowl-
edge 414 regarding the problem space (e.g., the network
under observation, etc.). In addition, DFRE agent 404 can
leverage the stored knowledge 414 in DFRE KB 416 to
make assessments/inferences.

For example, DFRE agent 404 may perform semantic
graph decomposition on DFRE KB 416 (e.g., a knowledge
graph), so as to compute a graph from the knowledge graph
of KB 416 that addresses a particular problem. DFRE agent
404 may also perform post-processing on DFRE KB 416,
such as performing graph cleanup, applying deterministic
rules and logic to the graph, and the like. DFRE agent 404
may further employ a definition of done, to check goals and
collect answers using DFRE KB 416.

In general, DFRE KB 416 may comprise any or all of the
following:

Data

Ontologies

Evolutionary steps of reasoning

Knowledge (e.g., 1n the form of a knowledge graph)

The Knowledge graph also allows different reasoners to:

Have their internal subgraphs
Share or coalesce knowledge
Work cooperatively
In other words, DFRE KB 416 acts as a dynamic and
generic memory structure. In some embodiments, DFRE KB
416 may also allow different reasoners to share or coalesce
knowledge, have their own internal sub-graphs, and/or work
collaboratively 1n a distributed manner. For example, a first
DFRE agent 404 may perform reasoning on a first sub-
graph, a second DFRE agent 404 may perform reasoning on
a second sub-graph, etc., to evaluate the health of the
network and/or find solutions to any detected problems. To
communicate with DFRE agent 404, DFRE KB 416 may
include a bidirectional Narsese interface or other interface
using another suitable grammar.
In various embodiments, DFRE KB 416 can be visualized
on a user interface. For example, Cytoscape, which has 1ts
building blocks 1n bioinformatics and genomics, can be used
to implement graph analytics and visualizations.
Said differently, DFRE architecture 400 may include any
or all of the following components:
DFRE middleware 402 that comprises:
Structural learning component
JSON, textual data, ML/DL pipelines, and/or other
containerized services (e.g., using Docker)

Hierarchical goal support

DFRE Knowledge Base (KB) 416 that supports:
Bidirectional Narseseese interface
Semantic graph decomposition algorithms
Graph analytics
Visualization services

DFRE Agent 404
DFRE Control System

More specifically, in some embodiments, DFRE middle-
ware 402 may include any or all of the following:

Subsymbolic services:

Data services to collect sub-symbolic data for con-
sumption

Reasoner(s) for structural learning

NARS

OpenCog

Optimized hierarchical goal execution

Probabilistic programming
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Causal inference engines
Visualization Services (e.g., Cytoscape, etc.)

DFRE middleware 402 may also allow the addition of

new services needed by diflerent problem domains.
During execution, DFRE agent 404 may, thus, perform
any or all of the following:
Orchestration of services
Focus of attention
Semantic graph decomposition
Addresses combinatorial 1ssues via an automated
divide and conquer approach that works even 1n
non-separable problems because the overall
knowledge graph 416 may allow for overlap.
Feeding and interacting with the AIKR reasoner wvia
bidirectional translation layer to the DFRE knowledge
graph.
Call middleware services
Post processing of the graph
Graph clean-up
Apply deterministic rules and logic to the graph
Definition of Done (DoD)

Check goals and collect answers
FIG. 5 illustrates an example 500 showing the different
forms of structural learning that the DFRE framework can
employ. More specifically, the inference rules 1n example
500 relate premises S—M and M—P, leading to a conclu-
sion SP. Using these rules, the structural learning herein can
be immplemented using an ontology with respect to an
Assumption of Insuflicient Knowledge and Resources
(AIKR) reasoning engine, as noted previously. This allows
the system to rely on finite processing capacity in real time
and be prepared for unexpected tasks. More specifically, as
shown, the DFRE may support any or all of the following:
Syllogistic Logic
Logical quantifiers
Various Reasoning Types
Deduction Induction

Abduction

Induction
Revision

Different Types of Inference

Local inference

Backward inference

To address combinatorial explosion, the DFRE knowl-

edge graph may be partitioned such that each partition 1s
processed by one or more DFRE agents 404, as shown in
FIG. 6, in some embodiments. More specifically, any num-
ber of DFRE agents 404 (e.g., a first DFRE agent 404aq
through an N” DFRE agent 4047) may be executed by
devices connected via a network 602 or by the same device.
In some embodiments, DFRE agents 404a-404n may be
deployed to different platforms (e.g., platforms 604a-604#)
and/or utilize different learning approaches. For instance
DFRE agent 404a may leverage neural networks 606, DFR.
agent 4046 may leverage Bayesian learning 608, DFR.
agent 404c may leverage statistical learning, and DFR.
agent 404»n may leverage decision tree learming 612.

As would be appreciated, graph decomposition can be

based on any or all of the following:

Spatial relations—ifor instance, this could include the
vertical industry of a customer, physical location (coun-
try) of a network, scale of a network deployment, or the
like.

Descriptive properties, such as severity, service impact,
next step, etc.
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Graph-based components (1solated subgraphs, minimum
spanning trees, all shortest paths, strongly connected
components . . . )

Any new knowledge and related reasoning steps can also be
input back to the knowledge graph, 1n various embodiments.

In further embodiments, the DFRE framework may also
support various user interface functions, so as to provide
visualizations, actions, etc. to the user. To do so, the frame-
work may leverage Cytoscape, web services, or any other
suitable mechanism.

At the core of the techniques herein 1s a knowledge
representation metamodel 700 for different levels of abstrac-
tion, as shown 1 FIG. 7, according to various embodiments.
In various embodiments, the DFRE knowledge graph groups
information 1nto four different levels, which are labeled L,
L,, L,, and L* and represent diflerent levels of abstraction,
with L, being closest to raw data coming in from various
sensors and external systems and L, representing the highest
levels of abstraction typically obtained via mathematical
means such as statistical learning and reasoning. LL* can be
viewed as the layer where high-level goals and motivations
are stored. The overall structure of this knowledge 1s also
based on anti-symmetric and symmetric relations.

One key advantage of the DFRE knowledge graph 1s that
human level domain expertise, ontologies, and goals are
entered at the L, level. This leads, by definition, to an
unprecedented ability to generalize at the L, level thus
minimizing the manual effort required to ingest domain
expertise.

More formally:

L* represents the overall status of the abstraction. In case

of a problem, it triggers problem solving 1n lower layers
via a DFRE agent 702.

L, ,-L, .=Higher level representations of the world 1n
which most of concepts and relations are collapsed nto
simpler representations. The higher-level representa-
tions are domain-specific representations ol lower lev-
els.

L.,=has descriptive, teleological and structural informa-
tion about L,

L,=0bject level 1s the symbolic representation of the
physical world.

In various embodiments, L., may comprise both expertise
and experience stored in long-term memory, as well as a
focus of attention (FOA) in short-term memory. In other
words, when a problem 1s triggered at L*, a DFRE agent 702
that operates on L,-L, may control the FOA so as to focus
on different things, 1n some embodiments.

As would be appreciated, there may be hundreds of

thousands or even millions of data points that need to be
extracted at L. The DFRE’s FOA 1s based on the abstraction

and the DFRE knowledge graph (KG) may be used to keep
combinatorial explosion under control.

Said differently, metamodel 700 may generally take the
form of a knowledge graph in which semantic knowledge 1s
stored regarding a particular system, such as a computer
network and 1ts constituent networking devices. By repre-
senting the relationships between such real-world entities
(e.g., router A, router B, etc.), as well as their more abstract
concepts (e.g., a networking router), DFRE agent 702 can

make evaluations regarding the particular system at diflerent
levels of extraction. Indeed, metamodel 700 may differ from
a more traditional knowledge graph through the inclusion of
any or all of the following, in various embodiments:
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A formal mechanism to represent different levels of
abstraction, and for moving up and down the abstrac-
tion hierarchy (e.g., ranging from extension to inten-
s101).

Additional structure that leverages distinctions/anti-sym-
metric relations, as the backbone of the knowledge
structures.

Similarity/symmetric relation-based relations.

As noted above, the creation of models, ontologies, dia-
grams, soltware programs, and other similar artifacts
remains a very time consuming and resource intensive
activity. While there have been many attempts at creating
visual programming systems, these have largely failed due
to the relatively low productivity that results from their
point-and-click interfaces. Another source of failure of these
visual programming systems has been caused by the refer-
ential 1itegrity problem. More specifically, once an artifact
1s created via the visual programming system, any editing of
the artifact cannot be automatically parsed into the visual
representation.

Although new computer languages with higher expressive
power are continually being introduced, e.g., functional
programming languages such as Haskell and Rust, these
more expressive languages also require increasing sophisti-
cation on the part of the software developer. This limits the
usability of these more expressive languages. In addition,
the gap between the supply of computer scientists, program-
mers, and other experts that can produce high quality digital
artifacts and the demand for such individuals 1s growing
rapidly. Further, the extreme programming and pair pro-
gramming movements, along with recent moves towards
more remote working, has also increased the demand for
improved mechamsms for collaborating and joint develop-
ment of these work products.

—Collaborative Visual Programming Environment with
Cumulative Learning Using a DFRE—

The techniques herein introduce a deep fusion reasoning,
engine (DFRE)-based system to support a multimodal visual
programming environment. In some aspects, the techniques
herein allow for increased levels of productivity and col-
laboration 1n a wvisual programming environment with
respect to the creation and modification of digital artifacts
within the environment (e.g., models, ontologies, diagrams,
documents, soitware, etc.).

Hlustratively, the techniques described herein may be
performed by hardware, solftware, and/or firmware, such as
in accordance with the DFRE process 248, which may
include computer executable instructions executed by the
processor 220 (or independent processor of interfaces 210),
to perform functions relating to the techniques described
herein.

Specifically, according to various embodiments, a device
obtains data models and workflow logic for a visual pro-
gramming environment. The device constructs, based on the
data models and workflow logic for the visual programming
environment, a metamodel that comprises a knowledge
graph. The device makes, using the metamodel, an evalua-
tion of an interaction between a user and the visual pro-
gramming environment. The device provides, based on the
evaluation, visualization data to a user interface of the visual
programming environment.

Operationally, FIG. 8 illustrates an example DFRE-based
architecture 800 for a visual programming environment,
according to various embodiments. As would be appreci-
ated, visual programming allows a user to graphically define
and edit a program through the manipulation of a graphical
display (e.g., via a point-and-click interface, etc.). This 1s 1n
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contrast to more traditional approaches that are text-based
and require the user to know and understand the syntax,
operators, etc. of the programming language. While some
text-based programming languages have implemented some
graphical manipulations into their environments (e.g., Visual
Basic, Visual C++, etc.), these languages are still text-based
at their core. In contrast, visual programming environments
typically rely on the manipulation of graphical symbols, to
specily the control flow of the program. For instance, this 1s
typically done through the specification of a dataflow dia-
gram 1n the visual programming environment (e.g., a tlow
diagram linking with directed arrows between steps/func-
tions, etc.).

At the core of architecture 800 may be a DFRE multi-
modal visual programming agent 802 that leverages a meta-
model, as described previously, to make semantic inferences
about a visual programming environment. In turn, agent 802
may provide visualization data for presentation to a user via
a user interface of the visual programming environment.
Indeed, by learning the data models, worktlow logic, etc.
associated with the visual programming environment, agent
802 can aid the user 1n creating or editing a program via the
visual programming environment.

More specifically, as shown, assume that a programmer
806 interacts with a point & click user interface (Ul) 804 of
the visual programming environment supported by visual
programming services 812. For instance, programmer 806
may begin creating a new dataflow diagram 1in the visual
programming environment via Ul 804. In turn, visual pro-
gramming services 812 may provide data regarding this to
agent 802, which can extract knowledge regarding the
interactions (e.g., by parsing the visual program) and evalu-
ating the resulting knowledge representation 814 using 1ts
knowledge base (KB) 808 of worktlows and software stored
in 1ts metamodel. For instance, agent 802 may identily the
intent of programmer 806 through their specification of one
or more dataflow diagram blocks, connectors, etc. via Ul
804. In turn, agent 802 may provide additional visualization
data to UI 804, such as, but not limited to, suggested changes
to the visual program, contextual data that can aid program-
mer 806 (e.g., an 1nstruction manual or other documenta-
tion), data from the system to be controlled by the visual
program, or the like.

In some embodiments, Ul 804 may take the form of one
or more electronic displays on which the visual program-
ming environment 1s presented to programmer 806. How-
ever, 1n further embodiments, Ul 804 may also take the form
of a more advance Ul, such as an augmented reality display,
mixed reality display, virtual reality display, or other “XR”
display.

In an additional embodiment, programmer 806 may also
interact with the wvisual programming environment via
speech to text conversion services 818, allowing program-
mer 806 to 1ssue audio command and queries to the visual
programming environment. In such a case, DFRE-based
architecture 800 may also include Natural Language Pro-
cessing (NLP) services 816 that parse any captured audio
and provide information regarding the audio interactions to
agent 802. Similar to 1ts evaluations of any interactions of
programmer 806 with Ul 804, agent 802 may also evaluate
any audio interactions and present data to programmer 806,
accordingly (e.g., by sending visualization data to UI 804, as
speech via a text-to-speech converter, etc.).

By way of example, assume that the visual programming,
environment 1s used to program/configure networking
devices 1n a computer network (e.g., routers, switches, etc.).
In this case, programmer 806 may begin by saying “bring up
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the network topology diagram for customer X at site Y.” In
response, agent 802 may search 1ts KB 808 for the requested
topology information and present 1t to the user via Ul 804.
Note that 1f the requested information 1s not in KB 808,
agent 802 could also retrieve the requested information from
an external source, such as a network controller for the
network at site Y, 1f so configured (e.g., KB 808 does not
directly store the topology, but instead stores knowledge
about the concepts of a network topology diagram, the
concept ol a network controller or other source of this
information from which to obtain the information, etc.).
Preliminary testing of the techniques herein has shown that
the capability of agent 802 to use 1ts metamodel/KB 808 to
recognize and assess the user context, customer context,
natural language, along with prior artifacts entered into the
visual programming environment, provides far greater accu-
racy than other approaches that rely solely on machine
learning or deep learning.

Once a target work artifact i1s loaded into the DFR
metamodel/KB 808, agent 802 may also generate an edit-
able, visual representations or diagram of that artifact for
presentation via Ul 804. For instance, i the case of a
network topology, agent 802 may convert the network
topology 1nto a set of blocks and connectors that represent
the various functions of the networking devices and their
relationships for presentation i Ul 804. This allows pro-
grammer 806 to modily the visual representation via Ul 804,
such as to reconfigure the network by manipulating the
visual representation in the visual programming environ-
ment.

Agent 802 may update the DFRE metamodel/KB 808 1n
real time, based on any changes made by programmer 806
within the visual programming environment. As would be
appreciated, KB 808 may be mitially seeded through an
LTM interface 810 for ontologies and expert knowledge via
which a domain expert may crait the mitial knowledge base
for agent 802, as detailed below.

Also as shown, DFRE-based architecture 800 may
include DFRE structured text services 820 that are config-
ured to convert the visual program into its corresponding
commands, configurations, etc. for deployment to live envi-
ronment 824 (e.g., a computer network, etc.). In some
embodiments, prior to fully deploying them to live environ-
ment 824, they may first be sent by services 820 to a testbed
environment 822. This allows the system to validate the
commands, configurations, etc. and provide feedback to Ul
804 via agent 802. For instance, 1f the resulting changes
cause an error 1n testbed environment 822, agent 802 may
assess the error using i1ts metamodel/KB 808 and make
recommendations to programmer 806, accordingly.

FI1G. 9 1llustrates an example 900 of the interactions of a
programmer 902 with a visual programming environment,
according to various embodiments. As shown, programmer
902 may interact with a point & click UI 904 of the visual
programming environment and, potentially, via an NLP
conversational interface 910. In turn, the visual program-
ming environment may provide visualization data 906 for
presentation to programmer 902, such as a datatlow dia-
gram.

By analyzing the diagram semantics 906a from visual-
ization data 906 using 1ts metamodel/KB, DFRE agent 908
may provide diagram suggestions 9065, such as a change
912. This allows programmer 902 to review the proposed
change and either accept 1t, thereby replacing the current
diagram or rejecting it.

FIG. 10 illustrates an example data pipeline 1000 to
populate a DFRE knowledge base, such as KB 808
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described previously, according to various embodiments. As
shown, data pipeline 1000 may comprise an ontology editor
1004 that 1s responsible for generating ontologies 1018 that
are published to KB 808. For instance, ontology editor 1004
may be used to implement interface 810 described previ-
ously in FIG. 8.

During use, ontology editor 1004 may receive workilow
logic 1002 via a graphical user interface (GUI 1006).
Typically, one or more domain experts, such as a network
engineer, a technical assistance center (TAC) expert, or the
like, may provide workilow logic 1002 to ontology editor
1004, which 1s used as input to compiler 1008. In general,
worktlow logic 1002 may specily the various worktlows of
the system to be controlled using the visual programming
environment. For instance, the domain expert may specity
the steps and/or datatlow diagram to troubleshoot and cor-
rect an error i the network as workilow logic 1002. In
further embodiments, worktlow logic 1002 may also include
any of the artifacts created by the domain expert within the
visual programming environment.

Also as shown, ontology editor 1004 may also receive
data models 1020 regarding the system to be controlled
using the visual programming environment. For instance, in
the case of a computer network, data models 1020 can be
obtained from the software development kit (SDK) for the
networking devices of the network, any data modeling
language files associated with the network, such as Yet
Another Next Generation (YANG) models, and the like.

According to various embodiments, ontology editor 1004
may include a semantic mapper 1010 that maps worktlow
logic 1002 and ontology editor 1004 1nto semantic knowl-
edge, such as concepts 1014 and their relationships 1016, for
inclusion 1n the ontologies 1018 that are published to KB
808. In addition, from the specific workilow logic 1002,
rules 1012 can also be codified by ontology editor 1004 for
inclusion in ontologies 1018. By way of example, assume
that data models 1020 includes information regarding the
various calls, functions, etc. needed to communicate control
command to a router. In such a case, workilow logic 1002
may specily which of those calls, functions, etc. should be
used and under which circumstances. In turn, ontology
editor 1004 may codity this information as rules 1012 and
used to seed ontologies 1018 for KB 808.

FIG. 11 1llustrates an example 1100 of the collaboration of
users 1n a visual programming environment, according to
various embodiments. As noted previously with respect to
FIG. 6, the metamodel and DFRE architecture used herein 1s
also able to support cumulative and distributed learning
across any number ol devices and users. For instance,
assume that users 1104q-11044 each interact with visual
programming environment 1106 using their own devices. As
shown, each of these devices may execute its own corre-
sponding DFRE agents 1102a-11024.

Using the techniques above, DFRE agents 1102a-1102d
may share knowledge with one another, thereby allowing the
system to learn from the interactions with each of users
11044-11044d. For instance, assume that user 11044 1s an
expert user that has created a certain datatlow diagram
within visual programming environment 1106. Accordingly,
DFRE agent 1102a may acquire knowledge about this
artifact and share its knowledge about the artifact with the
other DFRE agents 110256-11024. Such updating can be
performed synchronously or asynchronously, as desired.
Thus, 11 another user, such as user 1104¢, attempts to create
a similar datatflow diagram, DFRE agent 1102¢ may provide
suggestions for review by user 1104¢, eflectively sharing the
knowledge and expertise of user 1104a with user 1104c.
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FIG. 12 1llustrates an example simplified procedure for
using a DFRE with a visual programming environment, in
accordance with one or more embodiments described herein.
For example, a non-generic, specifically configured device
(e.g., device 200) may perform procedure 1200 by executing
stored nstructions (e.g., DFRE process 248). The procedure
1200 may start at step 1205, and continues to step 1210,
where, as described 1n greater detail above, the device may
obtain data models and workiflow logic for a visual pro-
gramming environment. For instance, such a visual pro-
gramming environment may be used to configure an asso-
ciated system, such as networking devices 1n a network, etc.
In general, the workflow logic may be specified by one or
more domain experts for the associated system. For instance,
one workflow may specily the steps that a user may take to
troubleshoot and correct problems 1n a network. Similarly,
the data models may

At step 1215, as detailed above, the device may, based on
the data models and workflow logic for the visual program-
ming environment, a metamodel that comprises a knowl-
edge graph. In general, the metamodel comprises a semantic
representation of the data models and worktlow logic for the
visual programming environment. In various embodiments,
the metamodel may also include mechanisms to represent
the visual programming environment at different levels of
abstraction and for moving up and down the abstraction
hierarchy, to include symmetric relations between concepts
in the knowledge graph, etc. As would be appreciated, the
metamodel may also be updated over time, such as through
users interacting with the visual programming environment,
changes being made to the system being controlled by the
visual programming environment, and the like.

At step 1220, the device may make, using the metamodel,
an evaluation of an interaction between a user and the visual
programming environment, as described in greater detail
above. For instance, the interaction may take the form of a
voice command or graphical interaction with the wvisual
programming environment by the user. In response, the
device may associate the iteraction with a concept in the
knowledge graph of the metamodel and use a semantic
reasoning engine to make an inference about the concept
(e.g., to discern an intent of the user).

At step 1225, as detailed above, the device may then
provide, based on the evaluation, visualization data to a user
interface of the visual programming environment. In gen-
cral, the visualization data may comprise an artifact or a
correction to an artifact of the visual programming environ-
ment. For instance, in the case of the user making a
configuration change to a computer network via the visual
programming environment, the visualization data may be a
suggested change to the change entered by the user (e.g.,
based on prior work products, relevant ontologies, etc. in the
metamodel). In further embodiments, the visualization data
may take the form of additional information to be displayed
(or otherwise conveyed, such as audio) to the user via the
visual programming environment. For instance, depending
on the context of the interaction with the visual program-
ming environment by the user, the device may display an
instruction manual or other document, mformation regard-
ing the system being controlled by the visual programming
environment (e.g., current or prior telemetry data, etc.), or
the like, to aid the user. Procedure 1200 then ends at step
1230.

It should be noted that while certain steps within proce-
dure 1200 may be optional as described above, the steps
shown 1n FIG. 12 are merely examples for illustration, and
certain other steps may be included or excluded as desired.
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Further, while a particular order of the steps 1s shown, this
ordering 1s merely 1llustrative, and any suitable arrangement
of the steps may be utilized without departing from the scope
of the embodiments herein.

The techniques herein, therefore, mtroduce a deep fusion
reasoning engine (DFRE) configured to enhance a visual
programming environment. In some aspects, the techniques
herein may acquire knowledge about the visual program-
ming environment and use the acquired knowledge to aid a
user interacting with the visual programming environment.
In turther aspects, the techniques herein could also be used
to implement distributed learning across multiple users, so
as to collaboratively capture and leverage knowledge from
these users.

While there have been shown and described illustrative
embodiments that provide for a DFRE for collaborative
knowledge generation and learming, 1t 1s to be understood
that various other adaptations and modifications may be
made within the spirit and scope of the embodiments herein.
For example, while certain embodiments are described
herein with respect to a visual programming environment,
the techniques can be extended without undue experimen-
tation to other programming or configuration environments,
as well.

The foregoing description has been directed to specific
embodiments. It will be apparent, however, that other varia-
tions and modifications may be made to the described
embodiments, with the attainment of some or all of their
advantages. For instance, it 1s expressly contemplated that
the components and/or elements described herein can be
implemented as software being stored on a tangible (non-
transitory) computer-readable medium (e.g., disks/CDs/
RAM/EEPROM/etc.) having program instructions execut-
ing on a computer, hardware, firmware, or a combination
thereol. Accordingly, this description 1s to be taken only by
way of example and not to otherwise limit the scope of the
embodiments herein. Therefore, 1t 1s the object of the
appended claims to cover all such variations and modifica-
tions as come within the true spirit and scope of the
embodiments herein.

What 1s claimed 1s:

1. A method comprising:

obtaining, by a device, data models and workilow logic

for a visual programming environment, wherein the
device obtains the data models and workilow logic
from a plurality of distributed users, and the worktlow
logic comprises one or more workflows for a network
to be controlled using the visual programming envi-
ronment;

constructing, by the device and based on the data models

and workilow logic for the visual programming envi-
ronment, a metamodel that comprises a knowledge
graph;

making, by the device and using the metamodel, an

evaluation of an interaction between a user and the
visual programming environment; and

providing, by the device and based on the evaluation,

visualization data to a user interface of the wvisual
programming environment.

2. The method as 1n claim 1, wherein the interaction
comprises a voice command.

3. The method as 1n claim 1, wherein the user interface
comprises one ol: an augmented reality display, a mixed
reality display, or a virtual reality display.

4. The method as 1n claim 1, wherein making the evalu-
ation of the interaction between the user and the visual
programming environment comprises:
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associating the interaction between the user and the visual
programming environment with a concept in the
knowledge graph; and

using a semantic reasoning engine to make an inference

regarding the concept, wherein the visualization data 1s
selected based 1n part on the inference.

5. The method as in claim 1, wherein the metamodel
comprises a semantic representation of the data models and
workilow logic for the visual programming environment.

6. The method as 1n claim 5, wherein the metamodel
comprises symmetric relations between concepts in the
knowledge graph.

7. The method as in claim 5, wherein the metamodel
represents the visual programming environment at different
levels of abstraction.

8. The method as 1n claim 1, wherein the visualization
data indicates a change to a visual program being edited by
the user 1n the visual programming environment.

9. The method as 1n claim 1, wherein the visual program-
ming environment 1s used to configure networking devices
in the network.

10. An apparatus, comprising;

a network interface to communicate with a computer

network:

a processor coupled to the network interface and config-

ured to execute one or more processes; and

a memory configured to store a process that 1s executed by

the processor, the process when executed configured to:

obtain data models and workflow logic for a visual
programming environment, wherein the device
obtains the data models and workflow logic from a
plurality of distributed users, and the worktlow logic
comprises one or more worktlows for a network to
be controlled using the visual programming environ-
ment;

construct, based on the data models and workflow logic
for the visual programming environment, a meta-
model that comprises a knowledge graph;

make, using the metamodel, an evaluation of an inter-
action between a user and the visual programming,
environment; and

provide, based on the evaluation, visualization data to
a user interface of the visual programming environ-
ment.

11. The apparatus as 1n claim 10, wherein the interaction
comprises a voice command.
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12. The apparatus as 1n claim 10, wherein the user
interface comprises one of: an augmented reality display, a
mixed reality display, or a virtual reality display.

13. The apparatus as 1n claim 10, wherein the apparatus
makes the evaluation of the interaction between the user and
the visual programming environment by:

associating the interaction between the user and the visual

programming environment with a concept in the
knowledge graph; and

using a semantic reasoning engine to make an inference

regarding the concept, wherein the visualization data 1s
selected based 1n part on the inference.

14. The apparatus as in claim 10, wherein the metamodel
comprises a semantic representation of the data models and
worktlow logic for the visual programming environment.

15. The apparatus as 1n claim 14, wherein the metamodel
comprises symmetric relations between concepts in the
knowledge graph.

16. The apparatus as in claim 14, wherein the metamodel
represents the visual programming environment at different
levels of abstraction.

17. The apparatus as 1 claim 10, wherein the visualiza-
tion data indicates a change to a visual program being edited
by the user in the visual programming environment.

18. A tangible, non-transitory, computer-readable medium
storing program 1instructions that cause a device to execute
a Process comprising:

obtaining, by the device, data models and worktlow logic

for a visual programming environment, wherein the
device obtains the data models and worktlow logic
from a plurality of distributed users, and the workflow
logic comprises one or more workflows for a network
to be controlled using the visual programming envi-
ronment;

constructing, by the device and based on the data models

and workilow logic for the visual programming envi-
ronment, a metamodel that comprises a knowledge
graph;

making, by the device and using the metamodel, an

evaluation of an interaction between a user and the
visual programming environment; and

providing, by the device and based on the evaluation,

visualization data to a user interface of the wvisual
programming environment.
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