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1
ENSEMBLE PREDICTOR

BACKGROUND

Search engines are an indispensable tool for organizing
and presenting content found on the World Wide Web. In
response to user queries for mmformation, a search engine
may generate a search engine results page (SERP) serving
relevant results to the user. Such results may include, e.g.,
results as 1dentified and ranked by a search engine algorithm,
and/or paid advertisements relevant to the user query. To
enable the search engine to generate the most optimal layout
and content for the SERP, 1t would be desirable to provide
metrics quantilying the relevance of the displayed results to
user queries.

One such metric 1s “click probability,” which measures
the probability that a user who has entered a given search
query will click on a displayed result. The click probability
may be predicted based on factors such as user identity,
search query content, results content, etc. The prediction
may be treated as a classification problem in machine
learning.

Relevant machine learning techniques include, e.g., logis-
tic regression models, neural networks, and additive boost-
ing trees, which each have their distinct advantages. For
example, neural networks may have good generalization
capabilities even when provided only a small set of training
data, while decision trees may be especially powerful 1n
deriving high-order feature conjunctions to reduce error
residuals.

It would be desirable to provide techniques for configur-
ing and training an ensemble predictor that combines mul-
tiple machine learning models to improve the accuracy of
click probability prediction and other output variables.

BRIEF DESCRIPTION OF THE

DRAWINGS

FIG. 1 illustrates a search engine interface showing cer-
tain aspects ol the present disclosure.

FIG. 2 shows an illustrative probability prediction mod-
ule.

FIG. 3 illustrates an implementation of a neural network
(NN) for generating a neural network click probability
(CPNN) from an 1nput tuple.

FI1G. 4 1llustrates an implementation of a decision tree for
similarly predicting a click probability (CPDT) from an
input tuple.

FIG. 5 1llustrates an exemplary embodiment of a method
for training and operating an ensemble predictor.

FIG. 6 illustrates an exemplary configuration of an
ensemble predictor during the first training phase.

FIG. 7 illustrates an exemplary configuration of the
ensemble predictor during the second training phase.

FI1G. 8 1llustrates an exemplary embodiment of a configu-
ration of the ensemble predictor during online operation,
with parameters as dertved from the training performed as
described hereinabove.

FIG. 9 1llustrates an exemplary embodiment of a method
for online operation of the ensemble predictor.

FIG. 10 illustrates an alternative exemplary embodiment
of a method according to the present disclosure.

FIG. 11 1llustrates an exemplary embodiment of an appa-
ratus according to the present disclosure.

FIG. 12 illustrates an alternative exemplary embodiment

of an apparatus according to the present disclosure.

DETAILED DESCRIPTION

Various aspects of the technology described herein are
generally directed towards techniques for configuring and
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2

training an ensemble predictor for increased accuracy in
predicting a desired output variable, such as click probabil-
ity.

The detailed description set forth below in connection
with the appended drawings i1s intended as a description of
exemplary means “serving as an example, instance, or
illustration,” and should not necessarily be construed as
preferred or advantageous over other exemplary aspects.
The detailed description includes specific details for the
purpose of providing a thorough understanding of the exem-
plary aspects of the mvention. It will be apparent to those
skilled 1n the art that the exemplary aspects of the invention
may be practiced without these specific details. In some
instances, well-known structures and devices are shown 1n
block diagram form 1n order to avoid obscuring the novelty
of the exemplary aspects presented herein.

FIG. 1 illustrates a search engine interface showing cer-
tain aspects of the present disclosure. Note FIG. 1 1s shown
for 1llustrative purposes only, and 1s not meant to limit the
scope of the present disclosure to any particular page or text
formats, search queries, advertisements, or results shown.
While certain techniques are described hereinbelow in the
illustrative context of predicting a click probability for an
advertisement displayed on the SERP, 1t will be appreciated
that the disclosed techniques are generally applicable to the
prediction of any well-defined probability metric. For
example, the ensemble predictor may be trained to predict
the probability that a user will click on any displayed result
(e.g., non-advertisement results) on the SERP, and thereby
assist search engine developers 1n optimizing search results
ranking and/or SERP layout. Such alternative exemplary
embodiments are contemplated to be within the scope of the
present disclosure.

In FIG. 1, a search engine results page (SERP) 100 of an
exemplary search engine interface includes search engine
query field 110, exemplary user query 112, and a plurality
120 of non-paid search results (1llustratively denoted Search
result #1 through Search result #M) retrieved by a search
engine 1n response to query 112. SERP 100 also features one
or more paid advertisements 130, which may be specifically
targeted to the user based on the content of query 112. For
example, in the scenario shown, 1n response to illustrative
query 112 for “Seattle computers,” an advertisement 130 for
“Bob’s computers™ 1s placed in SERP 100.

To optimize the layout and content of the SERP, 1t would
be desirable to predict the likelihood that a user of the search
engine will click on advertisements such as advertisement
130 shown on SERP 100, or any other content shown on
SERP 100. Such hkehhood may depend on, e.g., a profile
associated with the user (e.g., user age, gender, buying
preferences, etc.), the search query’s full text and/or other
parameters (e.g., date, time, location, etc.), and the content
of the result or advertisement. For example, given a search
query for “Seattle computers,” a user may click on the
illustrative advertisement 130 for “Bob’s computers serving
the Greater Seattle area” with higher probability than an
illustrative advertisement for “Suzie’s computers” (not
shown). Such probability may further vary based on whether
the user 1s male or female, the user’s current location, efc.

FIG. 2 shows an illustrative probability prediction module
200. Module 200 receives an input parameter set 210,
wherein a parameter set 1s also denoted herein a “tuple.” In
an exemplary embodiment, input tuple 210 includes fields
such as user 210a, query 2105, and advertisement 210c¢. For
example, user 210a may specily user profile and/or other
identifying user characteristics, query 2105 may specity full
text of search query 112 and/or other 1dentifying character-
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1stics, and advertisement 210¢c may specily the content of the
advertisement, including title of the advertisement, sum-
mary, category, etc. Based on the specified fields of input
tuple 210, module 200 calculates the ““click probability™ or
“CP” 220, corresponding to the probability that the user will
click on the advertisement.

Note specific fields of mput tuple 210 are described for
illustrative purposes only, and are not meant to limit the
scope of the present disclosure to any choice of fields for an
input parameter set. Alternative exemplary embodiments
may incorporate, e.g., other fields such as user location, Web
browser information, other device information, etc. Such
alternative exemplary embodiments are contemplated to be
within the scope of the present disclosure.

Techniques for implementing module 200 1include
employing machine learning algorithms such as logistic
regression models, neural networks (NN’s), and/or gradient-
boosted decision trees (GBDT’s). In particular, a plurality of
training tuples (also denoted “training parameter sets”
herein), e.g., extracted from a corpus of training data speci-
fying <user, query, advertisement, click/no click> fields
(e.g., as collected from historical records of search engine
queries) may be used to train such algorithms to learn the
functional relationships mapping mput tuples, e.g., in the
form <user, query, advertisement>, to predicted click prob-
ability CP. Following training, the trained algorithms may be
applied online to predict CP 220 for a given input tuple 210.

In an exemplary embodiment, the field “click/no click”
specified for the illustrative training tuple may refer to a
binary variable, e¢.g., having value 1 1f a user clicked on an
ad, and value 0 otherwise. The “advertisement” ficld may
refer to certain parameters captured from the advertisement
tor which click probability 1s to be predicted, e.g., its title,
text, layout design, etc. In alternative exemplary embodi-
ments, the “advertisement” field may be replaced with a
general “result” field referring to parameters captured from
a general result (e.g., non-advertisement) for which click
probability 1s to be predicted. Such alternative exemplary
embodiments are contemplated to be within the scope of the
present disclosure.

FIG. 3 illustrates an implementation of a neural network
(NN) 300 for generating a neural network click probability
(CPNN) 3005 from an 1mnput tuple 210. Note FIG. 3 1s shown
tor 1llustrative purposes only, and 1s not meant to limit the
scope ol the present disclosure to any particular types of
neural networks, e.g., number of layers, nodes, etc., shown.

In FIG. 3, at block 301, feature extraction 1s performed on
an input tuple 210. The extracted features output by block
301 are coupled to respective mput nodes 310.1 through
310.N forming an mput or first layer 315 of neural network
300. Input nodes of first layer 315 are further coupled to
nodes 320.1 through 320.M forming a hidden or second
layer 325 of neural network 300. Each node of first layer 3135
may be coupled to a node of second layer 325 by a
corresponding weight wnm, e.g., wll couples node 310.1 to
node 320.1, w21 couples node 310.2 to node 320.1, etc. In
an exemplary embodiment, weights wnm may be updated
during a training phase (not shown in FIG. 3) using an
optimization function employing, e.g., backpropagation or
other techmiques.

In certain exemplary embodiments, each of nodes 320.1
through 320.M may implement a combination-plus-activa-
tion function. For example, node 320.1 may linearly com-
bine all inputs weighted by corresponding weights wnm, and
apply an activation function such as a sigmoid to the
combined result to generate a node output. The outputs of

nodes 320.1 through 320.M may further be coupled to one
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4

or more nodes of an output or third layer 335, illustratively
shown 1 FIG. 3 as including a single node 330. In an
exemplary embodiment, such couplings may also have
corresponding weights that may or may not be derived from
training, although such weights are not explicitly shown in
FIG. 3 for ease of 1llustration. Node 330 may also implement
a combination-plus-activation function as described herein-
above, to generate a predicted click probability CPNN 3005.

FIG. 4 illustrates an implementation 400 of a decision tree
module 410 for predicting a click probability (CPDT) 40056
from an mput tuple 210. Note FIG. 4 1s shown for illustrative
purposes only, and 1s not meant to limit the scope of the
present disclosure to any particular types of decision trees,
¢.g., number of branches, root nodes, or leat nodes shown.

In FIG. 4, an mput tuple 210 1s provided to feature
extraction block 401, which extracts certain relevant fea-
tures of mput tuple 210. The extracted features are provided

to a decision tree module 410, which includes a plurality of
decision trees 420.0, 420.1, . . . , 420.Q). Note for the

discussion herein, trees 420.0, 420.1, . . ., 420.Q) may have
a sequential order: a first tree “precedes™ a second tree when
the first tree lies to the left of the second tree 1n FIG. 4. For
example, tree 420.0 precedes tree 420.1, which i turn
precedes tree 420.2 (not shown), etc. In this sense, 1t will be
understood that tree 420.0 precedes all other trees 1n module
410, and thus tree 420.0 will also be referred to herein as an
“mmitial tree.”

It will further be appreciated that every node in every
decision tree may generally be coupled to two or more lower
nodes, e.g., node Root 1 1s coupled to nodes 430 and 432,
node 430 1s 1n turn coupled to nodes 434 and 436, ctc. The
topmost node of a tree 1s also denoted a “root node,” e.g.,
node Root 0, node Root 1, and note Root Q are all root
nodes. Any node coupled to two or more lower nodes 1s also
denoted a “branching node” herein, while a terminal node,
¢.g., node 434, 436, or 432, 1s also denoted a “leaf node.”
Initial tree 420.0 may have one leaf node.

In an exemplary embodiment, the specific values of
extracted features associated with an mput tuple 210 decides
a particular path through each tree. In particular, every
connection between a branching node of a tree and a lower
node may be associated with a set of branching conditions
or criteria. Starting from the root node and proceeding
downwards, the path through each tree will traverse ditierent
nodes depending on whether the extracted features satisiy
the conditions associated with a particular branch.

For example, assume node 430 1n tree 420.1 15 associated
with “feature age™ as an extracted feature and also a branch-
ing condition. Then 1 “feature age”>20, then node 430 may
proceed to node 434, otherwise node 430 may proceed to
node 436. A single path may thus proceed down the tree
from the root node to a single leal node. For example, an
illustrative path through tree 420.1 (also referred to as “Path
17 hereinbelow) may traverse node Root 1, node 430, and
node 434 (also labeled “Leatf 17).

In a specific type of decision tree module known as an
additive boosting decision tree module, each leal node
contains a “‘tree output value” for the corresponding tree.
Based on the selected path for each tree, a “final output
value” for tree module 410 1s computed by adding together
all the mdividual tree output values associated with each
selected path’s leaf node. In this sense, each decision tree
may be understood to “boost” the module, with the objective
of each subsequent tree being to reduce the error residual of
the preceding trees.

In an exemplary embodiment, the final output value may
be expressed as a “logit” (or log odds), defined as the




US 11,687,603 B2

S

mathematical function logit(x)=y=log [x/(1-X)], wherein x
1s the probability of being positive, and log 1s the natural
logarithm. The final output value may be transformed by a
sigmoid function 450 to recover the desired click probabil-
ity, or CPDT 4006, wherein the sigmoid function 1s defined
mathematically as sigmoid(y)=1/(1+e™).

In an exemplary embodiment, the tree output value of the
initial tree 420.0 may be 1imtialized as log [p/(1-p)], wherein
p corresponds to the a prior1 probability. In such an exem-
plary embodiment, each decision tree may be configured or
trained to reduce the residual error of the sum of the
preceding trees” output values.

In an exemplary embodiment, training of tree module 410
may proceed by dertving optimum classification criteria and
branching structure for each tree based on available training
data, e.g., using gradient boosting techniques. In an exem-
plary embodiment, such training data may include traiming
tuples, e.g., specified as <user, query, advertisement, click/
no click>).

While either of neural network 300 or decision tree
module 400 may be independently trained and constructed
to execute the functionality of prediction module 200
according to the techniques described hereinabove, 1t will be
appreciated that an ensemble predictor incorporating two or
more machine learning algorithms in multiple stages may
aflord certain advantages. For example, neural networks
may have good generalization capabilities when dealing
with features even when provided only a small set of training
data, while decision trees may be employed to reduce error
residuals, and are especially powertul 1n deriving high-order
feature conjunctions. Accordingly, it would be desirable to
provide techniques for configuring and training an ensemble
probability predictor to enhance the accuracy of probability
prediction.

FIG. 5 illustrates an exemplary embodiment 300 of a
method for traiming and operating an ensemble predictor.
Note FIG. 5 1s shown for illustrative purposes only, and 1s
not meant to limit the scope of the present disclosure to any
particular method, types of training data sets, or configura-
tions of neural networks or decision trees shown.

In FIG. 5, block 510 denotes a “first training phase™ of

method 500, and FIG. 6 illustrates an exemplary configu-
ration 600.1 of an ensemble predictor during the first train-
ing phase. Note the particular techniques for training are
described herein for illustrative purposes only, and 1s not
meant to limit the scope of the present disclosure to any
particular techniques for training neural networks, e.g., to
the use of any particular loss functions.

At block 514 of first traimning phase 510, a first stage
algorithm 1s trained and updated over a first training data set.

The first tramning data set may include a first plurality of

training parameter sets, also denoted training tuples.

In an exemplary embodiment, the first stage algorithm
may correspond to a neural network module. In particular, as
shown 1n the exemplary embodiment of FIG. 6, neural
network module 600.1 may be trained 1n a similar manner as
described with reference to neural network 300 1n FIG. 3.
For example, a first training data set may be provided to the
neural network, and weights and/or other parameters of the
neural network may be updated based on comparison of the
neural network output with target values 1n the first training,
data sef.

Note 1n neural network module 600.1, the outputs of

second-layer nodes 620.1 through 620.M may be combined
by a combination block 605 to generate a combined output
6035a (also denoted “n” or “combination output” herein),

which 1s then coupled to an activation function 606 to
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generate a feedback/training signal 606a. Note, for reasons
which will be apparent heremnbelow with reference to the
discussion of second training phase 520, activation function
606 1s shown as lying outside the neural network module
610.1 of the ensemble predictor.

In an exemplary embodiment, a suitable loss function
such as the cross-entropy loss function may be used for
training. Updating of the first- and/or second-layer weights
may proceed by, e.g., comparing output 605a or “n” with a
learning target (also denoted *y” herein) using a cross-
entropy loss function L defined as follows (Equation 1):

L=-y log n—(1-y)log(1-n);

wherein log again represents the natural logarithm function.
In an exemplary embodiment, n may be a real number from
0 to 1 representing the predicted click probability, while
learning target v may be a binary value of 0 (e.g., corre-
sponding to a click event in the “click/no click™ field of
training tuple) or 1 (corresponding to a no click event).
Subsequent to calculating the loss function value L for a first
training data sample, weights wnm can then be adjusted
using techniques such as backpropagation with gradient
descent, etc.

Note the tramning at block 514 may be 1iterated over all
training tuples in the first training data set. In an exemplary
embodiment, the first training data set may include, e.g.,
thousands or millions of training tuples. In an exemplary
embodiment, each training tuple may specily <user, query,
advertisement, click/no-click>. The training tuples may be
obtained, ¢.g., by monitoring historical usage data as may be
logged by any online search engines serving results and
advertisements to actual user queries.

In FIG. 5, following first training phase 310, a decision
tree module of the ensemble predictor may be trained during
“second traiming phase™ 520. FIG. 7 illustrates an exemplary
configuration 600.2 of the ensemble predictor during the
second training phase.

At block 522 of second training phase 520, a combination
output of the first stage algorithm 1s coupled to the second
stage algorithm.

In an exemplary embodiment, the second stage algorithm
may correspond to a decision tree module incorporating
multiple trees. In an exemplary embodiment, the combina-
tion output may correspond to output 605a of combination
block 605 of neural network module 610.1, which may be
coupled to decision tree module 710.1 of the ensemble
predictor, as shown 1n FIG. 7. A feature extraction block 701
1s coupled to decision tree module 710.1.

In particular, the activation block 606 during first phase
training 510 may be bypassed, e.g., output 605a may be
directly coupled to decision tree module 710.1. In an exem-
plary embodiment, output 605a 1s directly coupled to the
initial decision tree of module 710.1, having only one root
node (also a leaf node) labeled “Root 0. In particular, the
tree output value contributed by node Root 0 of the initial
tree 1s set equal to output 605a.

It will be appreciated that coupling the output of neural
network module 610.1 to tree 710.1 1n this manner elfec-
tively allows the decision trees in module 710.1 to refine an
estimate of the click probability generated by neural network
module 610.1. In particular, when tree module 710.1 1s
implemented as a plurality of additive decision trees such as
a gradient-boosted decision trees, each decision tree may be
understood to contribute a residual correction term to a
preceding estimate, thus further refining the neural network
estimate of click probability.
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At block 524, the second stage algorithm 1s trained and
updated using a second training data set. The second training,
data set may include a second plurality of training parameter
sets 701a, also denote second training tuples.

In an exemplary embodiment, tree module 710.1, e.g., the
classification criteria node structure of i1ts constituent trees,
may be trained and updated using the second training data
set at block 524. For example, training tuples The second
training data set may include, e.g., thousands or millions of
training tuples, and may be obtained 1n a similar fashion as
the first training data set. In an exemplary embodiment, the
second training data set may include a greater number of
(e.g., 10 times more) training tuples than the first training
data set. During second phase training, the second plurality
of traming tuples 701a may be provided to both neural
network feature extraction block 601 and decision tree
teature extraction block 701.

Note the output 710.1a of tree module 710.1 may be
converted by conversion module 720 into a signal 720a for
teedback/training purposes. In an exemplary embodiment,
wherein output 710.1a 1s expressed as logit, then module
720 may apply a sigmoid transform to convert from logit to
probability. Note this exemplary embodiment of conversion
module 720 1s not meant to limit the scope of the present
disclosure to any particular scales or units employed for
computation by network module 610.1 or tree 710.1.

In FIG. 5, following second trainming phase 3520, the
ensemble predictor click probability (CPEP) may be gener-
ated at block 530 (also referred to herein as the “online
phase™).

In an exemplary embodiment, block 530 may proceed
using the trained neural network module 610.1 and trained
decision tree 710.1 to generate the ensemble predictor click
probability, or CPEP. FIG. 8 illustrates an exemplary
embodiment of a configuration 600.3 of the ensemble pre-
dictor during the online phase, with parameters as derived
from the traiming performed as described heremabove. In
particular, the ensemble predictor includes a neural network
module 610.1, configured with parameters derived from first
training phase 510 as described hereinabove. The output
603a of neural network module 610.1 1s coupled to decision
tree module 710.1, configured with parameters derived from

second traiming phase 520 as described hereinabove. Note
the input tuples 210 to neural network feature extraction
block 601 and decision tree feature extraction block 701
may be derived from 1nput tuples for which click probability
1s to be predicted. Such tuples may include, e.g., specifica-
tion of <user, query, advertisement>, as described herein-
above.

The output 710.1a of decision tree module 710.1 may be
provided to a conversion module 720 (e.g., implementing a
sigmoid function) to generate the ensemble predictor click
probability 800a, corresponding to the desired predicted
click probability 220 earlier described hereinabove with
reference to FIG. 2.

FIG. 9 1llustrates an exemplary embodiment of a method
900 for the online phase of the ensemble predictor. Refer-
ence may be made simultaneously to configuration 600.3 of
the ensemble predictor during the online phase as illustrated
in FIG. 8. Note FIG. 9 1s shown for illustrative purposes
only, and 1s not meant to limit the scope of the present
disclosure.

In FIG. 9, at block 910, an input tuple 210 is received.

At block 920, a feature set 1s extracted (e.g., using block
601) from input tuple 210.
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At block 930, the extracted feature set 1s applied to a
trained neural network module 610.1 comprising neural
network node outputs.

At block 940, neural network node outputs are combined,
¢.g., to generate a combination output 603a.

At block 950, the combination output 1s applied to a
trained decision tree module comprising a plurality of deci-
s10n trees, each decision tree generating a tree output value.

At block 960, a sum of tree output values of the decision
tree module 1s computed.

At block 970, the sum 1s converted to probability (if
necessary) to generate the ensemble predictor click prob-
ability, or CPEP.

While certain exemplary embodiments of an ensemble
predictor have been described incorporating a neural net-
work module coupled to a decision tree module, alternative
exemplary embodiments are contemplated to be within the
scope of the present disclosure. For example, in an alterna-
tive exemplary embodiment, first training phase 510 may
instead be conducted using artificial machine learning algo-
rithms other than a neural network, e.g., a logistic regression
algorithm. In such cases, following such an alternative first
training phase, the output of the trained (first-stage) algo-
rithm may be coupled to a second artificial machine learning
algorithm, to initialize one or more a priori probabilities
programmed 1nto the second-stage algorithm during a sec-
ond traming phase. In alternative exemplary embodiments,
the number of artificial machine learning algorithms sequen-
tially trained and cascaded in this manner need not be
restricted to two, and an ensemble predictor may generally
include more than two stages. Such alternative exemplary
embodiments are contemplated to be within the scope of the
present disclosure.

While certain exemplary embodiments have been
described with reference to configuring and training first and
second stage algorithms for predicting a click probability as
described with reference to FI1G. 2, 1t will be appreciated that
the techniques described herein may readily be utilized in
other applications as well. For example, the ensemble pre-
dictor may generally be applied to any task utilizing
machine learning algorithms, e.g., detecting relevance of
search results to search queries, automatic query completion,
etc. Such alternative exemplary embodiments are contem-
plated to be within the scope of the present disclosure.

FIG. 10 1llustrates an exemplary embodiment 1000 of a
method according to the present disclosure.

In FIG. 10, at block 1010, a first stage algorithm 1s trained
using a first plurality of training parameter sets.

At block 1020, subsequent to the training the first stage
algorithm, a second stage algorithm is trained using a second
plurality of training parameter sets. The traiming the second
stage algorithm may comprise, for each of the second
plurality of training parameter sets, imtializing a setting of
the second stage algorithm using an output of the first stage
algorithm.

At block 1030, subsequent to the training the second stage
algorithm, 1n response to receiving an mput parameter set,
an output varniable 1s generated using the trained first and
second stage algorithms.

FIG. 11 1llustrates an exemplary embodiment of an appa-
ratus 1100 according to the present disclosure.

In FI1G. 11, apparatus 1100 comprises a feature extraction
module 1110 configured to extract a feature set for an input
parameter set; a first module 1120 configured to implement
a trained neural network for processing the extracted feature
set, the first module comprising a combination output 11204
corresponding to a combination of a plurality of nodes of the
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trained neural network; a second module 1130 configured to
implement a plurality of decision trees comprising an initial
tree, each decision tree generating a tree output value, the
trained decision tree module comprising an input corre-
sponding to a tree output value of an 1nitial tree of the trained
decision tree, the second module configured to generate a
sum 1130a of tree output values for the extracted feature set;
and a conversion module 1140 configured to convert said
sum to generate a probability.

FIG. 12 illustrates an alternative exemplary embodiment
of an apparatus 1200 according to the present disclosure.

In FIG. 12, apparatus 1200 comprises a processor 1210
and a memory 1220 storing instructions for causing the
processor 1210 to: receive an input tuple; extract a feature
set from the mput tuple; apply the extracted feature set to a
trained neural network module comprising a neural network
node outputs; combine values associated with the neural
network node outputs; apply the combined values to a
trained decision tree module comprising a plurality of deci-
s1on trees, each decision tree generating a tree output value;
compute a sum of tree output values corresponding to the
extracted feature set; convert the sum to generate a prob-
ability.

In this specification and in the claims, 1t will be under-
stood that when an element 1s referred to as being “con-
nected to” or “coupled to” another element, it can be directly
connected or coupled to the other element or intervening
clements may be present. In contrast, when an element 1s
referred to as being “directly connected to” or “directly
coupled to” another element, there are no intervening ele-
ments present. Furthermore, when an element 1s referred to
as being “electrically coupled” to another element, it denotes
that a path of low resistance 1s present between such
clements, while when an element 1s referred to as being
simply “coupled” to another element, there may or may not
be a path of low resistance between such elements.

The functionality described herein can be performed, at
least 1in part, by one or more hardware and/or software logic
components. For example, and without limitation, 1llustra-
tive types of hardware logic components that can be used
include Field-programmable Gate Arrays (FPGAs), Pro-
gram-specific Integrated Circuits (ASICs), Program-specific
Standard Products (ASSPs), System-on-a-chip systems
(SOCs), Complex Programmable Logic Devices (CPLDs),
etc.

While the invention 1s susceptible to various modifica-
tions and alternative constructions, certain 1illustrated
embodiments thereof are shown 1n the drawings and have
been described above in detail. It should be understood,
however, that there 1s no intention to limit the invention to
the specific forms disclosed, but on the contrary, the inten-
tion 1s to cover all modifications, alternative constructions,
and equivalents falling within the spirit and scope of the
invention.

The 1nvention claimed 1s:

1. A method comprising;

training a first machine learning model using a first

training parameter set;

subsequent to the training of the first machine learning

model, training a second machine learning model using
a second training parameter set, the training of the
second machine learning model comprising imitializing
a setting of the second machine learming model using
an output of the first machine learming model; and
subsequent to the training of the second machine learning
model, 1 response to recerving an mmput parameter set,
generating an output variable comprising an estimate
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using the trained first machine learning model to gen-
crate the estimate and the trained second machine
learning model to refine the generated estimate.

2. The method of claim 1, the input parameter set com-
prising features corresponding to a user, a search query, and
an advertisement, the output variable comprising a predicted
click probability, and refining the generated estimate com-
prising at least one of: reducing an error residual and
deriving a high-order feature conjunction.

3. The method of claim 1, the first machine learning
model comprising a neural network algorithm comprising a
first laver and a second layer.

4. The method of claim 1, the second machine learning
model comprising a plurality of decision trees.

5. The method of claim 1, the second machine learning,
model comprising a decision tree, the decision tree com-
prising a leat node contributing an additive term to a variable
functionally related to the output varnable.

6. The method of claim 5, the nitializing the setting of the
second machine learning model comprising setting an addi-
tive term contributed by the decision tree.

7. The method of claim 3, further comprising generating,
a click probability by applying a sigmoid transform to the
variable functionally related to the output vanable.

8. The method of claim 1, the first machine learning
model comprising a logistic regression model.

9. An apparatus comprising;:

a neural network configured to train a first machine

learning model using a first training parameter set;

a decision tree configured to train a second machine
learning model using a second training parameter set,
the tramning of the second machine learning model
comprising mitializing a setting of the second machine
learning model using an output of the first machine
learning model; and

a an ensemble predictor configured to, subsequent to the
training of the second machine learning model, n
response to receiving an input parameter set, generate
an output variable comprising an estimate using the
trained first machine learning model to generate the
estimate and the trained second machine learning
model to refine the generated estimate.

10. The apparatus of claim 9, the input parameter set
comprising features corresponding to a user, a search query,
and an advertisement, the output variable comprising a
predicted click probability, and refining the generated esti-
mate comprising at least one of: reducing an error residual
and deriving a high-order feature conjunction.

11. The apparatus of claim 9, the first machine learnming
model comprising a neural network algorithm comprising a
first layer and a second layer.

12. The apparatus of claim 9, the second machine learning
model comprising a plurality of decision trees.

13. The apparatus of claim 9, the decision tree comprising
a leal node contributing an additive term to a vanable
functionally related to the output vanable.

14. The apparatus of claim 13, the mitializing the setting
of the second machine learning model comprising setting an
additive term contributed by the decision tree.

15. The apparatus of claim 13, further comprising apply-
ing a sigmoid transform to the variable functionally related
to the output variable to generate a click probability.

16. The apparatus of claim 13, the first machine learning
model comprising a logistic regression model.

17. An apparatus comprising a processor and a memory
storing instructions for causing the processor to:
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train a first machine learning model using a first training

parameter set;

subsequent to the training of the first machine learning

model, train a second machine learning model using a
second training parameter set, the training of the sec-
ond machine learning model comprising nitializing a
setting of the second machine learming model using an
output of the first machine learming model; and
subsequent to the training of the second machine learning
model, 1 response to recerving an mput parameter set,
generate an output variable comprising an estimate
using the traimned first machine learming model to gen-
crate the estimate and the traimned second machine
learning model to refine the generated estimate.

18. The apparatus of claim 17, the input parameter set
comprising features corresponding to a user, a search query,
and an advertisement, the output variable comprising a
predicted click probability, and refining the generated esti-
mate comprising at least one of: reducing an error residual
and deriving a high-order feature conjunction.

19. The apparatus of claim 17, the second machine
learning model comprising a decision tree, the decision tree
comprising a leal node contributing an additive term to a
variable functionally related to the output variable.

20. The apparatus of claim 19, the decision tree compris-
ing an initial tree, the mitializing the setting of the second
machine learning model comprising setting an additive term
contributed by the initial tree, and turther comprising gen-
erating a click probability by applying a sigmoid transiorm
to the variable functionally related to the output variable.
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