US011688455B2 # (12) United States Patent Lee ## (10) Patent No.: US 11,688,455 B2 ### (45) **Date of Patent:** Jun. 27, 2023 # (54) SEMICONDUCTOR MEMORY SUBWORD DRIVER CIRCUITS AND LAYOUT (71) Applicant: Micron Technology, Inc., Boise, ID (US) (72) Inventor: Kyuseok Lee, Boise, ID (US) (73) Assignee: Micron Technology, Inc., Boise, ID (US) (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. (21) Appl. No.: 17/028,929 (22) Filed: Sep. 22, 2020 (65) Prior Publication Data US 2022/0093158 A1 Mar. 24, 2022 (51) Int. Cl. G11C 8/08 (2006.01) G11C 11/408 (2006.01) G11C 11/4097 (2006.01) H01L 27/105 (2023.01) H01L 29/423 (2006.01) G11C 8/14 (2006.01) (52) **U.S. Cl.**CPC *G11C 11/4085* (2013.01); *G11C 11/4097* (2013.01); *H01L 27/105* (2013.01); *H01L 29/423* (2013.01); *G11C 8/08* (2013.01); *G11C* 8/14 (2013.01) (58) Field of Classification Search CPC ... G11C 11/4085; G11C 11/4097; G11C 8/08; G11C 8/14; H01L 27/105; H01L 29/423 See application file for complete search history. #### (56) References Cited #### U.S. PATENT DOCUMENTS | 10,332,584 B2 | 6/2019 | Mochida | | |-----------------|-------------|-----------------|--| | 11,257,532 B2 | 2/2022 | Suzuki | | | 2004/0156259 A1 | 8/2004 | Ninomiya et al | | | 2005/0219934 A1 | 10/2005 | Hanzawa et al. | | | 2005/0270889 A1 | 12/2005 | Sekiguchi et al | | | 2006/0176758 A1 | 8/2006 | Chun | | | 2008/0165563 A1 | 7/2008 | Ohgami | | | 2010/0142246 A1 | 6/2010 | Okahiro et al. | | | 2012/0120706 A1 | 5/2012 | Ohgami | | | 2013/0155801 A1 | 6/2013 | Yun et al. | | | 2015/0055394 A1 | 2/2015 | Iwasa et al. | | | 2015/0117079 A1 | 4/2015 | Yun et al. | | | 2015/0255146 A1 | 9/2015 | Mochida | | | | (Continued) | | | #### FOREIGN PATENT DOCUMENTS | TW | 405121 B | 9/2000 | |----|-------------|--------| | TW | 201322275 A | 6/2013 | | | (Conti | nued) | #### OTHER PUBLICATIONS ISR/WO dated Dec. 28, 2021 for PCT Appl. No. PCT/US2021/050105; pp. all. (Continued) Primary Examiner — Mushfique Siddique (74) Attorney, Agent, or Firm — Dorsey & Whitney LLP ### (57) ABSTRACT In some examples, a subword driver block of a memory device includes a first active region and a second active region adjacent to each other. The first active region forms drains/sources of a first and second transistors in a first region; the second active region forms drains/sources of a third and fourth transistors in a second region, where the first and second regions are adjacent to each other. The first, second, third and fourth transistors are coupled to a common non-active potential via a shared contact overlaid over a merged region between the first and second regions. The first and second active regions may comprise N+ diffusion materials. #### 24 Claims, 17 Drawing Sheets #### (56) References Cited #### U.S. PATENT DOCUMENTS | 2017/0005096 | A1* | 1/2017 | Lee H01L 29/42356 | |--------------|------------|--------|--------------------| | 2017/0103798 | A 1 | 4/2017 | Mochida | | 2018/0166119 | A1* | 6/2018 | Jeong G11C 11/4087 | | 2019/0189186 | A1* | 6/2019 | Won | | 2020/0185024 | A 1 | 6/2020 | Rehmeyer et al. | | 2021/0272613 | A1* | 9/2021 | Jeong G11C 8/08 | | 2022/0068350 | A 1 | 3/2022 | Miyatake | | 2022/0068351 | A 1 | 3/2022 | Shirako et al. | #### FOREIGN PATENT DOCUMENTS | WO | 2022/047060 | 3/2022 | |----|-------------|--------| | WO | 2022047062 | 3/2022 | | WO | 2022066462 | 3/2022 | #### OTHER PUBLICATIONS TW Office Action dated May 3, 2022 for TW Application No. 110134830. U.S. Appl. No. 17/006,730 titled "Memory Subword Driver Layout" filed Aug. 28, 2020, pp. all pages of application as filed. U.S. Appl. No. 17/009,722 titled "Memory Subword Driver Circuits With Common Transistors at Word Lines" filed Aug. 28, 2020, pp. all pages of application as filed. PCT Application PCT/US21/47792 titled "Memory Subword Driver Layout" filed Aug. 26, 2021, , pp. all pages of application as filed. PCT Application PCT/US21/47796 titled "Memory Subword Driver Circuits With Common Transistors at Word Lines" filed Aug. 26, 2021, pp. all pages of application as filed. ^{*} cited by examiner FXB2 TTP TESS SOS \$pe Contact(diffusion Contact(gate) # SEMICONDUCTOR MEMORY SUBWORD DRIVER CIRCUITS AND LAYOUT #### **BACKGROUND** A semiconductor memory device, such as a Dynamic Random Access Memory (DRAM), includes a memory cell array having memory cells disposed at intersections between word lines and bit lines. The semiconductor memory device may include hierarchically structured main word lines (MWL) and word lines. The main word line is driven by a respective main word driver and is positioned at an upper hierarchy, and is selected by a first portion of a row address. The word line is driven by a respective subword driver and is positioned at a lower hierarchy, and is selected based on a corresponding main word line and a word driver line (FX) selected by a second portion of the row address. Due to the scaling down of array access devices in semiconductor fabrication, the local interconnections in a 20 memory cell array, such as word lines coupling between subword drivers and the memory cell array, may have a higher pitch (e.g., more congested) in some areas due to the layout of the subword drivers. There is a desire to reduce the pitch of the interconnections in a subword driver block. #### BRIEF DESCRIPTION OF THE DRAWINGS - FIG. 1 is a block diagram of a semiconductor device according to some examples described in the disclosure. - FIG. 2 is a diagram of an example configuration of a memory hank of a semiconductor device according to some examples described in the disclosure. - FIG. 3 is a schematic diagram of a portion of a memory bank according to some examples described in the disclosure. - FIG. 4 is a schematic diagram of a subword driver and a memory cell. - FIG. **5** is a schematic diagram of example subword drivers coupled in cascade connection according to some examples described in the disclosure. - FIG. 6 is a schematic diagram of example subword driver arrays coupled in cascade connections according to some examples described in the disclosure. - FIG. 7 is a schematic diagram of example subword driver arrays coupled in cascade connections and memory cells according to some examples described in the disclosure. - FIG. **8** is an example block diagram of a portion of a memory device according to some examples described in the 50 disclosure. - FIG. 9A is a plan view of an example layout diagram of subword drivers showing active regions according to some examples described in the disclosure. - FIG. 9B is a plan view of an example layout diagram of 55 the subword drivers in FIG. 9A showing additional layers according to some examples described in the disclosure. - FIG. 9C is a plan view of an example layout diagram of the subword drivers in FIGS. 9A and 9B showing some or additional layers according to some examples described in 60 the disclosure. - FIG. 10A is a plan view of an example layout diagram of subword drivers showing active regions according to some examples described in the disclosure. - FIG. 10B is a plan view of an example layout diagram of 65 the subword drivers in FIG. 10A showing additional layers according to some examples described in the disclosure. 2 - FIG. 10C is a plan view of an example layout diagram of the subword drivers in FIGS. 10A and 10B showing some or additional layers according to some examples described in the disclosure. - FIG. 11A is a plan view of an example layout diagram of subword drivers showing active regions according to some examples described in the disclosure. - FIG. 11B is a plan view of an example layout diagram of the subword drivers in FIG. 11A showing additional layers according to some examples described in the disclosure. - FIG. 11C is a plan view of an example layout diagram of the subword drivers in FIGS. 11A and 11B showing some or additional layers according to some examples described in the disclosure. #### DETAILED DESCRIPTION Certain details are set forth below to provide a sufficient understanding of examples of various embodiments of the disclosure. However, it is appreciated that examples described herein may be practiced without these particular details. Moreover, the particular examples of the present disclosure described herein should not be construed to limit the scope of the disclosure to these particular examples. In other instances, well-known circuits, control signals, timing protocols, and software operations have not been shown in detail in order to avoid unnecessarily obscuring embodiments of the disclosure. Additionally, terms such as "couples" and "coupled" mean that two components may be 30 directly or indirectly electrically coupled. Indirectly coupled may imply that two components are coupled through one or more intermediate components. Shapes and dimensions of the various semiconductor structures shown by the drawings are not to scale. For example, the layout diagrams are 35 provided merely as examples, and the shapes and dimensions may be modified for an actual semiconductor device. FIG. 1 is a block diagram of a semiconductor device 10 according to some examples described in the disclosure. The semiconductor device 10 may be a dynamic random access memory (DRAM) in some embodiments of the disclosure. The semiconductor device 10 includes a memory cell array 11. The memory cell array 11 includes a plurality of word lines WL and a plurality of data lines DL that intersect with each other, with memory cells (MC) disposed at the inter-45 sections. The WLs may be driven by respective subword drivers SWD. For clarity, only one WL, SWD, DL, and MC are shown in FIG. 1. A plurality of main word lines MWL and word driver lines FX may be provided to respective SWDs in the memory cell array 11. For example, a selection of a main word line MWL and a word driver line FX is carried out by the row decoder circuit 12, and
the selection of the data line DL is carried out by a column decoder circuit 13. In some examples, the word driver lines FX may be driven by respective word drivers FXD 46. The main word lines MWL may be driven by respective main word drivers (MWD) 44. For example, a memory device may have 128 main word lines and 128 main word drivers providing respective main word lines. In some examples, the semiconductor device 10 may include multiple memory cell arrays 11 arranged in multiple memory banks. The semiconductor device 10 may also include multiple row decoder circuits 12 and multiple column decoder circuits, each coupled to a respective memory cell array 11. With further reference to FIG. 1, sense amplifiers 18 are coupled to corresponding data lines DL and coupled to local I/O line pairs LIOT/B. Local IO line pairs LIOT/B are coupled to main IO line pairs MIOT/B via transfer gates TG 19 which function as switches to read/write amplifiers and buffers 15. Turning to the explanation of a plurality of external terminals included in the semiconductor device 10, the 5 plurality of external terminals includes command and address terminals 21, clock terminals 23, data terminals 24, and power supply terminals 25 and 26, The command and address terminals 21 are supplied with command and address signals CA. The CA signals provided to the command and address terminals 21 include commands and addresses. Addresses included in the CA signals are transferred via a command/address input circuit 31 to an address decoder circuit 32. The address decoder circuit 32 receives the addresses and supplies a decoded row address signal RA 15 to the row decoder circuit 12, and a decoded column address signal COL to the column decoder circuit 13. Commands included in the CA signals provided to the command and address terminals 21 are input to a command decoder circuit 34 via the command/address input circuit 31. 20 The command decoder circuit 34 decodes the commands to provide various internal command signals. For example, the internal commands may include a row command signal to select a word line and a column command signal, such as a read command or a write command, to select a data line. 25 When a activation command is issued and a row address is timely supplied with the activation command, and a column address is timely supplied with a read command, read data is read from a memory cell MC in the memory cell array 11 designated by these row address and column 30 address. More specifically, the row decoder circuit 12 selects a main word line MWL, word driver line FX, and word line WL indicated by the row address RA so that the associated memory cell MC is subsequently connected to the data line DL. Further, when the memory cell MC is selected by the 35 row address and the associated row is activated by the activation command, the main word line MWL may be active and the word driver line FX may be active. This results in the word line WL being active. Conversely, when the memory cell MC is not selected, e.g., in a precharge 40 operation, the word driver line FX may be inactive, and the main word line MWL may also be inactive. This drives the word line WL to a non-active potential, e.g., off-state word line voltage VNWL. With further reference to FIG. 1, the read data DQ is output externally from the data terminals **24** 45 via a read/write amplifier 15 and an input/output circuit 17. Similarly, when the activation command is issued and a row address are timely supplied with the activation command, and a column address is timely supplied with a write command, the input/output circuit 17 may receive write data 50 DQ at the data terminals 24. The write data DQ is supplied via the input/output circuit 17 and the read/write amplifier 15 to the memory cell array 11 and written in the memory cell MC designated by the row address and the column address. The clock terminals 23 are supplied with external clock signals CK and/CK, respectively. These external clock signals CK and/CK are complementary to each other and are supplied to a clock input circuit 35. The clock input circuit 35 receives the external clock signals CK and/CK and 60 provides an internal clock signal ICLK. The internal clock signal ICLK is supplied to an internal clock generator 36 and thus a phase controlled internal clock signal LCLK is provided based on the received internal clock signal ICLK and a clock enable signal CKE from the command/address 65 input circuit 31. In a non-limiting example, a DLL circuit can be used as the internal clock generator 36. The phase 4 controlled internal clock signal LCLK is supplied to the input/output circuit 17 and is used as a timing signal for determining an output timing of the read data DQ. The power supply terminals 25 are supplied with power supply voltages VDD1, VDD2, and VSS. These power supply voltages VDD1, VDD2, and VSS are supplied to an internal voltage generator circuit 39. The internal voltage generator circuit 39 provides various internal voltages, such as, VPP, VARY, VPERI, VEQ, VCCP, and VNWL. The internal potentials VCCP, VNWL are potentials to be mainly used in the row decoder circuit 12, the main word drivers MWDs 44 and the word drivers FXDs 46. For example, a word driver FXD, when selected based upon the address signal ADD, may be configured to drive a potential on the word driver line FX to a VCCP level corresponding to a high potential (e.g., 3.1 V). When a row is in pre-charge state, an associated subword driver, responsive to an inactive signal on a main word line (MWL) and an inactive signal on a word driver line (e.g., FXT, FXB), may be configured to pull down the word line (WL) to the internal voltage VNWL (e.g., a non-active potential, which may be a negative voltage). The internal potential VARY and VEQ are potentials to be used by the sense amplifier 18, transfer gates 19 and/or read/write amplifiers 15. When the sense amplifier 18 is activated, the read data read out is amplified by driving one of the paired data lines to a VARY level with the other one being driven to a VSS level. The internal potential VPERI is used as a power supply potential for most of the peripheral circuits, such as the command/address input circuit 31. By using the internal potential \TERI having a lower potential than the external potential VDD as the power supply potential of these peripheral circuits, it may be possible to reduce power consumption of the semiconductor device 10. The power supply terminals 26 are supplied with power supply voltages VDDQ and VSSQ. These power supply voltages VDDQ and VSSQ are supplied to the input/output circuit 17. The power supply voltages VDDQ and VSSQ may be the same voltages as the power supply voltages VDD2 and VSS that are supplied to the power supply terminals 25, respectively. However the dedicated power supply voltages VDDQ and VSSQ may be used for the input/output circuit 17 so that power supply noise generated by the input/output circuit 17 does not propagate to the other circuit blocks of device 10. FIG. 2 is a diagram of an example configuration of a memory bank of a semiconductor device according to some examples described in the disclosure. For example, each of the memory cell array 11 of the device 10 (FIG. 1) may include a configuration of the bank 200 of FIG. 2 in some embodiments of the disclosure. In some examples, the memory bank 200 may include a plurality of memory mat regions, such as MAT0-3. In the example shown in FIG. 2, the bank 200 has four memory 55 mat regions, but the bank 200 may include more or less memory mat regions in other examples. As indicated by the dotted lines in memory mat region MAT1, each memory mat region may be divided into multiple sub-regions, e.g., SUB-MAT1-0-3. While the example shown in FIG. 2 includes four sub-regions, memory mat regions MAT0-3 may include more or less sub-regions in other examples. Each sub-region SUBMAT1-0-3 may include a plurality of memory mats (e.g., 64) aligned in the Y-direction. For clarity, the individual memory mats are not shown in FIG. 2. Subword driver SSD blocks (not shown in FIG. 2) may be disposed on the two sides of each memory mat, e.g., in the X direction. Sense amplifier SA blocks may be disposed on the two sides of each memory mat, e.g., in the Y direction. The memory mats of each sub-region SUBMAT1-0-3 may be provided to a corresponding IO (e.g., DQ pad) in some embodiments. The subword driver operations may be controlled by a 5 row decoder circuit, for example, the row decoder circuit 12 of FIG. 1. When receiving a row address RA, the row decoder selects a word line WL by activating an appropriate main word driver (MWD) and an appropriate word driver (FXD) indicated by the row address RA. In the example 10 shown in FIG. 2, one block is shown for the main word driver MWD, however, the main word driver. MWD block may include a plurality of main word drivers MWDs. Similarly, two blocks are shown for the word drivers FXDs, but each word driver FXD block may include a plurality of 15 word drivers FXDs. For example, if each memory mat region MAT includes four sub-regions and each sub-region includes 64 memory mats, the main word driver MWD block may include 128 MWDs, each configured to activate a corresponding main word line (MWL). Continuing this 20 example, each word driver IAD block may include eight word drivers FXDs, each configured to activate a corresponding word driver line (FX). In the example shown in FIG. 2, bits 3-15 of the row address RA encode the main word line MWL and bits **0-2** of the row address RA encode 25 the word driver line FX. However, other encoding schemes may be used. FIG. 3 is a schematic diagram of a portion of a memory bank 300 according to some examples described in the disclosure. In some embodiments of the disclosure, a portion 30 of a bank 300 shown in FIG. 3 may be included in the bank 200 of FIG. 2, and/or the memory cell array 11 of FIG. 1. The memory portion 300 may
include multiple word lines 310, each provided by a respective subword driver SWDj. corresponding subword driver SWD5 associated with a main word line driven by a main word driver MWD1 and also associated with a word driver line 302 (e.g., FX5) associated with a word driver 308. In other words, for each subword driver, a corresponding main word Tiflis MWL and word 40 driver line FX and non-active potential (e.g., off-state word line voltage VNWL) are provided. The signals on the main word lines MWLs and the word driver lines FXs may be provided by main word drivers MWD0-N and word drivers FXDs **304**, based upon the row address RA as described with 45 reference to FIG. 2. A main word line MWL may extend over array regions of a respective memory mat to provide the main word signal to the subword driver rows SWD0-7 of the memory mat to activate those subword drivers SWD0-7. That is, when a 50 main word driver MWD is activated, it may provide active main word signals to all the subword drivers SWD0-7 of the mat. As will be described below, a word driver line FX may include FXT and FXB. In some examples, when the FXT is active, the FXB line is inactive. Conversely, the FXB may 55 be active while the FXT is inactive. Each word driver line **302** of word driver FXD **304** provides word driver lines to at least one subword driver SWD in each mat. In the example shown in FIG. 3, the word driver FXD 304 includes even word drivers **306** and odd word drivers **308**. The even 60 word drivers 306 provide respective word driver lines to even-numbered subword drivers SWD0, SWD2, SWD4, and SWD6, of each memory mat and odd word drivers 308 provide respective word driver lines to odd-numbered subword drivers SWD1, SWD3, SWD5, and SWD7 of each 65 memory mat. However other arrangements may be used in other examples. In the example shown in FIG. 3, each word driver line of the word driver 304 may be coupled to a corresponding subword driver SWD0-7 in each memory mat. For example, FX line 5 may be coupled to the subword driver SWD5 of each memory mat. In the example operation shown in FIG. 3, a row address RA has indicated MWD1 should be activated and odd word driver 308 associated with word driver line FX 5 should be activated. As shown by the shaded regions 312, word lines 310 associated with the inactive main word drivers MWD0, MWDn remain inactive, even the subword lines associated with word driver line FX 5 are active. However, among the word lines 322 that are associated with activated MWD1, the word line **314** driven by subword driver SWD**5** associated with activated MWD1 and FX 5 is activated. By way of example, an activated MWD may be configured to provide an active signal on the associated main word line, and an activated word driver FXD may be configured to provide an active signal on the word driver line (e.g., FXT, FXB). Similarly, an activated subword driver may be configured to provide an active signal on the associated word line. Thus, a selected word line WL of the selected memory mat associated with MWD1 is driven to the active potential by the corresponding activated subword driver SWD5. In some examples, the other subword drivers SWD of the selected memory mat drive the respective unselected word lines WL to the non-active potential (e.g., VNWL) to remain inactive. Subword drivers SWD of unselected memory mats MAT (e.g., memory mats associated with MWD0 and MWDn) remain deactivated, and the word lines WL of the unselected memory mats MAT are not provided a voltage, or instead, provided with a non-active potential (e.g., VNWL) in some examples. Whereas a subword driver SWD is coupled to a word driver FXD and a main word driver MWD, in order for a word line WL associated with the For example, a word line 314 may be provided by a 35 subword driver SWD to be activated, both the associated word driver FXD and the main word driver MWD must be activated. > FIG. 4 is a schematic diagram of a conventional subword driver and a memory cell. As shown in FIG. 4, the output of a subword driver 402 is coupled to a word line WL, which is coupled to memory cell 412. The memory cell 412 includes at least a transistor and a capacitor. The word line WL is connected to the gate of the transistor and the data line DL is connected to the drain/source (drain or source) of the transistor. The memory cell is capable of storing 1-bit data. The memory cell **412** is coupled to a sense amplifier **410** configured to sense a signal of the memory cell **412** on the data line DL and drive the signal to a desired voltage. > The subword driver 402 includes two transistors of different conductivity types (e.g., a p-channel type transistor 404 and an n-channel type transistor 406) serially coupled at the word line WL. A main word line MWL is coupled to the gates of the transistors 404 and 406. A word driver line FXT is coupled to the drain/source of the transistor 404, and the non-active potential VNWL is provided to the drain/source of the transistor **406**. The word line WL is also coupled to the non-active potential VNWL through an n-channel type transistor 408. A word driver line FXB is coupled to the gate of the transistor 408. > The word line of the memory cell **412** is coupled to the subword driver 402, which operates responsive to the signals on the main word line signal MWL and the word driver line FXT. In operation, the transistors 404 and 406 are configured to provide an active/inactive signal on the word line WL. The n-channel type transistor 408 is used to prevent unselected word lines from floating. For example, when the main word line MWLB is active low, the transistor 404 is -7 turned on and the transistor **406** is turned off. If EXT is inactive, the FXB will be active to turn on the transistor **408**, which pulls down the potential at the word line WL to VNWL, preventing the word line from floating. As shown in FIG. **4**, the subword driver **402** in the conventional circuit 5 includes at least three transistors. FIG. 5 is a schematic diagram of example subword drivers coupled in cascade connection according to some examples described in the disclosure. Examples of cascade connection may include coupling the output of two or more circuits. For 10 example, the subword drivers 502, 504 may be coupled in cascade connection, as explained in detail in FIG. 5. In some examples, the subword drivers **502** and **504** shown in FIG. 5 may be implemented in the subword drivers 42 (in FIG. 1) or SWD0-7 (in FIG. 3). The subword drivers 502 and 504 15 may be coupled to different main word lines. For example, subword driver 502 is coupled to main word line MWLBn, whereas subword driver **504** is coupled to main word line MWLBn+1. In some examples, subword driver **502** may include two transistors of different conductivity types (e.g., 20 a p-channel type transistor 508 and an re-channel type transistor 506) coupled at their sources/drains (sources or drains), which are commonly coupled to an output OUTm. The output OUTm may be coupled to a word line WLm. The gates of the transistors 506, 508 may be coupled to a 25 common main word line, e.g., MWLBn. The source/drain of the n-channel type transistor 506 may be coupled to a non-active potential VNWL, whereas the source/drain of the p-channel type transistor 508 may be coupled to the word driver line FXT (e.g., FXT0). Subword driver **502** may also 30 include a common transistor **514** shared with another subword driver, e.g., subword driver **504**. In some examples, the subword driver **504** may have a similar structure as subword driver **502**, the description of coupled to a main word line, e.g., MWLBn+1, different from the main word line MWLBn to which the subword driver **502** is coupled. The two transistors of different conductivity types (e.g., p-channel type transistor 510 and n-channel type transistor **512**) may be commonly coupled at their sources/ 40 drains to an output OUTm+1, which is coupled to a word line WLm+1. In some examples, the respective outputs OUTm and OUTm+1 of subword drivers **502** and **504** may be coupled to a common transistor **514** shared by the two subword drivers. In some examples, the common transistor 45 514 may be an n-channel type transistor, with the gate coupled to a corresponding word driver line FXB (e.g., FXB0). In some examples, the drain/source of the p-channel type transistors of subword drivers 502, 504, in this case, **508**, **510**, may be coupled at a common word driver line, 50 e.g., FXT0. As shown in FIG. 5, the two subword drivers 502 and 504 share a common transistor 514 at the respective outputs OUTm and OUTm+1 through a cascade connection. As a result, two subword drivers now include a total of five transistors, with an average of 2.5 transistors per subword 55 driver. In comparison to the conventional subword driver shown in FIG. 4, the number of transistors for subword drivers can be reduced, which results in a reduction of memory die size. Two subword drivers **502** and **504** are shown in FIG. **5**, 60 however, other subword drivers in a memory device may be configured in a similar manner. For example, additional subword drivers, e.g., **520**, may also be coupled to the main word line MWLBn to which subword driver **502** is coupled. Similarly, additional subword drivers, e.g., **522**, may also be 65 coupled to the main word line MWLBn+1 to which subword driver **504** is coupled. In the example shown in FIG. **5**, one 8 main word line MWL drives four subword drivers to provide signals on four word lines (only one is shown). However, other number of subword drivers may be coupled to the same main word line driver, as will be shown in FIG. 6. FIG. 6 is a schematic diagram of example subword driver arrays coupled in cascade connections according to some examples described in the disclosure. A subword driver array 600 may be implemented in any of the subword drivers (e.g., 42 in FIG. 1, SWD0-7 in
FIG. 3). The subword driver array 600 may include multiple main word lines (e.g., MWLB0, MWLB1, . . .) each coupled to a respective set of subword drivers to drive the set of subword drivers to drive respective word lines. For example, subword drivers 602, 606, 618 and 622 are coupled to and driven by main word line MWLB1. Subword drivers 604, 608, 610 and 614 are coupled to and driven by main word line MWLB2. In some examples, the subword driver array 600 may include multiple pairs of subword drivers that are coupled in cascade connection as shown in the example in FIG. 5. In some configurations, subword drivers associated with a first main word line may be coupled in cascade connection to subword drivers associated with a second main word line different from the first main word line. For example, the subword drivers 602, 606 are associated with main word line MWLB1 and have outputs coupled to word lines WL8 and WL10, respectively. The subword drivers 604, 608 are associated with a different main word line, MWLB2 and have outputs coupled to word lines WL16 and WL18, respectively. In the example as shown, the two subword drivers 602, include a common transistor 514 shared with another subword driver, e.g., subword driver 504. In some examples, the subword driver 504 may have a similar structure as subword driver 502, the description of which is not repeated. The subword driver 504 may be coupled to a main word line, e.g., MWLBn+1, different from the main word line MWLBn to which the subword driver 502 is coupled. The two transistors of different conductivity types (e.g., p-channel type transistor 510 and n-channel type transistor 512) may be commonly coupled at their sources/drains to an output OUTm+1, which is coupled to a word line WLm+1. In some examples, the respective outputs OUTm and OUTm+1 of subword drivers 502 and 504 may In some examples, two subword drivers associated with physically adjacent main word lines may be coupled in cascade connection. For example, where the two subword drivers 602 and 604 are coupled in cascade connection, the associated main word lines of the subword drivers, e.g., MWLB1 and MWLB2, may be physically adjacent to each other. It is appreciated that associated main word lines of two subword drivers that are coupled in cascade connection may not be physically adjacent to each other in some embodiments of the disclosure. In some examples, subword drivers associated with a given main word line may be coupled in cascade connection with subword drivers associated with two other main word lines in an alternating manner. In a non-limiting configuration, the subword drivers associated with a first main word line may include at least a first set of subword drivers and a second set of subword drivers. The first set of subword drivers may be coupled in cascade connection to one or more subword drivers associated with a second main word line, and the second set of subword drivers may be coupled in cascade connection to one or more subword drivers associated with a third main word line. In a non-limiting example, the subword drivers associated with a main word e.g., MWLB1 may include a first set, e.g., **602**, **606**, and a second set, e.g., **618**, **622**. As described above, subword drivers 602, 606 may be coupled in cascade connection with subword drivers 604, 608, respectively, where subword drivers 604, 608 are associated with a second main word line, e.g., MWLB2. Further shown in 5 FIG. 6, the second set of subword drivers 618, 622 may be coupled in cascade connection with subword drivers 620, **624** which are associated with a third main word line, e.g., MWLB0. In this configuration, among the multiple subword drivers associated with the word line MWLB1, two subword 10 drivers 602, 606 are coupled in cascade connection with two subword drivers 604, 608, respectively, that are positioned in a first direction (e.g., in the Y direction) relative to the subword drivers 602, 606, where subword drivers 604, 608 other subword drives associated with the word line MWLB1, e.g., 618, 622 are coupled in cascade connection with two subword drivers 620, 624, respectively, that are positioned in a second direction (e.g., in the X direction) relative to the subword drivers **618**, **622**, where the subword 20 drivers 620, 624 are associated with a third word line, e.g., MWLB0. In a similar configuration, two subword drivers 604, 608 associated with the main word line MWLB2 are respectively coupled in cascade connection with two subword drivers 25 602, 606 that are positioned in the second direction relative to the subword drivers 604, 608, where subword drivers 602, 606 are associated with the main word line MWLB1. Similarly, two other subword drivers associated with the main word line MWLB2, e.g., subword drivers 610, 614, are 30 each coupled in cascade connection with two subword drivers 612 and 616, respectively, that are positioned in the first direction relative to the subword drivers 610, 614, where subword drivers 612, 616 are associated with a fourth main word line, e.g., MWLB3. In the example in FIG. 6, the first main word line (e.g., MWLB1) may be physically adjacent to the second main word line (e.g., MWLB2). The first main word line (e.g., MWLB1) may also be physically adjacent to the third main word line (e.g., MWLB0). In other scenarios, the first main 40 word line may not be physically adjacent to either of the second or third main word line. It is appreciated that the terms "first direction" and "second direction" are only opposite relatively. For example, the "first direction" may refer to a connection in the X direction whereas the "second 45" direction" may refer to a connection in the Y direction opposite to the X direction. Alternatively, the "first direction" may refer to a connection in the X direction whereas the "second direction" may refer to a connection in Y direction. It is further appreciated that variations of the 50 configurations shown in FIG. 6 may be possible. FIG. 7 is a schematic diagram of example subword driver arrays coupled in cascade connections and memory cells according to some examples described in the disclosure. In some examples, the cascade connection of subword drivers 55 as shown in FIGS. 5 and 6 may be implemented in the subword driver arrays in a memory device 700 in FIG. 7. For example, the memory device 700 may include a memory cell block 702 arranged in two arrays 708, 710 each extending in a first direction, e.g., "x." Each of the memory cell arrays 60 708, 710 includes a respective data line (e.g., DL_Tk-1, DL_Tk) and multiple memory cells coupled to the respective data line. Each memory cell on a data line is provided with a respective word line extending in a second direction where each word line is driven by a respective subword driver in either side of the memory cell block 702. The **10** memory cell block 702 may include a DRAM memory array. A memory cell in the memory cell block 702 may include a capacitor and a transistor (e.g., an n-channel type MOSFET) serially connected and configured to store one bit of data. In a non-limiting example, the memory cells associated with even-numbered word lines (e.g., WLm-14, WLm-12, . . . WLm, . . . WLm+14, WLm+16) are coupled to a first data line (e.g., DL_Tk-1), where the even-numbered word lines are coupled to a first subdriver block 704 positioned on a first side (e.g., the left side) of the memory cell block 702. Similarly, the memory cells associated with odd-numbered word lines (e.g., WLm-15, WLm-13, . . . WLm-1, WLm+1, . . . WLm+13, WLm+15) are coupled to a second data line (e.g., DL_Tk), where the odd-numbered are associated with a second word line, e.g., MWLB2. Two 15 word lines are coupled to a second subdriver block 706 positioned on a second side opposite the first side (e.g., the right side) of the memory cell block 702. > In the configuration in FIG. 7, the first subword driver block 704 may include multiple sets of subword drivers to drive respective even-numbered word lines, e.g., WLm-14, WLm-12, . . . Each of the word lines is coupled to a respective memory cell. Each set of subword drivers are associated with a respective main word line. For example, a set of even-numbered subword drivers 720 (not entirely shown) are coupled to even-numbered word lines WLm-14, WLm-12, WLm-10 and WLm-8 associated with the main word line MWLBn-1. Similarly, a set of odd-numbered subword drivers 728 (not entirely shown) are coupled to odd-numbered word lines WLm-15, WLm-13, WLm-11 and WLm-9 associated with the same main word line MWLBn-1. The subword driver sets 720 and 728 are respectively arranged on two opposite sides of the memory cell block 702. In the configuration in FIG. 7, a main word line drives eight subword drivers to drive eight word lines. Each of the eight subword drivers is coupled to a main word line and a respective word driver line (FXT, FXB). For example, the signals provided on main word line MWLBn-1 and eight word driver lines FXT0-7 drive eight subword drivers (on either side of the memory cell block 702), respectively. Each of the eight subword drivers drives a respective word line (e.g., WLM-8, WLM-9, WLM-15). With further reference to FIG. 7, the even-numbered subword drivers on the left side of the memory cell block **702** are driven by the main word line MWLBm-1 and word driver lines signals FXT0/FXB0, FXT2/FXB2, FXT4/ FXB4, and FXT6/FXB6, respectively, to drive the word lines WLm-14, WLm-10, and WLm-8, respectively. On the right side of the memory cell block 702, the oddnumbered subword drivers are driven by the main word line MWLBm-1 and word driver lines FXT1/FXB1, FXT3/ FXB3, FXT5/FXB5, and FXT7/FXB7, respectively, to drive the word lines WLm-15, WLm-13, WLm-11, and WLm-9, respectively. The remaining blocks in the circuit are arranged in a similar manner and will not be described repeatedly. Although only main word lines MWLBn-1, MWLBn, MWLBn+1, MWLBn+2
are shown in FIG. 7, it is understood that a memory device may have hundreds of main word lines, and each main word line may be coupled to any suitable number of subword drivers to drive multiple word lines. For example, in a non-limiting example, a memory device may have 128 main word lines driven by 128 main word drivers (MWD). A main word line may be associated with 8 word lines, which are selected together by the signals substantially perpendicular to the first direction, e.g., "y," 65 on the main word line and respective word driver lines FXT/B0-FXT/B7. In such case, there are 1024 word lines in the memory cell array. With further reference to FIG. 7, the cascade connection between subword drivers may be implemented. For example, on the left side of the memory cell array 702, the word lines WLm-4 and WLm-6 are driven by respective subword drivers associated with the main word line 5 MWLBn (see block 722); the word line WLm-10 and WLm-8 are driven by respective subword drivers associated with adjacent main word line MWLBn-1 (see block 720). As shown, the subword drivers that drive word lines WLm-4 and WLm-10, which are associated with adjacent 10 main word lines MWLBn and MWLBn-1, respectively, each includes a common n-channel type transistor Q8 that is coupled in cascade connection to the outputs of the subword drivers. Respective subword drivers of the word lines WLm-4 and WLm-10 are also coupled to the same word 15 driver line FXT4, The gate of the transistor Q8 is coupled to the word driver line FXB4. Similarly, the subword drivers that drive word lines WLm-6 and WLm-8 are coupled in cascade connection through a common n-channel type transistor Q9. Respective 20 subword drivers of the word lines WLm-6 and WLm-8 are also coupled to the same word driver line FXT6. The transistor Q9 is coupled to the word driver line FXB6. For each of the subword drivers (or subword driver pairs in cascade connection), the detailed illustration is shown in 25 FIGS. 5 and 6. The multiple odd-numbered subword drivers (in block 706) are also coupled in cascade connection in the same manner as for even-numbered subword drivers (in block 704) as previously described. With reference to FIGS. 6 and 7, the operation of the 30 subword drivers 502, 504 in FIG. 5 may be implemented in any of the subword drivers in FIGS. 6 and 7. For example, among the multiple main word lines MWLB, only one main word line is selected (e.g., active) whereas all other main word lines are unselected (e.g., inactive). Also, among the 35 multiple word driver lines FXT/FXB, only one word driver line is active. For a subword driver associated with a selected main word line, the supply of non-active potential VNWL from its own circuit is cut off because the n-channel type transistor is turned off (due to the active selected main 40 word line). If the FXT provided to the subword driver is inactive, however, a non-potential VNWL is nonetheless supplied to the word line to prevent the word line from floating. For example, the VNWL may be supplied from another subword driver that is in cascade connection through 45 a common transistor. For example, with reference to FIG. 6, one main word line, e.g., may be selected (e.g., at logic low) while other main word lines are unselected (e.g., at logic high); and one word driver line, e.g., FXT0/FXB0 may be active while 50 other word driver lines are inactive. In this case, all of the subword drivers 602, 606, 618, 622 are cut off from VNWL in their respective own circuit due to selected main word line MWLB1. When FXT2/FXB2, FXT4/FXB4, FXT6/FXB6 are inactive, the VNWL supply for the corresponding sub- 55 word drivers 606, 618, 612 are provided to their adjacent subword drivers through the cascade connection. For example, the VNWL is supplied to subword driver 606 from subword driver 608, which is associated with the unselected main word line MWLB2. When MWLB2 is unselected, the 60 transistor Q9 in subword driver 608 is turned on, and VNWL is coupled to the common transistor Q10 through transistor Q9. Similarly, the VNWL supplies for subword drivers 618, 612 are provided from subword drivers 620 and 624, respectively. FIG. 8 is an example block diagram of a portion of a memory device according to some examples described in the 12 disclosure. In some examples, a portion of a memory device, e.g., 800, may be implemented in the memory device 10 (FIG. 1). The portion of the memory device 800 may include multiple memory cell arrays, e.g., 806. The memory cell arrays 806 may be arranged in rows and columns. Each memory cell array 806 may include multiple memory cells. The portion of the memory device 800 also includes multiple subword driver (SWD) blocks 810 and multiple sense amplifier (SA) blocks 808. In some examples, the memory cell arrays 806, SWD blocks 810 and SA blocks 808 may be implemented inside a memory cell array 11 (FIG. 1). In some examples, the SWD blocks 810 are arranged on the sides of the memory cell array 806. In a non-limiting example, subword drivers may be placed on one side of a memory cell array and adjacent to the memory cell array to provide signals on respective word lines for the memory cell array. In another non-limiting example, subword drivers may be placed on two sides of a memory cell array and adjacent to the memory cell array to provide signals on respective word lines for the memory cell array. For example, the word lines for a memory cell array may be divided into even- and odd-numbered word lines. The subword drivers for even-numbered word lines may be arranged adjacent to a first side, e.g., left side of the memory cell array, whereas subword drivers for odd-numbered word lines may be arranged adjacent to a second side opposite the first side (e.g., right side) of the memory cell array. In the example in FIG. **8**, each of the SWD blocks may serve an adjacent memory cell array on either side of the SWD block. Each of the SWD blocks may serve adjacent memory cell arrays on both sides of the SWD block. For example, a SWD block may have a first portion and a second portion, where the first portion is coupled to word lines of a memory cell array adjacent to a first side (e.g., left side) of the SWD block, and the second portion is coupled to word lines of a memory cell array adjacent to a second side opposite the first side (e.g., right side) of the SWD block. In some examples, the subword driver blocks (810) may be placed on sides of the memory cell arrays (806) in a first direction, e.g., X, whereas the SA blocks 808 may be arranged on sides of the memory cell arrays 806 in a second direction substantially perpendicular to the first direction, e.g., Y. For example, as shown in FIG. 8, the SWD blocks may be arranged adjacent left and/or right sides of the memory cell blocks 806, and SA blocks may be arranged adjacent upper and/or lower sides of the memory cell blocks 806. The portion of the memory device **800** may further include a main word driver (MWD) block **804**. In some examples, the MWD block may include multiple MWDs coupled to multiple main word lines, respectively. In a non-limiting, the MWD block may include 128 MWDs to provide signals on 128 main word lines, e.g., MWLBn to MWLBn+128, respectively. It is appreciated that other suitable number of main word lines may be implemented. In some examples, the portion of the memory device 800 may also include an array control block (ACTL) 802 configured to provide signals on multiple word driver lines FXTj/FXBj to the SA blocks 810. In some examples, the MWD block 804 may be implemented inside the memory device 10 (FIG. 1). In some examples, the ACTL block 802 may be implemented in one or more row decoder circuits 12 (FIG. 1) and/or additional circuits in the memory device 10 (FIG. 1). The portion of the memory device 800 may operate the same as memory device 10 (FIG. 1), 600 (FIG. 6), or 700 (FIG. 7), thus, the operation of the memory device shown in FIG. 8 is not repeated. FIG. 9A is a plan view of an example layout diagram of subword drivers showing active regions according to some examples described in the disclosure. In some examples, layout 900 of subword drivers may include active regions that implement multiple subword drivers, such as subword 5 drivers in the memory device 700 (FIG. 7). An active region may include one or more drains, sources and channels. For example, an active region may include P+ diffusion materials or N+ diffusion materials to form p-channel type or n-channel type transistors, respectively. With reference to 10 FIG. 9A, the layout 900 may include a p-channel type MOSFET area 902 and an n-channel type area 904 adjacent to the p-channel type area. The p-channel type area 902 may include active regions having P+ diffusion materials and implement p-channel type transistors in the subword drivers. 15 The n-channel type area 904 may include active regions having N+ diffusion materials and implement n-channel type transistors in subword drivers. As shown in FIG. 9A, the p-channel type area has multiple sub-regions, e.g., 906A-D, each extending in a first direction such as in columns. The 20 n-channel type area has multiple sub-regions, e.g., 910A-D, each extending in the first direction. It is appreciated that, although only four sub-regions are shown, both the p-channel type area and n-channel type area may each have any suitable number of sub-regions. Separating the n-channel 25 and p-channel type transistors in the subword drivers may provide advantages in optimizing the layout as will be further illustrated in the present disclosure. In some examples, the n-channel type area (e.g., 904) may have two n-channel type sub-regions, e.g., 910C, 910D which may 30 have one or more common diffusion regions **920** that merge the source/drain of two or more transistors. This will be further explained in FIG. 9B. FIG. 9B is a plan view of an example layout diagram of the subword drivers in FIG. 9A showing
additional layers 35 according to some examples described in the disclosure. In some examples, layout 900 may include additional layers such as a gate layer overlaid on the p-channel type area 902 and n-channel type area 904 to form p-channel type or n-channel type transistors. In some examples, the gate layer 40 may include multiple gate electrodes. Each gate electrode may be coupled to a respective main word line MWLB. In FIG. 9B, four gate electrodes respectively for main word lines MWLBn-1, MWLBn, MWLBn+1, and MWLBn+2 are shown. Although the layout 900 shows only a portion of 45 the memory device, it is appreciated that additional gate electrodes for other main word lines may be included. With further reference to FIG. 9B, the layout 900 may also include contacts for active regions or gate layers that are overlaid on the respective active regions in a plan view. As 50 shown, diffusion contacts may be arranged in an active region on each side of a gate. In the p-channel type area (902), gate electrodes may overlap with active regions including P+ diffusion materials to form respective p-channel type transistors. A contact on the active region may be 55 coupled to a word line WLm+j or a word driver line (e.g., FXTDj). FXT word driver line (e.g., FXTO, FXT1, FXT2, FXT3) is connected to a common source/drain between adjacent main word lines (MWLB). For example, FXT0, FXT2 are coupled to respective 60 common sources/drains between adjacent gate electrodes associated with MWLBn-1 and MWLBn. FXT0, FXT2 are also coupled to respective common sources/drains between adjacent main word lines MWLBn+1 and MWLBn+2. FXT4, FXT6 are coupled to respective common drains/ 65 sources between adjacent main word lines MWLBn and MWLBn+1. For each gate, on the opposite side from the **14** common source/drain, a respective word line is coupled to the drain/source. For example, along the gate electrode associated with MWLBn, a word line WLm is coupled to a drain of the transistor Q16, opposite the common source with transistor Q1. Similarly, along the gate electrode associated with main word line MWLBn+1, a word line WLm+2 is coupled to a drain of the transistor Q17, opposite the common source with transistor Q19. This pattern repeats for additional word lines. In the n-channel type area 904, the gate electrodes overlay with N+ diffusion sub-regions to form respective n-channel type transistors. A contact on the active region may be coupled to a word line WLm+i or a non-active potential VNWL. In other words, respective word lines and non-active potential VNWL are coupled to the drain/source of each transistor. For example, transistor Q30 is formed and coupled to main word line MWLBn-1 at the gate, and further coupled to VNWL and WLm-12 at the drain/source. Similarly, transistor Q31 is formed and coupled to main word line MWLBn at the gate, and further coupled to VNWL and WLm-2 at the drain/source. As shown in FIG. 9B, transistors Q30, Q31 may be formed in a first n-channel type sub-region (e.g., 910C), where drains or sources of transistors Q30, Q31 may be coupled together to a common VNWL contact. In some examples, transistors Q5, Q12 may be formed in a second n-channel type sub-region (e.g., 910D) in a similar manner as transistors Q30, Q31 are formed, where each of Q5, Q12 is coupled to main word lines MWLBn-1, MWLBn, respectively, at the gate, and further coupled to VNWL and Wiom at respective drains or sources. In some examples, a first active region (e.g., N+ diffusion region) that forms drains/sources of transistors Q30, Q31 in the n-channel sub-region 910C is merged at a common diffusion region 920 with a second active region (e.g., N+ diffusion region) that forms transistors Q5, Q12 in the n-channel sub-region 910D. In other words, the drains/ sources of transistors Q30, Q31, Q5, Q12 are merged via a common diffusion region 920 and share a contact for VNWL. As shown in FIG. 9B, the common contact for VNWL may be coupled to the first active region in the first n-channel type sub-region 910C. Alternatively, the common contact for VNWL may be coupled to the second active region in the second n-channel type sub-region 910D. In some examples, the n-channel type area 904 may include other n-channel type sub-regions, e.g., 910A and 910B. The layout of 910A, 910B may be configured in a similar manner as that of **910**C and **910**D, in some embodiments. With further reference to FIG. 9B, transistors Q13, Q18 may be formed in the second n-channel type sub-region (e.g., 910D) and coupled to main word lines MWLBn+1, MWLBn+2, respectively, at the gate, and further coupled to a common VNWL and WLm+16 at the drain/source. The common VNWL may be in the first n-channel type sub-region, e.g., 910C, where the drains/sources of Q13, Q18 are coupled together to the common VNWL via a respective common diffusion region 920. With further reference to FIG. 9B, common transistors in subword drivers (e.g., common transistors in FIGS. 5-7) may be formed in the n-channel type area 904 between two adjacent gate electrodes, where each common transistor may be coupled to respective drains/sources at outputs of different subword drivers, where the outputs are coupled to respective word lines. For example, between the gate electrode MWLBn+1 and adjacent gate electrode MWLBn+2, another gate is disposed overlaying with the N+ diffusion sub-region 910A to form a common n-channel type transis- tor. The common n-channel type transistor is coupled to a word driver line at the gate and two drains/sources of different subword drivers. For example, a common transistor Q15 is formed between different drains/sources at outputs of different subword drivers that are coupled to word lines 5 WLm+8 and WLm+10, respectively. The common transistor Q15 may be coupled to the word driver line FXB6 at the gate. Now referring to FIG. 7, transistor Q15 in FIG. 9B also corresponds to transistor Q15 in FIG. 7. Similarly, between adjacent main word lines MWLBn+1 and MWLBn+2, on 10 the N+ diffusion sub-region 910B, a gate is disposed between drains/sources at outputs of the different subword drivers that are coupled to word lines WLm+6 and WLm+ 12, respectively, and is coupled to the word driver line FXB4. This forms another common transistor Q14, which is 15 coupled between drains/sources at outputs of different subword drivers that are coupled to word lines WLm+6 and WLm+12, respectively. This transistor corresponds to the transistor Q14 in FIG. 7. Returning to FIG. 9B, the width of the N+ diffusion 20 sub-regions (e.g., the N+ diffusion sub-region 910A) may include a portion **912** at where the gate FXB**6** intersects that is narrower than other portions of the sub-region. The narrower portion 912 may define, at least in part, a recess area to accommodate layout space for the gate FXB6. 25 Similarly, another N+ diffusion sub-region 910B may also include a portion **914** at where the gate FXB**4** intersects that is narrower than other portions of the sub-region. The narrower portion 914 may define, at least in part, a recess area to accommodate layout space for the gate FXB4. In the 30 example shown, two recess areas formed by narrow portions 912 and 914 in adjacent N+ diffusion sub-regions 910A, 910B may be adjacent to each other, allowing the two adjacent N+ diffusion sub-regions to be close to each other, while accommodating the gates for the common transistors 35 Q14, Q15. This facilitates a reduction of layout dimension. With further reference to FIG. 9B, additional common transistors in the circuit in FIG. 7 may be formed in the n-channel type area 904, such as Q6, Q7, Q8, Q9, Q10, and Q11. Additionally, other n-channel type transistors in sub- 40 word drivers may be formed in the n-channel type area 904, on each gate electrode that is coupled to a respective main word line. For example, an n-channel type transistor Q5 (corresponding to the transistor Q5 in FIG. 7) is formed over the gate electrode associated with main word line MWLBn- 45 1, with drain/source coupled respectively to word line WLm-14 and the non-active potential VNWL, respectively. In another example, an n-channel type transistor Q18 (corresponding to the transistor Q18 in FIG. 7) is formed over the gate electrode associated with main word line MWLBn+ 50 2, Additional n-channel type transistors in the subword driver block 704 (FIG. 7) may be formed in the n-channel type area 904 of the layout 900 in a similar manner. In some examples, the n-channel type transistors that are formed over two adjacent gate electrodes may share a 55 common contact. For example, transistor Q5 and transistor Q12 share a common diffusion contact coupled to a non-active potential VNWL. In another example, transistor Q10 and transistor Q12 share a common contact coupled to a corresponding word line (e.g., WLm). With further reference to FIG. 9B, the p-channel type transistors in the subword driver block 704 may be formed in the p-channel type area 902 of the layout 900. For example, p-channel type transistors Q1, Q16, Q17, and Q19 (corresponding to transistors Q1, Q16, Q17, and Q1.9) may 65 be formed over respective gate electrodes in an P+ diffusion sub-region 906B. For example, p-channel type transistor Q1 **16** is formed over the gate electrode associated with MWLBn-1 with two contacts on each side of the gate electrode, where the two contacts are coupled to a word line (e.g., WLm-14) and a word driver line (e.g., FXT0), respectively. In the example in FIG. 9B, even-numbered word lines are shown in the layout 900, which may implement the subword driver block 704 (FIG. 7). With reference to FIGS. 7, 8 and 9B, it is appreciated that the circuit implemented in the layout 900 may implement one or more SWD blocks 810. For example, for a given memory cell array 806, subword drivers associated with even-numbered word lines for the given memory cell array may be laid out in a similar manner as shown in FIG. 9B and arranged adjacent
to the left side of the memory cell array. Similarly, subword drivers associated with odd-numbered word lines for the memory cell array may be laid out in a similar manner as shown in FIG. **9**B and arranged adjacent to the right side of the memory cell array. In some embodiments of the disclosure, the layout of the subword drivers associated with the odd numbered word lines may be arranged in a mirror arrangement relative to the subword drivers associated with the even numbered word lines. FIG. 9C is a plan view of an example layout diagram of the subword drivers in FIGS. 9A and 9B showing some or additional layers according to some examples described in the disclosure. In some examples, the layout 900 may further include one or more metal wiring layers above the active regions and gate layers and contacts for the multiple word lines (as shown in FIG. 9B) that are coupled to the wiring layer to couple to respective memory cells in the memory cell array. As shown in FIG. 9C, the coupling of drains/sources of transistors at common diffusion regions 920 allows the use of a VNWL contact to couple to n-channel type sub-regions 910C and 910D, for example. In some embodiments of the disclosure, the common diffusion regions 920 allows a VNWL, contact to be eliminated from the second n-channel type sub-region 910D (as shown). This may facilitate easier layout of the interconnections (e.g., wirings for word lines). For example, as contacts for word lines WLm-12 and WLm-14 are close in pitch to each other in a lateral direction (e.g., a first direction X), the associated interconnections 924, 926 to which the contacts are coupled may be laid out in a manner which would accommodate the positions of the contacts. For example, the interconnection 924 may be wider in at least part of the n-channel sub-region **910**D to accommodate the contact for WLm–14 to reduce an offset between the contact and the interconnection. In another example, the interconnection 926 may include a bend portion 942 between the first n-channel sub-region **910**C and the second n-channel sub-region **910**D to allow proper spacing from the interconnection 924. In some examples, two interconnections 930, 932 that are adjacent to the common VNWL contact in the plan view may be laid out around a contact wiring 946 coupled to the contact for the common VNWL by forming a recess area 944 in-between in the first re-channel sub-region 910C to accommodate the wiring 946. The interconnections 930, 932 may further extend from the first n-channel sub-region 910C to the second n-channel sub-region 910D in a second direction (e.g., Y) that is substantially perpendicularly to the first direction (e.g., X) to couple to a respective memory cell in the memory cell array (e.g., 806 in FIG. 8). The interconnections 934, 936 may be laid out to accommodate the contacts for WLm-2, WLm, in a similar manner as the interconnections 924, 926. With further reference to FIG. **9**C, other interconnections for word lines WLm+2, +4, . . . WLm+16 may be laid out in a similar manner as the interconnections WLm-14, -12, . . . WLm. In some examples, the interconnections for various word lines WLm+j may include a wiring layer, such as metal 0 5 (zero). The layout of the interconnections as disclosed in the present disclosure may provide advantage in reducing the word line pitch. For example, interconnection pitch may be measured by the number of interconnections in a distance L in direction X. The greater the number of interconnections 10 the greater the pitch. With reference to FIGS. 9B and 9C, the distance L spans a congested area including three transistors Q5, Q12, Q10, 8 word lines (WLm-14, -12, ..., WLm) and a FXB0 contact. The layout configuration shown in FIG. 9C results in a reduced number of interconnections for the same 15 dimension L because a VNWL contact is eliminated in the n-channel sub-region 910D. Instead, the VNWL in the n-channel sub-region 910C is shared via the common diffusion region **920**. FIGS. 10A-10C illustrate a variation of the layout dia- 20 gram in FIGS. 9A-C. For example, FIG. 10A is a plan view of an example layout diagram of subword drivers showing active regions according to some examples described in the disclosure. FIG. 10B is a plan view of an example layout diagram of the subword drivers in FIG. 10A showing 25 additional layers according to some examples described in the disclosure. FIG. 10C is a plan view of an example layout diagram of the subword drivers in FIGS. 10A and 10B showing some or additional layers according to some examples described in the disclosure. A layout 1000 may 30 implement the same subword driver block in FIGS. 9A-C in a similar manner, the description of the layout and operation of the subword driver block will not repeated. A variation shown in FIGS. 10A-C includes a different MOSFET regions. As shown in FIG. 10A, a layout 1000 includes a p-channel type area 1003 disposed between adjacent n-channel type areas 1002 and 1004. Comparing FIGS. 10A-C to FIGS. 9A-C, it is shown that the n-channel type area 1004 in layout 1000 is split into a first area of 40 n-channel type sub-regions and a second area of n-channel type sub-regions, each area placed on opposite sides of the p-channel type area. For example, a first area of n-channel type sub-regions 1002 may correspond to the n-channel type sub-regions 910A, 9109 in FIG. 9A; and a second area of 45 n-channel type sub-regions 1004 may correspond to the n-channel type sub-regions 910C, 910D in FIG. 9A. Similar to FIG. 9A, active regions in adjacent n-channel type sub-regions may be merged at one or more common diffusion regions. For example, active regions (N+) in n-channel 50 type sub-regions 1010A, 1010B may be merged at one or more common diffusion regions 1020. Similarly, active regions (N+) in n-channel type sub-regions 1010C, 1010D may be merged at one or more common diffusion regions **1020**. With reference to FIG. 10B, in the first area of n-type sub-regions 1002, common transistors Q10, Q11 included in different subword drivers are formed in cascade connections between different drains/sources at outputs of the different subword drivers, which are respectively coupled to word 60 lines in a similar manner as Q10, Q11 are formed in FIG. 9B. Similar to FIG. 9B, common transistors Q10, Q11 also correspond to transistors Q10, Q11 in FIG. 7. In the second area of n-type sub-regions 1004, common transistors Q14, Q15 included in different subword drivers are formed in 65 nel type sub-regions 906C and 906D. cascade connections between different drains/sources at outputs of the different subword drivers, which are respec- **18** tively coupled to word lines in a similar manner as Q14, Q15 are formed in FIG. 9B, Similar to FIG. 9B, common transistors Q14, Q15 also correspond to transistors Q14, Q15 in FIG. 7. As shown in FIGS. 10A-C, the layout 1000 becomes symmetric. This may provide advantages in designing the layout of the circuit. With further reference to FIG. 10B, similar to FIG. 9B, a first active region (N+) that forms drains/sources of transistors Q30, Q31 in the n-channel sub-region 1010A is merged at a common diffusion region 1020 with a second active region (N+) that forms transistors Q5, Q12 in the n-channel sub-region 1010B. In other words, the drains/sources of transistors Q30, Q31, Q5, Q12 are merged via a common diffusion region 1020 and share one contact for VNWL. Transistors Q30 and Q5 may be coupled to main word lines MWLBn-1 at respective gates, and transistors Q31, Q12 may be coupled to main word lines MWLBn at respective gates. As shown in FIG. 10B, the common contact for VNWL may be coupled to the first active region in the first n-channel type sub-region 1010A. Alternatively, the common contact for VNWL may be coupled to the second active region in the second re-channel type sub-region 1010B. In some embodiments of the disclosure, n-channel type subregions in 1004 may include n-channel type sub-regions 1010C and 1010D, the layout of which may be similar to that of the n-channel type sub-regions 910A, 910B of FIG. 9B. The layout shown in FIG. 10C may be similar to that in FIG. 9C. For example, as shown, respective drains/sources in the n-channel type sub-region 1010B may be coupled to a corresponding common VNWL contact in the n-channel type sub-region 1010A, the layout of the interconnections WLm-14, -12, . . . , WLm-8 and WLm-6, -4, WLm may be configured in a similar manner as in FIG. 9C, which will not be repeated. Variations of the layout shown in FIG. 10C arrangement of the p-channel type and n-channel type 35 may also be possible. For example, the common VNWL contacts may be in the other n-channel type sub-region **1010**B, instead of **1010**A. > FIGS. 11A-C illustrate another variation of the layout design in FIGS. 9A-C. For example, FIG. 11A is a plan view of an example layout diagram of subword drivers showing active regions according to some examples described in the disclosure. FIG. 11B is a plan view of an example layout diagram of the subword drivers in FIG. 11A showing additional layers according to some examples described in the disclosure. FIG. 11C is a plan view of an example layout diagram of the subword drivers in FIGS. 11A and 11B showing some or additional layers according to some examples described in the disclosure. A layout 1100 may implement the same subword driver block as FIGS. 9A-C and 10A-C in a similar manner, the description of the layout and operation of the subword driver block will not repeated. A variation shown in FIGS. 11A-C includes a different arrangement of the p-channel type and n-channel type areas. As shown in FIG. 11A, a layout 1100 includes an n-channel 55 type area 1103 disposed between adjacent p-channel type areas 1102 and 1104. Comparing FIGS. 11A-C to FIGS. 9A-C, it is shown that the p-channel type area 902 in layout 900 is split into a first area of p-channel type sub-regions and a second area of
p-channel type sub-region, which are placed on opposite sides of the n-channel type area. For example, a first area of p-channel type sub-regions 1102 in FIG. 11A may correspond to the p-channel type sub-regions 906A, 906B in FIG. 9A; and a second area of p-channel type sub-regions 1104 in FIG. 11A may correspond to the p-chan- With reference to FIG. 11A, similar to FIG. 9A, active regions in adjacent n-channel type sub-regions in the n-channel type area 1103 may be merged at one or more common diffusion regions. For example, active regions (N+) in n-channel type sub-regions 1110A, 1110B may be merged at one or more common diffusion regions 1120. Similarly, active regions (N+) in n-channel type sub-regions 1110C, 1110D may be merged at one or more common diffusion regions 1120. With reference to FIG. 11B, the n-channel type area 1103 has a similar layout as the n-channel type area **904** in F1G. 9B. For example, common transistors Q10, Q11 included in different subword drivers are formed in cascade connections between drains/sources at outputs of the different subword drivers, which are respectively coupled to word lines in a similar manner as Q10, Q11 in FIG. 9B are formed. Similar to FIG. 9B, the common transistors Q10, Q11 also correspond to transistors Q10, Q11 in FIG. 7. In another example, common transistors Q14, Q15 included in different subword drivers are formed in cascade connections between drains/ sources at outputs of different subword drivers, which are 20 respectively coupled to word lines in a similar manner as Q14, Q15 in FIG. 9B are formed. Similar to FIG. 9B, the common transistors Q14, Q15 also correspond to transistors Q14, Q15 in FIG. 7. As shown in FIGS. 11A-C, the layout 1100 also becomes symmetric. This may provide advantages 25 in optimizing the layout design of the circuit. In addition, when the n-channel type area is between two p-channel type areas, the p-type well can be separated from other regions, so that the back bias of the n-channel type area can be changed from VBB (-0.5V) to VSS. A shallow back bias 30 may provide the advantage of improving the resistance to hot carriers in the semiconductor device. With further reference to FIG. 11B, similar to FIGS. 9B and 10B, a first active region (N+) that forms drains/sources of transistors Q30, Q31 in the n-channel sub-region 1110B 35 is merged at a common diffusion region 1120 with a second active region (N+) that forms transistors Q5, Q12 in the n-channel sub-region 1110A. In other words, the drains/sources of transistors Q30, Q31, Q5, Q12 are merged via a common diffusion region 1120 and share one contact for 40 VNWL. Transistors Q30 and Q5 may be coupled to main word lines MWLBn-1 at respective gates, and transistors Q31, Q12 may be coupled to main word lines MWLBn at respective gates. As shown in FIG. 11B, the common contact for VNWL may be coupled to the first active region in the 45 n-channel type sub-region 1010B. Alternatively, the common contact for VNWL may be coupled to the second active region in the n-channel type sub-region 1010A. In some embodiments of the disclosure, the layout of the n-channel type sub-regions 1110C, 1110D 50 may be arranged in a mirror arrangement relative to the layout of the n-channel type sub-regions 910A, 910B. Although the common VNWL contacts are in the n-channel type sub-region 1110C, common VNWL contacts may also be in the n-channel type sub-region 1110D, instead. The layout shown in FIG. 11C may be similar to that in FIGS. 9C and 10C. For example, as shown, common VNWL contacts may be in the n-channel type sub-region 1110B, and respective drains/sources in the n-channel type sub-region 1110A may be coupled to a corresponding common VNWL 60 contact in the n-channel type sub-region 1110B. The layout of the interconnections WLm-14, -12, . . . , WLm-8 and WLm-6, -4, . . . WLm may be configured in a similar manner as in FIG. 9C, which will not be repeated. Variations of the layout shown in FIG. 11C may also be possible. For 65 example, the common VNWL contacts may be in the other n-channel type sub-region 1110A, instead of 1110B. FIGS. 1-11 provide various advantages in optimizing the layout of subword driver blocks by reducing the pitch of interconnections. For examples, common diffusion regions may be formed to merge two active regions. In such configuration, common VNWL contacts for two active regions may be possible, eliminating VNWL contacts in adjacent active regions. This reduction of VNWL contacts makes it possible to reduce the pitch of interconnections in the semiconductor layout. Further, FIGS. 9-11(A-C) provide various configurations of the layout of subword driver block with routing and placement of wiring that may be advantageous in minimizing the complexity and reducing the pitch of word lines in the layout design. From the foregoing it will be appreciated that, although specific embodiments of the disclosure have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the disclosure. Accordingly, the scope of the disclosure should not be limited any of the specific embodiments described herein. What is claimed is: - 1. A semiconductor device comprising: - a first area of a subword driver block, the first area comprising: - a first active region on which a first transistor and a second transistor are formed, the first active region extending in a first direction, the first and second transistors coupled to different main word lines; - a second active region on which a third transistor and a fourth transistor are formed, the second active region extending in the first direction; - a fifth transistor coupled to the first transistor; - a sixth transistor coupled to the third transistor, the fifth transistor coupled to a first word driver line, the sixth transistor coupled to a second word driver line different from the first word driver line; - a diffusion region configured to merge the first and second active regions; and - a contact on the first active region between the first transistor and the second transistor in a second direction that is perpendicular to the first direction and coupled to a non-active potential, - wherein third and fourth transistors are coupled to the non-active potential via the contact and the diffusion region. - 2. The semiconductor device of claim 1, wherein the diffusion region is merged with drains/sources of the first, second, third and fourth transistors. - 3. The semiconductor device of claim 1, wherein the contact is coupled to the drains/sources of the first and second transistors. - 4. The semiconductor device of claim 3, wherein the drains/sources of the first and second transistors are coupled to output of first and second subword drivers, respectively. - 5. The semiconductor device of claim 4, wherein the sources/drains of the first and second transistors are further coupled to first and second word lines of a memory cell array, respectively. - 6. The semiconductor device of claim 1 further comprising: - a first gate electrode, wherein the first gate electrode overlaps with the first and second active regions to form the first and third transistors; and - a second gate electrode, wherein the second gate electrode overlaps with the first and second active regions to form the second and fourth transistors. - 7. The semiconductor device of claim 6, wherein the first gate electrode is coupled to a first main word line of the different main word lines and the second gate electrode is coupled to a second main word line of the different main word lines. - **8**. The semiconductor device of claim 7, wherein the first, second, third and fourth transistors are of a first conductivity type. - 9. The semiconductor device of claim 1 further comprising first and second interconnections and a wiring inbetween the first and second interconnections, wherein the wiring is coupled to the contact. - 10. The semiconductor device of claim 9, wherein the first and second interconnections are configured to form a recess in-between to accommodate the wiring. - 11. The semiconductor of claim 10 further comprising a second area of a subword driver block, the second area adjacent to the first region and comprising: one or more active regions; and - a plurality of transistors formed on the one or more active regions and a respective gate electrode of a plurality of gate electrodes, - wherein the plurality of transistors are of a second conductivity type. - 12. The semiconductor device of claim 9, wherein the first and second active regions extend along a first direction and the first and second interconnections extend along a second direction substantially perpendicular to the first direction. - 13. A semiconductor device comprising: - a first area of a subword driver block, the first area comprising: - a first active region extending in a first direction and having a first portion, on which a first transistor and a second transistor are formed, and a second portion, the second portion being narrower than the first portion, the first and second transistors coupled to different main word lines; - a second active region extending in a first direction and having a third portion, on which a third transistor and a fourth transistor are formed, and a fourth portion, the fourth portion being narrower than the third portion; - a fifth transistor coupled to the first transistor; - a sixth transistor coupled to the third transistor, the fifth transistor coupled to a first word driver line, the sixth transistor coupled to a second word driver line different from the first word driver line; - a diffusion region connecting the first portion and the third portion and configured to merge the first and second active regions; and - a contact on the first active region between the first transistor and the second transistor in a second direction that is perpendicular to the first direction and coupled to a
non-active potential, 22 - wherein third and fourth transistors are coupled to the non-active potential via the contact and the diffusion region. - 14. The semiconductor device of claim 13, wherein the diffusion region is merged with drains/sources of the first, second, third and fourth transistors. - 15. The semiconductor device of claim 13, wherein the contact is coupled to the drains/sources of the first and second transistors. - 16. The semiconductor device of claim 15, wherein the drains/sources of the first and second transistors are coupled to output of first and second subword drivers, respectively. - 17. The semiconductor device of claim 16, wherein the sources/drains of the first and second transistors are further coupled to first and second word lines of a memory cell array, respectively. - 18. The semiconductor device of claim 13 further comprising: - a first gate electrode, wherein the first gate electrode overlaps with the first and second active regions to form the first and third transistors; and - a second gate electrode, wherein the second gate electrode overlaps with the first and second active regions to form the second and fourth transistors. - 19. The semiconductor device of claim 18, wherein the first gate electrode is coupled to a first main word line of the different main word lines and the second gate electrode is coupled to a second main word line of the different main word lines. - 20. The semiconductor device of claim 19, wherein the first, second, third and fourth transistors are of a first conductivity type. - 21. The semiconductor device of claim 13 further comprising first and second interconnections and a wiring inbetween the first and second interconnections, wherein the wiring is coupled to the contact. - 22. The semiconductor device of claim 21, wherein the first and second interconnections are configured to form a recess in-between to accommodate the wiring. - 23. The semiconductor of claim 22 further comprising a second area of a subword driver block, the second area adjacent to the first region and comprising: one or more active regions; and - a plurality of transistors formed on the one or more active regions and a respective gate electrode of a plurality of gate electrodes, - wherein the plurality of transistors are of a second conductivity type. - 24. The semiconductor device of claim 21, wherein the first and second active regions extend along a first direction and the first and second interconnections extend along a second direction substantially perpendicular to the first direction. * * * * *