12 United States Patent

Brown et al.

USO011688226B2

(10) Patent No.: US 11,688,226 B2
45) Date of Patent: Jun. 27, 2023

(54) RENDERING PIPELINE FOR ELECTRONIC

(71)

(72)

(73)

(%)

(21)

(22)

(65)

(60)

(1)
(52)

(58)

GAMES

Applicant: Aristocrat Technologies, Inc., Las
Vegas, NV (US)

Inventors: Jody Brown, Austin, TX (US); Joseph

Bibbo, Austin, TX (US)

Assignee: Aristocrat Technologies, Inc., Las
Vegas, NV (US)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under
U.S.C. 154(b) by 371 days.

Appl. No.: 17/125,483
Filed: Dec. 17, 2020

Prior Publication Data

US 2021/0217270 Al Jul. 15, 2021

Related U.S. Application Data

35

Provisional application No. 63/090,661, filed on Oct.
12, 2020, provisional application No. 62/959,407,

filed on Jan. 10, 2020.

Int. CI.

GO/F 17/32 (2006.01)

U.S. CL

CPC GO7F 17/3211 (2013.01)

Field of Classification Search

CPC .. GO7F 17/3211; GO6F 9/45558; A63F 13/33;
A63F 13/358; A63F 13/355; HO4L 67/01

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,070,501 B2 7/2006 Cormack
624,927 S 10/2010 Allen

(Continued)

FOREIGN PATENT DOCUMENTS

AU 2013202658 Al 1/2014
AU 2013251288 Al 5/2014
(Continued)

OTHER PUBLICATIONS

Office Action dated Sep. 2, 2020 for U.S. Appl. No. 16/383.,435 (pp.
1-7).

(Continued)

Primary Examiner — William H McCulloch, Ir.
Assistant Examiner — Ankit B Doshi
(74) Attorney, Agent, or Firm — Armstrong Teasdale LLP

(57) ABSTRACT

An electronic gaming device provides a rendering pipeline
for an electronic game. The rendering pipeline includes a
client component and a native component of the rendering
pipeline, where the client component 1s configured to: 1ni-
tiate a rendering operations pipe between the client compo-
nent and the native component; convert display commands
from a source language of the electronic game into rendering
operations of an intermediate rendering language; and trans-
mit the rendering operations through the rendering opera-
tions pipe to the native component. The native component 1s
configured to: receive the rendering operations via the
rendering operations pipe; translate the rendering operations
from the intermediate rendering language into rendering
operations of the native component; and perform the ren-
dering operations of the native component on the display
device.

20 Claims, 7 Drawing Sheets

300 ~

' 306 GAMING DEVICE |
S04 _"'"\f ** MEMORY DEVICE| |
- 302 ELECTRONIC GAME T '

N COMPONENT 310

322 CLIENT COMPONENT
E ELINg SF‘R!TES ‘TEXTURES'

RENDER ANGUAGE |~ 320 \
PRODUCER ASSET MANAGER
o FRUbER T s
335 f
RENDERlNG 3 OADIMG
T OPERATIDNS {}F‘ERATIC}MS
340
-~
NATIVE RENDEH LANGUAGE /l ASSET MANAGER
COMPONENT CONSUMER N_3a7 350 3151
ASSET LOADER
/L 386~ 348~ f“f‘.?m
|1 GRAPHICAL VIDEQ ALUDIO FONTS TEXTURE SOUND
: RENDERER | | DECODER | {SUBSYSTEM |, | LiBRARY || LIBRARY LIBRARY
__{r_________'"'_________
170~ N - 260
362 364~ DEVICE HARDWARE 366 368
- B DISPLAY Dg g
- au ,.
(PROCESSORS) | | prvos | | povioegs | |19 PEVCES

US 11,688,226 B2

Page 2
(56) References Cited FOREIGN PATENT DOCUMENTS
U.S. PATENT DOCUMENTS AU 2014202042 Al 5/2014
EP 0984408 A2 3/2000
D648,347 S 11/2011 Chaudhn
8,360,851 B2 1/2013 Aoki
8911294 B2 12/2014 Antkowiak OTHER PUBLICATIONS
9,424,720 B2 8/2016 Suda _ o o
0,928,691 B2 3/2018 Olive Australian Examination Report for Application No. 2018278882,
D824,932 S 8/2018 Joensson dated Dec. 9, 2019, 2 pages.
10,074,206 B1* 9/2018 Ingegneri GO6F 9/45558 Australian Examination Report for AU2016100230, dated May 11,
D834,596 S 11/2018 Bae 2016, 5 pages
2003/0216165 A1 11/2003 Singer Y L
2004/0137987 Al 7/2004 Cuddy Australian Examination Report for AU2015210489, dated Jun. 14,
2006/0189369 Al 8/2006 Taylor 2016, 5 pages.
2007/0060248 Al 3/2007 Rodgers Australian Examination Report for AU2016202727, dated Jul. 4,
2007/0129135 Al 6/2007 Marks 2016, 5 pages.
2009/0054129 Al 2/2009 Yoshimura Australian Examination Report for AU2017101629, dated Jan. 16,
2009/0239634 Al 9/2009 Nguyen 2018, 3 pages.
2010/0075737 Al 3/2010 Bluemel . L
5010/0210343 Al $/2010 Englman 2A(;115;ra:1313n Examination Report for AU2017204560, dated Feb. 1,
2010/0234092 Al 9/2010 Gomez » 2 pages. o
2010/0281107 A1 11/2010 Fallows Australian Examination Report for Application No. 2018241080,
2011/0157196 Al* 6/2011 Nave AG63F 13/358 dated Sep. 24, 2019.
345/522 U.S. Appl. No. 16/455,166, filed Jun. 27, 2019, System and Method
2012/0178517 Al 7/2012 Montenegro for Providing a Feature Game.
2012/0258786 Al* 10/2012 Sylla GO7F 17/3211 Australian Examination Report for Application No. 2019200719,
2013/0331168 Al 12/2013 Street 10320 dated Apr. 8, 2020, 3 pages.
1 1 1 ee . S0
5014/0080564 Al 39014 Acres Australian Examination Report for AU2017101097, dated Dec. 7,
2014/0274292 Al 9/2014 Suda 2017. (3 pages).
7014/0323198 Al 10/2014 Tuck Office Action dated Jun. 4, 2020 for U.S. Appl. No. 29/622,662 (pp.
2015/0310699 A1 10/2015 Meyer 1-8).
2016/0042597 Al 2/2016 Olive Office Action dated Jun. 25, 2020 for U.S. Appl. No. 16/537,223
2016/0253873 Al 9/2016 Olive (pp. 1-11).
2017/0032609 Al 2/2017 Inamura Notice of Allowance dated Aug. 31, 2020 for U.S. Appl. No.
2017/0111477 Al* 4/2017 Daviscoooevvivinii.l. HO041. 67/01 20/622.662 (pp 1_7)‘
20i“7/0148274 Ai‘ 5/20'_‘7 Ol!ve Notice of Allowance dated Dec. 1, 2020 for U.S. Appl. No.
2017/0154498 Al 6/2017 Olive 16/383.435 (pp. 1-7)
2018/0001216 A1* 1/2018 Bruzzo A63F 13/33 i e 2 .
2018/0075708 Al 32018 San Corrected Notice of Allowabality dated Jan. 26, 2021 for U.S. Appl.
2018/0268655 Al 9/2018 Olive No. 16/383,435 (pp. 1-2).
2020/0111312 Al 4/2020 Olive _ _
2020/0312081 Al1* 10/2020 Perrow GO7F 17/3211 * cited by examiner

US 11,688,226 B2

Sheet 1 of 7

Jun. 27, 2023

U.S. Patent

T g g - g’

pLi-

MIAMIS WALSAS

| INIWIOVYNYN ONISYD

i

| MIAHIS WALSAS || HIAMIS WILSAS
| IAISSIUOOYd |

A%

901

0L

801
1 ¥3Ayas

SHILNANOD HIANHES

1
[]
it e e e e e e e e e e e e e e e e B
] -
1 .

g
¥
-

AN

N
i.th-.-‘:.-.-.-.-.l.-.-.l.-.-.n.-.-.n.-:\:.n.-.-.n.i.:h-.l.l.
' . X -
-I'l"

- -
| [i -
[, -ll——q--#-q-—-ll-q--q-—-r-q--——q--q- -
-] :I [l et
r
r
'
!

T
.
fagm
. T LT e
' -
- . rh #l. r F.. ‘% .
-l #h-.'_.‘-.:‘-."-'-'mﬂ ¥ r ._'.
L R AN W LS
. ﬂ: " *ll' ':
1 ! oy T ' -
. ; * C e L]
. - ._ . " "-!I . -,ﬁ A

g
r L |

904

NENEC R
NILSAS ONINVD
NOILVYNINYILIA

WHINID

h .\."'\.
- 1.\.-
-.l!l.-.l.l.-.-.i.-.-.l.-.-.i.-.
.
L
"

001t

U.S. Patent Jun. 27, 2023 Sheet 2 of 7 US 11,688,226 B2

218 216 | TOPPER
/7 “1 DISPLAY

GAMING DEVICE 24

200

CASINO ; 00 DISPLAY

MANAGEMENT 14— | PRIMARY
: — GAME

DISPLAY

| | 236
...... - __ B . BUTTONS |-

SECONDARY |
GAME }

SYSTEM SERVER

~. 114

TITO SYSTEM
SERVER

_______________ S P EAKE RS f,r

| TICKET
| PRINTER [
TICKET
READER |

CABINET |238
________ SECUR!T‘Y A
SENSORS

PLAYER TRACKING

SYSTEM SERVER
E\Hﬁ 1 1 0 '1"‘“*'2 24

GAME CONTROLLER

214

______ T » PROC ESSOR

MEMORY

PROGRESSIVE
SYSTEM SERVER

112

US 11,688,226 B2

Sheet 3 of 7

Jun. 27, 2023

pIT - AR OTT - 80T .

YIAYIS WILSAS || HIAYIS WILSAS || HIAYIS NZLSAS 43IAYIS
LD ONISYD || 3JAISSI¥OO¥d || ONDIDVYLYIAVIA || WIISASOLIL |

AIAHEES

NFLSAS ONINVYD
NOILLVYNINHE 10
TVHINAD

U.S. Patent

US 11,688,226 B2

Sheet 4 of 7

Jun. 27, 2023

U.S. Patent

JC "Dl

O
OO

AJOMLIN

99¢

P9

US 11,688,226 B2

Sheet 5 of 7

Jun. 27, 2023

U.S. Patent

(S)301A30
AV1dSIC

| 89€ 9~ TWYMQ¥YH J0IA3Q

S30IAA Of

09¢t

vit ININOINOD

AALYN
$)743

9ttt

d30M1a0dd
JOVNONYT 430N3Y

INANCAIWOD INTINO

ore~ INaNodHoD | W

301A3A AYOWIN ~ 70¢
3OIA3A ONINYD e

ANVO OINOHLOT 13

ve Old

N~ o€

380

US 11,688,226 B2
370

.__n. ,..‘,m J_______Lt D m
AR R 5 3 . | L 11
232 | | g
L % < L
0 O« 0=
L g mmm%

Sheet 6 of 7

Jun. 27, 2023

300A
3008
300C

k:

L

)
X

X ¥
T

U.S. Patent

U.S. Patent Jun. 27, 2023 Sheet 7 of 7 US 11,688,226 B2

'/ 400

~ 340

NATIVE |
COMPONENT

310

CLIENT COMPONENT

~ 410

INITIATION OF ELECTRONIC

GAME

CREATE JVM, WEBVIEW FOR
CLIENT COMPONENT

JVM, WEBVIEW ESTABLISHED

IN CLIENT COMPONENT

- DOWNLOAD GAME SOURCE |
CODE, ASSETS, CONFIGURATION

~ 422

" RETRIEVE DEVICE DIMENSIONS
? FOR LOCAL DEVICE

432 _ 430

DOWNLOAD SOURCECODE | .~ | INJECT HANDLERS INTO
FROMNATIVE COMPONENT [| SOURCE CODE

434 |

"PERFORM GAME INITIALIZATION,
' JUST-IN-TIME COMPILATION OF
? SOURCE CODE

438
PREPARE CONSUMER FOR

RENDERING PROCESSING

~ 442

PROCESS RENDERING

t
I

N~ 450

FIG. 4

US 11,688,226 B2

1

RENDERING PIPELINE FOR ELECTRONIC
GAMES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application i1s related to U.S. Provisional Patent
Application No. 62/959,407, filed 10 Jan. 2020, entitled

“RENDERING PIPELINE FOR GAME ASSETS,” and
U.S. Provisional Patent Application No. 63/090,661, filed 12
Oct. 2020, entitled “RENDERING PIPELINE FOR ELEC-
TRONIC GAMES, the entire contents and disclosures of
which are hereby incorporated herein by reference in their
entireties.

TECHNICAL FIELD

The field of disclosure relates generally to electronic
gaming, and more particularly to electronic gaming systems
and methods for providing a rendering pipeline for elec-
tronic games.

BACKGROUND

Electronic gaming machines (EGMs), or gaming devices,
provide a variety of wagering games such as, for example,
and without limitation, slot games, video poker games,
video blackjack games, roulette games, video bingo games,
keno games, and other types of games that are frequently
offered at casinos and other locations. Play on EGMs
typically involves a player establishing a credit balance by
iserting or otherwise submitting money and placing a
monetary wager (deducted from the credit balance) on one
or more outcomes of an 1nstance, or play, of a primary game,
sometimes referred to as a base game. In many games, a
player may qualily for secondary games or bonus rounds by
attaining a certain winning combination or other triggering
event in the base game. Secondary games provide an oppor-
tunity to win additional game instances, credits, awards,
jackpots, progressives, etc. Awards from any winning out-
comes are typically added back to the credit balance and can
be provided to the player via a printed “ticket” upon comple-
tion of a gaming session or when the player wants to “cash
out.”

“Slot” type games are often displayed to the player 1n the
form of various symbols arrayed 1n a row-by-column grid or
matrix. Specific matching combinations of symbols along
predetermined paths (or paylines) through the matrix 1ndi-
cate the outcome of the game. The display typically high-
lights winning combinations/outcomes for ready i1dentifica-
tion by the player. Matching combinations and their
corresponding awards are usually shown 1n a “pay-table”
which 1s available to the player for reference. Often, the
player may vary his/her wager to include differing numbers
of paylines and/or the amount bet on each line. By varying
the wager, the player may sometimes alter the frequency or
number of winning combinations, frequency or number of
secondary games, and/or the amount awarded.

SUMMARY

In one aspect, an electronic gaming device providing a
rendering pipeline for an electronic game 1s provided. The
clectronic gaming device includes a memory device storing
the electronic game, a client component of the rendering
pipeline, and a native component of the rendering pipeline.
The electronic gaming device also imncludes a display device

10

15

20

25

30

35

40

45

50

55

60

65

2

upon which video output of the electronic game 1s rendered.
The electronic gaming device further includes at least one

processor configured to execute the client component and
the native component. The client component, when executed
on the at least one processor, 1s configured to: mnitiate a
rendering operations pipe between the client component and
the native component; convert display commands from a
source language of the electronic game into rendering opera-
tions of an intermediate rendering language; and transmit the
rendering operations through the rendering operations pipe
to the native component. The native component, when
executed on the at least one processor, 1s configured to:
receive the rendering operations via the rendering operations
pipe; translate the rendering operations from the intermedi-
ate rendering language into rendering operations of the
native component; and perform the rendering operations of
the native component on the display device.

In another aspect, a method for providing a rendering
pipeline for an electronic game on an electronic gaming
device 1s provided. The electronic gaming device includes a
memory device storing the electronic game, a client com-
ponent of the rendering pipeline, and a native component of
the rendering pipeline. The electronic gaming device also
including a display device upon which video output of the
clectronic game 1s rendered. The electronic gaming device
further includes at least one processor configured to execute
the client component and the native component. The method
includes establishing a rendering operations pipe between
the client component and the native component. The method
also includes converting, at the client component, display
commands from a source language of the electronic game
into rendering operations ol an intermediate rendering lan-
guage. The method further includes transmitting the render-
ing operations through the rendering operations pipe from
the client component to the native component. The method
also includes receiving, at the native component, the ren-
dering operations via the rendering operations pipe. The
method further includes translating the rendering operations
from the intermediate rendering language into rendering
operations of the native component. The method also
includes performing the rendering operations of the native
component on the display device.

In yet another aspect, a non-transitory computer-readable
medium storing instructions 1s provided. The instructions,
when executed by a processor of an electronic gaming
device, cause a processor to: establish a rendering operations
pipe between a client component and a native component;
convert, at the client component, display commands from a
source language of the electronic game 1nto rendering opera-
tions of an intermediate rendering language; transmit the
rendering operations through the rendering operations pipe
from the client component to the native component; receive,
at the native component, the rendering operations via the
rendering operations pipe; translate the rendering operations
from the intermediate rendering language into rendering
operations of the native component; and perform the ren-
dering operations of the native component on the display
device.

BRIEF DESCRIPTION OF THE DRAWINGS

An example embodiment of the subject matter disclosed
will now be described with reference to the accompanying
drawings.

FIG. 1 1s a diagram of exemplary EGMs networked with
various gaming-related servers.

FIG. 2A 15 a block diagram of an exemplary EGM.

US 11,688,226 B2

3

FIG. 2B illustrates an example gaming environment in
which the gaming devices shown 1 FIGS. 1 and 2A may

appear.

FI1G. 2C 1s a diagram that shows examples of components
of a system for providing online gaming according to some
aspects of the present disclosure.

FIG. 3A 1illustrates hardware components of a gaming
device and data flow between components of a rendering
pipeline executing on the device.

FIG. 3B illustrates an example networked architecture in
which the gaming devices may operate.

FIG. 4 1s a swimlane diagram of an example method 400
for providing a rendering pipeline for an electronic game,
such as the rendering pipeline 302 shown 1n FIG. 3A.

DETAILED DESCRIPTION

Slot type games and other wager-type games (e.g., video
poker, video keno, video roulette, and such) may be pro-
vided as either wagering games (e.g., for real value, or
“value-based gaming”) or as “social games” (e.g., using
virtual currencies, no value virtual goods or currencies with
no inherent value). Traditionally, wager games have been
provided on highly regulated electronic gaming machines
specifically designed for wager gaming venues (e.g., casino
properties or other gambling establishments). As such wager
gaming and social gaming has evolved, and the hardware
plattorms on which these games may be oflered has
expanded. For example, social games may be provided on
personal computing devices, such as desktop computers or
mobile computing devices (e.g., smart phones, tablets). In
some jurisdictions, wager games may be permitted on
mobile computing devices (e.g., when the mobile computing,
device 1s located within a sanctioned premises). These
various hardware platiorms may also provide varying oper-
ating system and software components that can be leveraged
in game development. However, the expansion of available
hardware platforms, operating systems, and associated soft-
ware components upon which such electronic games may be
provided also brings various design problems, such as
soltware portability and performance 1ssues across varying
platforms and software stacks.

For example, a gaming company may wish to provide
mobile games using current web technologies, such as
programming their games 1n a just-in-time (“JI'T””) compiled
language (e.g., JavaScript, Typescript), with the game’s
front end being designed to run 1n a web browser. To support
such an architecture, WebGL and WebAudio components of
the browser may be used to perform rendering functionality.
However, such an architecture may be tightly coupled to the
underlying rendering backend. Some environments may
restrict use of particular tools, such as just-in-time compil-
ers, forcing games to be implemented by an interpreter,
which may cause performance to sutler.

In the example embodiment, a rendering pipeline archi-
tecture (or just “rendering pipeline”) i1s provided for the
execution of electronic games and, more particularly, for the
rendering of game assets (e.g., video, audio, and the like).
The rendering pipeline includes a client component (“front
end”) and a native component (“back end”) installed on a
gaming device, such as an EGM or a personal computing
device (e.g., personal computer, mobile computing device).
The client component executes the electronic game 1 a
virtual machine (e.g., Java wvirtual machine (“JVM”),
JavaScript engine, ECMAScript (“ES”) engine) using a
scripting language (e.g., JavaScript, Typescript) and, in the
example embodiment, provides just-in-time (“JI'T””) compi-

10

15

20

25

30

35

40

45

50

55

60

65

4

lation of some or all of the electronic game (e.g., as part of
loading source 1nto the JVM or a WebView). During execu-
tion of the electronic game, the client component uses a
WebView object to parse and execute the electronic game,
but redirects the display rendering through the rendering
pipeline by generating and transmitting rendering opera-
tions, through one or more pipes, to the native component
(e.g., a scene renderer of the Unity engine). The native
component receives and processes these rendering opera-
tions irom the pipe in order of receipt (e.g., as a first-1n/
first-out (“FIFO”) pipe). In some embodiments, the native
component may include a rendering tool such as the Unity
Engine, and the native component 1s configured to convert
the render commands from the pipe 1nto the native rendering
language on the local gaming device (e.g., into rendering
commands via an API, such as OpenGL, Metal, Direct3D, or
the like). The native component 1s responsible for commu-
nicating with the underlying operating system and associ-
ated hardware and subsystems of the executing device. The
use of this rendering pipeline allows for separation of the
clectronic game from the particularities of the various under-
lying operating systems and hardware components of vari-
ous gaming devices, allowing the game code to be devel-
oped and executed independent of such considerations. The
native component 1s tailored to receive the rendering opera-
tions and perform those various operations on the specific
hardware of the gaming device. This decoupling of the
native rendering from the electronic game provides technical
benelits including platform compatibility and independence
from underlying rendering technologies which may change
over time (e.g., OpenGL, Metal, or the like). Further, use of
such an intermediate rendering language and separation of
the game execution and the native rendering component
allows for etlicient, accurate, and effective game recording,
compression, and replay of game sessions by, for example,
recording the stream of rendering operations sent across the
pipe. From such a recording, the game session can be
recreated for viewing by replaying and reprocessing the
stream ol rendering operations (e.g., by sending the same
rendering operations through the pipe to be processed as it
the game were being executed by the client).

FIG. 1 illustrates several different models of EGMs which
may be networked to various gaming related servers. Shown
1s a system 100 1n a gaming environment including one or
more server computers 102 (e.g., slot servers of a casino)
that are 1n communication, via a communications network,
with one or more gaming devices 104A-104X (EGMs, slots,
video poker, bingo machines, etc.) that can implement one
or more aspects of the present disclosure. The gaming
devices 104A-104X may alternatively be portable and/or
remote gaming devices such as, but not limited to, a smart
phone, a tablet, a laptop, or a game console, although such
devices may require specialized software and/or hardware to
comply with regulatory requirements regarding devices used
for wagering or games of chance 1n which monetary awards
are provided.

Communication between the gaming devices 104A-104X
and the server computers 102, and among the gaming
devices 104A-104X, may be direct or indirect, such as over
the Internet through a web site maintained by a computer on
a remote server or over an online data network including
commercial online service providers, Internet service pro-
viders, private networks, and the like. In other embodiments,
the gaming devices 104A-104X may communicate with one
another and/or the server computers 102 over RF, cable TV,
satellite links and the like.

US 11,688,226 B2

S

In some embodiments, server computers 102 may not be
necessary and/or preferred. For example, in one or more
embodiments, a stand-alone gaming device such as gaming
device 104A, gaming device 104B or any of the other
gaming devices 104C-104X can implement one or more
aspects of the present disclosure. However, it 1s typical to
find multiple EGMs connected to networks implemented
with one or more of the different server computers 102
described herein.

The server computers 102 may include a central deter-
mination gaming system server 106, a ticket-in-ticket-out
(TITO) system server 108, a player tracking system server
110, a progressive system server 112, and/or a casino
management system server 114. Gaming devices 104A-
104X may include features to enable operation of any or all
servers for use by the player and/or operator (e.g., the casino,
resort, gaming establishment, tavern, pub, etc.). For
example, game outcomes may be generated on a central
determination gaming system server 106 and then transmit-
ted over the network to any of a group of remote terminals
or remote gaming devices 104 A-104X that utilize the game
outcomes and display the results to the players.

Gaming device 104 A 1s often of a cabinet construction
which may be aligned 1n rows or banks of similar devices for
placement and operation on a casino floor. The gaming
device 104 A often includes a main door 154 which provides
access to the interior of the cabinet. Gaming device 104A
typically includes a button area or button deck 120 acces-
sible by a player that 1s configured with input switches or
buttons 122, an access channel for a bill validator 124,
and/or an access channel for a ticket-out printer 126.

In FIG. 1, gaming device 104 A 1s shown as a Relm XLL'™
model gaming device manufactured by Aristocrat® Tech-
nologies, Inc. As shown, gaming device 104A 1s a reel
machine having a gaming display area 118 comprising a
number (typically 3 or 5) of mechanical reels 130 with
vartous symbols displayed on them. The reels 130 are
independently spun and stopped to show a set of symbols
within the gaming display areca 118 which may be used to
determine an outcome to the game.

In many configurations, the gaming machine 104A may
have a main display 128 (e.g., video display monitor)
mounted to, or above, the gaming display area 118. The main
display 128 can be a high-resolution LCD, plasma, LED, or
OLED panel which may be flat or curved as shown, a
cathode ray tube, or other conventional electronically con-
trolled video monaitor.

In some embodiments, the bill validator 124 may also
function as a “ticket-in” reader that allows the player to use
a casino 1ssued credit ticket to load credits onto the gaming
device 104 A (e.g., 1n a cashless ticket (““TTTO”) system). In
such cashless embodiments, the gaming device 104A may
also include a “ticket-out” printer 126 for outputting a credit
ticket when a “cash out” button 1s pressed. Cashless TITO
systems are used to generate and track unique bar-codes or
other indicators printed on tickets to allow players to avoid
the use of bills and coins by loading credits using a ticket
reader and cashing out credits using a ticket-out printer 126
on the gaming device 104 A. The gaming machine 104 A can
have hardware meters for purposes including ensuring regu-
latory compliance and momtoring the player credit balance.
In addition, there can be additional meters that record the
total amount of money wagered on the gaming machine,
total amount of money deposited, total amount of money
withdrawn, total amount of winnings on gaming device

104A.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

In some embodiments, a player tracking card reader 144,
a transceiver for wireless communication with a player’s
smartphone, a keypad 146, and/or an 1lluminated display
148 for reading, receiving, entering, and/or displaying
player tracking information 1s provided in EGM 104A. In
such embodiments, a game controller within the gaming
device 104A can communicate with the player tracking
system server 110 to send and receive player tracking
information.

Gaming device 104A may also include a bonus topper
wheel 134. When bonus play 1s triggered (e.g., by a player
achieving a particular outcome or set of outcomes in the
primary game), bonus topper wheel 134 1s operative to spin
and stop with indicator arrow 136 indicating the outcome of
the bonus game. Bonus topper wheel 134 1s typically used
to play a bonus game, but 1t could also be incorporated into
play of the base or primary game.

A candle 138 may be mounted on the top of gaming
device 104 A and may be activated by a player (e.g., using a
switch or one of buttons 122) to indicate to operations stail
that gaming device 104 A has experienced a malfunction or
the player requires service. The candle 138 1s also often used
to mdicate a jackpot has been won and to alert stafl that a
hand payout of an award may be needed.

There may also be one or more information panels 152
which may be a back-lit, silkscreened glass panel with
lettering to indicate general game information including, for
example, a game denomination (e.g., $0.25 or $1), pay lines,
pay tables, and/or various game related graphics. In some
embodiments, the mformation panel(s) 152 may be 1mple-
mented as an additional video display.

Gaming devices 104A have traditionally also included a
handle 132 typically mounted to the side of main cabinet 116
which may be used to mitiate game play.

Many or all the above described components can be
controlled by circuitry (e.g., a gaming controller) housed
inside the main cabinet 116 of the gaming device 104 A, the
details of which are shown in FIG. 2A.

Note that not all gaming devices suitable for implement-
ing embodiments of the present disclosure necessarily
include top wheels, top boxes, information panels, cashless
ticket systems, and/or player tracking systems. Further,
some suitable gaming devices have only a single game
display that includes only a mechanical set of reels and/or a
video display, while others are designed for bar counters or
table tops and have displays that face upwards.

An alternative example gaming device 104B illustrated 1n
FIG. 1 1s the Arc™ model gaming device manufactured by
Arnistocrat® Technologies, Inc. Note that where possible,
reference numerals 1dentifying similar features of the gam-
ing device 104A embodiment are also identified 1n the
gaming device 104B embodiment using the same reference
numbers. Gaming device 104B does not include physical
reels and mstead shows game play functions on main display
128. An optional topper screen 140 may be used as a
secondary game display for bonus play, to show game
features or attraction activities while a game 1s not 1n play,
or any other information or media desired by the game
designer or operator. In some embodiments, topper screen
140 may also or alternatively be used to display progressive
jackpot prizes available to a player during play of gaming
device 104B.

Example gaming device 104B includes a main cabinet
116 including a main door 154 which opens to provide
access to the interior of the gaming device 104B. The main
or service door 134 1s typically used by service personnel to
refill the ticket-out printer 126 and collect bills and tickets

US 11,688,226 B2

7

inserted into the bill validator 124. The main or service door
154 may also be accessed to reset the machine, verity and/or
upgrade the software, and for general maintenance opera-
tions.

Another example gaming device 104C shown i1s the
Helix™ model gaming device manufactured by Aristocrat®
Technologies, Inc. Gaming device 104C includes a main
display 128 A that 1s 1n a landscape orientation. Although not
illustrated by the front view provided, the landscape display
128A may have a curvature radius from top to bottom, or
alternatively from side to side. In some embodiments, dis-
play 128A 1s a flat panel display. Main display 128A 1s

typically used for primary game play while secondary
display 128B 1s typically used for bonus game play, to show
game features or attraction activities while the game 1s not
in play or any other information or media desired by the
game designer or operator. In some embodiments, example
gaming device 104C may also include speakers 142 to
output various audio such as game sound, background
music, etc.

Many different types of games, including mechanical slot
games, video slot games, video poker, video black jack,
video pachinko, keno, bingo, and lottery, may be provided
with or implemented within the depicted gaming devices
104A-104C and other similar gaming devices. Each gaming
device may also be operable to provide many different
games. Games may be diflerentiated according to themes,
sounds, graphics, type of game (e.g., slot game vs. card
game vs. game with aspects of skill), denomination, number
of paylines, maximum jackpot, progressive or non-progres-
sive, bonus games, and may be deployed for operation 1n
Class 2 or Class 3, etc.

FIG. 2A 1s a block diagram depicting exemplary internal
clectronic components of a gaming device 200 connected to
various external systems. All or parts of the example gaming,
device 200 shown could be used to implement any one of the
example gaming devices 104A-X depicted 1n FIG. 1. The
games available for play on the gaming device 200 are
controlled by a game controller 202 that includes one or
more processors 204 and a game that may be stored as game
soltware or a program 206 1n a memory 208 coupled to the
processor 204. The memory 208 may include one or more
mass storage devices or media that are housed within
gaming device 200. Within the mass storage devices and/or
memory 208, one or more databases 210 may be provided
for use by the program 206. A random number generator
(RNG) 212 that can be implemented in hardware and/or
soltware 1s typically used to generate random numbers that
are used 1n the operation of game play to ensure that game
play outcomes are random and meet regulations for a game
of chance.

Alternatively, a game instance (1.e. a play or round of the
game) may be generated on a remote gaming device such as
a central determination gaming system server 106 (not
shown 1n FIG. 2A but see FIG. 1). The game instance 1s
communicated to gaming device 200 via the network 214
and then displayed on gaming device 200. Gaming device
200 may execute game soltware, such as but not limited to
video streaming soltware that allows the game to be dis-
played on gaming device 200. When a game 1s stored on
gaming device 200, it may be loaded from a memory 208
(e.g., from a read only memory (ROM)) or from the central
determination gaming system server 106 to memory 208.
The memory 208 may imnclude RAM, ROM or another form
of storage media that stores instructions for execution by the
processor 204.

10

15

20

25

30

35

40

45

50

55

60

65

8

The gaming device 200 may include a topper display 216
or another form of a top box (e.g., a topper wheel, a topper
screen, etc.) which sits above cabinet 218. The cabinet 218
or topper display 216 may also house a number of other
components which may be used to add features to a game
being played on gaming device 200, including speakers 220,
a ticket printer 222 which prints bar-coded tickets or other
media or mechanisms for storing or indicating a player’s
credit value, a ticket reader 224 which reads bar-coded
tickets or other media or mechanisms for storing or indicat-
ing a player’s credit value, and a player tracking interface
232. The player tracking interface 232 may include a keypad
226 for entering information, a player tracking display 228
for displaying information (e.g., an illuminated or video
display), a card reader 230 for receiving data and/or com-
municating mnformation to and from media or a device such
as a smart phone enabling player tracking. Ticket printer 222
may be used to print tickets for a TITO system server 108.
The gaming device 200 may further include a bill validator
234, player-input buttons 236 for player input, cabinet
security sensors 238 to detect unauthorized opening of the
cabinet 218, a primary game display 240, and a secondary
game display 242, each coupled to and operable under the
control of game controller 202.

Gaming device 200 may be connected over network 214
to player tracking system server 110. Player tracking system
server 110 may be, for example, an OASIS® system manu-
factured by Aristocrat® Technologies, Inc. Player tracking
system server 110 1s used to track play (e.g. amount
wagered, games played, time of play and/or other quantita-
tive or qualitative measures) for individual players so that an
operator may reward players 1n a loyalty program. The
player may use the player tracking interface 232 to access
his/her account information, activate Iree play, and/or
request various information. Player tracking or loyalty pro-
grams seek to reward players for their play and help build
brand loyalty to the gaming establishment. The rewards
typically correspond to the player’s level of patronage (e.g.,
to the player’s playing frequency and/or total amount of
game plays at a given casino). Player tracking rewards may
be complimentary and/or discounted meals, lodging, enter-
tainment and/or additional play. Player tracking information
may be combined with other information that 1s now readily
obtainable by a casino management system.

Gaming devices, such as gaming devices 104A-104X,
200, are highly regulated to ensure fairness and, in many
cases, gaming devices 104A-104X, 200 are operable to
award monetary awards (e.g., typically dispensed in the
form of a redeemable voucher). Therefore, to satisty security
and regulatory requirements in a gaming environment, hard-
ware and software architectures are implemented 1n gaming,
devices 104 A-104X, 200 that differ significantly from those
of general-purpose computers. Adapting general purpose
computers to function as gaming devices 200 1s not simple
or straightforward because of: 1) the regulatory require-
ments for gaming devices 200, 2) the harsh environment in
which gaming devices 200 operate, 3) security requirements,
4) fault tolerance requirements, and 5) the requirement for
additional special purpose componentry enabling function-
ality of an EGM. These differences require substantial
engineering etfort with respect to game design implemen-
tation, hardware components and software.

When a player wishes to play the gaming device 200,
he/she can insert cash or a ticket voucher through a coin
acceptor (not shown) or bill validator 234 to establish a
credit balance on the gamine machine. The credit balance 1s
used by the player to place wagers on 1nstances of the game

US 11,688,226 B2

9

and to receive credit awards based on the outcome of
winning instances. The credit balance 1s decreased by the
amount ol each wager and increased upon a win. The player
can add additional credits to the balance at any time. The
player may also optionally insert a loyalty club card into the
card reader 230. During the game, the player views the game
outcome on one or more of the primary game display 240
and secondary game display 242. Other game and prize
information may also be displayed.

For each game instance, a player may make selections,
which may aflect play of the game. For example, the player
may vary the total amount wagered by selecting the amount
bet per line and the number of lines played. In many games,
the player 1s asked to initiate or select options during course
of game play (such as spinning a wheel to begin a bonus
round or select various items during a feature game). The
player may make these selections using the player-input
buttons 236, the primary game display 240 which may be a
touch screen, or using some other device which enables a
player to input information into the gaming device 200.

During certain game events, the gaming device 200 may
display visual and auditory eflects that can be perceived by
the player. These effects add to the excitement of a game,
which makes a player more likely to enjoy the playing
experience. Auditory effects include various sounds that are
projected by the speakers 220. Visual eflects include flashing,
lights, strobing lights or other patterns displayed from lights
on the gaming device 200 or from lights behind the infor-
mation panel 152 (FIG. 1).

When the player 1s done, he/she cashes out the credit
balance (typically by pressing a cash out button to receive a
ticket from the ticket printer 222). The ticket may be
“cashed-1in” for money or inserted into another machine to
establish a credit balance for play.

While an example gaming device 200 has been described
in regard to FIG. 2A, certain aspects of the present disclo-
sure may be implemented by gaming devices that lack one
or more of the above-described components. For example,
not all gaming devices suitable for implementing aspects of
the present disclosure necessarily include top boxes, infor-
mation panels, cashless ticket systems, and/or player track-
ing systems. Further, some suitable gaming devices may
include a single game display having mechanical reels or a
video display. Moreover, other embodiments may be
designed for bar tables and have displays that face upwards.

Many different types of wagering games, ncluding
mechanical slot games, video slot games, video poker, video
blackjack, video pachinko, keno, bingo, and lottery, may be
provided by the gaming device 200. In particular, the
gaming device 200 may be operable to provide many
different instances of games of chance. The instances may be
differentiated according to themes, sounds, graphics, type of
game (e.g., slot game vs. card game vs. game with aspects
of skill), denomination, number of paylines, maximum
jackpot, progressive or non-progressive, bonus games, class
2 or class 3, etc.

The gaming device 200 may allow a player to select a
game ol chance, skill, or combination thereol, to play from
a plurality of 1nstances available on the gaming device 200.
For example, the gaming device 200 may provide a menu
with a list of the instances of games that are available for
play on the gaming device 200 and a player may be able to
select, from the list, a game that they wish to play.

FIG. 2B illustrates an example gaming environment 2350
in which the gaming devices 104, 200 shown 1n FIGS. 1 and
2A may appear. In the example embodiment, the gaming
environment 250 1s a physical venue of a casino that

10

15

20

25

30

35

40

45

50

55

60

65

10

includes banks 252 of gaming devices 104. In this example,
cach bank 2352 of gaming devices 104 includes a correspond-
ing gaming signage system 234. In this example, the gaming
environment 250 includes a gaming table (e.g., a “smart
table) 294 that 1s configured for table gaming. The gaming
environment 2350 also 1mcludes mobile gaming devices 256
which, 1n various embodiments, may present wagering
games or social games. The mobile gaming devices 256
may, for example, include tablet devices, cellular phones,
smart phones, or other handheld computing devices. In this
example, the mobile gaming devices 256 are configured for
communication with one or more other devices in the
gaming environment 250, including but not limited to one or
more of the gaming devices 104, one or more smart tables
294, one or more kiosk(s) 260, and one or more of the server
computers 102, via wireless access points 258. In some
implementations, the mobile gaming devices 256 may be
configured for communication with one or more other
devices 1n the gaming environment 250, including but not
limited to one or more of the gaming devices 104, one or
more smart tables 294, one or more kiosk(s) 260, via
wireless communications (e.g., near-field communication
(NFC), Bluetooth, Wi-F1, or such, via one of the “beacons”
described herein).

According to some examples, the mobile gaming devices
256 may be configured for stand-alone determination of
game outcomes. However, in some alternative implementa-
tions the mobile gaming devices 256 may be configured to
receive game outcomes from another device, such as a
central determination gaming system server (not separately
shown), one of the gaming devices 104, etc.

Some mobile gaming devices 256 may be configured to
accept monetary credits from a credit or debit card, via a
wireless 1nterface (e.g., via a wireless payment app), via
tickets, via a patron casino account, etc. However, some
mobile gaming devices 256 may not be configured to accept
monetary credits via a credit or debit card. Some mobile
gaming devices 236 may include a ticket reader and/or a
ticket printer whereas some mobile gaming devices 256 may
not, depending on the particular implementation.

In some embodiments, the gaming environment 250 may
include one or more kiosks 260 that are configured to
facilitate monetary transactions involving the mobile gam-
ing devices 256, which may include cash out and/or cash 1n
transactions. The kiosk(s) 260 may be configured for wired
and/or wireless communication with the mobile gaming
devices 256. The kiosk(s) 260 may be configured to accept
monetary credits from casino patrons 262 or to dispense
monetary credits to casino patrons 262 via cash, a credit or
debit card, via a wireless interface (e.g., via a wireless
payment app), via tickets, digital wallet, or such. According
to some examples, the kiosk(s) 260 may be configured to
accept monetary credits from a casino patron and to provide
a corresponding amount of monetary credits to a mobile
gaming device 256 for wagering purposes (e.g., via a
wireless link such as an NFC link). In some such examples,
when a casino patron 262 1s ready to cash out, the casino
patron 262 may select a cash out option provided by the
mobile gaming device 256, which may include a real button
or a virtual button (e.g., a button provided via a graphical
user interface) i some instances. In some such examples,
the mobile gaming device 256 may send a “cash out” signal
to the kiosk 260 via a wireless link 1n response to receiving
a “cash out” indication from a casino patron. The kiosk 260
may provide monetary credits to the patron 262 correspond-
ing to the “cash out” signal, which may be 1n the form of

US 11,688,226 B2

11

cash, a credit ticket, a credit transmitted to a financial
account corresponding to the casino patron, a digital wallet
account, or such.

In some i1mplementations, a cash-in process and/or a
cash-out process may be facilitated by the TITO system
server 108. For example, the TTTO system server 108 may
control, or at least authorize, ticket-in and ticket-out trans-
actions that mnvolve a mobile gaming device 256 and/or a
kiosk 260.

Some mobile gaming devices 256 may be configured for
receiving and/or transmitting player loyalty information. For
example, some mobile gaming devices 256 may be config-
ured for wireless communication with the player tracking
system server 110. Some mobile gaming devices 256 may be
configured for receiving and/or transmitting player loyalty
information via wireless communication with a patron’s
player loyalty card, a patron’s smartphone, efc.

According to some implementations, a mobile gaming
device 256 may be configured to provide safeguards that
prevent the mobile gaming device 256 from being used by
an unauthorized person. For example, some mobile gaming
devices 256 may include one or more biometric sensors and
may be configured to receive input via the biometric
sensor(s) to verity the identity of an authorized patron. Some
mobile gaming devices 256 may be configured to function
only within a predetermined or configurable area, such as
within a casino gaming area (e.g., based on GPS and
geofencing).

FIG. 2C 1s a diagram that shows examples of components
of a system for providing online gaming according to some
aspects of the present disclosure. As with other figures
presented in this disclosure, the numbers, types and arrange-
ments of gaming devices shown i FIG. 2C are merely
shown by way of example. In the example embodiment,
vartous gaming devices, including but not limited to end
user devices (EUDs) 264a, 264b and 264c¢ are capable of
communication via one or more networks 292. The networks
292 may, for example, include one or more cellular tele-
phone networks, the Internet, Wi-F1 networks, satellite net-
works, or such. In this example, the EUDs 264a and 2645
are mobile devices. For example, the EUD 264a may be a
tablet device and the EUD 2645 may be a smart phone. The
EUD 264c¢ 1s a laptop computer that i1s located within a
residence 266 at the time depicted in FIG. 2C. Accordingly,
in this example the hardware of EUDs 264 1s not specifically
configured for online gaming, although each EUD 264 is
configured with software for online gaming. For example,
cach EUD 264 may be configured with a web browser,
installed gaming applications, player apps, or such. Other
implementations may include other types of EUD 264, some
of which may be specifically configured for online gaming.

In this example, a gaming data center 276 includes
various devices that are configured to provide online wager-
ing games or social games via the networks 292. The gaming
data center 276 1s capable of communication with the
networks 292 via the gateway 272. In this example, switches
278 and routers 280 are configured to provide network
connectivity for devices of the gaming data center 276,
including storage devices 282a, servers 284a and one or
more workstations 286a. The servers 284a may, for
example, be configured to provide access to a library of
games for online game play or for download and installation
by remote devices (e.g., EUDs 264). In some examples, code
for executing at least some of the games may initially be
stored on one or more of the storage devices 282a. The code
may be subsequently loaded onto a server 284a after selec-
tion by a player via an EUD 264 and communication of that

10

15

20

25

30

35

40

45

50

55

60

65

12

selection from the EUD 264 via the networks 292. The
server 284a onto which code for the selected game has been
loaded may provide the game according to selections made
by a player and indicated via the player’s EUD 264. In other
examples, code for executing at least some of the games may
initially be stored on one or more of the servers 284a.
Although only one gaming data center 276 1s shown 1n FIG.
2C, some mmplementations may include multiple gaming
data centers 276.

In this example, a financial mstitution data center 270 1s
also configured for communication via the networks 292.
Here, the financial institution data center 270 includes
servers 284b, storage devices 2825, and one or more work-
stations 286bH. According to this example, the financial
institution data center 270 1s configured to maintain financial
accounts, such as checking accounts, savings accounts, loan
accounts, payment card accounts, rewards accounts, loyalty
accounts, player accounts, digital wallet accounts, or such.
In some 1mmplementations one or more ol the authorized
users 274a-274c may maintain at least one financial account
with the financial institution that 1s serviced via the financial
istitution data center 270.

According to some implementations, the gaming data
center 276 may be configured to provide online wagering
games 11 which money may be won or lost, or various social
games, some of which may use virtual currencies. According
to some such implementations, one or more of the servers
284a may be configured to monitor player credit balances,
which may be expressed 1n game credits, in real or virtual
currency units, or in any other appropriate manner. In some
implementations, the server(s) 284a may be configured to
obtain financial credits from and/or provide financial credits
to one or more financial 1nstitutions, according to a player’s
“cash 1n” selections, wagering game results and a player’s
cash out” mstructions. According to some such implemen-
tations, the server(s) 284a may be configured to electroni-
cally credit or debit the account of a player that 1s maintained
by a financial institution, e.g., an account that 1s maintained
via the financial institution data center 270. The server(s)
284a may, 1n some examples, be configured to maintain an
audit record of such transactions.

In some embodiments, the gaming data center 276 may be
configured to provide online wagering games for which
credits may not be exchanged for cash or the equivalent. In
some such examples, players may purchase game credits for
online game play, but may not “cash out” for monetary
credit after a gaming session. Moreover, although the finan-
cial mstitution data center 270 and the gaming data center
276 1nclude their own servers and storage devices in this
example, 1n some examples the financial institution data
center 270 and/or the gaming data center 276 may use oilsite
“cloud-based” servers and/or storage devices. In some alter-
native examples, the financial institution data center 270
and/or the gaming data center 276 may rely entirely on
cloud-based servers.

One or more types of devices 1n the gaming data center
276 (or elsewhere) may be capable of executing middleware,
¢.g., for data management and/or device communication.
Authentication information, player tracking information,
ctc., mcluding but not limited to information obtained by
EUDs 264 and/or other information regarding authorized
users of EUDs 264 (including but not limited to the autho-
rized users 274a-274¢), may be stored on storage devices
282 and/or servers 284. Other game-related information
and/or software, such as information and/or software relat-
ing to leaderboards, players currently playing a game, game
themes, game-related promotions, game competitions, etc.,

&k

US 11,688,226 B2

13

also may be stored on storage devices 282 and/or servers
284. In some implementations, some such game-related
soltware may be available as “apps”™ and may be download-
able (e.g., from the gaming data center 276) by authorized
users.

In some examples, authorized users and/or entities (such
as representatives ol gaming regulatory authorities) may
obtain gaming-related information via the gaming data cen-
ter 276. One or more other devices (such EUDs 264 or
devices of the gaming data center 276) may act as interme-
diaries for such data feeds. Such devices may, for example,
be capable of applying data filtering algorithms, executing,
data summary and/or analysis software, etc. In some 1imple-
mentations, data filtering, summary and/or analysis software
may be available as “apps’™ and downloadable by authorized
users.

In some embodiments, the financial institution data center
270 may be configured for commumnication with one or more
devices 1n the gaming environment 250. As noted above, the
mobile gaming devices 256 may or may not be specialized
gaming devices, depending on the particular implementa-
tion. In some examples, the mobile gaming devices 256 may
be end user devices (EUDs 264), such as tablet devices,
cellular phones, smart phones and/or other handheld
devices.

In some embodiments, the gaming environment 250 may
include one or more kiosks 260. According to some imple-
mentations, the kiosk(s) 260 may be part of the digital wallet
management server 290 even though in FIG. 2B the kiosk(s)
260 and the digital wallet management server 290 are shown
separately. The kiosk(s) 260 may be configured for commu-
nication with other devices of the digital wallet management
server 290 (e.g., with one or more servers ol the digital
wallet management server 290), for example, to allow
digital wallet-based transactions at the kiosk 260 (e.g.,
purchasing credits from a digital wallet account to cash or to
a TTTO ticket, redeeming a TITO ticket to a digital wallet
account, redeeming a reward stored 1n a digital wallet).

In some embodiments, the kiosk(s) 260 may be config-
ured to facilitate monetary transactions mvolving a digital
wallet (e.g., monetary transactions mvolving digital wallet
solftware being executed by one or more of the mobile
gaming devices 256). Such transactions may include, but are
not limited to, cash out and/or cash in transactions. The
kiosk(s) 260 may be configured for wired and/or wireless
communication with the mobile gaming devices 256. The
kiosk(s) 260 may be configured to accept monetary credits
from casino patrons 262 and/or to dispense monetary credits
to casino patrons 262 via cash, a credit or debit card, via a
wireless 1nterface (e.g., via a wireless payment app), via
tickets, etc. Accordingly, in some such examples, the
kiosk(s) 260 may be configured for communication with one
or more financial institution data centers.

In some embodiments, the kiosk(s) 260 may be config-
ured to accept monetary credits from a casino patron and to
provide a corresponding amount of monetary credits to a
mobile gaming device 256 for wagering purposes (e.g., via
a wireless link such as a near-field communications link).
According to some implementations, a digital wallet app
running on one of the mobile gaming devices 256 (e.g., on
a patron’s cell phone) may be configured for wireless
communication with gaming devices 104, smart tables 294,
or such (e.g., to provide digital wallet-based, cashless “cash-
out” and/or “cash-in” transactions at location). In some such
examples, when a casino patron 262 1s ready to cash out, the
casino patron 262 may select a cash out option provided by
a mobile gaming device 256, which may include a real

10

15

20

25

30

35

40

45

50

55

60

65

14

button or a virtual button (e.g., a button provided via a
graphical user interface) in some instances. In some such
examples, the mobile gaming device 256 may send a *“cash
out” signal to a kiosk 260 via a wireless link 1n response to
receiving a “cash out” indication from a casino patron. The
kiosk 260 may provide monetary credits to the patron 262
corresponding to the “cash out™ signal, which may be 1n the
form of cash, a credit ticket, a credit transmitted to a
financial account corresponding to the casino patron, etc.

In some examples, at least some of the mobile gaming
devices 256 may be configured for implementing digital
wallet transactions with a gaming device 104 or a smart table
294 via Bluetooth or NFC. According to some implemen-
tations, the gaming device 104 or smart table 294 may be
configured to provide a Bluetooth low-energy (LE) beacon
for establishing wireless communication with at least some
of the mobile gaming devices 256. In some implementa-
tions, the mobile gaming device 256 may implement digital
wallet transactions (such as cash 1n or cash out transactions)
with the gaming device 104 or smart table 294 directly, via
NFC or Bluetooth. In other implementations, the gaming
device 104 or smart table 294 may be able to transmit
communications to a mobile gaming device via NFC or the
Bluetooth (LE) beacon, but the mobile gaming device may
be required to provide input to the gaming device 104 or
smart table 294 indirectly (e.g., via one or more devices of
a player loyalty system or of a digital wallet management
system).

Some embodiments provide alternative methods of estab-
lishing a “cardless” connection between a mobile gaming
device and an EGM 104 or a smart table 294. In some such
implementations, a player tracking interface of the gaming
device 104 or smart table 294 may be configured to establish
a wireless connection and a cardless player tracking session
with a mobile gaming device. For example, the gaming
device 104 may be configured to establish a wireless con-
nection and a cardless player tracking session with a mobile
gaming device via the player tracking interface 232 that 1s
described above with reference to FIG. 2A. A smart table
294 may be configured to establish a wireless connection
and a cardless player tracking session with a mobile gaming
device.

In some examples, a player tracking interface of the
gaming device 104 or smart table 294 may be configured for
wireless communication with a mobile gaming device (e.g.,
via Bluetooth or NFC). In some such examples, the player
tracking interface may include a user interface (e.g., a GUI
or a physical button) with which a player can interact in
order to obtain a passcode from the player tracking interface.
The passcode may, for example, be an RNG code. The
passcode may be provided to the player via a display of the
player tracking interface. The player may be required to
input the code (e.g., via the mobile gaming device) in order
to pair the mobile gaming device with the player tracking
interface and enable digital wallet transactions with the
EGM or the smart table. According to some such imple-
mentations, a “cardless” player loyalty session may also be
established when the mobile gaming device 1s paired with
the player tracking interface.

FIG. 3A 1illustrates hardware components of a gaming
device 300 and data flow between components of a render-
ing pipeline 302 executing on the device 300. In some
embodiments, the gaming device 300 1s an electronic gam-
ing machine, such as gaming devices 104, 200. In the
example embodiment, the gaming device 300 1s a personal
computing device of a player, such as a mobile computing
device (e.g., smart phone, tablet) or a personal computer. In

US 11,688,226 B2

15

some embodiments, the gaming device 300 may be similar
to the mobile gaming devices 256 shown 1n FIG. 2B or the
end user devices 264 shown 1n FIG. 2C. The gaming device
300 includes a memory device 304 (e.g., RAM memory,
solid state drive, or other such transitory and/or non-transi-
tory storage media) that stores various components used to
execute an electronic game, represented here as electronic
game component 306, as well as components of the render-
ing pipeline 302 (e.g., a client component 310 and a native
component 340). The gaming device 300 also includes other
device hardware 360 specific to the particular device 300,
and may vary considerably 1n various hardware components,
configurations, and settings. In this example, the device
hardware 360 includes one or more processors 362 (e.g.,
processor 203, central processing unit (“CPU”) of a personal
computing device, or such), one or more display devices 364
(c.g., game displays 240, 242, touch screen display of a
mobile device, desktop display device of a personal desktop
computer, or the like), one or more audio devices 366 (e.g.,
speakers 220), and one or more mput/output (“1/0O”") devices
368 (e.g., buttons 236, touch screen surface of a mobile
device, keyboard and mouse of a personal desktop computer,
or the like). While components of the rendering pipeline 302
are 1llustrated here as a part of the memory device 304, 1t
should be understood that these components are executed by
a processor, such as processors 362, game controller 202, or
such, and FIG. 3A illustrates aspects of data flow of the
rendering pipeline 302 for purposes of describing various
embodiments. Further, 1t should be understood that the
gaming device 300 may include an operating system (not
separately depicted for ease of illustration, e.g., Windows,
Android, 10S, or the like) and the native component 340
may perform various interactions with the device hardware
360 via interactions with the operating system and various
underlying device drivers (also not separately depicted). In
addition, the client component 310 of the example embodi-
ment includes a virtual machine (e.g., JVM, not separately
depicted) that 1s configured to perform JI'T compilation and
execution of the electronic game component 306. In some
embodiments, the client component 310 1s executed within
a virtual machine instantiated by the native component.
The client component 310 receives the electronic game
component 306 for execution on the gaming device 300. In
the example embodiment, the electronic game component
306 15 an electronic game developed 1 JavaScript or Type-
script (“game source code”), and the client component 310
includes a Java virtual machine (“JVM”) (not separately
depicted) that can execute the game source code. The client
component 310 may create a WebView object (e.g., an
embedded web browser, not separately depicted, installed
and executing on the gaming device 300) that 1s configured
to execute game source code i the WebView (e.g., via
offscreen WebKit rendering). The client component 310
receives the electronic game component 306 in game source
code (e.g., JavaScript source) and executes the game com-
ponent 306 through the JVM. For example, when some
external event occurs, such as user selection of a game from
a lobby of possible games, the game source code may be
received and 1nserted as a <script> tag/object into a Docu-
ment Object Model (“DOM”) of an IFRAME. The WebView
object then renders the DOM, which 1in turn executes the
game component 306. More specifically, the client compo-
nent 310 performs just-in-time compilation on any uncom-
piled code needed to execute the game component 306 and
executes the compiled game. The game script installs a
handler 1n the globals space on a ‘requestAnimationFrame’
(“RAF”) event. This event 1s scheduled to periodically fire

10

15

20

25

30

35

40

45

50

55

60

65

16

at the WebView’s discretion (e.g., 15 to 60 frames per
second, based on a shared heartbeat 336 provided by the
native component 340). This RAF event drives the game and
provides smooth amimations.

The electronic game component 306 provides and utilizes
various game assets during game play, including timelines
322, sprites 324, and textures 326 that are used to provide
aspects of game play. In some embodiments, the electronic
game 15 a slot style game provided in a wagering environ-
ment (e.g., involving wagering for value) or a social envi-
ronment (e.g., using virtual currencies of no intrinsic value).
During game initiation and execution, an asset loader 314
constructs various game objects such as timelines 322,
sprites 324, and textures 326. The client component 310 then
uses these nodes to construct the layout and the behavior of
the game 306. Some such game objects may require game
assets that need to be rendered during game execution (e.g.,
digital video assets, audio assets, or the like). The native
component 340 1s ultimately responsible for rendering the
assets to the screen. As such, the client component 310
orchestrates when a new asset 1s loaded and commands the
native component 340 to load up the raw materials of the
assets. More specifically, an asset manager 312 of the client
component 310 generates and transmits loading operations
334 (e.g., commands) to an asset manager 350 of the native
component 340 as new assets are needed by the executing
game. The native component 340 provides the asset loader
314. As part of game execution, the client component 310
transmits loading operations 334 to the asset loader 314
istructing the native component 340 which assets to load
into memory as part of game execution (e.g., from non-
transient storage into transient storage, RAM memory of the
executing process). Game assets can be grouped mnto nodes
and materials. Nodes represent elements that the game uses
to control how the game will look (e.g., drawing a sprite
node of an ‘Ace’ symbol at position X, size Z, color C, and
opacity O). The actual image for the ‘Ace’ 1s 1n a material
called a texture. Nodes may include timelines 322, text,
sprites 324, sounds, or the like. Materials may include audio
clips, fonts, textures, video textures, 1mage sequences, or the
like. During operation, the client component 310 loads
nodes for a given asset, and the native component 340 loads
matenals for the given asset (e.g., via the asset manager 350
and asset loader 314).

During game play, 1n the example embodiment, the client
component 310 executes the electronic game on the gaming
device 300 as the front end component of the pipeline 302.
In some embodiments, the gaming device 300 provides a
virtual ‘lobby’ (not shown) through which the player may
select a particular game for execution. When a particular
game 1s selected through the lobby, the native component
340 downloads the selected game and initiates setup and
execution of the game (e.g., game component 306). In some
embodiments, the native component 340 downloads the
clectronic game and all associated components (e.g., game
source code, game assets, or the like) from a remote games
library such as the games database 374 shown in FIG. 3B.
The native component 340 stores some game assets (e.g.,
materials) 1mn a fonts library 352, texture library 354, and
sound library 356 for potential use during game execution.

The electronic game assets also include game source code
(e.g., JavaScript). The native component 340, 1n the example
embodiment, inserts handlers into the game source code
that, upon execution 1n the client component 310, will cause
the client component 310 to establish the rendering pipe 332
and transmit rendering operations 330 to the native compo-
nent 340. After modification of the game source code, the

US 11,688,226 B2

17

native component 340 creates a virtual machine and causes
the game source code to execute within that virtual machine
(c.g., 1n an oflscreen WebKit). This virtual machine that
executes the game source code becomes the client compo-
nent 310 of the rendering pipeline 302 shown 1n FIG. 3A.
During execution of the game source code, the native

component 340 establishes a heartbeat 336 that 1s configured
at a particular frequency (e.g., 15-60 frames per second).
This heartbeat 336 1s used to dictate, to the client component
310, how frequently to generate and send rendering opera-
tions 330 to the native component 340. The client compo-
nent 310 establishes connections to the native component
340 (e.g., pipe 332 for rendering operations 330, and per-
haps another connection for loading operations 334) and
begins executing the game. After these connections are
established, game execution includes attaching the game to
RAF event, which will give the game a periodic heartbeat
consistent with the heartbeat 336. The game performs 1ni-
tialization logic which loads up the assets needed for the
initial scene. Some operations of the electronic game com-
ponent 306 utilize audio and visual display functionality for
purposes ol presenting aspects of the game to the player
(referred to herein as “source operations” or “source output
operations™). To facilitate game execution, the render pipe-
line 302 provides a render language (“RL”) that 1s used by
the client component 310 to send rendering operations 330
to the native component 340 for processing. These rendering
operation 330 may be referred to herein as “intermediate
rendering operations”, in distinction to native rendering
operations which may be sent to a graphical renderer 344,
video decoder 346, or audio subsystem 348 for presentation
by device hardware 360. To facilitate such intermediate
rendering operations, the client component 310 provides a
render language producer 320 that i1s configured to generate
streams of rendering operations 330 based on the configu-
ration and instructions of the electronic game component
306 and associated assets (e.g., based on the source output
operations of the electronic game component 306). RL
producer 320 creates these rendering operations 330 1 a
text-based intermediate rendering language described in
turther detail below. These rendering operations are subse-
quently received by the native component 340. Upon receipt
ol a particular set of rendering operations 330, the rendering
operations 330 are performed by a render language con-
sumer 342 on the native component 340 (e.g., processed as
FIFO operations as received). In the example embodiment,
the render language consumer 342 translates each of the
rendering operations 330 from the intermediate rendering
language into native rendering operations of a native back-
end renderer 370 (e.g., OpenGL, Metal, Direct3D) of the
gaming device 300. Such native rendering operations may
include API calls 1n native rendering operations for that
particular backend renderer 370. As the render language
consumer 342 submits these native rendering operations 330
to the backend renderer 370, the backend renderer 370
interacts with the device hardware 360 to perform the
rendering operations 330 on the native device hardware 360
(e.g., through various sub-components of the gaming device
300, such as a graphical renderer 344, a video decoder 346,
an audio subsystem 348, and the like). As such, the render-
ing operations 330 generated by the client component 310
are translated into native operations that can be presented on
the local hardware, thereby exhibiting the various technical
advantages described herein, including a rendering language
that 1s API-agnostic to the particular backend renderers 370
provided on various disparate types of gaming devices 300.

10

15

20

25

30

35

40

45

50

55

60

65

18

For example, in some embodiments, the electronic game
component 306 may include JavaScript code that provides
timeline operations during execution of the game (e.g., that
certain timelines are played, stopped, paused, and so forth).
The client component 310 converts such timeline operations
into an internal node representation (e.g., Text2D, Sprite2D,
and so forth). These nodes contain internal state information
used to present game objects (e.g., transforms representing
position, rotation, scale, vectors representing color, and so
forth). The client component 310 may build a scene graph
for the game. In the example embodiment, the client com-
ponent 310 serializes this scene graph via corresponding
intermediate rendering operations (e.g., Sprite2D), Text2D)
and send this stream to the render language consumer 342
(e.g., as rendering operations 330 1n pipe 332). The render
language consumer 342 deserializes the stream of rendering
operations 330, building its own internal representation of
the node objects and creating a corresponding scene graph
on the native side (e.g., 1n the native component 340). For
example, Sprite2D commands may get converted into a
series ol mesh, vertex, triangle lists, and UVs. These native
rendering operations (e.g., in a format that Unity3D under-
stands) may be sent to the graphics and audio devices 364,
366 (c.g., after any final Unity3D to low-level API conver-
sions). Further, the consumer 342 may also keep track of all
objects on a frame-by-frame basis utilizing a unique element
ID. This may be used to modily already existing objects that
may have moved from one frame to the next and also
perform garbage collection or object recycling if a particular
object 1s absent from one frame to the next. This allows the
native component 340 to run with minimized memory
consumption and greater memory efliciency

In some embodiments, the graphical renderer 344, video
decoder 346, and audio subsystem 348 are provided by a
third-party rendering engine, such as the Unity Engine,
which abstracts away from the native component 340 certain
hardware-specific details of the local device hardware 360
(e.g., interaction with particular display devices 364, audio
devices 366, and I/O devices 368), and the native component
340 1s implemented as an extension (e.g., plug-in) of the
third-party rendering engine 370. The binary formatted data
1s optimized for performance by minimizing the size. The
RL consumer 342 translates the binary data from pipe 332
and translates the operations into C# instructions. In some
embodiments, rendering operations 330 are generated for
graphics operations and transmitted through to the native
component 340 for processing and display, but audio opera-
tions are processed directly by the client component 310
(e.g., working directly with the underlying operating system
of the gaming device 300 and associated device drivers,
media players, or the like). Such bifurcation between audio
and video processing may be beneficial 1n certain hardware
or soltware architectures, such as with mobile platforms.

In some embodiments, the client component 310 estab-
lishes two paths of asynchronous communication from the
client component 310 to the native component 340, the
rendering pipe 332 (e.g., for rendering operations 330) and
a path for loading operations 334. The loading operations
334 are used to mitiate loading and staging of game assets
on the native component 340 1n anticipation of upcoming
use. In the example embodiment, the native component 340
has the various game assets for the loaded game stored in the
fonts library 352, texture library 354, and sound library 356.
Such loading operations 334 may include various assets that
are used during rendering such as, for example, a texture
load operation representing a static texture or texture atlas,
a font load operation including font material used for text

US 11,688,226 B2

19

rendering, a video texture load operation, an 1mage sequence
load operation, an audio clip load operation, and a mask
material load operation. In some embodiments, the asset
manager 312 loads game assets as they are needed during
game play, where 1n other embodiments, the asset manager
312 may load all game assets at the beginning of execution
(e.g., at game 1nmitialization). When an asset 1s needed, the
asset manager 312 generates loading operations 334 for
transmission to the native component 340, thereby resulting,
in assets being loaded by the asset manager 350 of the native
component 340 1n anticipation of upcoming use (e.g., assets
referenced 1 upcoming rendering operations 330). For
example, any rendering operation 330 that requires loading
new assets may cause loading operations 334 to be per-
formed prior to any rendering operations 330 that reference
those new assets. The rendering pipe 332, in the example
embodiment, 1s a FIFO pipe that provides rendering opera-
tions 330 to be performed by the native component 340 (e.g.,
based on the order recerved). Rendering operations 330 may
include, for example, a 2-dimensional (“2ID”") sprite render
operation representing a static symbol, 1image sequence, or
video texture, a 2D text render operation representing a 2D
text string from a bitmapped texture, an update mask opera-
tion to ammate a mask material, a push mask operation to
apply a bank of masks to the renderable items to follow, a
pop mask operation to remove a bank of masks from the
renderable 1tems to follow, and a set camera operation to set
camera perspective for renderable items to follow. When
processing the rendering operations 330 from the rendering
pipe 332, the consumer 342 assumes a painter model,
rendering objects 1n the order they are retrieved from the
pipe 332. In other embodiments, 3-dimensional rendering
operations may be supported. Additional example imterme-
diate rendering language operations and syntax are
described in further detail below.

In one example embodiment, each frame 1s driven by
RequestAmimationFrame (RAF) events of the WebView
controlled by the JVM. For example, the WebView may
include a refresh rate (e.g., in frames per second), and the RL
producer 320 may generate and transmit rendering opera-
tions 330 through the rendering pipe 332 for each frame at
a time, n. Rendering operations 330 may include, for
example, an operation type (e.g., the sequenced operation to
be executed on the native side), a node identifier (e.g., the
unique 1dentifier that ties the operation to a particular asset),
and model data (e.g., game-controlled data that provides
node position, size, scale, opacity, rotation, and such).

Example operations may include, for example, Sprite2D,
TextString2D, FrameUpdate, MaskPCommand, CameraP-
Command.

Such rendering operations 330 and loading operations 334
provide hardware agnostic instructions that are generated
from various source languages of the electronic game com-
ponents 306 (e.g., JavaScript, Typescript, C++, C#, or the
like). These hardware agnostic instructions are then pro-
cessed by the native component 340, which 1s configured
execute such mstructions on the particular local device
hardware 360. Since the client component 310 does not
interact directly with the device hardware 360 or subsys-
tems, the electronic game component 306 and client com-
ponent 310 may be independent of various specific hardware
and operating system diflerences between various platiorms.
Instead, the native component 340 1s customized and con-
figured to interact with the particular device hardware 360
and subsystems specific to the gaming device 300. As such,
the rendering pipeline 302 and rendering operations 330
between the producer 320 and consumer 342 allows the

10

15

20

25

30

35

40

45

50

55

60

65

20

client component 310 and the electronic game component
306 to be hardware agnostic. Further, the client component
310 may be configured with a just-in-time compiler that
facilitates JIT compilation of some or all of the electronic
game component 306 independent of native limitations of
the native operating system (e.g., 10S). By using web
technologies to implement the game, the system described
herein provides for downloadable games that do not require
redeployment of the application. Rather, games and assets
can be developed and deployed independently from the
lobby application. By handling rendering operations directly
on the native game platform (e.g., Unity), performance 1s
significantly improved over a pure web-based rendering
solution.

FIG. 3B illustrates an example networked architecture
380 in which the gaming devices 300 may operate. In some
embodiments, the gaming devices 300 may store one or
more electronic games locally (e.g., assets and execution
code 1 a local repository on internal storage). In the
example embodiment shown here, the gaming devices 300
access a remote games database 374 for aspects of the
clectronic game (e.g., for game assets, game execution code,
and the like). The games database 374 i1s hosted by a
networked game server 372 provided on a network 370, such
as a local area network (“LAN”), wide area network
(“WAN”), the Internet, or the like. In some embodiments,
the games database 374 operates as a games library from
which the gaming devices 300 can load games.

In some embodiments, gaming devices 300 can include
mobile devices 300A, such as smart phones or tablet com-
puting devices of players. In some embodiments, gaming
devices 300 can include personal computing devices 3008,
such as home personal computers or laptop computers of
players. In some embodiments, gaming devices 300 can
include EGMs 300 such as the gaming devices 104 shown
in FIG. 1 and the gaming device 200 shown i FIG. 2A.
During operation, the gaming devices 300 download game
components from the games database 374 for execution on
the local gaming device 300A, 300B, 300C as described
above. In some embodiments, the gaming devices 300 may
provide a graphical user interface (“GUI”) that allows the
player to select from a library of games provided by the
games database 374 and, upon selection of a particular game
for play, the gaming device 300 1nitiates a download of that
game and associated components (e.g., assets, executables,
code, or the like) and commences execution of that game
locally.

Example Intermediate Rendering Language and Operations

Referring now to FIGS. 3A and 3B, in some embodi-
ments, the rendering pipeline 302 uses an intermediate
rendering language that includes various types of rendering
operations 330 that may be transmitted across the rendering
pipe 332. For example, rendering operations 330 may
include a “Sprite2D” command, which represents a com-
mand to render a 2D sprite (e.g., a static symbol, an 1mage
sequence, a video texture). The rendering operations 330
may 1include a “Text2D” command, which represents a
command to render a 2D text string (e.g., from a bitmapped
texture). The rendering operations 330 may include an
“UpdateMask™ command, which represents a command to
anmimate a mask material. Some masks are static and may not
change from original load parametes. The rendering opera-
tions 330 may include a “PushMask™ command, which
represents a command to apply a bank of masks to render-
able 1tems to follow. The rendering operations 330 may
include a “PopMask” command, which represents a com-
mand to remove a bank of masks from the renderable 1tems

US 11,688,226 B2

21

to follow. The rendering operations 330 may include a
“SetCamera” command, which represents a command to set
camera perspective for the renderable 1tems to follow (e.g.,
sent when camera has been changed).

In the example embodiment, rendering operations 330 are
generated and transmitted through the rendering pipe 332 1n
an operations pipe format:

of ops=nll: op datal2: op datal . . . In: op datal
where n 1s the number of operations to follow in a given
rendering operations message, and where the rendering

22

operations message includes n subsequent operations ele-
ments. Each operations element 1 to n includes an operation,
“op”, and data for that operation, “data”. Further, the pipe-

line 302 may include a vertices pipe (not separately shown)
that may include vertices data for each of the 1 to n

5
operations 1n a vertices pipe format:

|1: vertices datal2: vertices datal . . . In: vertices datal

Example rendering operations 330 and their associated

vertices data include:

operation: RenderCommand.Sprite2D
Format 1n the ops pipe (all entries stored as 32-unsigned int)

1d:

hash:
VPOS:
elementld:
dirtied:

RenderCommand.Sprite2D

Texture/VideoTexture/ImageSequence hash

Position in the ***vertices™** pipe assoicated with this command
instance-unique 1d

boolean indicating 1f data is dirtied

maskMode:mode of mask to apply to this node
if (maskMode != Ignore)

mask.Rootld: root id of owner of mask

mask.Bank: bank of mask

mask.bit: bit fields of masks

animated: boolean flag indicating if this 1s animatable sprite (e.g., video or
imageSequence)

Format in the vertices pipe (all entries stored as 32-Float)

mv: modelView (16 floats for 4x4 matrix)

width: width of sprite

height: height of sprite

opacity: alpha channel

if (dirtied)
quad-left: quad’s left normalized coordinate
quad-top: quad’s top normalized coordinate
quad-right: quad’s right normalized coordinate
quad-bottom: quad’s bottom normalized coordinate

if (animated)

frame:

frame to update before rendering.

if (transformations)

count: the number of transformtions
length: the number of bytes of transformations
transforms: the discrete transformations to allow native side to apply.

operation: RenderCommand.Text2D
Format in the ops pipe (all entries stored as 32-unsigned int)

1d:

VPOS:
nChars:
elementld:
dirtied:
opacity:

HashTexture[|:

maskMode:

RenderCommand.Render2DText

Position in the ***vertices™** pipe associated with this command’
The number of chars in the string, excluding the null character
instance-unique 1d

boolean inidicating 1f data his dirited

alpha for channel for the text

an array of hash values for each character the string to be rendered.
mode of mask to apply to this node (see MaskMode enums)

if (maskMode != Ignore)

mask.Rootld: root 1d of owner of mask
mask.Bank: bank of mask
mask.bit bit fields of masks

Format 1n the vertices pipe (all entries stored as 32-Float)

mv:
position| |:

modelView (16 floats for 4x4 matrix)
an array of 2*n chars™6 representing the quad (2*3 vertices of

triangles *2 coordinate * nChars) of the position on the screen that string will be rendered

texcoord[|:

an array of 2*nChars™6 representing uv coords 1n the texture for

texture mapping.
if (transformations)

count: the number of transformtions

length: the number of bytes of transformations

transforms: the discrete transformations to allow native side to apply.
width: the width of text in game pixels.

height: the height of text in game pixels.

scaleX: unity scale on the x-coordinate

scaleY: unity scale on the y-coordinate.

operation: RenderCommand.UpdateMask
Format in the ops pipe (all entries stored as 32-unsigned int)

id:
rootld:

RenderCommand.UpdateMask
hash Id for the owner of this mask. This is usually the Id of

the root timeline.

hash:

VPOS:

hash of Mask Material
Position in the ***vertices®** pipe assoicated with this command’

US 11,688,226 B2

23

-continued

Format 1n the vertices pipe (all entries stored as 32-Float)
mv: modelView (16 floats for 4x4 matrix)
vertices| |:

x,y,z coords which are defined by 2 triangle, hence 6.
operation: RenderCommand.PushMask

Format in the ops pipe (all entries stored as 32-unsigned int)
1d: RenderCommand.PushMask
rootld:

the root timeline.

Format 1n the vertices pipe (all entries stored as 32-Float)
< not used >

operation: RenderCommand.PopMask

Format 1n the ops pipe (all entries stored as 32-unsigned int)
1d: RenderCommand.PopMask
rootld:

root timeline.

Format in the vertices pipe (all entries stored as 32-Float)
< not used >

operation: RenderCommand.SetCamera

Format 1n the ops pipe (all entries stored as 32-unsigned int)
1d: RenderCommand.SetCamera
VPOS:

Format 1n the vertices pipe (all entries stored as 32-Float)

left: left coordinate of the viewport
top: top coordinate of the viewport
right: right coordinate of the viewport
bottom: bottom coordinate of the viewport

Additional Enhancements
In some embodiments, the rendering pipeline 302 pro-
vides incremental frame updates. To reduce the data sent
across a pipe, the protocol may support an incremental frame
update. In this mode, the IS code will cache the render graph
on each frame. The data that will be sent across the pipe 332
will be an incremental change to the render graph from the
previous frames. Consider the following:
Frame O:
render graph-[node A: position (-10, 0)]—=[node B: opac-
ity (1.0)]—=[node C: position (120, 120)]— . .. —=[node
Z:: position (800, 800)]
pipe data: [[node A, position(-10, 0)],
(1.0)], [node c, position(120, 120)],

(800, 800)]]

Frame 1:
render graph-[node A: position (-10, 0)]—=[node AA:
position (120, 120)]—=[node B: opacity
(1.0)]— . . . —=[node Z: position (800, 800)]
pipe data: [[node AA, added between (Node A and B)

position(120, 120)], [node ¢, remove]]

The data traflic 1s reduced by sending the differences
between the render graphs on adjacent frames.

In some embodiments, the rendering pipeline 302 imple-
ments variable frame rate rendering. Variable rate rendering,
allows the processes on either side of the pipe to run at
different frame rates. The purpose of this mode 1s to promote
better performance on low-end devices. The IS side of the
game would be slowed down, using up less CPU on the
device. The native side of the pipe would run at a desirable
refresh rate. As nodes in the render tree animate, the native
side would be responsible for interpolating changes to
account for the game running at a slower frame rate. The
frame rates would be established at system startup time.

The cost of this mode would be the loss of non-linear
amimations that occurred at a rate faster than the rate
differential of the two processes. The animations would be
emulated with a more linear path. The benefit 1s that the
game would run smoother on a lower-end system. The
option would be regulated by a customer facing application.

node A, opacity
node z, position

hash Id for the owner of this mask. This 1s usually the Id of

hash Id for the owner of this mask. This 1s usually the Id of the

30

35

40

45

50

55

60

65

24

an array of 3*6 representing the vertices of the mask. Vertices are

Position in the ***vertices™** pipe assoicated with this command’

Consider a situation where the frame rate of the IS process
1s running at 15 fps, while the refresh rate of the native side
1s 30 Ips:

Frame n (JS side)

render graph-[node A: position (=10, 100)]— . . .]

Frame n+1 (JS side)

render graph-[node A: position (-10, 200)]— . . .]
as compared to:

Frame m (native side)

render graph-[node A: position (=10, 100)]— . . .]

Frame m+1 (native side)

render graph-[node A: position (-10, 1530)]— . . .]

Frame m+2 (native side)

render graph-[node A: position (-10, 200)]— . . .]

In some embodiments, one or more of the client compo-
nent 310 and the native component 340 may provide a
recording component and/or a playback component (not
separately shown) that facilitates recording and playback
functionality for gameplay of gaming sessions. For example,
in an e¢xample embodiment, the native component 340
records and stores the rendering operations 330 recerved
from the rendering pipe 332 as an ordered “render stream.”
This recorded render stream may be played back by the
client component 310 sending the render stream back to the
native component 340 1n order for processing, or the native
component 340 may replay the render stream by processing
the stored rendering operations 330 1n order. Further, since
this render stream 1s text based, the render stream may be
compressed with a high degree using known compression
techniques, allowing low bandwidth, lossless quality record-
ing of game play with minimal processing overhead. Such
recording, for example, may provide customer support with
an exact playback of what the user experienced in any
customer dispute situation.

Methods for Providing the Rendering Pipeline

FIG. 4 1s a swimlane diagram of an example method 400
for providing a rendering pipeline for an electronic game,
such as the rendering pipeline 302 shown i1n FIG. 3A. In
some embodiments, the method 400 may be performed by
any of the various gaming devices 300 shown 1n FIGS. 3A
and 3B. In the example embodiment, the method 400

US 11,688,226 B2

25

includes initiating the electronic game at operation 410. At
operation 412, the native component 340 creates a JVM with
a WebView in the client component 310, culminating in the
creation of the client component 310 at operation 414. At
operation 420, the native component 340 downloads game 5
source code, assets, and configuration settings (e.g., from
games database 374, from local memory, or the like). At
operation 422, the native component accesses device dimen-
s1ons for the local device (e.g., screen size, max refresh rate,
or the like, for the gaming device 300). 10

In the example embodiment, at operation 430, the native
component 340 1njects handlers 1into the game source code.
The handlers add code for the render language producer 320,
which allows the game to establish the rendering pipe 332,
construct rendering operations 330, and the other various 15
client-side operations described herein. In one example
embodiment, a single JS-DOM element 1s 1njected into the
JavaScript, varying slightly based upon the operating system
and environment present on the gaming device 300 (e.g.,
10S with WebKit, Android with Chromium, or the like). For 20
example:

window.Unity={

call: function(msg){

window.webkit. messageHandlers. umityControl-
postMessage(msg); 25
)

1

This allows the JavaScript engine to determine whether the
RL consumer 342 is listening and switch all presentation
calls to mstead be serialized through the window.Unity.call 30
(string) DOM function.

At operation 432, the client component 310 downloads
the “enhanced” source code from the native component 340
and, at operation 434, performs game 1mtialization, includ-
ing a just-in-time compilation and execution of the game 35
source code. At operation 436, the client component 310
establishes the rendering pipe 332 and heartbeat 336 with
the native component 340 (e.g., via execution of the handlers
injected 1nto the source code at operation 430). At operation
438, the native component 340 connects with the client 40
component 310 and prepares the render language consumer
342 for rendering processing. At operation 440, execution of
the electronic game begins generating graphics operations
(e.g., source output operations), which causes the render
language producer 320 to translate those source output 45
operations 1nto rendering operations 330 1n the intermediate
rendering language described herein and transmit those
rendering operations 330 to the native component 340 via
the rendering pipe 332. At operation 442, the rendering
operations 330 are recerved by the native component 340 50
(e.g., by the render language consumer 342), which converts
the intermediate render language operations into local hard-
ware operations (e.g., audio, video), causing display of the
game assets as indicated by the rendering operations 330. In
the example embodiment, the rendering pipeline 332 1s an 55
asynchronous data tlow from the client component 310 to
the native component 340 1n which the messages need not be
acknowledged or necessarily processed before the next
commands are sent. In some embodiments, the native com-
ponent 340 sends a heartbeat 336 at operation 450 on a 60
periodic frequency and the client component 310 may
transmit rendering commands 330 based on the heartbeat
336.

Various Technical Advantages

The various embodiments of the rendering pipeline 302 65
for gaming devices 300 described herein provide any or all
of the following technical advantages over the prior art: (A)

26

performance on mobiles may be increased due to always
using an engine with the capacity to JIT the javascript code;
(B) objects are created 1n world space which 1s native to that
of the main application (e.g., the Heart of Vegas application
which 1s a native Unity3d application will have more
flexibility on where the content is rendered on screen, having
a new ability to richly define the layering (lobby objects can
live behind, 1n front of, at the same level as all or some of
the game elements), which may not be possible when the
game 1s rendered to an opaque GL surface as in previous
implementations; (C) the actual rendering API 1s not tied to
the intermediate rendering language, allowing the rendering,
pipeline 302 to switch to using a newer native rendering API
when older ones get deprecated (e.g., Apple may decide to
remove OpenGLES 2 support 1n an upcoming 10S revision),
where previous implementations would rewrite the game to
support a transition to another backend API, where this
implementation provides native support for whatever the
client application supports; (D) the game lobby has richer
control over the textures used by the game, allowing the
lobby to, for example, replace assets baked into the slot
game with newer ones for a Christmas event, where, previ-
ously, modification of game assets post export was dithcult;
(E) QA have a new avenue 1n which they can run automated
tests, where, for example, these automated tests can be
written 1n C# and live inside the Unity application, and they
can work via walking over the Unity3d scene graph to
determine states of components, and where there 1s no
requirement to instrument or modily the underlying slot
game to make this possible; (F) the rendering application 1s
abstracted away from the game render server, where, for
example, 1t would be trivial to move to a new engine
(Unreal, for example)—this would not require changes to
the game or the bespoke rendering language; (G) reduce
power (e.g., battery) consumption on gaming devices (e.g.,
mobile devices) through streamlined processing and reduced
complexity.

A computer, controller, or server, such as those described
herein, includes at least one processor or processing unit and
a system memory. The computer, controller, or server typi-
cally has at least some form of computer readable non-
transitory media. As used herein, the terms “processor” and
“computer” and related terms, e.g., “processing device”,
“computing device”, and “controller” are not limited to just
those integrated circuits referred to 1n the art as a computer,
but broadly refers to a microcontroller, a microcomputer, a
programmable logic controller (PLC), an application spe-
cific integrated circuit, and other programmable circuits
“configured to” carry out programmable instructions, and
these terms are used interchangeably herein. In the embodi-
ments described herein, memory may include, but i1s not
limited to, a computer-readable medium or computer storage
media, volatile and nonvolatile media, removable and non-
removable media implemented 1n any method or technology
for storage of information such as computer readable
instructions, data structures, program modules, or other data.
Such memory includes a random access memory (RAM),
computer storage media, communication media, and a com-
puter-readable non-volatile medium, such as flash memory.
Alternatively, a floppy disk, a compact disc-read only
memory (CD-ROM), a magneto-optical disk (MOD), and/or
a digital versatile disc (DVD) may also be used. Also, 1n the
embodiments described herein, additional input channels
may be, but are not limited to, computer peripherals asso-
ciated with an operator interface such as a mouse and a
keyboard. Alternatively, other computer peripherals may
also be used that may include, for example, but not be

US 11,688,226 B2

27

limited to, a scanner. Furthermore, 1n the exemplary embodi-
ment, additional output channels may include, but not be
limited to, an operator interface monitor.

As 1indicated above, the process may be embodied 1n
computer software. The computer software could be sup-
plied 1n a number of ways, for example on a tangible,
non-transitory, computer readable storage medium, such as
on any nonvolatile memory device (e.g. an EEPROM).
Further, different parts of the computer software can be
executed by different devices, such as, for example, 1n a
client-server relationship. Persons skilled in the art will
appreciate that computer software provides a series of
instructions executable by the processor.

While the invention has been described with respect to the
figures, 1t will be appreciated that many modifications and
changes may be made by those skilled 1n the art without
departing from the spirit of the invention. Any variation and
derivation from the above description and figures are
included 1n the scope of the present mvention as defined by
the claims.

What 1s claimed 1s:
1. An electronic gaming device providing a rendering
pipeline for an electronic game, the electronic gaming
device comprising:
a memory device storing the electronic game, a client
component of the rendering pipeline, and a native
component of the rendering pipeline;
a display device upon which video output of the electronic
game 1s rendered; and
at least one processor configured to execute the client
component and the native component,
the client component, when executed on the at least one
processor, 1s configured to:
initiate a rendering operations pipe between the client
component and the native component;

convert display commands from a source language of
the electronic game into rendering operations of an
intermediate rendering language; and

transmit the rendering operations through the rendering
operations pipe to the native component;
the native component, when executed on the at least one
processor, 1s configured to:
receive the rendering operations via the rendering
operations pipe;

translate the rendering operations from the intermediate
rendering language into rendering operations of the
native component; and

perform the rendering operations of the native compo-
nent on the display device.

2. The electronic gaming device of claim 1, wherein the
client component includes a virtual machine that 1s config-
ured to perform just-in-time compilation and execution of
the electronic game.

3. The electronic gaming device of claim 1, wherein the
source language of the electronic game 1s one of JavaScript
and Typescript, wherein the client component includes a
java virtual machine that executes the electronic game.

4. The electronic gaming device of claim 3, wherein the
client component 1s configured to create a WebView object
and execute source code of the electronic game via offscreen
WebKit rendering 1n the WebView object.

5. The electronic gaming device of claim 1, wherein the
client component 1s configured to transmit asset loading
operations to the native component, wherein the native
component 1s configured to load assets 1dentified by the asset
loading operations.

10

15

20

25

30

35

40

45

50

55

60

65

28

6. The clectronic gaming device of claim 1, wherein at
least some of the rendering operations of the intermediate
rendering language include an operation type, a node 1den-
tifier, and model data.
7. The electronic gaming device of claim 1, wherein a
heartbeat 1s established between the native component and
the client component, wherein the client component uses the
heartbeat as timing for when to generate and transmit
rendering operations through the rendering operations pipe.
8. A method for providing a rendering pipeline for an
clectronic game on an electronic gaming device, the elec-
tronic gaming device including a memory device storing the
clectronic game, a client component of the rendering pipe-
line, and a native component of the rendering pipeline, the
clectronic gaming device also including a display device
upon which video output of the electronic game 1s rendered
and at least one processor configured to execute the client
component and the native component, the method compris-
ng:
establishing a rendering operations pipe between the
client component and the native component;

converting, at the client component, display commands
from a source language of the electronic game into
rendering operations of an intermediate rendering lan-
guage,

transmitting the rendering operations through the render-

ing operations pipe from the client component to the
native component;

receiving, at the native component, the rendering opera-

tions via the rendering operations pipe;

translating the rendering operations from the intermediate

rendering language into rendering operations of the
native component; and

performing the rendering operations of the native com-

ponent on the display device.

9. The method of claim 8, wherein the client component
includes a virtual machine that 1s configured to perform
just-in-time compilation and execution of the electronic
game.

10. The method of claim 8, wherein the source language
of the electronic game 1s one of JavaScript and Typescript,
wherein the client component includes a java virtual
machine that executes the electronic game.

11. The method of claim 10, wherein the client component
1s configured to create a WebView object and execute source
code of the electronic game via oflscreen WebKit rendering
in the WebView object.

12. The method of claim 8, wherein the client component
1s configured to transmit asset loading operations to the
native component, wherein the native component 1s config-
ured to load assets 1dentified by the asset loading operations.

13. The method of claim 8, wherein at least some of the
rendering operations of the mtermediate rendering language
include an operation type, a node identifier, and model data.

14. The method of claim 8, wherein a heartbeat 1s estab-
lished between the native component and the client compo-
nent, wherein the client component uses the heartbeat as
timing for when to generate and transmit rendering opera-
tions through the rendering operations pipe.

15. A non-transitory computer-readable medium storing
instructions that, when executed by a processor of an elec-
tronic gaming device, cause the processor to:

establish a rendering operations pipe between a client

component and a native component;

convert, at the client component, display commands from

a source language of an electronic game into rendering
operations of an intermediate rendering language;

US 11,688,226 B2

29

transmit the rendering operations through the rendering
operations pipe from the client component to the native
component;

receive, at the native component, the rendering operations

via the rendering operations pipe;

translate the rendering operations from the intermediate

rendering language into rendering operations of the
native component; and

perform the rendering operations of the native component

on a display device.

16. The non-transitory computer-readable medium of
claim 15, wherein the client component includes a virtual
machine that i1s configured to perform just-in-time compi-
lation and execution of the electronic game.

10

17. The non-transitory computer-readable medium of 13

claiam 15, wherein the source language of the electronic
game 15 one ol JavaScript and Typescript, wherein the client
component includes a java virtual machine that executes the
clectronic game, wherein the client component 1s configured

30

to create a WebView object and execute source code of the
clectronic game wvia offscreen WebKit rendering in the
WebView object.

18. The non-transitory computer-readable medium of
claiam 15, wherein the client component 1s configured to
transmit asset loading operations to the native component,
wherein the native component 1s configured to load assets
identified by the asset loading operations.

19. The non-transitory computer-readable medium of
claim 15, wherein at least some of the rendering operations
of the mntermediate rendering language include an operation
type, a node identifier, and model data.

20. The non-transitory computer-readable medium of
claim 15, wherein a heartbeat 1s established between the
native component and the client component, wherein the
client component uses the heartbeat as timing for when to
generate and transmit rendering operations through the
rendering operations pipe.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

