12 United States Patent

US011687540B2

(10) Patent No.: US 11,687,540 B2

Pushak et al. 45) Date of Patent: Jun. 27, 2023
(54) FAST, APPROXIMATE CONDITIONAL (56) References Cited
DISTRIBUTION SAMPLING |
U.S. PATENT DOCUMENTS
(71) Applicant: Oracle International Corporation, 7475071 BL* 12000 Litl oooooooooooooooooo GOGK 0/6276
Redwood Shores, CA (US) 7077/999 005
9,582,715 B2* 2/2017 Arunkumar GO6N 20/00
(72) Inventors: Yasha Pushak, Vancouver (CA); Tayler 707/737
Hetherington, Vancouver (CA); (Continued)
Karoon Rashedi Nia, Vancouver (CA);
Z.ahra Zohrevand, Vancouver (CA); OTHER PUBIICATIONS
Sanjay Jinturkar, Santa Clara, CA
(US); Nipun Agarwal, Saratoga, CA Riberro et al., “Why Should I Trust You? Explaining the Predictions
(US) of Any Classifier”, In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Min-
(73) Assignee: Oracle International Corporation, ing, dated Aug. 2016, 10 pages.
Redwood Shores, CA (US) (Continued)
(*) Notice: Subject to any disclaimer, the term of this Primary Examiner — Yuk .ng Ch(?l
: . (74) Attorney, Agent, or Firm — Hickman Becker
patent 1s extended or adjusted under 35 Bineham T edesma T P
U.S.C. 154(b) by 104 days. &
(37) ABSTRACT
(21) Appl. No.: 17/179,265 Techniques are described for fast approximate conditional
sampling by randomly sampling a dataset and then perform-
(22) Filed: Feb. 18, 2021 ing a nearest neighbor search on the pre-sampled dataset to
reduce the data over which the nearest neighbor search must
(65) Prior Publication Data be performed and, according to an embodiment, to eflec-
tively reduce the number of nearest neighbors that are to be
US 2022/0261400 Al Aug. 18, 2022 found within the random sample. Furthermore, KD-Tree-
based stratified sampling 1s used to generate a representative
(51) Int. Cl. sample of a dataset. KD-Tree-based stratified sampling may
GO6F 1672458 (2019.01) be used to i1dentily the random sample for fast approximate
GOON 20/00 (2019.01) conditional sampling, which reduces variance 1n the result-
(52) U.S. CL ing data sample. As such, using KD-Tree-based stratified
CPC GO6I' 16/2465 (2019.01); GO6N 20/00 sampling to generate the random sample for fast approxi-
(2019.01) mate conditional sampling ensures that any nearest neighbor
(58) Field of Classification Search selected, for a target data instance, from the random sample
CPC GO6N 20/00; GO6N 5/003: GO6N 3/045: 1s likely to be among the nearest neighbors of the target data
GO6N 7/01: GO6N 5/047; GO6F 16/2246: instance within the unsampled dataset.
(Continued) 20 Claims, 8 Drawing Sheets
00
E‘A

SUZ GENERATZ ARD-TREED THAT CUM
PAMTICULAR DATASET TO BE BA

qqqqqq

HRIBED THE DATA INGTANCES OF A

H"LE::...: "L,.‘ﬂiE: MOTHERD-TRER

COMPRISES A PLURALITY OF saaa.;{.:;i-ﬁ”* WHEREIN EACH BUCKET, OF

T PLUBAL EWV GF BUCKETS, iy ;C:

N TANCES FROM T

S A UNIGUE SET OF SIVILAR £ ,w,%g
ARTICULAR DATASET =

DU4 GENERATE A RANDOM SAMPLE DATASET FROM THE PARTICULAR

DATARET 8Y, FOR RACH BUCKET OF ThE PLURALITY OF EJP%"E’“Q

NCLUDING, IN THE HANDOM SAMPL

SURSET OF THE UNIGUE BEY i??

: z;;'n -‘."‘.lf't' Z' ;‘: é,ﬁg_’r,, w..;. j{j}\&'i '-.,4- ;1‘ fﬂ'?li:ina

AR DATA INSTANCES IN ‘w?? e AGH

o o

US 11,687,540 B2
Page 2

(58) Field of Classification Search
CPC ... GO6F 2218/08; GO6F 16/78; GO6F 16/2465

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

11,176,487 B2* 11/2021 Varadarajan GO6N 20/00
707/999.005

2013/0151535 Al* 6/2013 Dusberger GOO6F 16/2272
707/E17.049

2020/0097775 Al* 3/2020 Zhu GO6K 9/00536
707/999.005

2020/0245873 Al* 8/2020 Frank A61B 5/0823
707/999.005

2021/0012246 Al* 1/2021 Hazard GO6N 5/02
707/737

2021/0287136 Al* 9/2021 Dasccoeevvvinnnnn, GO6K 9/627
707/999.005

2022/0222931 Al* 7/2022 Goyal GO6N 20/10
707/999.005

2022/0261400 Al* 8/2022 Pushak GOO6F 16/2465
707/999.005

2022/0300528 Al* 9/2022 Reymond GOOF 16/26
707/999.005

10/2022 Zohrevand et al.
11/2022 Pushak et al.

2022/0335255 Al
2022/0366297 Al

OTHER PUBLICATIONS

Rdrr.10, “Plot_Superpixels: Test Super Pixel Segmentation™, https://
rdrr.10/cran/lime/man/plot_superpixels.html, dated Feb. 24, 2022, 2

pages.
Pope et al., “Explamability Methods for Graph Convolutional
Neural Networks™, In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, dated 2019, 10 pages.
Petkovic et al., “Improving the Explainability of Random Forest
Classifie—User Centered Approach”, Proceedings of the Pacific
Symposium on Biocomputing, https://www.worldscientific.com/dor/
pdi/10.1142/9789813235533_0019, dated 2018, 12 pages.
Montavon et al., “Explaining Nonlinear Classification Decisions
with Deep Taylor Decomposition”, Pattern Recognition, vol. 635,
https://www.sciencedirect.com/science/article/pii/
S0031320316303582, dated May 2017, 12 pages.

Lundberg et al., “A Unified Approach to Interpreting Model Pre-
dictions”, 31st Conference on Neural Information Processing Sys-
tems, https://proceedings.neurips.cc/paper/2017/file/
8a20a8621978632d76¢43did28b67767-Paper.pdf, dated 2017, 10
pages.

Bach et al., “On Pixel-Wise Explanations for Non-Linear Classifier
Decisions by Layer-Wise Relevance Propagation™, PloS one, https://
journals.plos.org/plosone/article?1d=10.1371/journal.pone.
0130140, dated Jul. 10, 2015, 46 pages.

Maneewongvatana, S., et al., “It’s okay to be skinny, if your friends
are fat”, Center for geometric computing 4th annual workshop on
computational geometry, vol. 2, Dec. 12, 1999, 8pgs.

Aas, Kjerstl, et al., “Explaining Individual Predictions When Fea-
tures Are Dependent: More Accurate Approximations to Shapley
Values.” arXiv preprint arXiv:1903.10464, Mar. 25, 2019, 25pgs.
Bentley, John Lous, “Multidimensional binary Search Trees Used
for Associative Searching”, Stanford Univ, Communications of the
ACM vol. 18, No. 9, Sep. 1975: pp. 509-517. 9pgs.

Breiman, Leo, “Random forests”, Machine learning 45.1 pp. 5-32,
Kluwer academic publishers, the Netherlands, Jan. 2001, 28pgs.
Chen, Hugh, et al., “True to the Model or True to the Data?”, arXiv
preprint arXiv:2006.16234 Jun. 29, 2020, 7pgs.

Frye, Christopher, et al., “Shapley-based explainability on the data
manifold”, arXiv preprint arXiv:2006.01272, Jun. 2020, 13pgs.
Hooker, Giles et al., “Please Stop Permuting Features: An Expla-

nation and Alternatives™, arXiv preprint arXiv:1905.03151 May 1,
2019, 15pgs.

Lundberg, ‘Permutation explainer-SHAP latest documentation’, API
Examples, https://shap.readthedocs.io/en/latest/example_notebooks/
apl__examples/explainers/Permutation.html 2018, revisiond0b4d591

7pgs.
1.6. Nearest Neighbors, https://scikit-learn.org/stable/modules/

neighbors html, Aug. 2020, downloaded May 20, 2021, 10pgs.
Lundberg, Scott M., et al., “Consistent individualized feature attri-
bution for tree ensembles”, arXiv preprint arXiv:1802.03888 (2018).
Opgs.

Strumbely, E., et al., “Explaining prediction models and individual
predictions with feature contributions”, Knowl Inf. Sys., 2014, 41:
pp. 647-665. 2014, Springer-Verlag, London, 19pgs.

Mase, Masayoshi, et al., “Explaining Black Box Decisions by
Shapley Cohort Refinement”, arXiv preprint arXiv:1911.00467,
submitted Nov. 1, 2019; Oct. 2019, 20pgs.

Molnar, C., “Ch 5.10, SHAP (Shapley Additive exPlanations),
Interpretable machine learning”, dwnloaded May 19, 2021, https://
christophm.github.io/interpretable-ml-book/, 2019, 17pgs.

Molnar, C., “Ch 5.5, Permutation Feature Importance, Interpretable
machine learning”, dwnloaded May 19, 2021, https://christophm.
github.1o/interpretable-ml-book/, 2019, 10pgs.

Molnar, C., “Ch 5.9, Shapley Values, Interpretable machine learn-
ing”, dwnloaded May 19, 2021, https://christophm.github.10/
interpretable-ml-book/, 2019, 13pgs.

Pushak, Y., et al., “Empirical scaling analyzer: An automated system
for empirical analysis of performance scaling”, AI Communcins,
IOS Press, vol. 33, Iss. 2, pp. 93-111, publ. Sep. 22, 2020. 19pgs.
Scipy.org, SciPy v1.6.3 Reference Guide, ‘scipy.spatial.cKDTree’
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.
cKDTree.html, 3pgs.

Shapley, Lloyd S., “The Shapley Value”, Essays in Honor of Lloyd
S. Shapley. edited by Alvin E. Roth. 1988. 338pgs.

Strobl, C., et al., “Conditional variable importance for random
forests”, BMC Bioinformatics 2008, 9.307, published Jul. 11, 2008,
BioMed Central Ltd., 11pgs.

Lundberg, Scott M., et al., “A Unified Approach to Interpreting
Model Predictions”, Advances in neural mmformation processing
systems, 31st Conf on N.I.P.S. 2017, Long Beach, CA. 10pgs.
SciPy.org, Statistical Functions (scipy.stats), https://scipy.org, SciPy
v1.6.1, Feb. 2021, 10 pages.

Gupta, “Locality Sensitive Hashing, An effective way of reducing

the dimensionality of your data,” https://towardsdatascience.com/
understanding-locality-sensitive-hashing-4916d 116134, Jun. 29, 2018,

1 8pgs.
Yakovlev et al., “Oracle Automl: A Fast and Predictive Automl

Pipeline”, in Proceedings of the VLDB Endowment, vol. 13, No. 12,
dated Aug. 2020, 15 pages.

Shapley, Lloyd, “A Value for N-person Games”, Contributions to
the Theory of Games, vol. 28, do1.org/10.1515/9781400881970-
018, dated 1953, 15 pages.

Riberro et al., “““Why Should I Trust You?”: Explaining the Predic-
tions of Any Classifier”, Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Min-
ing, dated Aug. 2016, 10 pages.

Plumb et al., “Model Agnostic Supervised Local Explanations™,
32nd Conference on Neural Information Processing Systems, dated
2018, 10 pages.

Laugel et al., “Defining Locality for Surrogates in Post-hoc Inter-
pretability”, ICML Workshop on Human Interpretability in Machine
Learning, arXiv:1806.07498, dated 2018, 7 pages.

Github.com, “Shap Explainers Permutation”, https://github.com/
slundberg/shap/blob/7b16452 18eb0c40d24b584b05b23 1cb27babe(054/
shap/explainers/_permutation.py, dated Apr. 2022, 5 pages.

Castro et al., “Improving Polynomial Estimation of the Shapley
Value by Stratified Random Sampling with Optimum Allocation”,
Computers & Operations Research, vol. 82, dated Jun. 2017, 3

pages.

* cited by examiner

US 11,687,540 B2

Sheet 1 of 8

Jun. 27, 2023

U.S. Patent

-

-

L T A e e e T T T T A T A

4
d

]
L]
]
L]
]
]
]
L]
]
R e e e e e e e e e T e e e T e e W e T T T T e T T T T T Ty
x L]
a
-

Jedp e e e e e e e e e e e e e e dp e e dp dp dp dp dp e dp e dp dp dp e dp e dp dp e dp dp dp e dp dp e dp e e dp e e dp e dp dp e dp dp p dp dp p dp dp dp dp e e dp dp dp dp dp dp dp dp dp e e dp e e dp e 4

P N o]
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
R A
a
a
a
T a
r kb b B b b F
L O O
LI L
. T
lilll.-_i. .
*
. a4
a
a
a
a
a
a
a
a
[
a
L]
a
X
a
L}
a
X
a
]
a
X
a
L]
a
X
a
L}
a
X
a
]
a
#L
W aa s a AN
A e A
r”l.”l.”l.“l.”l.”l.”l.. ¥
aa
1._.-.._1.-._..-.._1.-.__.-.._1.-.._..... .-..
LINC I I C IC O O I P B |

.
o
¥
N
¥
¥
¥
N

.

- L

-

i.:..._.;.i.;..__.:.ib..__.;.i.._ .-..
.
e
b kb s L
TR
T”‘H‘.”‘H‘”‘.H‘.
P

AR IL I R
D
I e
Ottt N
qH.q“.qH.q“.q“.qH.q .r“ .4“
R N

.

LI NE B B N N N N N N MR NN N N TN N N

F F F F F F

.
ettt e

o

LI CTE U
LN] * L]
[l it

e
-.ll.l”'l_ e

L

-
-

. .p __
. . . - e .
' r |} |} L]
Hod L]
' - . .l..—.
: : ", N
. T ...h-.._. &
r .
- . r a r v a X -
- N . - . » * . X "
. "y " ! a t v * + X “y
. X . .
R R
. r .
' R R ' r r r M
.
' . . ' . r r r "
' . . ' r - r &
. r . r r .
' R R ' r r r M
. ' . . ' . r r r "
.
' . . ' r - r &
. . . . r .
' R R ' r r r M
.
' . . ' . r r r "
' . . ' r - r &
. r . r r .
' R R ' r r r M
. ' . . ' . r r r "
.
' . . ' r - r &
. v . . . r "
.
' o r r r .
1._...__1._...._ . . ' . r r r "
] r-' ‘.rl] r . -
.
r ' Figr r . N r A o
s R R ' r r r M . - - '
r _..i._. f [P . '] .E-.
P T R R A A T T T T T T A A I e T T T T R T T T T R T A A N A N] . a
' . . ' - - r & '
o r " S
.
e w ol
' . . ' . r r r "
L ' . . ' r - r &
. r . r r .
' R R ' r r r M
. ' . . ' . r r r "
.
' . . ' r - r &
. . . . r .
' R R ' r r r M
.
' . . ' . r r r "
' . . ' r - r &
. r . r r .
' R R ' r r r M
. ' . . ' . r r r "
.
' . . ' r - r &
. . . . r .
' R R ' r r r M
.
- ' . . ' . r r r "
' . . ' r - r &
r r . r .
._.s-_ "
r [L T T T T T T T T T T S S T S T R T T T T S T S S S T R S T T R T S T S S T T T S T S T T T S T T T S T S T S T T S T T T T S T S S S T S T T T T S T T S T S S S T R S T T T T T T T T T S S T S S T T T T S S R SR R TR R IR
. r r r
r L] r r r -l
y b ' . . ' r - r &
r r .
' R R ' r r r M
.
' . . ' . r r r "
' . . ' r - r &
. r . r r .
' R R ' r r r M
. ' . . ' . r r r "
.
' . . ' r - r &
. . . . r .
' R R ' r r r M
.
' . . ' . r r r "
' . . ' r - r &
. r . r r .
' R R ' r r r M
. ' . . ' . r r r "
.
' . . ' r - r &
. . . . r .
' R R ' r r r M
.
' . . ' . r r r "
. ' . . ' r - r &
-.L- T T e e T T T T T T e T T T T T T o T 1)
. ' f . ' . r r r "
.
' . . ' r - r &
. . . . r .
' R R ' r r r M
.
' . . ' . r r r "
' . . ' r - r &
. r . r r .
' R R ' r r r M
. . r .
. ' . . ' . r r r "
.
' . . ' r - r &
. . . . r .
' R R ' r r r M
.
' . . ' . r r r "
' . . ' r - r &
. r . r r .
' R R ' r r r M
. ' . . ' . r r r "
.
' . . ' r r r "
' R R ' r r r M
.
' . . ' . r r r "
' . . ' r - r &
N e T N T N N T
r . . ' r r r P
. ' . . ' . r r r "
.
' . . ' r - r &
. . . . r .-
' N r N O ety .-.....H.__........... ..“
. x a -
. . . ey i ala e T
' . . ' r - o
. r . r
' R R ' r r -, M
. ' . . ' . "
. . . -
.
' R R ' R ._....t....ri M
. r - i » I .
' . . '_..r......_..._. "
. . - . . .
' . . ' T e N
. r . . o A -
: ' . . ' : K e I
. ' . . ' . P S X X "
) " " Pty S M N O ‘u
' . . ' ¥ W R E -
' R R o o A ik h . M
. r - [il el r . - .
] . . [N i F 4 r L] i ¥ L] 'l .
. - . M . .
FrrrrrrrrrFrrrrrrrrrrErrErrrr P FrErEFrREFREFEFEFRFRFFPFEFREPREFR PR PR FPRE R PREFREERERE PR R E 111111.....___1.....-..-..-.1....... .-.n.-_.._..-......__11.-..-.._1 .
f . . r [T e ™ - el r . - . - a
' . . . Salata s Taatae . "] e T)
. . o Nl T P S e r . - .
' . . . e dr g e dp e ke e r " r '
. . . P e N . . .
' . . . L O r " L-l..rl a L
. . . . r .
' R R . r M .
. . . atka . .
' . . w a i doa r "
. T Y r .
' . . - X r &
f r . s 5 r .
' .. R R & P r M
. "k a r .
. ' w i ur . . r "
. -
.
f - .-.......... r .
x - w i dr ok R R r r r M
f ok . r ¥ r r .
Tk . . . r " r "
. - - . .
........n.r . 1.__._1.....__.| . r - r &
f Fia Sl r . . r .
[l el R P om Ak R r r r M
. s r .
. ' . iy d . r r r "
] r r h r .
. ' . . r - r & .
r r . .
r r M a
. .
r r " '
r ' r o A
. .
- r r M a
r r . .
r r "
r r - L)
- r &
. .
r r M
. .
r r "
. .
- r &
. .
r r M
. .
" r "
. .
r r "
\ .
- 1]
- F]
.
- &
r
& -
.
- F]
.
F] F]
.
- -
r ..
& o) '
.
- & Fl
. ..
& N a2
.
- F] -
. .
r Y & ~
r
- -
’
& -
.
- F]
.
& -
’
- F]
. .
. . . -
.
' R R ' r r r M
.
' . . ' . r r r "
' . . ' r - r &
.
' R R ' r r r M
. . r .
' . . ' r " r "
.
' . . ' r r r "
. . . . r .
' R R ' r r r M
- Pl
f r . . .l-_
R R . 1
. . - 4 - ok
- ' L T - ..'
- - ¥ l|
o 4 s o . i .
. . .
S . e —F
- - it
"+ . o, \ o
, . et s o
. . . Y
. . . .
2 “ ", iy "a * ” “. * H. “
. . s s
O T e T T e T T e T e T O T e e T P L O T O e O i T T T O O O T O P O T T L O e T T T O T e T L e O e it O i T O e T T O T O T O T T e O e P O e e e e it L O T T T O e P T e T O T O T O T O e O T e O T, T O T T e Ot O e T L O T T e T T R L O T T L e O T P R O
.
s o aan . PR . . e a .. T G ma e e e B T SR - .. . N T R CoA S oo e e, e e .. .
. - . - i alaa . T . - . et At e e N . . . T as'a e s A R P .
™ - -...-_-. X ll-..._.. X . l-.-.-_ - . N . n.'l..._. . R » -....l .—_1.._........_. T - ow o i " L w X .._..._.. P .._......._ X a » & wr oy Koo » » ., o - n......_..._ » ik X s a '
roor L R e 2 F kRN a R - ' P a e R o . M . Xk ow FEnlPR T R - e K r roa a s . x - o Fla ko ek a2 m a a -y o e] - N N -
. » - B o i ok iy N - - n & - . P . - Bhoa a . - N sl .o ow PR - w - i &y Foa 'k oa i X Ia s orh &N N ¥ - - " & kX K oo N » - . ok [Y & i K= & a '
oo 2 . B K xma a 2 s - ' e a R " » M . o .y T x PR r s Fr v A Pl . X [t o P] a Ak . - 2w e - e R .
.._ - B B R Tl N - . - . PRy . PR ' a P a N [T T . ur o r o2k = x X s rorh Xy & N s N & W ki ¥ oA oa N B . a k oa. ok ok B ik E = N a '
ror s oa TR a » ' a h Ba - ' e e a P) . ” R X h o= . X s P - - e X r r . a s . i o™ ok ra ko ae 2k & " .] a - e h oy - [-
... 2 = oo R EE A P X - - u - . P . a B4 Ba . P a2 [, Pl e [5 + a k. * & . o & &k y x - a & h ki Kb a2 5 o il S &k & = » . '
oo i i I S Sl Sy X F a P - ' e oaa a R " x M . o xax T x " a . r s K ra a Pl . X r o P] a & & . - i aw .o k& - wl e & .
. - B o O a e ek N - - on - . PR . L Bk oa Boa . e s N i ¥ or y - P [&y s oa'm oa i X Ia s or oy N o N " & kX K & o & » - ok a b oa . ok B i X o= & a '
o 2 . B T T e » ¥ . i - ' e e . [" . 5 . . . x K P - - e ¥ r r . . s . e s - P S i a Ak - a & - e - [il s -
.._ B - By ol E R E P e X . r u - . P . a B a B f a . x [Pl ror s i " F a ko w & xa o o y ox - a & kK X Kb oa x » o - i oa . WA - d X w » a ' -
ror s a R PR gl Tl i ' a h Ba - ' romoaa a . oy N ” R b ow .y s h & or. - s ¥ r . a s . o™ R B 2k [- i a - e h oy - ke X -
.._ Sk . ol R R E T a » . - . . ek . a2 B4 B o a s » [S Y e - s A " Xk ra rora o o - » & Ok kN Faoa » ¥ o sk oa . X F X b b ow » a '
r [i r SRR R . 3 r ok ' 3 . . - P - - 3 e - - - - =Tk ' P =T e - -k o - - . -

U.S. Patent Jun. 27, 2023 Sheet 2 of 8 US 11,687,540 B2

FIG. 2

Uz HANDOMLY SAMPLE THE PARTICULAR DATASET TO GENERATE, IN

??E?&Eaﬁ}?fi‘sﬂ A RANDOM SAMPLE DATASET OF THE PARTICULAR DATASET

204 IDENTIFY A SET OF NEAREST NEIGHBOR DATA INSTANCES, FROM
THE RANDOM SAMPLE DATASET, BASED ON ONE OR MORE
SIVHLARITIES BETWEEN A TARGET DATA INGTANCUE IN THE PARTICULAR
DATASET AND THE NEAREST NEIGHBOR DATAINSTANCES OF THE SET
OF NEAREST NEIGHBOR DATAINSTANCES, WH CREIN THE SET OF
NEAREST NEIGHBOR DATA INSTANCES HAS A PARTICULAR NUMBER OF
DATA INSTANCES, WHEREIN EACH DATA INSTANCE, OF THE SET OF
NEARDS T NRIGHBOR DATA INGTANCED, 1h ONE OF THE PARTICULAK
NUMBER OF DATA INSTANCES NEAREST TO THE TARGET DATA INSTANCE
AMONG THE DATA INSTANCES OF THE RANDOM SAMPLE DATASET

U.S. Patent Jun. 27, 2023 Sheet 3 of 8 US 11,687,540 B2

ii

COMPUTING DEVICE 200

BLACK-BOX
MACHINE
LEARNING

MODEL 302

SAMPLING | | EXPLAINER
APPLICATION310 | | APPLICATION312

P]

US 11,687,540 B2

Sheet 4 of 8

FIG. 4

Jun. 27, 2023

440

U.S. Patent

oy
A
L
“..l!.r .,."

b - - ._L_- A A N N N S S A N N N N S A N S N N S N N S N N N N N N N S N N N O N A A A A S A A A s T R R R R R R R R R R R NN >

3 \

. 1 &

3 \

- ’

' "_ +

])

] *

J +

])

] *

J +

v, | ;

1 *

3 \

1 ¥

Pl i "_ .__”

| B *

...!l - "_ .-”

1 X +

j_“.__ P T ..—. "" . s L-.._l..... [™ S H”

. [Fa— '_ y

h q...,.._.. 1 fw M N

a 1 - < +

M..! ol olir fff "_ ._l. M ‘.1 .__”

I *

! Ny _

1 - ¥

s I A »

o "_ r-..._-rr_ . .__”

1 ¥

"_ +

] *

J +

])

1 . *

3 ﬂ-.f .

1] +

"_ iy +

." o e H

h e ‘m '

'_ -.u_.!- Ly) -_.!.l - +

r" " H.

'_ - w. i N

] - [] 1

! $7 N ;

3] \

1 . +

3 " \

! Sraar +

3 \

." g H

3 \

1 *

"_ +

])

] v N *

1 & ¥

K

"_ n .__”

J . +

])

] *

J +

])

] *

J +

])

] *

1 . ¥

! o e ¥

1 *

"_ p—— .-”

1] +

"_ -__..._- ™ .__“

1 ¥

3 \

1 . - +

. P K

; R ’

1 . +

"_ .__”

J +

] +

] *

J +

1 . +

"_ L .__”

1 ¥

3 \

1 o +

"_ “ . :

'" a.-.. dr H.

[: \

1 *

"_ i _.u_.._.._..._-_fF +

] >)

1 *

3 \

1 ¥

"_ S ;

1 *

"_ +

] 3)

1 1 *

! G

] *

Y 2 +

])

] . *

| -

])

] : *

! :ﬂnﬁl ’

] +

] -)

(e ;

3 \

1 A .__.

"_ ' .u.. - .,.-..J .._.-n__,... - ‘

; Ll o +_

] e *

J . 4 ¥ +

'_ ra l‘./.l- - .l_..l..l.t. *

[}

3 . i, :

3 \

g "N y

," s ;

3 \

1 +

"_ .___

J +

’ ., :

3 \

1 ¥

¥ F \

1 | B +

"_ e i ,

1] . ¥

! ™ ;

| - L | | W +

| TR 4 N

1 ia ch +

" ._“_:/M K

1 . ¥

"_ .-_-..a.al._l_nj...l- _..-r y

1 *

"_ ~ .l.rq..ln._:.._-_nl .__”

1 ¥

['

1 *

"_ +

])

] . *

'_ . L] ! .'.

1 1 - Y

"_ * .___

1 ¥

3 = .

1 ¥

"_ .__”

J +

])

] *

J +

] +

])

J +

'" - il _l..n.._l.... " P i . H.

3 \

1 . ¥

3 \

1 . - - . +

"_ (o O ;

g -t A X

1 ¥

3 \

1 - - +

h e L d ™ +

3 1 » A \

'_ L - .__.

1 *

3 \

1 ¥

"_ +

])

J +

])

1 - . *

"_ N ﬂ ﬁ ._mr._..! .__”

1 +

3 \

.___u-..i..al._-...-_ ." m.q,.l...,._t.._-_ 2 . ' i N H.

3 i ¥ \

.-...,....I.._-_rn.- '" b .l“- T H.

3 \

1 ¥

'.!_1. - .,._._..1‘ '_ ! "

" [p—— o —— K

,—e b b] i v

3 \

| ¥

l...:-_.l.l..-. "_ .._.-.rﬂ.l._,.l.-....._. ._.l...-al..ln_..bu .__”

1 ¥

) "_ +

M i .' '_ .__.

LI +

])

) *

J +

] +

I F F e FFFF PSSR EFER NSNS FER SRR FFFE SN FER R FEFR T FEFFFSFFFFEFFRFFFERFFFSN RN FE S FSFFE RN FFERFFFSFF RN EFS NSNS SR FE SN F SN SFE RSN FERFFRFRNFRF RSN FE RSN F SRR o

U.S. Patent Jun. 27, 2023 Sheet 5 of 8 US 11,687,540 B2

FiG. 5

500 GENERATE AKD-TREE THAT COMPRISES THE DATA INSTANCES OF A
PARTICULAR DATASET TO BE SAMPLED WHEREIN THEKD-TREE
COMPRISES A PLURALITY OF BUCKETS; WHEREIN EACH BUCKET, OF

THE PLURALITY OF BUCKETS, INCLUDES A UNIQUE SET OF SIMILAR DATA

NSTANCES FROM THE PARTICULAR DATASET

ll

S04 GENERATE A RANDOM SAMPLE DATASET FROM THE PARTICULAR
UATASET BY FOK BEACH BUCKET OF T“‘L FLURALITY OF BUCKETS,
INCLUDING, IN THE RANDOM SAMPLE DATASET, A RANDOMLY-SELECTED
SUBSET OF THE UNIGUE SET OF SIMILAR DATA INSTANCES IN BAID £ACH
BUUKET :

iii

U.S. Patent

600

HRENENMAVABNA LN AR ENALERANRENAENARNARNANNAYNSYNAVAAVA ANALVALVARNARNANNAYNAEVAENAVASVARNARYALVA AVAAVALVYA

Jun. 27, 2023

i

- .

B b]

‘-

uuuuuﬂku
e

-

- -

- . A .

Sheet 6 of 8

-

48]
i

Impos

- e o o ol o o o, o

4 A A A A A A e e e e A A A e e A e e e e A i e e e e e

-

A e e e e i e e i i e e i i e e i i e e e e e

_,:li-lr O A N N e N Y YL Y.

o
+
g

L

‘*#:#:#:#:#:#:‘* *3}3}3}3}3}ﬂ}ﬂhﬁ}**************fg*
Frxx x5 xf
X X X X X KK
| RN N]
S-L ok C E O
ko xrrxxxrf
LS 0 N N
L B E S N |
S-E S O
i X i K b ¥
h#####ﬂ

.y
A A A A A A A

{15

-
L]

i1%

olu

RYRRVR VAP ORACK VA ICAVPCATNATR AT AP VRL G

"

el

Er T

L A)

!hﬁhﬁhﬁhﬁhﬁhﬁhﬁiﬁhﬁh#iﬁ

e o,

e e e e e e e

Ry

3
1

e e ol e e Ao e e A e e e ol e ol e ol e e i ol e e e e e e e e

ﬁh#hﬁhprﬁhﬁiﬁh
i-ru*-r*-rwi-r*-:-wi-r:qw:-r

3
i

54
o
>

5 £¥

o

. oy ol
Lot

Base seo

rig

S0

g 7

f")}

Bl Al el Ll alal sl ol

ol 0 F 0 e b E aF ko
AT SN

e
_'ﬁﬁﬂﬁﬁf PR R, EX N Y A Y Y A A A A A A Y

. L

PRATEAYE AR AU AV AR IO P DEITK]

achime

d M

L4

rame

:?;zzh

—S {} o -ﬂg {}?} ﬁ"f(:

US 11,687,540 B2

CREE SABLRQKARER VAL LNR,

??????????ﬁ???ﬁ?? ﬁ?????j
A A o B b ¥ orx
XX EEEEEEE RN E RN E N kKK

N A
B |
e e e T e

Bl Nl *:*:*:*:*:*::;-
FEEEFEEEEEEEEEREEEE YR Y
T T T T A Ty

;‘hq

-

“‘b‘b‘b‘b‘b“‘b+ - ..

.}-F#FQF;F#F-F-

hate e A
LSS SN S NS ENS ERNS LTI EENERS LY SN LNRENL LTS ETSTE LSS AN NS ETIENE NS LTRLFS IS SNSRI SN STIENIENSETSETIETILNETEE RS 0L S2 Y3232

B

ELRATRRLCK P

)

fodel (M

BT]
L

'Hﬁﬂ'

.

Ny

Lea

US 11,687,540 B2

ﬁ_..fi..:....:,-,,..s,....:.. ,..“
......... GEEE m
......... v:/..m: m __ muﬁmmw._:zm m 7 @,ﬂM ”
/SROMIEN NOLLYOINAWAOD A /| 391A30 TOHINOD
% m m
e] :
& g "
— m m _
2 w _ _ | NEZ
g m WALSASENS O/ T TV 301430 LndN
. m m
e i B
— g '
“ “. !
S m — |
: - 501 S REEN
S 064 . _ _ m 71 A0IA3A LNdLNO

U.S. Patent

US 11,687,540 B2

Sheet 8 of 8

Jun. 27, 2023

U.S. Patent

008 ——

(004 30IAIT DNILNGNOD “0°'9) TUVMOUYH 34V

thia)ERERE Y
HISN TV IIHIYHD

(M1 4O ‘CIOUGNY ‘SO ‘SO JYIN XNNET YUND 'SMOONIM "D'9)
NALSAS ONLLYNILO

cig

US 11,687,540 B2

1

FAS'T, APPROXIMATE CONDITIONAL
DISTRIBUTION SAMPLING

FIELD OF THE INVENTION

Techniques described herein relate to efliciently produc-
ing stratified random samples of datasets and also to efli-
ciently performing conditional sampling on a dataset.

BACKGROUND

There are many applications in which i1dentifying a
smaller amount of data from a larger dataset 1s useful. A
common method of generating a dataset sample 1s through
random sampling, which uses computer-generated pseudo-
random numbers to identily data instances, from the target
dataset, to include 1n the sample. Randomly sampling a
dataset ensures that a variety of aspects of the dataset are
included in the sample. There are different techniques for
random sampling, including sampling from the marginal
distribution of a dataset (which represents the probability
distribution of feature values 1n the dataset independent of
any other features of the dataset) and sampling from a
conditional distribution of the dataset (which restricts
sample selection to data instances that meet a particular
condition).

One application of random sampling 1s machine learning,
(ML) explainers, some of which use random sampling to
help 1dentily the importance of a particular feature of a
dataset on predictions of a target ML model (or “black-box™
ML model). Such feature importance-based ML explainers
generally use random sampling to 1dentify a sample, from a
target dataset, to use 1n shuflling feature values for data
instances in the dataset. The black-box ML model being
explained 1s used to generate predictions for the data
instances with perturbed feature values, and then a perfor-
mance loss 1s measured for those predictions when com-
pared to predictions generated for data instances without
perturbed feature values. Based on the performance loss, the
ML explainer determines what features are important to the
black-box ML model when generating predictions.

While marginal sampling 1s a relatively mexpensive and
ellicient procedure, sampling from the marginal distribution
of a dataset can result in data instances with perturbed
feature values that represent unrealistic data instances, thus
explaining the black-box ML model 1n regions where pre-
dictions of the model cannot be trusted and may never be
needed. This can be particularly problematic when the
black-box ML model 1s configured to i1dentily anomalous
data, where feature shuilling based on random samples
generated using marginal sampling can easily produce per-
turbed data instances that do not conform to correlations
found 1n the original dataset.

As a simple motivating example, FIG. 1 depicts a (fic-
tional) dataset 100 that contains the weights and ages of a
population aged 0-20. The data instance at approximately
(age: 18, weight: —150) 1s considered an anomalous, 1ncor-
rect record. Further, in FIG. 1, the top and right rug plots
show the empirical marginal distributions of the age and
weight features, respectively. In other words, the rug plots
depict the distribution of each of these features independent
ol the other feature 1n the dataset.

In this example, an ML model that 1s configured to detect
anomalies has been employed to locate incorrect, anomalous
records within dataset 100, such as the 18-year-old who
purportedly weighs negative 150 pounds. The reason that
this record 1s anomalous 1s clearly because the person’s

10

15

20

25

30

35

40

45

50

55

60

65

2

weight was entered incorrectly. However, an ML explainer
that generates an explanation for this ML model and that
samples from the marginal distribution of dataset 100 1s
unlikely to identity the weight feature as the important
feature for anomaly detection given that unrealistic data
instances will likely be created during explanation genera-
tion.

To 1llustrate, the ML explainer identifies a target data
instance for a 20-year-old who weighs 150 pounds. To test
the importance of the age feature of dataset 100, the ML
explainer substitutes the age attribute of the target data
instance with the age attribute of one or more data instances
drawn from the marginal distribution of the age feature that
includes all feature values 1n the age rug plot. One of the data
instances in the random sample has an age attribute value of
a 2-year-old, and the ML explainer generates a “perturbed”
data 1nstance with the (non-tested) weight value from the
target data instance and the age value from the randomly
sampled data mstance. Clearly, a 2-year-old who weighs 1350
pounds should be considered anomalous by any reasonable
anomaly detection method. Since a perturbed data instance
was created by modifying the age feature of the target data
instance, a feature importance-based ML explainer will
attribute the change of prediction from “normal” (for the
target data mstance) to “anomalous” (for the perturbed data
instance) to the change in the age feature. Symmetric
examples will likely occur for the weight feature. As a result,
both features will be considered approximately equally
important by the explainer, whether or not both features are,
in fact, equally important to the predictions of the ML
model.

In fact, the following should always be true for any
reasonable anomaly detection ML model: by modilying a
single feature of a data instance to an unreasonable value,
artificial anomalies will be created from the perspective of
the ML model. However, instead of testing whether feature
modification can generate artificial anomalies, 1t 1s generally
more useful to understand which features make a data
instance anomalous, 1.e., which features 1solate the anoma-
lous data instance {from the rest of the dataset.

Sampling from conditional distributions can be advanta-
geous 1n many situations, including to help ML explainers
identily features that distinguish anomalous data instances 1n
a dataset. To 1llustrate, consider that istead of utilizing the
marginal distribution for the ML explainer example above,
the value for the age of the example 150-pound person 1s
instead sampled from a conditional distribution that repre-
sents the age feature values of data instances within the
highlighted section of dataset 100 centering on 150 pounds
(the value of the non-perturbed weight feature of the target
data instance). Sampling from the conditional distribution,
the correlations occurring 1n the dataset are preserved, thus
creating approximately realistic records that are far less
likely to be flagged as anomalous by the machine learning
model. Thus, for dataset 100, the importance of the age
feature will not be artificially inflated by perturbed data
instances that break correlations 1n the dataset.

Nevertheless, conditional sampling of a dataset 1s much
slower than marginal sampling because of the requirement
to restrict the potential data instances that may be included
in a random sample from the dataset. For example, to
perform conditional sampling on a dataset, an approprate
method of 1dentiiying data instances that are similar to the
target data instance must first be performed (such as a k
nearest neighbor algorithm, which has a worst-case com-
plexity of O(kxn'"'%), where k is the number of nearest
neighbors to be found and n 1s the number of data items in

US 11,687,540 B2

3

the dataset to be searched). The extra expense of conditional
sampling can prevent applications that utilize conditional
sampling from scaling to large datasets or to datasets with
large numbers of features.

To reduce the time required to perform conditional sam-
pling, there are several methods for approximately sampling
from a conditional distribution. A non-parametric technique
for approximately sampling from a conditional distribution
first projects the data into the subspace of features that are
not being replaced. Next, this technique finds the most
similar data instances to the target data instance in this
projected subspace. However, such non-parametric tech-
niques do not scale well 1n that finding the nearest neighbors
of a target data instance in a high-dimensional space 1is
computationally expensive.

Because finding the nearest neighbors of a target data
istance 1n a high-dimensional space 1s computationally
expensive, two alternate methods have been proposed,
which mitigate the expense of finding nearest neighbors of
a target data mstance when the data has more than 3 features.
Both of these methods are parametric, 1.e., the first assumes
the data 1s Gaussian-distributed and the second assumes the
data 1s Gaussian copula-distributed. When their underlying
assumptions are met, the use of parametric models can often
substantially improve the quality of a statistical analysis.
However, both of these assumptions are likely overly opti-
mistic for many real-world datasets—especially those aris-
ing 1n anomaly detection, where the anomalies themselves
must be, by definition, out of distribution.

Accordingly, i1t has been proposed to address the intrac-
tability of the non-parametric technique described above
using a surrogate approach, which aims to directly model the
value of a coalition using a surrogate machine learning
model. For example, the data distribution 1s modeled using,
a variational auto-encoder that includes a special third
component that allows mapping of the conditional distribu-
tion to the latent space. However, this technique introduces
several new neural network architectural design choices and
hyper-parameters, which must be appropriately set (1.e., by
an expert for a given situation) to obtain high quality results.
These hyper-parameters may be optimized by validating that
the auto-encoder can be used to obtain high quality estimates
for the value attributed to each feature coalition for random
samples of target data instances, classes and coalitions, for
which a particular loss function 1s proposed. Following this,
the provided loss function can be directly optimized using
any machine learning model as a surrogate. This surrogate
machine learning model (such as a neural network) can then
be used to directly estimate the conditional expectation of
the value of a coalition, thereby bypassing the need to
estimate the conditional distribution of the data at all.

However, while surrogate approaches have been shown to
provide compelling results on a small set of examples, 1t 1s
unclear how easily a surrogate ML model can be trained and
at what computational cost. Certainly, to provide high-
quality approximations of the value of an arbitrary coalition
(of which there are an exponentially increasing number
given the number of features 1n a target dataset), it seems
reasonable to assume that a surrogate ML model would need
to be trained on many replicates of the training data when
subjected to a large number of coalitions (1.e., sets of
teatures “masked out” with un-informative values). It 1s also
unclear whether or not surrogate approaches can reliably
provide accurate explanations for highly complex ML mod-
els since the complexity of a surrogate ML model must be
strictly greater than that of a black-box ML model to be
explained.

10

15

20

25

30

35

40

45

50

55

60

65

4

Thus, 1t would be beneficial to perform conditional sam-
pling using a technique that scales well and that does not
involve an ML model to perform or approximate the con-
ditional sampling.

The approaches described 1n this section are approaches
that could be pursued, but not necessarily approaches that
have been previously conceirved or pursued. Therefore,
unless otherwise indicated, 1t should not be assumed that any
of the approaches described 1n this section qualify as prior
art merely by virtue of their inclusion 1n this section. Further,
it should not be assumed that any of the approaches
described 1n this section are well-understood, routine, or
conventional merely by virtue of their inclusion in this
section.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:

FIG. 1 depicts a dataset containing the weights and ages
ol a population.

FIG. 2 depicts a flowchart for performing conditional
sampling on a dataset by randomly sampling a dataset and
performing a nearest neighbor search on the resulting ran-
dom sample.

FIG. 3 1s a block diagram of an example computing
device running a sampling application.

FIG. 4 depicts an example KD-Tree.

FIG. 5 depicts a flowchart for using a KD-Tree to generate
a stratified random sample of a dataset.

FIG. 6 depicts an overview of a feature importance-based
ML explainer.

FIG. 7 1s a block diagram that illustrates a computer
system upon which an embodiment may be implemented.

FIG. 8 15 a block diagram of a basic software system that
may be employed for controlling the operation of a com-
puter system.

DETAILED DESCRIPTION

In the following description, for the purposes of expla-
nation, numerous specific details are set forth 1n order to
provide a thorough understanding of the techniques
described herein. It will be apparent, however, that the
techniques described herein may be practiced without these
specific details. In other instances, well-known structures
and devices are shown in block diagram form in order to
avold unnecessarily obscuring the techmiques described
herein.

General Overview

Existing conditional sampling techmques first find, within
a full dataset, a set of nearest neighbors for a target data
instance and then sample from the nearest neighbors. In
contrast, techniques are described herein for fast approxi-
mate conditional sampling of a dataset by swapping the
order of finding nearest neighbors of a target data instance
and performing random sampling. Specifically, techniques
for fast approximate conditional sampling described herein
randomly sample a dataset and then performing a nearest
neighbor search on the pre-sampled dataset to reduce the
data over which the nearest neighbor search must be per-
formed and, according to an embodiment, to eflectively
reduce the number of nearest neighbors that are to be found
within the random sample. For example, 20th of the data 1s
randomly sampled from a dataset, and then a single nearest
neighbor 1s 1dentified within the pre-sampled data. This
novel fast approximate conditional sampling substantially
improves the runtime of conditional sampling over existing

US 11,687,540 B2

S

techniques, especially for large, high-dimensional datasets
where existing conditional sampling techniques would be
computationally prohibitive.

Furthermore, according to an embodiment, K-Dimen-
sional Tree (“KD-Tree”’)-based stratified sampling 1s used to
generate a representative sample of a dataset. According to
an embodiment, KD-Tree-based stratified sampling 1s used
to 1dentity the random sample for the fast approximate
conditional sampling technique described above, which
reduces variance in the resulting data sample. Because the
variance 1n the random data sample 1s reduced, using KD-
Tree-based stratified sampling to generate the random
sample for fast approximate conditional sampling ensures
that any nearest neighbor selected, for a target data 1nstance,
from the random sample 1s likely to be among the nearest
neighbors of the target data instance within the unsampled
dataset.

Using KD-Tree-based stratified sampling to identity the
random sample for the fast approximate conditional sam-
pling techmique further improves the stability of the fast
approximate conditional sampling technique. Specifically,
the variance 1n output, over calls to the conditional sampling,
procedure, 1s reduced, and the average accuracy of the
output 1s 1improved. Thus, the stability of the conditional
sampling technique 1s improved by ensuring that the gen-
erated random samples have better coverage of the feature
space ol the original dataset. As such, over repeated runs of
the procedure, the maximum distance to the nearest neigh-
bor 1n this sampled space 1s lower, and hence the returned
conditional samples are closer to the original data instance.

Consider a simple example where conditioning i1s per-
formed on a single feature that has the values: {1, 2, 3, 4, 5,
6, 7, 8, 9} in an original dataset of 9 samples. It is desired
to randomly sample 1nstances with feature values similar to
10. Results of randomly sampling this example dataset is
described below according to the following techniques: an
exact nearest-neighbor-based random sampling technique, a
marginal random sampling technique, and the KD-Tree-
based stratified random sampling technique:

Exact nearest-neighbor-based random sampling: In this
example, the number of neighbors 1s set to 2 and 1t 1s
desired to randomly pick one of the 1dentified random
set to return as a sample. This technique will always
return one of 8 or 9, which are the two closest samples
to 10, and which have a mean distance of 1 from the
target value.

Marginal random sampling: In this example, one-third of
the data 1s sampled completely at random, and the
following values are obtained: {1, 2, 3}. The single
nearest neighbor to value 10 1s 3, which has a distance
of 7 from the target value.

KD-Tree-based stratified random sampling: In this
example, a KD-Tree 1s built on the original dataset
based on the target feature, by which the data 1is
partitioned into the following three buckets: {1, 2,
31144, 5, 6}14{7, 8, 9}. Next, a single value is randomly
sampled from each bucket to obtain the random
sample: {1, 5, 7}. The single nearest neighbor to value
10 1s 7 which has distance of 3 from the target value.
In this case, there will always be at least one o1 7, 8, or
9 1n the random sample, and as such, the mean distance
of the values returned across sampling runs 1s 1.5 from
the target value.

Of course, marginal random sampling can (and will)
include one or more of the values 7, 8 and 9 1n the random
sample some of the time, but the marginal random technique
will also sometimes not produce any of those values in the

10

15

20

25

30

35

40

45

50

55

60

65

6

random sample. Thus, the varniance in the distance to the
sampled neighbor will be quite higher for marginal random
sampling than with KD-Tree-based stratified random sam-
pling with only moderate increase in runtime using the
KD-Tree-based stratified random sampling over marginal
random sampling.

The fast approximate conditional sampling technique and
the KD-Tree-based stratified sampling technique may be
used (together or separately) i a variety of applications,
including to perform conditional sampling for end-to-end
global or local feature i1mportance explainers, thereby
obtaining fast approximations to feature attributions that
preserve the data distribution. Preserving the data distribu-
tion 1n the context of ML explainers produces explanations
that better explain the data, as viewed by the model, rather
than explanations that uniquely explain the model. Preserv-
ing the data distribution of a random sample 1s particularly
useiul when computing explanations for anomaly detection
ML models, an application for which using parametric
conditional sampling and marginal sampling (which are both
fast) provide particularly poor explanations.

Furthermore, these techniques are substantially faster than
other non-parametric conditional sampling methods—espe-
cially for high-dimensional data. The efliciency of tech-
niques described herein allows model-agnostic ML
explainer methods, such as Permutation Feature Importance
(PI), Kermnel SHAP, or SHAP-PI (described in further detail
below), to be applied to any ML model while sampling from
an approximation of the conditional distribution of the data
without regard to the dimensionality or size of the dataset.
Conditional Sampling Using Exact Projected Neighbors

To help illustrate the fast approximate conditional sam-
pling techmiques, sampling from an approximation of a
conditional distribution using nearest-neighbor queries 1n
projected subspaces 1s first described, 1.e., 1n connection
with Algorithm 1 below. The techniques herein are described
in connection with ML explanation methods to provide
context, but are not limited to ML explanation applications.

Model-agnostic explanation methods take as imput: a
dataset, X, which contains n data mstances (or data records)
and which each have |F| features; and a corresponding set of
target values y, which may either be the true target values (in
a supervised setting) or the values predicted by the model (1n
an unsupervised setting). (Feature importance-based ML
explainers are described in more detail below, e.g., 1n
connection with FIG. 6.) Let the value(s) of a feature (or set
of features) that are currently being replacing be £, CF.
Let X[1] be a target data instance, for which the feature(s)
t,epr0ce @€ to be replaced, in order to assess the importance
of 1,.,/.c 10 @ black-box ML model’s ability to predict y[i].
Algorithm 1:

1.1 Project out the features to be replaced. First all the
data, X, 1s projected into the subspace of features, 1, that
are not being replaced, 1.e., 1, =F\f,_ . _ . The data in this
projected subspace 1s denoted by proj ... (X).

1.2 Find a set of k neighbors 1n the subspace. Next, any
(approximate) nearest neighbor method 1s used to find a set

of data instances,

{prﬂjﬂceep(‘X)[jl]:prﬂjﬁeep(‘x‘)UE]: = prﬂjﬁeep
(X)[]k]}:
that are similar to proj,.. (X)[1].
1.3 Randomly sample one of the neighbors. A single
random neighbor

D10} reep (O 1E{PT0] g (O] T01peeep Do), - - -
pr 'D.i | flreep (X) []k] } ’

US 11,687,540 B2

7

1s picked from the set of k neighbors.
1.4 Replace feature values with the neighbor’s values.
Then, the feature values f of X][1] are replaced with

replace

those from X[j]. This creates an approximately realistic data
instance, X[i],.,,,,00e» 11 Which the features, f_ , .. are
modified with values that are likely to occur when condi-
tioning on the other features, £, .

1.5 Evaluate impact to model. The new (perturbed) data
instance X[1| ., e 18 then given to the model to obtain a
prediction y[1],.,,.,,5.o- Finally, the difference between y[i]

and y[1],,,,,,.,peq 18 Used to assess the importance of f,, ..

according to the metric that 1s used by the feature attribution
method of choice (e.g., PI, SHAP-PI, SHAP, etc.).

1.6 Repeat and average. Steps 1.1-1.5 are repeated as
many fimes as needed for as many data instances X[i] as
required by the feature attribution method being used.

When using the projected nearest neighbors technique of
Algorithm 1 with a feature importance-based ML explainer,
which replaces the value of a feature n.,_, .. __times, kK may
be set toequaln, . . Forexample, when 20 iterations of
PI are used for ML model explanations, k 1s accordingly set
to 20. In this way, the k nearest neighbors of proj.... (X)[1]
computed 1n step 1.3 can be pre-computed a single time, and
a random one can be selected for each of the 1terations 1n
steps 1.4 and 1.5. However, for approximate Shapley-based
methods like SHAP-PI, different feature coalitions are used
1n each iteration, and step 1.3 of Algorithm 1 1s used to find
a new set of projected neighbors for each iteration.

Fast Approximate Conditional Sampling

Steps 1.1 and 1.2 of Algorithm 1 are conditioning steps,
and step 1.2 1s generally very slow. There are numerous
approximate nearest neighbor methods that can be used to
find proj..(X)[]] to help speed up this portion of Algorithm
1. For example, an exact (or a l+epsilon-approximate)
k-nearest neighbor method can be used to find k approxi-
mate nearest neighbors, from which a single approximate
nearest neighbor can be sampled uniformly at random. Any
such method can be used to improve the running time of
Algorithm 1 at a relatively minimal cost to the quality of the
explanation. However, based on experimentation, none of
these provide an adequate speedup so as to render Algorithm
1 computationally feasible for large, high-dimensional data-
sets.

Thus, according to an embodiment, techniques described
herein 1implement fast approximate conditional sampling
using a second level of approximation, which substantially
speeds up the overall procedure. The key 1dea 1s to swap the
order of steps 1.2 and 1.3 of Algorithm 1, thereby substan-
tially reducing the size of the dataset over which nearest
neighbor queries must be performed. Furthermore, accord-
ing to an embodiment, the number of nearest neighbors that
are required to be 1dentified at a time 1s also reduced. The

technique for fast approximate conditional sampling 1s out-

lined by Algorithm 2 below:
Algorithm 2:

2.1. Project out the features to be replaced. First all the
data, X, 1s projected into the subspace of features, f,__ . that
are not being replaced, 1.e., {;_ =F\f_ The data in this
projected subspace 1s denoted by proj....(X).

2.2. Randomly sample

10

15

20

25

30

35

40

45

50

35

60

65

3

of the data. Let proj,,..(X') be a dataset with

ka‘h

of the rows of X randomly sampled from projg,., . (X).

2.3. Find a single nearest neighbor 1n the subspace. Next,
any (approximate) nearest neighbor method 1s used to find a
single nearest neighbor, projg....(X)jl. to proj...(X)[1], 1n
PO (X)),

2.4. Replace feature values with the neighbor’s values.
Then, the feature values f of X[1] are replaced with

replace

those from X[j]. This creates an approximately realistic data

instance, X[1] ., peq

2.5. Evaluate impact to model. The new data instance
X[1],¢,mrpeq 18 then given to the model to obtain a prediction
V[l ersrveq- Finally, the difference between y[i] and
V{1l ,ersurves 18 used to assess the importance of f

replace

according to the metric that 1s used by the feature attribution
method of choice (e.g., PI, SHAP-PI, SHAP, etc.). 2.6.
Repeat and average. Steps 2.1-2.5 are repeated as many
fimes as needed for as many data instances X[1] as required
by the feature attribution method being used.

Algorithm 2 1s further described in connection with
flowchart 200 of FIG. 2. Flowchart 200 described below 1n

connection with an example computing device depicted 1n
FIG. 3. Specifically, FIG. 3 depicts a block diagram of an

example computing device 300 running a sampling appli-
cation 310 that performs random data sampling according to
techniques described herein, and an example explainer
application 312 that produces explanations for ML models
(such as black-box ML model 302). While sampling appli-
cation 310 1s depicted as a stand-alone application, sampling
application 310 (and the techniques attributed thereto) may
be mntegrated into any other application, such as explainer

application 312. Computing device 300 1s communicatively
connected to persistent storage 320, which includes a dataset

322 comprising a plurality of data instances. The system
depicted 1n FIG. 3 1s used to explain techniques described
herein; however, embodiments are not limited to the system
configuration depicted in FIG. 3. Furthermore, while the
data sampling techniques described herein are, at times,
described 1n the context of ML explainers, these techniques
are not limited to the context of ML explainers and may be
used for any kind of application that implements data
sampling.

At step 202 of flowchart 200, a particular dataset 1s
randomly sampled to generate, in memory, a random sample
dataset of the particular dataset. For example, sampling
application 310 of computing device 300 generates, 1n
memory of computing device 300, a random sample of
dataset 322, stored at storage 320, that has been projected
into the subspace of features of dataset 322 that are not being
replaced. According to an embodiment described 1n connec-
tion with step 2.2 of Algorithm 2, the random sample dataset
represents

krh

of dataset 322.

According to an embodiment, sampling application 310
generates the random sample dataset, from dataset 322,
using KD-Tree-based stratified sampling, as described in
further detail below. According to another embodiment,
sampling application 310 uses another technique to generate

US 11,687,540 B2

9

the random sample from dataset 322, e.g., by randomly
sampling from a marginal distribution of the data or by
generating a representative random sample using a tech-
nique other than KD-Tree-based stratified sampling.

At step 204 of flowchart 200, a set of nearest neighbor
data 1nstances are 1dentified, from the random sample data-
set, based on one or more similarities between a target data
instance 1 the particular dataset and the nearest neighbor
data mnstances of the set of nearest neighbor data instances,
where the set of nearest neighbor data instances has a
particular number of data instances, and where each data
instance, of the set of nearest neighbor data instances, 1s one
of the particular number of data instances nearest to the
target data instance among the data istances of the random
sample dataset. According to an embodiment, step 204 of
flowchart 200 1s performed after step 202 of the flowchart.

To 1llustrate step 204, sampling application 310 maintains
information for a target data instance from dataset 322, and
sampling application 310 1dentifies one or more nearest
nei1ghbor data instances, for the target data instance, from the
random sample dataset. To 1llustrate, the one or more nearest
neighbor data instances comprise feature values (for features
of the dataset) that are more similar to feature values of the
target data instance than feature values for data instances 1n
the random sample dataset that are excluded from the one or
more nearest neighbor data instances.

According to an embodiment, sampling application 310
1dentifies the nearest neighbor(s) of the target data instance,
from the random sample of dataset 322, using a KD-Tree.
(For additional information on KD-Trees, see “Multidimen-
sional binary search trees used for associative searching” by
Bentley, Jon Lows. Communications of the ACM 18.9
(1975): 509-517, the entire contents of which are hereby
incorporated by reference as if fully set forth herein.)
Specifically, sampling application 310 generates a sample-
specific KD-Tree populated with the random sample of
dataset 322 (generated at step 202). To 1illustrate, FIG. 4
depicts an example KD-Tree 400 that sorts data with two
features (x, y) into a plurality of buckets defined by the
points indicated within the grid. Each box mm KD-Tree 400
represents a respective bucket (or leaf node of the tree), and
any data instances that fall within the bounds defined bucket
are considered to be similar data instances. According to an
embodiment, a KD-Tree 1s configured such that each bucket
of the tree includes approximately the same number of data
instances. Data 1nstances within a bucket may be close to a
bucket boundary. For example, data instance (27, 25) 1n
bucket 402 1s relatively close to the boundary of the bucket
marked by data instance (25, 20), while data instance (35,
50) 1s relatively far away from all of the boundaries of
bucket 402.

The k nearest neighbors of a particular target data instance
are the k data instances that are either 1n a target bucket that
would 1nclude the target data instance, or are in neighbor
buckets of the target bucket. The first-degree neighbor
buckets of the target bucket share boundaries with the target
bucket. When there are a small number of nearest neighbors
to find (e.g., 1-2), 1t 1s generally sufficient to access only the
first-degree neighbors (1f needed) to prove that an i1dentified
nearest neighbor(s) 1s the closest data instance to the target
data mstance within the KD-Tree. However, 1t 1s possible
that the nearest neighbor search could extend 1nto an expo-
nentially increasing number of higher-degree neighbor
buckets (e.g., second-degree neighbor buckets that share at
least one boundary with the first-degree neighbor buckets,
third-degree neighbor buckets that share at least one bound-
ary with the second-degree neighbor buckets, etc.), espe-

10

15

20

25

30

35

40

45

50

35

60

65

10

cially in high-dimensional datasets and where more than a
small number of nearest neighbors are sought from a single

KD-Tree. Thus, searching for a very small number of nearest
neighbors within a KD-Tree can significantly reduce the
time required for the nearest neighbor search.

Returning to the example of FIG. 4, 1n order to 1dentify
k=1 nearest neighbors for example target data instance (35,
50), where bucket 402 includes only data instance (27, 25),
data 1nstance (35, 50), and data instance (35, 55), 1t 1s clear
that no other data instance in KD-Tree 400 could be nearer
to data instance (35, 50) than data instance (35, 55) given
that the boundaries of bucket 402 are farther from the
example target data instance than data instance (35, 55).
Thus, 1n this case, sampling application 310 1dentifies the
nearest neighbor for the example target data instance with-
out accessing any bucket other than bucket 402. However,
for example target data instance (27, 25), the boundary of
bucket 402 defined by data instance (25, 20) 1s closer to the
example target data instance than any other data instance 1n
bucket 402. In this case, at least one neighbor bucket (i.e.,
at least the first-degree neighbor bucket 404) 1s searched to
determine whether there 1s a data instance within the neigh-
bor bucket that 1s closer to the example target data instance
than the other data instances 1n bucket 402.

According to an embodiment, where multiple nearest
neighbors are desired to be 1dentified 1n the random sample
dataset, the random sample dataset may be configured to
represent a larger portion of dataset 322 than

k:‘h

of the dataset. For example, 1f two nearest neighbors are to
be 1dentified from the random sample dataset, the random
sample dataset may be configured to represent

kﬁ’l

of dataset 322. Alternatively, if multiple nearest neighbors
are to be identified from the random sample dataset, the
process of 1dentifying a random sample from the dataset and
selecting a single nearest neighbor from the random sample
may be performed multiple times.

It takes approximately O(n-log n) operations to build the
KD-Tree, where n 1s the number of data instances in the tree.
In the case where the KD-Tree 1s being populated with a
random sample that 1s

ka‘h

of the dataset, the step of building the KD-Tree for the
nearest neighbor search 1s over k times faster than for the
nearest neighbor search of Algorithm 1, where k 1s typically
set to 20. In preliminary experiments, a 3.7-fold speedup
using the fast approximate conditional sampling 1s observed
on a four-dimensional dataset. The true speedup does not
reach k=20 because there are introduced some overhead
costs for the 1nitial sampling step. However, the speedup 1s
expected to be even more significant on higher-dimensional
datasets, where querymng a KD-Tree to find the k nearest
neighbors for a data instance requires approximately

US 11,687,540 B2

11

(Zk_]-log(n)) operations. Since, in step 2.3 of Algorithm 2,
k=1 thereby reducing the number of buckets that need to be
accessed to 1dentify nearest neighbors (as described above),
the computational savings for this step can also be enor-
mous. Furthermore, pre-sampling the data allows for 1den-
fification of a smaller number of neighbors for a target data
istance (e.g., 1 when the data sample 1s

krh

of the original dataset), which leads to a 27! speedup for
nearest neighbor queries 1n a high-dimensional dataset.
Using Fast Approximate Conditional Sampling for an ML
Explainer

According to an embodiment, using the set of nearest
neighbor data instances 1dentified by sampling application
310 according to flowchart 200 described above, explainer
application 312, implementing a feature importance-based
explanation technique, generates a set of generated (per-
turbed) data instances. Specifically, explainer application
312 generates a set of generated data instances, based on the
target data instance, by generating, for each nearest neighbor
data instance of the set of nearest neighbor data instances, a
corresponding generated data instance comprising: (a) a
feature value of said each nearest neighbor data instance for
a particular tested feature of the corresponding generated
data instance, and (b) feature values of the target data
istance for all features of the corresponding generated data
instance other than the particular tested feature. To 1llustrate,
explainer application 312 creates a generated data instance
for every nearest neighbor of the target data instance that has
been 1dentified according to step 204 by using all features
from the target data instance other than a “tested feature”.

This generated data instance may be used for feature
attribution estimation. For example, ML model 302 may be
used to generate a first prediction for the target data instance
and a second prediction for the generated data instance.
Explainer application 312 determines a difference metric
that measures a difference between the first and second
predictions. Explainer application 312 uses this difference
metric to determine an importance score for the tested
feature with respect to ML model 302. Explainer application
312 may use any kind of feature importance-based explainer
technique that 1s implemented using conditional sampling.

While swapping the order of steps 1.2 and 1.3 (as shown
in steps 2.2 and 2.3 1n Algorithm 2) allows the fast approxi-
mate conditional sampling technique described herein to
substantially reduce its computational cost, this order of
operations also increases the variance in the feature attribu-
tion estimates produced by an ML explainer that uses the
technique. To illustrate, sampling

ka‘h

of the original dataset can result 1n a random sample that 1s
“patchy”, containing regions of the data distribution that are
under-represented due to random chance. When, later,
neighbors are found for data instances from proj .. (X) that
come from these under-represented regions, these neighbors
can end up being much farther away than they would have
been 1f Algorithm 1 had been used (1.e., 1f the nearest
neighbors were sought 1n the original dataset). Use of patchy

10

15

20

25

30

35

40

45

50

35

60

65

12

random samples to produce ML explanations generally
reduces the quality of the explanations.
Kd-Tree-Based Stratified Random Sampling

Stratified random sampling 1s a variance reduction tech-
nique used to reduce variance mtroduced by random sam-
pling. (For additional information on stratified random sam-
pling, see “Empairical scaling analyzer: An automated system
for empirical analysis of performance scaling” by Pushak,
Yasha, Zongxu Mu, and Holger H. Hoos. Al Communica-
tions Preprint (2020): 1-19, the entire contents of which are
hereby incorporated by reference as 1f fully set forth herein.)
However, stratified random sampling requires data instances
to each be assigned to a unique category. Stratified random
sampling 1s then used to obtain a “balanced” subset of the
data by selecting representative fractions from each cat-
egory. For example, if a population of citizens 1s 48%
“male”, 51% “female” and 1% ‘“‘other”, then a stratified
random sample of 1000 citizens would contain 480 “male”,
510 “female”, and 10 “other” citizens, each of which would
be chosen umiformly at random from within their respective
sub-populations, thereby ensuring that the “other” minority
class 1s not completely omitted during the downstream
statistical analysis, which could happen when sampling from
the marginal distribution of the data instances.

This form of stratified random sampling 1s not applicable
in this context, where useful categories for stratification do
not exist a priori, which 1s commonly required for applica-
tions such as ML explainers. Specifically, many times,
categories for stratified random sampling should represent
groups of data instances that contain similar sets of feature
values. While these categories could be determined on a
per-coalition basis, 1t generally suffices to find a single set of
categories using all of the features, since if two data
instances are similar with respect to all of their features, then
they should also be similar with respect to any subset of their
features.

According to an embodiment, a KD-Tree 1s used to
perform stratified random sampling for a high-dimensional
dataset. FIG. 5 depicts a flowchart 500 for using a KD-Tree
to generate a stratified random sample of a dataset. Specifi-
cally, at step 502 of flowchart 500, a KD-Tree 1s generated,
where the KD-Tree comprises the data instances of a par-
ticular dataset to be sampled, where the KD-Tree comprises
a plurality of buckets, and where each bucket, of the
plurality of buckets, includes a unique set of similar data
istances from the particular dataset. For example, sampling
application 310 generates a KD-Tree that comprises the data
instances of dataset 322, where each of the data instances of
dataset 322 1s assigned to a respective bucket of a plurality
of buckets of the KD-Tree.

According to an embodiment, to populate a KD-Tree,
sampling application 310 recursively divides the data of
dataset 322 into buckets where, at each recursive step,
application 310 randomly selects a feature of the dataset and
splits the data into two buckets based on a median value of
the randomly selected feature. Generation of a KD-Tree 1s
relatively inexpensive, with a complexity of O(n-log(n)),
where n 1s the size of the dataset.

When used with the fast approximate conditional sam-
pling technique described herein, the KD-Tree need only be
generated once. Once generated, the KD-Tree 1s used for
each iteration of the conditional sampling algorithm.

At step 504, a random sample dataset 1s generated from
the particular dataset by, for each bucket of the plurality of
buckets, including, in the random sample dataset, a ran-
domly-selected subset of the unique set of similar data
instances 1n said each bucket. For example, sampling appli-

US 11,687,540 B2

13

cation 310 generates a random sample of dataset 322 by
randomly selecting data instances from each bucket of the
KD-Tree generated at step 502. According to an embodi-
ment, sampling application 310 selects the same number of
data 1nstances from each bucket of the KD-Tree. Sampling
data instances from each bucket of the KD-Tree ensures that

the random sample includes data instances from each range
of data instances defined by the buckets. Without guidance

of the KD-tree, data instances from one or more of the
different defined ranges might be excluded from the random
sample.

Fast Approximate Conditional Sampling Using KD-Tree-
Based Stratified Sampling

Because KD-Tree-based stratified random sampling
ensures better coverage of the dataset feature space, this
stratified sampling technique may be used to reduce variance
1in the random sample produced by fast approximate condi-
tional sampling techniques described above. Therefore,
according to an embodiment, an additional pre-processing
step 1s added to Algorithm 2, as shown 1n Algorithm 3 below,
which builds a KD-Tree for the entire dataset and assigns
each data instance to a category based on the leaf (bucket)
in the tree to which the data instance belongs.

Algorithm 3:

3.0. Build a KD-Tree and assign categories by leaf. A
KD-Tree 1s built to contain every data instance in X, using
all of the features of X. Then, each data instance 1s assigned
a unique category label based on the leaf of the KD-Tree to
which the data instance belongs.

3.1. Project out the features to be replaced. Then, all the
data, X, 1s projected 1nto the subspace of features, f,__ . that
are not being replaced, 1.e., f,, =F\f, , .. The data in this
projected subspace 1s denoted by projg..(X).

3.2. Select a stratified, random sample of

kﬁ:

of the data. Let proj,,. (X'} be a dataset with

k:‘f’:

of the rows or X randomly sampled from proj...(X).
Stratified random sampling 1s used so that each leaf of the
KD-Tree from step 0 has equal representation in the sampled
data.

3.3. Find a single nearest neighbor 1n the subspace. Next,
any (approximate) nearest neighbor method 1s used to find
the single nearest neighbor, projg..,(X)[jl, to proj..(X)
[1], 1n projg...(X).

3.4. Replace feature values with the neighbor’s values.
Then, the feature values f,, ... of X[1] are replaced with
those from X[j]. This creates an approximately realistic data
instance, X[1] . ;. peq-

3.5. Evaluate impact to model. The new data instance
X[1],c,mrpeq 18 then given to the model to obtain a prediction
V1], crmrpeq- Finally, the difference between y[i] and
V[1l,ersurmea 18 Used to assess the importance of f

replace

according to the metric that 1s used by the feature attribution
method of choice (e.g., PI, SHAP-PI, SHAP, etc.).

3.6. Repeat and average. Steps 3.1-3.5 are repeated as
many times as needed for as many data instances X|[1] as
required by the feature attribution method being used.

5

10

15

20

25

30

35

40

45

50

35

60

65

14

While using a KD-Tree to perform stratified sampling 1s
beneficial 1n connection with techniques for fast approxi-
mate conditional sampling described herein, this technique
for stratified sampling 1s applicable 1n other technologies.
For example, 1t may be beneficial to use KD-Tree-based
stratified random sampling when down-sampling a dataset
prior to training a machine learning model 1n order to obtain
a small but balanced traiming set, e.g., to obtain a fast
approximation of how the model will perform. Using a
KD-Tree to obtain the sample of the dataset ensures that the
sample will be representative of the range of feature values
of the dataset.
Using Fast Approximate Conditional Sampling for Shapley-
Based Global Feature Importance with Projected Neighbors
(SHAPPN)

Techniques for random sampling described herein can be
used 1n combination with any perturbation-based feature
attribution method that would normally represent the
“absence” of one or more features by sampling those fea-
tures from their respective empirical conditional distribu-
tions. An example 1s given below to illustrate using fast
approximate conditional sampling (with KD-Tree-based
stratified sampling) 1n connection with computing global
ML explanations using Shapley values. However, tech-
niques described herein are not limited to this application
and other ML explainer methods (e.g., perturbation-based
feature attribution methods) can utilize techmques described
herein. Shapley values are typically computed for local
explanations; the underlying algorithm 1s adjusted to serve
as a global explainer. Thus, fast approximate conditional
sampling described herein may be combined with local ML
explainers 1n a manner similar to combining fast approxi-
mate conditional sampling with global ML explainers as
described herein.

The following Algorithm 4 illustrates a pseudocode
implementation of an example global Shapley value ML
explainer that includes techniques for fast approximate
conditional sampling as described 1n connection with Algo-
rithm 3 above. Inputs to the example global Shapley value
explainer include the following:

F—The set of features for which attributions are to be

calculated.

X—A dataset (e.g., dataset 322) that 1s representative of

the data used during training/testing of black-box ML
model 302. According to an embodiment, X contains

|Fl columns (features) and n rows (data instances). Let
the i data instance be indexed by X[i].

n—The total number of data instances 1n X.

y—The target values corresponding to the data m X.
According to an embodiment, these are the true target
values 1n a supervised machine learning setting and the
model predictions 1n an unsupervised setting.

model—The fitted (black-box) machine learning model
302 to be explained.

score—A function that accepts two parameters y and
Y permrbeq: A rEtUTNS a score that measures how closely
Ypermrbea PEItUrbed matches y.

.. —The number of iterations of permutation
importance to be performed. The value 20 1s often
sufficient; however, this value may be increased to
improve the quality of the explanations and to reduce
the variance between explanations; this value may also
be decreased for the ML explainer to run faster.

T—A KD-Tree used to perform KD-Tree-based stratified

random sampling.

T'—A KD-Tree used to perform k nearest neighbor search

for fast approximate conditional sampling.

n

US 11,687,540 B2

15

leaf ;_ —The maximum number of data instances within

each of the leaves of T. According to an embodiment,
this value 1s set to

I g)
prl
Hiterations

which allows for a representative sample within each leaf
(bucket) of the KD-Tree based on the total number of data
instances 1 X.
Ny pmpies— LN€ Number of random samples taken from
each of the leaves of T. According to an embodiment,
this value 1s set to 1.
k—The number of nearest neighbors to find for each data
instance. According to an embodiment, this value 1s set
to 1.

Outputs to the example global Shapley value ML
explainer nclude (1 . lfz, Co . 1f|m)= which 1s a tuple
containing the estimate for the feature attribution for each
feature f € F.

ALGORITHM 4:

4.1. Set s, = score(y, model(X)).
4.2. Fit a balanced KD-Tree, T, to X, such that each leaf contains at most
leaf; . data instances.

4.3. Assign each data instance [1] a categorical label c[i1] based on which
leaf of T to which the data instance belongs.

4.4. For all combinations of features f,, ... € F:
a. Set fkeep — F\“{frepfaae}'
b. Project X onto f;,, to obtain p]‘ﬂjﬁmep(X).

c. For =1, ..., Nyrrinns:

1. Use the labels c[1] to perform stratified random sampling to pick a
sample prﬂjﬁ_eep (X") of data instances from pmjfkﬁp (X) that
CONtains N, samples from each leaf of T.

i. Fit a KD-Tree, T', to proj, (X').
111. Create a copy of X called ipﬁmbed.
iwv. Fori1=1, ..., n:
1. Use T' to obtain the index, neighbor, of the nearest neighbor
of
pmj&eep (XO[1] 1n prﬂj&EEP(X’).
2. Use the values from the features, f,,,,... of X[neighbor] to
update the features, f,_,, . of the data instance X _ . .., [i].
v. Make predictions y,,., 4 peq = Mmodel(X,,, ., pe4) TOT the perturbed
data.

vi. Set S ep (1] = So — SCOTE(Y perrirbeas ¥)- | |
d. Set Valueﬁceep = mea(ﬁmep[l], e Sp [n_iterations]).

4.5. For each feature f € F:
a. Set

NESUIENEY].
F|!

Ir=)

freep SFMSY

: (value Feeep\ JUFH valie ¢ kgﬁp)

4.6. Return (Ifl, | PN P)

Experimental Analysis

A small set of experiments were performed to quantify the
impact of adding the fast approximate conditional distribu-
tion sampling techniques described herein to a global Shap-
ley value ML explainer. Most often, users cannot afford to
run an exact Shapley value method, as the number of feature
coalitions that must be evaluated grows exponentially with
the number of features, which 1s typically prohibitively
expensive for even a moderate number of features (e.g., 10
or more). Therefore, the impact of the described techniques
was assessed when combined with a global version of
SHAP-PI, which 1s a fast method for computing approxi-
mate Shapley values. Several variants of SHAP-PI were
evaluated:

10

15

20

25

30

35

40

45

50

35

60

65

16

1. SHAP-PI Vanilla: The original SHAP-PI algorithm
(modified for global explanations instead of local ones),
which approximates the conditional distribution of the data

with the marginal distribution of the data.
2. SHAP-PI PN-Exact: A modified version of the SHAP-
PI algorithm that uses the exact projected nearest neighbors,

described 1n connection with Algorithm 1 above, to sample
from the approximate empirical conditional distribution.

3. SHAP-PI PN-random: A modified version of the

SHAP-PI algorithm that uses the fast approximate condi-
fional sampling technique, described i connection with
Algorithm 2 above, to sample from the approximate empiri-

cal conditional distribution.

4. SHAP-PI PN-KD-Tree: A modified version of the
SHAP-PI algorithm that uses the stratified fast approximate
conditional sampling technique, described in connection
with Algorithm 3 above, to sample from the approximate
empirical conditional distribution.

An alternative approach to speed up approximate condi-
tional distribution sampling 1s to use a 1+epsilon approxi-
mate nearest neighbors algorithm. Therefore, 1n addition to
evaluating the effect of the above four vanants, the effect of
using the following two parameterizations of this SHAP-PI
was also evaluated:

1. SHAP-PI PN-eps-1: A modified version of the SHAP-
PI algorithm that uses 1+epsilon nearest neighbor queries to
approximately sample from the empirical conditional distri-
bution. These neighbors are guaranteed to be no more than
2 times worse than the true nearest neighbors. This method
finds approximate nearest neighbors using the full dataset
rather than a randomly sampled dataset as 1n the random
sampling techniques described herein.

2. SHAP-PI PN-eps-7: This version of the SHAP-PI
algorithm 1s the same as the version above, except that the
nearest neighbors are guaranteed to be no more than 8 times
worse than the true neighbors.

To obtain a measure for the “ground truth”, explanations
produced using an exact Shapley value method with an exact
projected neighbors method to sample from the approximate
empirical conditional distribution (referred to as SHAP
PN-exact) was compared with explanations produced using
each of the above 6 variants of SHAP-PI.

Based on the total running time required to perform the
projected neighbor calculations used to sample from the
approximate empirical conditional distribution, both of the
SHAP-PI variants implementing conditional sampling tech-
niques described herein (1.e., SHAP-PI PN-random and
SHAP-PI PN KD-Tree) are at least 3 times faster than
SHAP-PI PN-exact for all dataset sizes. In comparison,
SHAP-PI PN-1-eps and -7-eps require only slightly less
running time than SHAP-PI PN-exact. The Vanilla variant
was shown to be slightly faster than SHAP-PI PN-random
and SHAP-PI PN KD-Tree.

Next, to measure how faithful the approximations were to
the exact explanations, the relative mean absolute errors of
each feature attribution score were examined. For small
datasets (2000 data instances), SHAP-PI PN-exact and
SHAP-PI PN-KD-Tree are statistically tied for their errors.
However, as the number of data instances increases SHAP-
PI PN-random and SHAP-PI PN KD-Tree start producing
shightly worse approximations. For 50,000 data instances,
the overall error rate of SHAP-PI PN-random and SHAP-PI
PN KD-Tree 1s 3.6% compared to the 3.3% error rate of the
SHAP-PI PN-exact and both of the SHAP-PI PN-eps tech-
niques. This modest increase 1n error rates 1s quite reason-
able given the more than 3-fold speedup of SHAP-PI

US 11,687,540 B2

17

PN-random and SHAP-PI PN KD-Tree 1n the time required
to sample from the approximate conditional distribution for
datasets of this size.

Finally, the confidence intervals of the feature attribution
estimates of each SHAP-PI variant are compared. SHAP-PI
PN-random and SHAP-PI PN KD-Tree increase the size of
the confidence intervals compared to SHAP-PI Exact by a
factor of approximately 1.4. However, SHAP-PI PN KD-
Tree reduces the size of the confidence intervals from
SHAP-PI PN-random, and hence the variance in the feature
attributions, by a small but statistically significant amount.
Since the cost of KD-Tree-based stratified sampling 1s quite
small relative to random sampling, stratified sampling using
a KD-Tree 1s generally preferable to random sampling. It 1s
expected that the difference in quality between SHAP-PI
PN-random and SHAP-PI PN KD-Tree will increase for real
datasets, which may contain more complex structure 1n the
data than the simple synthetic benchmarks used to perform
these experiments.

Machine Learning Explainers

It 1s 1important for a user to be able to understand why a
given ML model made a given prediction or what factors
aflect the predictions of an ML model. Less-complex ML
models, such as a simple linear regression model or a
classification decision tree, are often referred to as being
inherently interpretable. However, more complex ML mod-
els require additional techniques to produce explanations.
Machine learning explainability (MLX) 1s the process of
explaining and interpreting machine learning and deep
learning models. MLX can be broadly categorized into local
and global explainability. Local MLX explains why an ML
model made a specific prediction corresponding to a given
data instance. In other words, local MLX answers the
question: “Why did a particular ML model make a specific
predlctlon‘?” Global MLX explains the general behavior of
an ML model as a whole. In other words, global MLX
answers the question: “How does a particular ML model
work?” or “What did a particular ML model learn from the
training data?”

For both local and global explainability, MLX techniques
can further be classified as model-agnostic or model-spe-
cific. For model-agnostic MLX, the explanations are sepa-
rated from the underlying ML model being explained,
treating the model as a black box. For model-specific MLX,
the explanations are tied to the architecture and/or properties
of the underlying ML model. There are many different
explanation techniques for each combination of local/global
and model-agnostic/model-specific explanations, which
include model-agnostic MLX (either global or local) that
make use of perturbation-based feature importance tech-
niques as described below.

Model Agnostic, Permutation-Based Explanation Tech-
niques

The key goal of global model-agnostic MLX 1s to extract
the global feature importance from a trained ML or deep
learning model (referred to herein as a “black-box model”).
To explain the global behavior of a model, permutation-
based explanation techniques evaluate how the predictions
of a black-box model change on permuted (or perturbed)
versions of a given dataset. A feature that, when permuted,
has a relatively large eflect on the model’s predictions 1s
considered to be more important than a permuted feature
that results 1n little-to-no change 1n the model’s predictions.

Pl 1s an example of a permutation-based explanation
technique. (Additional information regarding PI 1s found in
“Random forests” by Leo Breiman, Machine learning 45.1
(2001): 5-32, the entire contents of which are hereby 1ncor-

5

10

15

20

25

30

35

40

45

50

55

60

65

18

porated by reference as 1f fully set forth herein.) Specifically,
PI measures the decrease 1n model prediction score com-
pared to a base score (on an original dataset) when features
are permuted (perturbed) one at a time. FIG. 6 depicts an
overview ol a PI ML explainer, in which X 1s an original
dataset with n rows and |F| feature columns. X, represents

duplicate versions of X in which column 1 1s randomly

perturbed. M(X) denotes the prediction of a black-box ML
model, M, for X. Further, S(true labels, prediction) denotes
the score (quality) of the predictions. The PI technique can
be summarized in the following steps:

1. Using the trained black-box model M, compute a base
score on the original dataset X (e.g., an F1 score for a
classification type model, R* score for a regression type
model, etc.)

2. For each feature (column) 1n a tabular dataset of

Feature values (rows) for a particular feature are ran-
domly perturbed. For example, a value for the feature
for each data instance 1s sampled from the marginal
distribution of the feature.

Using the trained black-box model M, compute the new
score on the permuted dataset (where only one feature
has been permuted).

Compute the difference between the model’s score on the
perturbed dataset and the base score computed for the
original dataset. The decrease 1n the model’s score 1s
the permutation 1importance value for this feature.

3. Step 2 1s repeated for N 1terations. The average of the
decrease 1n the model prediction score, for each feature, over
the N 1terations represents the final permutation feature
importance values for the features. Averaging the feature
importance values, for the different features, over multiple
iterations provides a more stable and reproducible explana-
tion than performing only a single 1teration.

As indicated above, many existing perturbation-based
MLX methods rely on randomly sampling (or permuting)
the values of a feature column 1n a dataset and measuring the
resulting decrease in accuracy of a trained model’s predic-
tions. The less accurate the model’s predictions are when the
feature values are randomly modified, the more important
that feature was to the model when making 1its predictions.
Shapley-Based Explanation Techniques

Another MLX approach based on Shapley values, typi-
cally applied as a local explainability method, 1s inspired by
coalitional game theory. Coalitional game theory formally
defines a game with N players and computes the total payoil
that the coalition members (players) can achieve for some
target. Shapley values uniquely specily how to split the total
payoll (output) fairly among the players (inputs), while
satisiying the rules of the game. (Additional information
regarding Shapley values 1s found 1n “A value for n-person
games” by Lloyd S. Shapley, Contributions to the Theory of
Games 2.28 (1953): 307-317, the entire contents of which
are hereby incorporated by reference as it fully set forth
herein.) This problem 1s diflerent from simply dividing the
reward based on each player’s value (weight) because
interactions between players and whether or not all players
are present (in the coalition) can determine how important
cach player was to the game, and hence each player’s
contribution toward the reward. Shapley values obtain each
player’s actual contribution by averaging the payolls with
and without this player for all of the possible coalitions that
can be formed. Thus, the number of possible coalition
combinations grows exponentially with the number of play-
ers 1n a game, which can limit the feasibility of MLX
approaches that use such a technique.

US 11,687,540 B2

19

Relating game theory and Shapley values to MLX, there
are different features (players) contributing to the output or
score of the black-box ML model (payotl), and the goal 1s to
compute the feature attributions (player rewards) while also
considering feature interactions. There are multiple different
techniques for computing or approximating Shapley values,
such as a sampling-based approach; a permutation-based
approach; Kernel SHAP, which {its a linear model to ran-
domly sampled coalitions; and Tree SHAP, which exploits
the structure of tree-based machine learming models to
quickly compute a modified version of Shapley values.
Existing Solutions for Preserving the Data Distribution

There has recently been sigmificant attention devoted to
teature attribution methods that sample from the conditional
distribution or otherwise preserve the realism of the data
distribution used to create the explanations. For example,
conditional Permutation Importance and Tree SHAP both
exploit properties of tree-based models to obtain estimates
for the conditional expectation of the value of a coalition.
However, both methods can therefore only be applied to
explaining tree-based models such as random forests, 1s0-
lation forests, or decision trees. Furthermore, 1t has been
shown that the latter does a poor job approximating the
conditional expectation since the trees (which were built to
maximize predictive accuracy) may not ensure the desired
teature independence within each leat (a problem that likely
also affects the former).

It has been proposed to use a model-agnostic, “cohort™-
based approach for calculating Shapley values that operates
exclusively on the traiming data and model predictions.
Instead of replacing the values of features that are absent
from the coalition, this technique simply finds all data
instances that contain feature values that are similar to those
of the target data istance to be explained, for the features 1n
the coalition. Then, the mean prediction value for these data
instances 1s compared against a reference cohort, for
example, the cohort that contains the data instance such that
every lfeature 1s similar to those 1n the target data instance.
However, given that these techniques do not evaluate the
black-box model on any data instances other than the
training data, these techniques can potentially be quite
unstable—especially for anomaly detection—when there are
very few data instances within some of the cohorts. For
example, 11 1t 1s required that all of the features of data
instances 1n a given cohort be similar to those of an anomaly,
it 1s likely that the cohort will contain only that specific
anomaly.

Hardware Overview

Dataset 322 may reside 1n volatile and/or non-volatile
storage, including persistent storage 320 or flash memory, or
volatile memory of computing device 300. Additionally, or
alternatively, dataset 322 may be stored, at least 1n part, 1n
main memory of a database server computing device.

An application, such as sampling application 310, runs on
a computing device and comprises a combination of soit-
ware and allocation of resources from the computing device.
Specifically, an application 1s a combination of integrated
software components and an allocation of computational
resources, such as memory, and/or processes on the com-
puting device for executing the integrated software compo-
nents on a processor, the combination of the software and
computational resources being dedicated to performing the
stated functions of the application.

One or more of the functions attributed to any process
described herein, may be performed any other logical entity
that may or may not be depicted 1in FIG. 3, according to one
or more embodiments. In an embodiment, each of the

10

15

20

25

30

35

40

45

50

55

60

65

20

techniques and/or functionality described herein i1s per-
formed automatically and may be implemented using one or
more computer programs, other software elements, and/or
digital logic 1n any of a general-purpose computer or a
special-purpose computer, while performing data retrieval,
transiformation, and storage operations that involve interact-
ing with and transforming the physical state of memory of
the computer.

According to one embodiment, the techniques described
herein are implemented by one or more special-purpose
computing devices. The special-purpose computing devices
may be hard-wired to perform the techniques, or may
include digital electronic devices such as one or more
application-specific integrated circuits (ASICs) or field pro-
grammable gate arrays (FPGAs) that are persistently pro-
grammed to perform the techniques, or may include one or
more general purpose hardware processors programmed to
perform the techniques pursuant to program instructions in
firmware, memory, other storage, or a combination. Such
special-purpose computing devices may also combine cus-
tom hard-wired logic, ASICs, or FPGAs with custom pro-
gramming to accomplish the techniques. The special-pur-
pose computing devices may be desktop computer systems,
portable computer systems, handheld devices, networking
devices or any other device that incorporates hard-wired
and/or program logic to implement the techniques.

For example, FIG. 7 1s a block diagram that 1llustrates a
computer system 700 upon which an embodiment of the
invention may be implemented. Computer system 700
includes a bus 702 or other communication mechanism for
communicating information, and a hardware processor 704
coupled with bus 702 for processing information. Hardware
processor 704 may be, for example, a general-purpose

MICroprocessor.

Computer system 700 also includes a main memory 706,
such as a random access memory (RAM) or other dynamic
storage device, coupled to bus 702 for storing information
and 1instructions to be executed by processor 704. Main
memory 706 also may be used for storing temporary vari-
ables or other intermediate information during execution of
istructions to be executed by processor 704. Such instruc-
tions, when stored 1n non-transitory storage media acces-
sible to processor 704, render computer system 700 1nto a
special-purpose machine that 1s customized to perform the
operations specified 1n the nstructions.

Computer system 700 further includes a read only
memory (ROM) 708 or other static storage device coupled
to bus 702 for storing static information and 1nstructions for
processor 704. A storage device 710, such as a magnetic
disk, optical disk, or solid-state drive 1s provided and
coupled to bus 702 for storing information and instructions.

Computer system 700 may be coupled via bus 702 to a
display 712, such as a cathode ray tube (CRT), for displaying
information to a computer user. An mput device 714, includ-
ing alphanumeric and other keys, 1s coupled to bus 702 for
communicating information and command selections to
processor 704. Another type of user mput device 1s cursor
control 716, such as a mouse, a trackball, or cursor direction
keys for communicating direction mnformation and com-
mand selections to processor 704 and for controlling cursor
movement on display 712. This mput device typically has
two degrees of freedom 1n two axes, a first axis (e.g., X) and
a second axis (e.g., y), that allows the device to specily
positions 1n a plane.

Computer system 700 may implement the techniques
described herein using customized hard-wired logic, one or
more ASICs or FPGAs, firmware and/or program logic

US 11,687,540 B2

21

which 1n combination with the computer system causes or
programs computer system 700 to be a special-purpose
machine. According to one embodiment, the techniques
herein are performed by computer system 700 1n response to
processor 704 executing one or more sequences of one or
more structions contained i maimn memory 706. Such
instructions may be read mnto main memory 706 from
another storage medium, such as storage device 710. Execu-
tion of the sequences of instructions contained 1 main
memory 706 causes processor 704 to perform the process
steps described herein. In alternative embodiments, hard-
wired circuitry may be used in place of or 1n combination
with software instructions.

The term “‘storage media” as used herein refers to any
non-transitory media that store data and/or instructions that
cause a machine to operate in a specific fashion. Such
storage media may comprise non-volatile media and/or
volatile media. Non-volatile media includes, for example,
optical disks, magnetic disks, or solid-state drives, such as
storage device 710. Volatile media includes dynamic
memory, such as main memory 706. Common forms of
storage media include, for example, a floppy disk, a flexible
disk, hard disk, solid-state drive, magnetic tape, or any other
magnetic data storage medium, a CD-ROM, any other

optical data storage medium, any physical medium with
patterns of holes, a RAM, a PROM, and EPROM, a FLASH-

EPROM, NVRAM, any other memory chip or cartridge.

Storage media 1s distinct from but may be used 1n con-
junction with transmission media. Transmission media par-
ticipates 1n transierring information between storage media.
For example, transmission media includes coaxial cables,
copper wire and fiber optics, including the wires that com-
prise bus 702. Transmission media can also take the form of
acoustic or light waves, such as those generated during
radio-wave and infra-red data communications.

Various forms of media may be mnvolved 1n carrying one
or more sequences of one or more instructions to processor
704 for execution. For example, the mnstructions may ini-
tially be carried on a magnetic disk or solid-state drive of a
remote computer. The remote computer can load the 1nstruc-
tions 1nto 1ts dynamic memory and send the instructions over
a telephone line using a modem. A modem local to computer
system 700 can receive the data on the telephone line and
use an 1nfra-red transmitter to convert the data to an infra-red
signal. An 1nira-red detector can receive the data carried 1n
the mira-red signal and appropriate circuitry can place the
data on bus 702. Bus 702 carries the data to main memory
706, from which processor 704 retrieves and executes the
instructions. The instructions received by main memory 706
may optionally be stored on storage device 710 either before
or after execution by processor 704.

Computer system 700 also includes a communication
interface 718 coupled to bus 702. Communication interface
718 provides a two-way data communication coupling to a
network link 720 that 1s connected to a local network 722.
For example, communication interface 718 may be an
integrated services digital network (ISDN) card, cable
modem, satellite modem, or a modem to provide a data
communication connection to a corresponding type of tele-
phone line. As another example, communication interface
718 may be a local area network (LAN) card to provide a
data communication connection to a compatible LAN. Wire-
less links may also be implemented. In any such implemen-
tation, communication interface 718 sends and receives
clectrical, electromagnetic, or optical signals that carry
digital data streams representing various types of informa-
tion.

10

15

20

25

30

35

40

45

50

55

60

65

22

Network link 720 typically provides data communication
through one or more networks to other data devices. For
example, network link 720 may provide a connection
through local network 722 to a host computer 724 or to data
equipment operated by an Internet Service Provider (ISP)
726. ISP 726 1n turn provides data communication services
through the worldwide packet data communication network
now commonly referred to as the “Internet” 728. Local
network 722 and Internet 728 both use electrical, electro-
magnetic, or optical signals that carry digital data streams.
The signals through the various networks and the signals on
network link 720 and through communication interface 718,
which carry the digital data to and from computer system
700, are example forms of transmission media.

Computer system 700 can send messages and receive
data, including program code, through the network(s), net-
work link 720 and communication interface 718. In the
Internet example, a server 730 might transmit a requested
code for an application program through Internet 728, ISP
726, local network 722 and communication interface 718.

The received code may be executed by processor 704 as
it 1s received, and/or stored in storage device 710, or other
non-volatile storage for later execution.

Software Overview

FIG. 8 15 a block diagram of a basic software system 800
that may be employed for controlling the operation of
computer system 700. Software system 800 and 1ts compo-
nents, including their connections, relationships, and func-
tions, 1s meant to be exemplary only, and not meant to limit
implementations of the example embodiment(s). Other sofit-
ware systems suitable for i1mplementing the example
embodiment(s) may have different components, including
components with different connections, relationships, and
functions.

Software system 800 1s provided for directing the opera-
tion of computer system 700. Software system 800, which
may be stored 1n system memory (RAM) 706 and on fixed
storage (e.g., hard disk or flash memory) 710, includes a
kernel or operating system (OS) 810.

The OS 810 manages low-level aspects of computer
operation, including managing execution ol processes,
memory allocation, file input and output (I/0O), and device
[/O. One or more application programs, represented as
802A, 8028, 802C . . . 802N, may be “loaded” (e.g.,
transierred from fixed storage 710 into memory 706) for
execution by the system 800. The applications or other
soltware intended for use on computer system 700 may also
be stored as a set of downloadable computer-executable
instructions, for example, for downloading and installation
from an Internet location (e.g., a Web server, an app store,
or other online service).

Software system 800 includes a graphical user interface
(GUI) 815, for recerving user commands and data in a
graphical (e.g., “point-and-click™ or “touch gesture™) fash-
ion. These 1mputs, 1n turn, may be acted upon by the system
800 1n accordance with instructions from operating system
810 and/or application(s) 802. The GUI 815 also serves to
display the results of operation from the OS 810 and
application(s) 802, wherecupon the user may supply addi-
tional inputs or terminate the session (e.g., log ofl).

OS 810 can execute directly on the bare hardware 820
(e.g., processor(s) 704) of computer system 700. Alterna-
tively, a hypervisor or virtual machine monitor (VMM) 830
may be interposed between the bare hardware 820 and the
OS 810. In this configuration, VMM 830 acts as a software
“cushion” or virtualization layer between the OS 810 and the
bare hardware 820 of the computer system 700.

US 11,687,540 B2

23

VMM 830 instantiates and runs one or more virtual
machine mstances (“‘guest machines™). Each guest machine
comprises a “guest” operating system, such as OS 810, and
one or more applications, such as application(s) 802,
designed to execute on the guest operating system. The
VMM 830 presents the guest operating systems with a
virtual operating platform and manages the execution of the
guest operating systems.

In some instances, the VMM 830 may allow a guest
operating system to run as if 1t 1s running on the bare
hardware 820 of computer system 700 directly. In these
instances, the same version of the guest operating system
configured to execute on the bare hardware 820 directly may
also execute on VMM 830 without modification or recon-

figuration. In other words, VMM 830 may provide ftull

hardware and CPU virtualization to a guest operating system
in some 1nstances.

In other instances, a guest operating system may be
specially designed or configured to execute on VMM 830 for
ciliciency. In these instances, the guest operating system 1s
“aware” that 1t executes on a virtual machine monitor. In
other words, VMM 830 may provide para-virtualization to a
guest operating system 1n some instances.

A computer system process comprises an allotment of
hardware processor time, and an allotment of memory
(physical and/or virtual), the allotment of memory being for
storing 1structions executed by the hardware processor, for
storing data generated by the hardware processor executing
the istructions, and/or for storing the hardware processor
state (e.g., content of registers) between allotments of the
hardware processor time when the computer system process
1s not running. Computer system processes run under the
control of an operating system, and may run under the
control of other programs being executed on the computer
system.

The above-described basic computer hardware and soft-
ware 1s presented for purposes of illustrating the basic
underlying computer components that may be employed for
implementing the example embodiment(s). The example
embodiment(s), however, are not necessarily limited to any
particular computing environment or computing device con-
figuration. Instead, the example embodiment(s) may be
implemented in any type of system architecture or process-
ing environment that one skilled in the art, 1n light of this
disclosure, would understand as capable of supporting the
features and functions of the example embodiment(s) pre-
sented herein.

Cloud Computing,

The term ““cloud computing” 1s generally used herein to
describe a computing model which enables on-demand
access to a shared pool of computing resources, such as
computer networks, servers, soltware applications, and ser-
vices, and which allows for rapid provisioning and release of
resources with minimal management effort or service pro-
vider interaction.

A cloud computing environment (sometimes referred to as
a cloud environment, or a cloud) can be implemented 1n a
variety of diflerent ways to best suit different requirements.
For example, 1n a public cloud environment, the underlying
computing inirastructure 1s owned by an organization that
makes its cloud services available to other orgamizations or
to the general public. In contrast, a private cloud environ-
ment 15 generally intended solely for use by, or within, a
single organization. A commumnty cloud 1s mtended to be
shared by several organizations within a community; while
a hybrid cloud comprises two or more types of cloud (e.g.,

10

15

20

25

30

35

40

45

50

55

60

65

24

private, community, or public) that are bound together by
data and application portability.

Generally, a cloud computing model enables some of
those responsibilities which previously may have been pro-
vided by an organization’s own information technology
department, to mstead be delivered as service layers within
a cloud environment, for use by consumers (either within or
external to the organization, according to the cloud’s public/
private nature). Depending on the particular implementa-
tion, the precise definition of components or features pro-
vided by or within each cloud service layer can vary, but
common examples include: Software as a Service (SaaS), 1n
which consumers use software applications that are running
upon a cloud mfrastructure, while a SaaS provider manages
or controls the underlying cloud infrastructure and applica-
tions. Platform as a Service (PaaS), in which consumers can
use soltware programming languages and development tools
supported by a PaaS provider to develop, deploy, and
otherwise control their own applications, while the PaaS
provider manages or controls other aspects of the cloud
environment (i.e., everything below the run-time execution
environment). Infrastructure as a Service (IaaS), in which
consumers can deploy and run arbitrary software applica-
tions, and/or provision processing, storage, networks, and
other fundamental computing resources, while an IaaS pro-
vider manages or controls the underlying physical cloud
infrastructure (1.e., everything below the operating system
layer). Database as a Service (DBaaS) 1in which consumers
use a database server or Database Management System that
1s running upon a cloud infrastructure, while a DbaaS
provider manages or controls the underlying cloud infra-
structure, applications, and servers, including one or more
database servers.

In the foregoing specification, embodiments of the mven-
tion have been described with reference to numerous spe-
cific details that may vary from implementation to 1mple-
mentation. The specification and drawings are, accordingly,
to be regarded in an 1illustrative rather than a restrictive
sense. The sole and exclusive indicator of the scope of the
invention, and what 1s intended by the applicants to be the
scope of the invention, 1s the literal and equivalent scope of
the set of claims that i1ssue from this application, in the
specific form 1n which such claims issue, including any
subsequent correction.

What 1s claimed 1s:

1. A computer-executed method for an importance-based
machine learning (ML) explainer for an ML model, com-
prising:

randomly sampling a particular dataset to generate, 1n

memory, a random sample dataset of the particular

dataset, wherein:

cach data instance 1n the particular data set has a set of
features,

the set of features comprises a subset of features that
are to be kept and a subset of features that are to be
replaced, and

the subset of features that are to be replaced includes a
particular feature to be tested;

alter randomly sampling the particular dataset to 1dentily

the random sample dataset:

identifying a set ol nearest neighbor data instances,
from the random sample dataset, based on one or
more similarities between the subset of features that
are to be kept in a target data instance 1n the
particular dataset and the nearest neighbor data
instances of the subset of features that are to be kept
in the set of nearest neighbor data 1nstances;

US 11,687,540 B2

25

wherein the set of nearest neighbor data instances has
a particular number of data instances;

wherein each data instance, of the set of nearest neigh-
bor data instances, 1s one of the particular number of
data instances nearest to the target data instance
among the data instances of the random sample
dataset 1n a subspace of the subset of features that are
to be kept;

generating a set of perturbed data instances, based on the

target instance, by generating, for each nearest neigh-
bor data instance of the set of nearest neighbor data
instances, a corresponding perturbed data stance
comprising: a feature value of said each nearest neigh-
bor data instance for the subset of features that are to be
replaced of the corresponding generated data instance,
and feature values of the target data instance for the
subset of features that are to be kept; and

generating an importance score for at least the particular

tested feature for the ML model based on a difference
between output of the ML model using the target data
istance and output of the ML model using the set of
perturbed data instances,

wherein the method 1s performed by one or more com-

puting devices.

2. The computer-executed method of claim 1, wherein
randomly sampling the particular dataset to identily the
random sample dataset of the particular dataset comprises:

generating a KD-Tree that comprises the data instances of

the particular dataset;
wherein the KD-Tree comprises a plurality of buckets;
wherein each bucket, of the plurality of buckets, includes
a unique set of similar data instances from the particu-
lar dataset;

for each bucket of the plurality of buckets, including, in

the random sample dataset, a randomly-selected subset
of the unique set of similar data instances 1n said each
bucket.

3. The computer-executed method of claim 2, wherein
generating the importance score for at least the particular
tested feature comprises:

obtaining a first prediction, for the target data instance,

using the ML model;
obtaining a second prediction, for a particular perturbed
data instance of the set of perturbed data instances,
using the ML model;

determining a difference metric that measures a difference
between the first prediction and the second prediction;
and

using the difference metric to determine the importance
score for the particular tested feature with respect to the
ML model.

4. The computer-executed method of claim 3, wherein the
ML model 1s configured to identily anomalous data
instances 1n a test data set.

5. The computer-executed method of claim 1, wherein the
random sample dataset represents 1/kth of the particular
dataset.

6. The computer-executed method of claim 5, wherein the
particular number of nearest neighbor data instances in the
set of nearest neighbor data instances i1s one.

7. The computer-executed method of claim 1, wherein
generating the importance score for at least the particular
tested feature comprises:

obtaining a first prediction, for the target data instance,

using the ML model;

e

5

10

15

20

25

30

35

40

45

50

55

60

65

26

obtaining a second prediction, for a particular perturbed
data instance of the set of generated perturbed data
instances, using the ML model;

determiming a difference metric that measures a difference

between the first prediction and the second prediction;
and

using the difference metric to determine the importance

score for the particular tested feature.

8. The computer-executed method of claim 1, wherein
cach nearest neighbor data instance, of the set of nearest
neighbor data instances, comprises first one or more feature
values for one or more features that are more similar, to
second one or more feature values for the one or more
teatures of the target data instance, than data instances 1n the
random sample dataset that are excluded from the set of
nearest neighbor data instances.

9. The computer-executed method of claim 1, wherein the
ML model 1s configured to i1dentily anomalous data
instances 1n a test data set.

10. A computer-executed method for an importance-based
machine learning (ML) explainer for an ML model, com-
prising:

generating a KD-Tree that comprises the data instances of

a particular dataset to be sampled;
wherein the KD-Tree comprises a plurality of buckets;
wherein each bucket, of the plurality of buckets, includes

a unique set of similar data instances from the particu-

lar dataset;
generating a random sample dataset from the particular

dataset by, for each bucket of the plurality of buckets,
including, in the random sample dataset, a randomly-
selected subset of the unique set of similar data
instances 1n said each bucket, wherein:

cach data instance in the particular data set has a set of

features,

the set of features comprises a subset of features that

are 1o be kept and a subset of features that are to be
replaced, and

the subset of features that are to be replaced includes a

particular feature to be tested;
identifying a set of nearest neighbor data instances, from
the random sample dataset, based on one or more
similarities between a target data instance in the par-
ticular dataset and the nearest neighbor data instances,
wherein each data instance, of the set of nearest neigh-
bor data instances, 1s one of the particular number of
data instances nearest to the target data instance among
the data instances of the random sample dataset 1n a
subspace of the subset of features that are to be kept;
generating a set of perturbed data 1nstances, based on the
target instance, by generating, for each nearest neigh-
bor data instance of the set of nearest neighbor data
instances, a corresponding perturbed data instance
comprising: a feature value of said each nearest neigh-
bor data instance for the subset of features that are to be
replaced of the corresponding generated data instance,
and feature values of the target data instance for the
subset of features that are to be kept; and

generating an importance score for at least the particular
tested feature for the ML model based on a difference
between output of the ML model using the target data
istance and output of the ML model using the set of
perturbed data instances,

wherein the method 1s performed by one or more com-
puting devices.

US 11,687,540 B2

27

11. One or more non-transitory computer-readable media
storing one or more sequences ol istructions that, when
executed by one or more processors, cause:

randomly sampling a particular dataset to generate, 1n

memory, a random sample dataset of the particular

dataset, wherein:

cach data mstance in the particular data set has a set of
features,

the set of features comprises a subset of features that
are 1o be kept and a subset of features that are to be
replaced, and

the subset of features that are to be replaced includes a
particular feature to be tested;

after randomly sampling the particular dataset to identify

the random sample dataset:

identifying a set of nearest neighbor data instances,
from the random sample dataset, based on one or
more similarities between the subset of features that
arec to be kept in a target data instance in the
particular dataset and the subset of features that are
to be kept in the nearest neighbor data instances of
the set of nearest neighbor data instances;

wherein the set of nearest neighbor data instances has
a particular number of data instances;

wherein each data instance, of the set of nearest neigh-
bor data instances, 1s one of the particular number of
data instances nearest to the target data instance
among the data instances of the random sample
dataset 1n a subspace of the subset of features that are
to be kept;

generating a set of perturbed data instances, based on the

target instance, by generating, for each nearest neigh-
bor data instance of the set of nearest neighbor data
instances, a corresponding perturbed data instance
comprising: a feature value of said each nearest neigh-
bor data instance for the subset of features that are to be
replaced of the corresponding generated data instance,
and feature values of the target data instance for the
subset of features that are to be kept; and

generating an importance score for at least the particular

tested feature for an ML model based on a difference
between output of the ML model using the target data
instance and output of the ML model using the set of
perturbed data instances.

12. The one or more non-transitory computer-readable
media of claim 11, wherein randomly sampling the particu-

lar dataset to i1dentity the random sample dataset of the
particular dataset comprises:

generating a KD-Tree that comprises the data instances of

the particular dataset;
wherein the KD-Tree comprises a plurality of buckets;
wherein each bucket, of the plurality of buckets, includes

a unique set of similar data instances from the particu-
lar dataset;

for each bucket of the plurality of buckets, including, in

the random sample dataset, a randomly-selected subset
of the unique set of similar data instances 1n said each
bucket.

13. The one or more non-transitory computer-readable
media of claim 12, wherein generating the importance score
for at least the particular tested feature comprises:

obtaining a first prediction, for the target data instance,

using the ML model;

obtaining a second prediction, for a particular perturbed

data instance of the set of perturbed data instances,

using the ML model;

5

10

15

20

25

30

35

40

45

50

55

60

65

28

determiming a difference metric that measures a difference
between the first prediction and the second prediction;
and

using the difference metric to determine the importance

score for the particular tested feature with respect to the
ML model.

14. The one or more non-transitory computer-readable
media of claim 13, wherein the ML model 1s configured to
identily anomalous data instances in a test data set.

15. The one or more non-transitory computer-readable
media of claam 11, wherein the random sample dataset
represents 1/kth of the particular dataset.

16. The one or more non-transitory computer-readable
media of claim 15, wherein the particular number of nearest
neighbor data instances 1n the set of nearest neighbor data
instances 1s one.

17. The one or more non-transitory computer-readable
media of claim 11, wherein generating the importance score
for at least the particular tested feature comprises:

obtaining a first prediction, for the target data instance,

using the ML model;

obtaining a second prediction, for a particular perturbed

data instance of the set of perturbed data instances,
using the ML model;

determining a difference metric that measures a difference

between the first prediction and the second prediction;
and

using the difference metric to determine the importance

score for the particular tested feature.

18. The one or more non-transitory computer-readable
media of claim 11, wherein each nearest neighbor data
instance, of the set of nearest neighbor data instances,
comprises first one or more feature values for one or more
features that are more similar, to second one or more feature
values for the one or more features of the target data
instance, than data instances in the random sample dataset
that are excluded from the set of nearest neighbor data
instances.

19. The one or more non-transitory computer-readable
media of claim 11, wherein the ML model 1s configured to
identily anomalous data instances in a test data set.

20. One or more non-transitory computer-readable media
storing one or more sequences ol instructions that, when
executed by one or more processors, cause:

generating a KD-Tree that comprises the data instances of

a particular dataset to be sampled;
wherein the KD-Tree comprises a plurality of buckets;
wherein each bucket, of the plurality of buckets, includes
a unique set of similar data instances from the particu-
lar dataset;
generating a random sample dataset from the particular

dataset by, for each bucket of the plurality of buckets,

including, 1n the random sample dataset, a randomly-
selected subset of the unique set of similar data
instances 1n said each bucket, wherein:

cach data instance in the particular data set has a set of

features,

the set of features comprises a subset of features that

are 1o be kept and a subset of features that are to be
replaced, and

the subset of features that are to be replaced includes a

particular feature to be tested;
identifying a set of nearest neighbor data instances, from
the random sample dataset, based on one or more
similarities between a target data instance in the par-
ticular dataset and the nearest neighbor data instances,
wherein each data instance, of the set of nearest neigh-

US 11,687,540 B2
29

bor data instances, 1s one of the particular number of
data instances nearest to the target data instance among
the data instances of the random sample dataset 1n a
subspace of the subset of features that are to be kept;

generating a set of perturbed data instances, based on the 5
target instance, by generating, for each nearest neigh-
bor data instance of the set of nearest neighbor data
instances, a corresponding perturbed data instance
comprising: a feature value of said each nearest neigh-
bor data instance for the subset of features that are to be 10
replaced of the corresponding generated data instance,
and feature values of the target data instance for the
subset of features that are to be kept; and

generating an importance score for at least the particular
tested feature for an ML model based on a difference 15
between output of the ML model using the target data
istance and output of the ML model using the set of
perturbed data instances.

G e x Gx ex

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 11,687,540 B2
APPLICATION NO. : 17/1792635

DATED

c June 27, 2023

INVENTOR(S) : Pushak et al.

Page 1 of 1

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page

On page 2, Column 2, under Other Publications, Line 17, delete “dwnloaded” and insert
-- downloaded --, therefor.

On page 2, Column 2, under Other Publications, Line 20, delete “dwnloaded” and insert
-- downloaded --, theretor.

On page 2, Column 2, under Other Publications, Line 23, delete “dwnloaded” and insert
-- downloaded --, theretor.

On page 2, Column 2, under Other Publications, Line 26, delete “Communctns,” and insert
-- Communications, --, therefor.

In the Specification

In Column 12, Line 57, delete “O(n-log(n)),” and msert -- O(n-log(n)), --, therefor.

In Column 13, Line 47, delete “rows or X’ and insert -- rows of X --, therefor.

In Column 14, Line 57, delete “yperturbed perturbed” and 1insert -- yperturbed --, theretfor.
In Column 18, Line 17, delete “dataset of”” and insert -- dataset of X: --, therefor.

In the Claims

In Column 26, Line 2, in Claim 7, delete “generated perturbed” and insert -- perturbed --, theretor.

Signed and Sealed this

‘Twenty-eighth Day

Katherme Kelly Vidal

of May,

.

2024

Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

