12 United States Patent

Singaravelu et al.

US011683256B2

US 11,683,256 B2
Jun. 20, 2023

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)

(73)

(%)

(21)
(22)

(65)

(63)

(1)

(52)

(58)

SPECIALIZING VIRTUAL NETWORK
DEVICE PROCESSING TO AVOID
INTERRUPT PROCESSING FOR HIGH
PACKET RATE APPLICATIONS

Applicant: VMware, Inc., Palo Alto, CA (US)

Inventors: Lenin Singaravelu, Sunnyvale, CA

(US); Jin Heo, Mountain View, CA
(US); Jul-Tlng Weng, Sunnyvale, CA
(US); Ayyappan Veeraivan, Cupertino,
CA (US); Yong Wang, Sunnyvale, CA
(US)

Assignee: VMware, Inc., Palo Alto, CA (US)

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

Notice:

Appl. No.: 17/689,606

Filed: Mar. 8, 2022

Prior Publication Data
US 2022/0337500 Al Oct. 20, 2022
Related U.S. Application Data

Continuation of application No. 16/847,194, filed on
Apr. 13, 2020, now Pat. No. 11,271,841, which 1s a

(Continued)
Int. CL
HO4L 43/16 (2022.01)
GO6F 9/455 (2018.01)
(Continued)
U.S. CL
CPC HO4L 43/16 (2013.01); GO6F 9/45558

(2013.01); HO4L 43/0894 (2013.01);

(Continued)

Field of Classification Search
CPC ... HO4L 43/16; HO4L 43/0894; HO4L. 43/103;
HO4L 47/28; HO4L 47/2483; HO4L. 45/38:

(Continued)

IS

(56) References Cited

U.S. PATENT DOCUMENTS

6,735,629 B1* 5/2004 Cafarells, III HO04L 43/12
709/224
7,843,906 B1* 11/2010 Chidambaram HO4L 67/1097
370/386

(Continued)

OTHER PUBLICATTONS

“Best Practices for Performance Tuning of Latency-Sensitive Work-
loads 1n vSphere VMs,” Techical White Paper, VMWare, 2013, 8

pages.
(Continued)

Primary Examiner — Alina A Boutah

(74) Attorney, Agent, or Firm — Barta, Jones & Foley,
PLLC

(57) ABSTRACT

A method of optimizing network processing i a system
comprising a physical host and a set of physical network
interface controllers (PNICs) 1s provided. The physical host
includes a forwarding element. The method includes deter-
mining that a set of conditions 1s satisfied to bypass the
forwarding element for exchanging packets between a par-
ticular data compute node (DCN) and a particular PNIC. The
set of conditions includes the particular DCN being the only
DCN connected to the forwarding element and the particular
PNIC being the only PNIC connected to the forwarding
clement. The method exchanges packets between the par-
ticular DCN and the particular PNIC bypassing the forward-
ing element. The method determines that at least one con-
dition 1n said set of conditions 1s not satisfied. The method
utilizes the forwarding element to exchange packets between
the particular DCN and the particular PNIC.

20 Claims, 16 Drawing Sheets

Virtualhization Software

133 170 170
; Tename 1 7 Tenantl L~ Tenantm |~ Tenantm | _A
VM1 b VMn VM |1 ses VM w
[wNiC f VNIC |
125 125
160 16) B
\ A
_ s 107
= B —y L~
' PFE or LEFE
130)
L e N NN
! - = /
135 135 150 135 135 150
150 \l- Uplink I L Uplink I/ 130 Uplink ane | [J]_‘_Ji‘i‘l‘]t{ r
[Host
. 120 1240 120 126

Physical
NIC p

o Physical ene
NIC |

Physical
NIC T

Physical
NIC g

US 11,683,256 B2

Page 2
Related U.S. Application Data 2012/0042034 Al1* 2/2012 Goggin GO6F 3/0647
o o 709/216
continuation of application No. 15/640,281, filed on 2012/0151472 Al* 6/2012 Kochccccco....... GOGF 9/45558
Jun. 30, 2017, now Pat. No. 10,652,129, which 1s a 718/1
continuation of application No. 14/574,354, filed on 2012/0151473 Al* 6/2012 Kochccceeeenne. GO6F 9/45558
Dec. 17, 2014, now Pat. No. 9,699,060. | 718/1
2012/0198441 Al* 8/2012 Mahdavl HO4L 12/6418
51) Int. CL . 71871
(51) 1;1041; 43/0894 (2022.01) 2012/0284712 Al1* 11/2012 Nimmagadda GO6F 13/00
1 718/1
HO4L 45/103 (2022.01) 2013/0151685 Al* 6/2013 Bursell ..ococooeen...... GOG6F 9/455
HO4L 47/28 (2022.01) 709/223
(52) U.S. CL 2013/0339955 Al™ 12/2013 Prawer GOOF 9/45533
CPC .. HO4L 43/103 (2013.01); GO6F 2009/45595 014/0059537 A | 5014 Kamble of al 718/1
. AIMDIC CL 4l.
| (Q013.01); HOZL 47728 (2013.01) 5614/0115578 Al* 42014 Cooper .o HOA4L 63/205
(58) Field of Classification Search 718/1
CPC ... HO4L 45/745; HO4L 49/334; HO4L 49/70; 2014/0215463 Al* 7/2014 Hendel GOG6F 9/45533
HO4L 49/9068; HO4L 67/16; HO4L 69/22; 718/1
GO6F 9/45558: GO6F 9/45533: GO6F 2014/0310704 Al1* 10/2014 Cantu GOO6F 9/45558
2009/45595 71871
. , 2014/0373012 Al1* 12/2014 Yltalo GO6F 9/45558
See application file for complete search history. 718/1
_ 2015/0055499 Al1* 2/2015 Zhengceo...... GO6F 13/24
(56) References Cited 370/252
_ 2015/0058847 Al1* 2/2015 Zheng GO6F 9/5033
U.S. PATENT DOCUMENTS 718/1
2015/0146527 Al* 5/2015 Kishore HO4L 47/115
7,990,994 B1* 8/2011 Yeh .oooovcovvvnni... HOA4L. 12/4641 370/230 1
- 711/147 2015/0263968 Al* 9/2015 Jaincccooovviinens GO6F 9/00
8,086,739 B2* 12/2011 Tnpathi HO4L 63/0272 370/2735
709/227 2015/0370586 Al* 12/2015 Cooper GOG6F 9/45533
8,102,852 B2* 1/2012 Marcondes HO04L 43/0864 718/1
o 370/235 2015/0378641 Al* 12/2015 Franke GOO6F 9/45558
8,341,505 B2* 12/2012 Tripathi GOG6F 9/5077 710/74
714/779 2015/0381495 Al* 12/2015 Cherian HO4L 69/22
9,317,310 B2* 4/2016 Hendel GO6F 9/45533 370/392
9,361,145 B1™ 6/2016 Wilson GO6F 13/28 2016/0092259 Al* 3/2016 Mehtacooovn...... GOG6F 12/023
2008/0002714 Al1* 1/2008 Belgaied HO4L 49/9063 718/1
) 370/395.21 2016/0094661 Al 3/2016 Jain et al
2008/0005441 ALl* 1/2008 Droux HO4L 49/70 2016/0132443 Al* 5/2016 Davda GOG6F 9/45558
| | 710/306 710/308
2009/0219935 Al1* 9/2009 Tripathi HO4L 12/4641 2016/0142314 Al* 5/2016 Parsa HO41. 41/0893
370/392 370/235
2009/0327781 Al* 12/2009 Trpatht GO6F 9/5077 2016/0156591 Al* 6/2016 Zhouooovon. .. GO6F 9/45533
713/300 776/13
2010/0232443 Al* 9/2010 Pandey HO04L 49/10 2016/0173379 Al* 6/2016 Heo HO4T. 45/7453
| | 370/401 370/392
2011/0103389 Al1* 5/2011 Kidambi H04L3§g;jgg 2017/0295033 Al* 10/2017 Cherian GOG6F 9/45558
2011/0179413 Al1* 7/2011 Subramanian GOO6F 9/45558
718/1 OTHER PUBLICATIONS
2011/0179414 Al* 7/2011 Goggin GO6F 9/45558 . . g .
718/1 Luo et al., “Accelerated Virtual Switching with Programmable NICs
2012/0005521 A1* 1/2012 Droux HOAL 41/0668 for Scalable Data Center Networking,” VISA 2010, Sep. 3, 2010,
718/1 New Delhi, India, 10 pages.
2012/0016970 Al* 1/2012 Shah GOO6F 16/23
709/220 * cited by examiner

US 11,683,256 B2

Sheet 1 of 16

Jun. 20, 2023

U.S. Patent

[‘31

Syl AJIOMION

I9IN d DIN
[eO1SAY] [ed1sAyd [eorsAy g

[DIN
[BOISAY

0Cl

051

061
061

Sel Sel
[y ==r1n] |

0¢l
HAT 10 HAd eoe

A -]

H4T 410 HAd

o] T =R o oo
Or1 _W Orl
091 091 | 091 091
$ClI S | ¢l |
S S, ENN BN
M INA Y [NA UNA | eee | I NA

W JuUBUd [W JUBUD | [Jueud] | [JUBUDJ.

OL1 OL1 011 i OI1

JI1BM1JOS UOTIBZIJBNLIIA

GL1

101

US 11,683,256 B2

Sheet 2 of 16

Jun. 20, 2023

U.S. Patent

L OIN
[edISAY]

[BOISAYd

10¢

I Sor

| 06¢

0 |
1M M-

0¢T
HAT 10 HAd soe TJ4T 10 1d

L I e L S [[gy e v
_ 0

09C

bz
ST .

ONA_ OINA_ SINA_

M INA eee [INA I WA
301 HQ@.G@HL U Hﬁmﬁm@rﬁ M wﬂ@ﬂﬁrﬁ
OL1 OLI O1C

JIBM]JOS UOTIRZI[RNIIIA

S1¢

US 11,683,256 B2

Sheet 3 of 16

Jun. 20, 2023

U.S. Patent

L OIN
[edISAY]

[BOISAYd

10¢

1SOH]

S0¢

[=mMri

A4 10 HAd Y

I LT = LT CI] o s

$CTC

ONA_ OINA_ SINA

M INA eee [INA I WA
301 HQ@.G@HL U Hﬁmﬁm@rﬁ M wﬂ@ﬂﬁrﬁ
OL1 OLI 01C

JIBM]JOS UOTIRZI[RNIIIA

S1¢

U.S. Patent Jun. 20, 2023 Sheet 4 of 16 US 11,683,256 B2

400

Y
O

Use the forwarding element for

exchanging packets between the VM and
the Physical NIC

410

Only two ports of the
forwarding clement are used, one
connecting to the VM and one

connecting to the
Physical NIC?

No

Yes
420
Yes
Port mirroring enabled on the
forwarding element?
No
425
Yes

Any other conditions exist
that require the use of the forwarding

clement for exchanging packets between
the VM and the physical NIC?

No

430
Bypass the forwarding element for

exchanging packets between the VM and
the Physical NIC

Fig. 44

U.S. Patent Jun. 20, 2023 Sheet 5 of 16 US 11,683,256 B2

400

N (2

435

Yes More than two ports of the

forwarding ¢lement are being
used?

445

Port mirroring enabled on the
forwarding element?

450

Any other conditions exist
that require the use of the forwarding

clement for exchanging packets between
the VM and the Physical NIC?

No

US 11,683,256 B2

SOS DIN [B1SAYJ SIS

&

o

S

-

&

>

W

= N

s 9

412"

%

= N e e N e
M., - 4140 HAdd

Sl I BN =
=

0¢Cs 0CS 4 S¢S

= OINA_ OINA_
m XY [NA bdA A 1Y dIN A
e
7 vle 0JeM)JOS UOIIRZI[BNLIA Ocs $CS

09%

1SOH

US 11,683,256 B2

U | o o0
AA _ \\
$79 $S9 059
&
e
=
- 0Ys
k>
= 1SOH
P, |
0FS
e,
gl
—
gl
= ' MM-rrm o
« 9471 10 34d
= T [H< 069
= CR9 089
DIDINA P~ ¢eg |IOINA T~
019 C09

e JIBMIJOS UON)RZITBNIIIA

U.S. Patent

L SL]

SFT - 10MIPN

9 | $69 760 _

US 11,683,256 B2

\&
o |
=
e OYvs
= _
= I }SOH
v : _
128

e
)
N |
- M1
N ® &0 [HAAT 10 THAd
m 1™ ™ I e)
—

I OINA _ | [DINA

0¢Y

2JeMIJOS UONBZITeNIIIA

U.S. Patent

US 11,683,256 B2

Sheet 9 of 16

Jun. 20, 2023

U.S. Patent

$C9

| §69

$1¢

2JeMIJOS UONBZITeNIIIA

$0%

[OINA

IINA

0¢Y

509

U.S. Patent Jun. 20, 2023 Sheet 10 of 16 US 11,683,256 B2

J

905

Connect all VMs' VNICs through one

torwarding element to a PF of an SR-IOV
capable PNIC

910

No The number of available

VFs on the PNIC the same or larger
than the number of VMs?

Yes

915

Create one forwarding element for ecach
VM

Connect each forwarding element to (1) 220

the VNIC of the corresponding VM and
(11) one of the PNIC's available VFs

As long as a set of conditions 1s satisfied 725

for a forwarding clement, bypass the
forwarding clement and connect the VM's

VNIC to the associated VF

930

No Yes

The number of available
VFs on the PNIC the same or larger
than the number of VMs?

U.S. Patent Jun. 20, 2023 Sheet 11 of 16 US 11,683,256 B2

1000
/

1005

Use the forwarding element to connect to
the VM's VNIC to the VF of the SR-IOV

cnabled PNIC and exchange packets
between the VM and the VF

1010

Yes
Port mirroring enabled on the

torwarding element?

NoO
1020

Yes Any other conditions exist

that require the use of the forwarding

clement for exchanging packets between
the VM and the VF?

No

1025

Bypass the forwarding element for

exchanging packets between the VM and
_the VF ot the SR-IOV enabled PNIC

1030

Yes o
Port mirroring enabled on the

torwarding element?

1035

Any other conditions exis
that require the use of the forwarding

element for exchanging packets between
the VM and the VF?

U.S. Patent Jun. 20, 2023 Sheet 12 of 16 US 11,683,256 B2

1100

/
1105
Set current VM to the tenant's first
VM

1110

No Rate of transmit packets
received at the VNIC from the VM
higher than a threshold?
Yes

Use polling between the
virtualization software and the
VM VNIC to determine the
availability of transmit packets
recelved at the VNIC trom the
VM

Use interrupts by VM VNIC to
inform the virtualization
software of the availability of

transmit packets received at the
VNIC from the VM

1125

Yes
All VMs of the tenant examined?

No

1130

Set current VM to the tenant's next /
VM

Fig. 11

U.S. Patent Jun. 20, 2023 Sheet 13 of 16 US 11,683,256 B2

1200

i

1205

One or more packets
recerved trom the VM?

Yes
1212
Yes

A predetermined number of
packets recerved from the VM?

NO

1215

A predetermined
amount of time elapsed since the first
packet currently m the buffer has
arrrved?

No

Yes

1225

Generate an mterrupt to
virtualization software and
provide the location and number
of packets to transmait

Save the transmit packet in a 1220

buffer to inform the virtualization

software at a later time

Fig. 12

U.S. Patent Jun. 20, 2023 Sheet 14 of 16 US 11,683,256 B2

1300

N

Inmitialize a bufter for saving VM
transmit packets for pick up by
virtualization software

1305

_ _ No
Packet transmit received

from the VM?

Yes
131
Save the transmit packet in a 315
bufter to be picked up by the
virtualization software at a later
time
1320

Update the number of packets to
pick up

U.S. Patent Jun. 20, 2023 Sheet 15 of 16 US 11,683,256 B2

1400
N
1405
Start a timer for the next poll

1410

Time to poll the VNIC
for the availability of a VM
transmit packets?

Yes

1415

No
Any VM transmit packets

to pick up?

Yes
1420
Pick up the transmit packets
1425
Initialize the buffer to be filled up
by the VNIC
1430

Start a timer for the next poll

Fig. 14

@\
aa
G’
g §I "1
o
v OvS |
—
i 0LSG] 0€S)
7. GGl
-
SERlltTg (S)nun
HOMION 1Nduj buissadoid NOd
&
=
-
S
9
%6 GOS|
~
S
= 4/
=
S801A8(AIOWBSI 00S 1L
1NAINO WOISAS obelo)s
02G1
GEGL

Grel

U.S. Patent

US 11,683,256 B2

1

SPECIALIZING VIRTUAL NETWORK
DEVICE PROCESSING TO AVOID
INTERRUPT PROCESSING FOR HIGH
PACKET RATE APPLICATIONS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation of U.S. patent applica-
tion Ser. No. 16/847,194 filed Apr. 13, 2020, now U.S. Pat.

No. 11,271,841 1ssued Mar. 8, 2022, which 1s a continuation
of U.S. patent application Ser. No. 15/640,281, filed Jun. 30,
2017, now U.S. Pat. No. 10,652,129 1ssued May 12, 2020,
which 1s a continuation of U.S. patent application Ser. No.
14/5774,354, filed Dec. 17, 2014, now U.S. Pat. No. 9,699,
060 1ssued Jul. 4, 2017, all entitled “Specializing Virtual
Network Device Processing to Bypass Forwarding Elements
for High Packet Rate Applications”, the entirety of which 1s
incorporated by reference.

BACKGROUND

Virtualization of network devices provides many advan-
tages 1n virtualized environments. It allows for sharing a
single physical device amongst multiple virtual machines,
setting resource limits (e.g., CPU for processing, packet rate
and throughput limits for 1solation), packet inspection,
migration of virtual machines, and enables many features
such as fault-tolerance and high availability. However, vir-
tualization of network devices also adds considerable CPU
processing overheads. In some cases, workloads show an
overhead of 30% to 200% over a purely non-virtualized
implementation. High packet rate applications such as fire-
walls, routers, and Dynamic Host Configuration Protocol
(DHCP) servers require performance in the order of a few
million to a few tens of million packets processed per second
and the virtual device processing overhead limits perfor-
mance to a million to a few million packets/sec.

Single Root 10 Virtualization (SR-IOV) 1s a mix of
hardware and software solutions to support high perfor-
mance networking workloads on virtualized environments.
SR-IOV allows for capabilities such as device sharing and
moving ol virtual machines between diflerent hosts on some
virtualization plattorms. However, SR-IOV requires special
hardware and SR-IOV enabled physical network interface
controllers (PNICs) and SR-IOV capable drnivers. Imple-
menting other virtualization features such as memory over-
commit or virtual machine fault-tolerance might require
tuture hardware and software updates while features such as
packet inspection might not be possible.

BRIEF SUMMARY

Methods and systems are provided to make packet pro-
cessing more ellicient for virtual network devices. Typically,
a virtual machine (VM) 1s connected to a physical network
interface controller (PNIC) through a virtual switch. For
instance, the VM 1s connected to a port on the virtual switch
through a virtual network interface controller (VNIC). The
PNIC 1s connected to another port on the virtual switch. The
VM sends and receives packets through the PNIC. Some
embodiments 1dentily a virtual machine (VM) that con-
sumes all traflic on a single physical network interface
controller (PNIC) and 1s not sharing the PNIC with any other
VMs. These embodiments provide a specialization of the
virtual device processing that bypasses the virtual switch
layer and hook up the virtual device code with the physical

10

15

20

25

30

35

40

45

50

55

60

65

2

code. Since there 1s a single source port and a single
destination port, any traflic an external switch routes to the

PNIC reaches the VM and vice versa.

Bypassing the virtual switching layer reduces processing
cost per packet by around 5%-10% and increases the packet
processing ability accordingly. Bypassing of the wvirtual
switch 1s a runtime decision. Once a need arises for con-
necting the VM to the switch (e.g., when another VM 1s
moved to the same host, port mirroring 1s needed to tap the
packets, or any services the VM requires that needs the
virtual swﬂch) the VM 1s switched to use the virtual switch.
The VM 1s transparently switched between a fast path (no
switching) and slow path (switching) to provide the required
features of virtualization.

Some embodiments 1dentify applications that consistently
have high packet rates. These embodiments provide a
tradeoll between the processing resources and higher packet
rates. These embodiments modily virtual device processing
to occur 1n polling mode rather then interrupt (or sys-call)
driven mode. Streamlining virtual device processing pro-
vides a two-fold advantage. First, packet processing does not
incur any latency. Second, the virtual backend, virtual
machine monitor, guest kernel, and guest device driver for
the virtual network device do not have to execute interrupt
coalescing and interrupt processing code. The processing
overhead 1s reduced by 1%-2%, increasing packet process-
ing by a similar amount. Some embodiments turn on/ofl the
polling mode when a VNIC 1s mnitialized (e.g., at the time of
VM boot or VNIC reset). In other embodiments, the polling
mode 1s adaptively turned on or off during the runtime. In
these embodiments, polling 1s turned on when packet rate 1s
high and turns off polling when the packet rate 1s low.

The preceding Summary 1s mtended to serve as a brief
introduction to some embodiments of the invention. It 1s not
meant to be an introduction or overview of all mventive
subject matter disclosed in this document. The Detailed
Description that follows and the Drawings that are referred
to 1 the Detailed Description will further describe the
embodiments described 1n the Summary as well as other
embodiments. Accordingly, to understand all the embodi-
ments described by this document, a full review of the
Summary, Detailed Description and the Drawings 1s needed.
Moreover, the claimed subject matters are not to be limited
by the illustrative details 1n the Summary, Detailed Descrip-
tion and the Drawing.

BRIEF DESCRIPTION OF THE

DRAWINGS

The novel features of the invention are set forth in the
appended claims. However, for purposes of explanation,
several embodiments of the invention are set forth in the
tollowing figures.

FIG. 1 conceptually illustrates a virtualized infrastructure
domain 1n some embodiments of the mnvention.

FIG. 2 conceptually illustrates a forwarding element that
1s only connected to one VM and one physical NIC.

FIG. 3 conceptually 1llustrates the VM of FIG. 2 after the
forwarding element 1s bypassed 1n some embodiments of the
invention.

FIGS. 4A and 4B conceptually illustrate a process for
determining whether a forwarding element can be bypassed
in the path between a VM and a physical NIC 1n some
embodiments of the invention.

FIG. 5 conceptually 1llustrates SR-1I0V virtualization on a
host 1n some embodiments of the invention.

FIG. 6 conceptually 1llustrates SR-I0V virtualization on a
host 1n some embodiments of the invention where VMs that

US 11,683,256 B2

3

cannot bypass virtualization software stack are connected to
a single SRI-OV enabled PNIC.

FIG. 7 conceptually illustrates SR-IOV virtualization of
FIG. 6 where each VM 1s connected to a diflerent VF
through a separate forwarding element.

FIG. 8 conceptually illustrates SR-IOV virtualization on a
host 1n some embodiments of the invention where a VM that
cannot bypass virtualization soiftware stack bypasses the
forwarding element and connects to a VF through a VNIC.

FIG. 9 conceptually 1llustrates a process for determining,
whether each VMs on a host can be connected to a VF of an
SR-IOV capable PNIC in some embodiments of the inven-
tion.

FIG. 10 conceptually illustrates a process for determining
whether a forwarding element can be bypassed in the path
between a VM and a VF of an SR-IOV enabled PNIC in
some embodiments of the invention.

FI1G. 11 conceptually 1llustrates a process for dynamically
determining whether to use polling or interrupts to send
transmit packets from each of a tenant’s VMs to the virtu-
alization software 1n some embodiments of the imvention.

FIG. 12 conceptually 1llustrates a process for performing
interrupt coalescing 1n some embodiments of the invention.

FIG. 13 conceptually 1llustrates a process performed by
the VNIC when the virtualization software pertorms polling
to determine the availability of VM transmit packets in some
embodiments of the invention.

FIG. 14 conceptually 1llustrates a process performed by
the virtualization software in some embodiments to poll a
VNIC to determine whether transmit packets are available
from the VM.

FI1G. 15 conceptually illustrates an electronic system with
which some embodiments of the invention are implemented.

DETAILED DESCRIPTION

In the following detailed description of the invention,
numerous details, examples, and embodiments of the inven-
tion are set forth and described. However, 1t will be clear and
apparent to one skilled 1n the art that the mvention 1s not
limited to the embodiments set forth and that the invention
may be practiced without some of the specific details and
examples discussed.

Virtualization 1s the ability to simulate a hardware plat-
form, such as a server, storage device or network resource,
in soltware. A virtual machine (VM) 1s a software imple-
mentation of a machine such as a computer. FIG. 1 concep-
tually illustrates a virtualized infrastructure domain 1n some
embodiments of the invention. The virtualized infrastructure
domain 1s in some embodiments a virtualized infrastructure
that 1s managed by a single cloud management system. The
virtualized 1nfrastructure domain includes a set of host
machines 101, one of which 1s shown in FIG. 1. Each host
can host one or more tenants, each tenant can have one or
more VMs 110 and 170. In FIG. 1, VMs 110 belong to one
tenant and VMs 170 belong to a diflerent tenant. The host
machines also host a set of services that provide different
services. The term cloud service refers to services (such as
computing, storage, etc.) provided in a distributed manner
over a network.

As shown, the host 101 includes virtualization software
(sometimes referred to as a hypervisor) 1135, The virtualiza-
tion software 115 1s representative of the various types of
virtualization software that may operate on hosts 1n such a
virtualized infrastructure (e.g., virtual machine monitor,
etc.). In some embodiments, this virtualization software 1135
includes one or more forwarding elements 105-107.

10

15

20

25

30

35

40

45

50

55

60

65

4

The VMs of each tenant form a logical network (also
referred to as private network or virtual network). The
logical network 1s 1dentified by a logical network 1dentifier
(also known as virtual network identifier or VNI). Each
logical network 1s configured by a tenant. The logical
network 1s an abstraction of a physical network and may
provide a virtual Layer 2 (or data link layer) for services
such as encapsulation and decapsulation of network layer
data packets into frames, frame synchronization, medial
access control, etc. The logical network may span one or
more physical networks and be organized independent of the
underlying physical topology and organization of the physi-
cal networks.

In some embodiments, the forwarding element in the
virtualization software 1s a physical forwarding element
(PFE) such as a virtual switch. In the virtualization field,
some refer to software switches as virtual switches as these
are software elements. However, 1n this specification, the
soltware forwarding elements are referred to as physical
forwarding elements (PFEs), in order to distinguish them
from logical forwarding elements (LFEs), which are logical
constructs that are not tied to the physical world. A PFE
forwards packets 1n a physical network whether or not 1t 1s
implemented 1n software while a LFE forwards packets 1n a
logical network, which 1s logically decoupled or abstracted
from the physical network. In other words, the software
forwarding elements are referred to as PFEs because they
exist and operate 1n the physical world, whereas an LFE 1s
a logical representation of a forwarding element that is
presented to a user when designing a logical network.

In some embodiments, several PFEs are distributed
throughout the network implement tenant’s LEFEs, where
cach PFE 1s a local instantiation, or a proxy, of an LFE that
operate across diflerent host machines and can perform L3
packet forwarding between VMs on the host machine or on
different host machines. An LFE 1s sometimes referred to as
a virtual distributed switch (VDS). In the following discus-
s1ons, the term forwarding element refers to either a PFE or
an LFE, depending on a particular configuration.

In each host 101, each forwarding elements 105-107
connects to one or more physical network interface control-
lers (PNICs) 120 to send outgoing packets and to receive
incoming packets through a physical network 145. As
shown, each forwarding element 105-107 in FIG. 1 1s
defined to include one or more ports 135 (or a port group
130) through which 1t connects to uplinks 150 and the
physical NICs 120 to send and receive packets.

Each forwarding element 105-107 1s also defined to have
a set of virtual ports 160 (or a virtual port group 140) to
connect to VMs 110 through virtual NICs (VNICs) 1235 to
the forwarding element 105. A port group 1s a group of ports
that have the same configuration. An uplink 150 1s a module
that relays packets between the forwarding element 1035 and
the physical NIC 120 m order to perform various packet
processing functions on incoming and outgoing tratfic.

I. Selective Bypassing or Use of Forwarding Elements

Some embodiments identify a VM that consumes all
traflic on a single physical network interface controller
(PNIC) and 1s not sharing the PNIC with any other VMs.
These embodiments provide a specialization of the virtual
device processing that bypasses the virtual switch layer and
hook up the virtual device code with the physical code.
Since there 1s a single source port and a single destination
port, any traflic an external switch routes to the PNIC
reaches the VM and vice versa.

Bypassing the virtual switching layer reduces processing
cost per packet by around 3%-10% and increases the packet

US 11,683,256 B2

S

processing ability accordingly. Bypassing of the wvirtual
switch 1s a runtime decision. Once a need arises for con-

necting the VM to the switch (e.g., when another VM 1s

moved to the same host, port mirroring 1s needed to tap the
packets, or any services the VM requires that needs the
virtual switch), the VM 1s switched to use the virtual switch.
The VM 1s transparently switched between a fast path (no
switching) and slow path (switching) to provide the required
features of virtualization.

A. Criternia to Use or Bypass the Forwarding Flement

FIG. 2 conceptually illustrates a forwarding element that
1s only connected to one VM and one physical NIC. As
shown, VM 210 1s connected to the forwardmg clement 2035
t_’lrough VNIC 225 and port 260. PNIC 220 1s connected to
the forwarding element 205 through the uplink 250 and port
235 of port group 230. Utilizing the forwarding element 205
to exchange packets between VM 210 and PNIC 220 create
extra processing overhead.

Some embodiment, dynamically identily the conditions
where the forwarding element can be bypassed in the
connection between a VM and a PNIC. These conditions
include that only two ports of the switch are connected: a
port connected to a VM (through a VNIC) and a port
connected to an uplink. Another condition 1s that port
mirroring/packet forwarding 1s not enabled for the switch.
When port mirroring 1s enabled for a forwarding element, a
copy of each packet passing through a port 1s sent to another
port (a port different than the port PNIC 1s connected to) to
monitor the packet trathic (e.g., to detect intrusion, to do
performance monitoring, etc.). Under the above-mentioned
conditions, the VM sends and receives packets through only
one PNIC and there 1s no need for port mirroring. As shown
in FIG. 2, VM 210 and PNIC 220 are the only entities
connected to the forwarding element’s ports.

FIG. 3 conceptually 1llustrates the VM of FIG. 2 after the
forwarding element 1s bypassed 1n some embodiments of the
invention. As shown, there are no forwarding elements in the
path between VM 210 and PNIC 220 and a direct path (as
conceptually shown by the line 305) 1s provided between the
VNIC 225 and the uplink 250 to exchange packets between
the VM 210 and the PNIC 220. The decision to bypass the
forwarding element 1s dynamically made during runtime
when a set of conditions 1s met. Once the use of a forwarding
clement 1s required again, the packet exchange between the
VM 1s the PNIC 1s once again performed through the
forwarding element 205.

Different embodiments provide different mechanisms for
bypassing the forwarding element. Since the forwarding
clement 205 1s implemented 1n soitware, some embodiments
provide a fast path through the forwarding element software
to bypass the functionality of the forwarding element. The
tollowing pseudo code 1llustrates bypassing of the forward-
ing element functionality in some embodiments of the
invention.

if all conditions for bypassing the forwarding element are satisfied
fastpath = TRUE

clse
fastpath = FALSE

/*%% Perform forwarding element functionalities ***/

switching ()
if fastpath then

return
else

1

/* perform forwarding element functionalities */

h

In some embodiments, each time a VNIC 1s connected to
a port, a callback 1s generated to the virtualization software.
Similarly, when a PNIC 1s connected to a port through an

10

15

20

25

30

35

40

45

50

55

60

65

6

uplink, a callback 1s generated to the virtualization software.
The virtualization software 1s therefore able to determine the
number of VNICs and PNICs that are connected to a
forwarding element at each time.

Some embodiments bypass the forwarding element by
providing a direct software link between the uplink and the
VNIC driver for the duration that the forwarding element 1s
bypassed. In either case, only the forwarding element 1s
bypassed 1n order to eliminate unnecessary processing for
the forwarding element while the virtualization software 1s
still aware of the interactions between the VM and other
components of the system and i1s capable of dynamically
connecting the VM to the PNIC through the forwarding
clement once the need arises for the use of the forwarding
clement during the runtime.

From a security perspective, bypassing the forwarding
clement 1n combination with a vulnerability 1n the physical/
upstream inirastructure can allow the VM to recerve packets
from any other VMSs. For a proper defense 1n depth imple-
mentation, some embodiments ensure that the VM port has
proper security credentials before allowing bypass. As an
additional condition for allowing the bypassing of the for-
warding element, these embodiments determine whether the
port that connects the VM to the forwarding element can
send packets to arbitrary media access control (MAC)
addresses and can receive packets with arbitrary destination
MAC addresses (promiscuous mode). Such a condition 1s
not very limiting as the forwarding element bypass 1s
targeted towards high packet rate applications and many
such applications are gateway/edge applications and are able
to receive and send arbitrary MAC address packets.

FIGS. 4A and 4B conceptually 1llustrate a process 400 for
determining whether a forwarding element can be bypassed
in the path between a VM and a physical NIC 1n some
embodiments of the invention. As shown, the process ini-
tially uses (at 4035) a forwarding element for exchanging
packets between the VM and the physical NIC. The process
then determines (at 410) whether only two ports of the
forwarding elements are used, one port connecting to the
VM (e.g., through a VNIC) and one port connecting to the
physical NIC (e.g., through an uplink). If not, the process
proceeds (e.g., after some predetermined delay) to 405,
which was described above. For instance, more than two
ports are used when the VM 1s required to be connected to
more than one physical NIC or any other VMSs are connected
to the forwarding element.

Otherwise, the process determines (at 420) whether port
mirroring 1s enabled on the forwarding element. I yes, the
process proceeds (e.g., after some predetermined delay) to
405, which was described above. Otherwise, the process
determines (at 425) whether there are any other conditions
that require the use of the forwarding element for exchang-
ing packets between the VM and the PNIC. For instance,
some embodiments determine whether the port connected to
the VM has proper security credentials before allowing the
bypass (e.g., whether the port can send arbitrary MAC
address packets and can receirve arbitrary MAC address
packets, 1.e., to operate 1 promiscuous mode).

Another condition for bypassing a forwarding element 1s
the network virtualization (e.g., tunnels for overlay networks
such as Virtual eXtensible LAN (VXLAN), Generic Net-
work Virtualization Encapsulation (GENEVE), Network
Virtualization using Generic Routing Encapsulation
(NVGRE), and stateless transport tunneling (ST7T)) 1s not
performed by the forwarding element. In other words, the
forwarding element 1s not a part of a soltware-defined
network. In some embodiments, the forwarding element

US 11,683,256 B2

7

encapsulates the outgoing packets and decapsulates the
incoming packets. In such cases, the forwarding element
cannot be bypassed due to the required encapsulation/
decapsulation functionality of the forwarding element. In

some embodiments, the encapsulation and decapsulation of 5

packets for such tunnels 1s done outside of a forwarding
clement.

Theretfore, the condition that the forwarding element does
not encapsulate and decapsulate packets 1s satisfied either
when the encapsulation and decapsulation of packets 1s done
outside the forwarding element or the forwarding element 1s
capable of encapsulating and decapsulating the packets but
such encapsulation and decapsulation 1s not enabled (e.g.,
the overlay network tunnels are not used by the VM that 1s
connected to the forwarding element). If there are any other
conditions that require the use of the forwarding element, the
process proceeds (e.g., after some predetermined delay) to
405, which was described above. Otherwise, the process
bypasses (at 430) the forwarding element for exchanging
packets between the VM and the physical NIC.

The process then dynamically determines whether the
conditions have changed and the forwarding element can no
longer be bypassed. The process determines (at 435)
whether more than two ports of the forwarding element are
being used. For mstance, VM 1s required to be connected to
more than one physical NIC or any other VMs are connected
to the forwarding element. It yes, the process proceeds back
to 405 to use the forwarding element for exchanging the
packets between the VM and the physical NIC.

Otherwise, the process determines (at 445) whether port
mirroring 1s enabled on the forwarding element. I yes, the
process proceeds back to 405 to use the forwarding element
for exchanging the packets between the VM and the physical
NIC. Otherwise, the process determines (at 450) whether
any other conditions (as described above by reference to
operation 423) exist that require the use of forwarding
clement for exchanging packets between the VM and the
PNIC. If yes, the process proceeds back to 405 to use the
torwarding element for exchanging the packets between the
VM and the physical NIC. Otherwise, the process proceeds
(c.g., after some predetermined delay) back to 435 and
continues to bypass the forwarding element for exchanging
packets between the VM and the physical NIC.

The decision for whether or not to perform the optimiza-
tion of bypassing the forwarding element 1s taken based on
local data available on the particular host that 1s implement-
ing the optimization. The decision 1s made based on the ports
connected to forwarding element on the particular host and
types of features enabled for the connected ports. For
instance, the decision to determine how many ports are
connected to the forwarding element 1s based on whether or
not a VM on the particular hot 1s powered on. The VMs that
are powered ofl are considered as not connected to the
forwarding element. On the other hand, when a link 1s down
for a PNIC, the PNIC 1s still considered as connected to the
forwarding element. The decision whether port mirroring 1s
enabled 1s based on whether the port mirroring 1s enabled for
the ports connected to the forwarding element on the par-
ticular host. Therefore, even 11 the forwarding element 1s an
LFE (which 1s a virtual distributed switch), local informa-
tion are utilized to determined how many ports of the
forwarding element 1s currently connected 1n order to make
the decision to bypass or use the forwarding element.

B. Bypassing the Forwarding Element in SR-IOV

Single Root input-output (1/0) Virtualization (SR-IOV) 1s
a specification that allows a single Peripheral Component
Interconnect Express (PCle) physical device under a single

10

15

20

25

30

35

40

45

50

55

60

65

8

root port to appear to be multiple separate physical devices
to the virtualization software or the guest operating system.
SR-IOV uses physical functions (PFs) and virtual functions
(VFs) to manage global functions for the SR-IOV devices.

PFs are full PCle functions that include the SR-IOV

extended capability, which 1s used to configure and manage
the SR-IOV functionality. It i1s possible to configure or
control PCle devices using PFs, and the PF has full ability
to move data 1n and out of the device. VFs are lightweight
PCle functions that contain all the resources necessary for
data movement but have a minimized set of configuration
resources. SR-IOV enabled PCle devices present multiple
instances of themselves to the guest operating system
instance and the host virtualization software.

FIG. § conceptually illustrates SR-IOV virtualization on a
host 1n some embodiments of the invention. The VMs of

other tenants (1f any) are not shown for simplicity. As shown,
the SR-IOV capable PNIC 505 includes several VFs 310 and
one PF 515. VMs 520 have a direct path to VFs 510. On the
other hand, PF 515 1s connected to several VMs 525-530
through uplink 540, forwarding element 535, and VNICs
545.

The mstantiated VFs 510 can be configured such that they
are directly assigned to VMs and the guest operating sys-
tem’s VF driver (not shown) takes possession of the VFE. For
instance, each VF can create a direct path from a VM to the
physical NIC. While such configuration delivers near native
network performance to the VM, the data path bypasses the
virtualization software/network stack (1.e., the VFs are pass-
through devices). Hence such VFs 1n those VMs are unable
to benefit from an overlay network based multi-tenant
environment.

However, some or all VMs on a host may not be capable
of using an SR-IOV VF 1n some embodiments. These VMs
may need some virtualization features that cannot be pro-
vided 11 the VM bypasses the virtualization software/net-
work stack and 1s directly connected to a VF. For 1instance,
a VM may require memory overcommit, which 1s a feature
provided by virtualization software that allows a VM to use
more memory space than the physical host has available. As
an example, on a host with 10 GB of physical memory, the
virtualization software may allow 5 VMs, each with 4 GB of
allocated memory space to run a host with only 10 GB of
physical memory. Some embodiments allow such VMs to
still connect to a VF without bypassing the virtualization
software stack.

FIG. 6 conceptually 1llustrates SR-1I0V virtualization on a
host 1n some embodiments of the invention where VMs that
cannot bypass virtualization software stack are connected to
a single SRI-OV enabled PNIC. VMs 6035-610 are VMs that
require the services ol software virtualization 215. For

instance, the VMs may require memory overcommit. As
shown, each of the k VMs 605-610 1s associated with one

VNIC 630-635. Each VNIC 630-635 1s connected to a port
680-685 of a single forwarding element 690. The forwarding

clement 690 1s connected to PF 515 of the PNIC 623 through
uplink 540. VMs 605-610 arec VMs of one tenant. VMs of
other tenants (1f any) are on separate logical networks and
are not shown.

Some of VFs on PNIC 625 may be utilized by the
virtualization software 215 to connect to kernel VNICs,
referred to as VMKNICs (not shown). If the PNIC 625 has
n available VFs 650-655 and n>=k, then the virtualization

software 215 assigns k VFs from the PNIC 625 and treats
each of them as a new PNIC. The virtualization software

also creates k new forwarding elements and attaches one

US 11,683,256 B2

9

VNIC and one VF to each forwarding element. The VINICs
are also detached from the origmnal FE.

FIG. 7 conceptually 1illustrates SR-IOV virtualization of
FIG. 6 where each VM 1s connected to a different VF
through a separate forwarding element. As shown, k VMs
605-610 that were previously (as shown in FIG. 6) con-
nected to a single forwarding element 690 are now con-
nected to k separate forwarding elements 715-720 through
their associated VNICs 630-635. Each forwarding element
715-720 1s connected to one of the k VFs 650-652 of the
RS-I0V enabled PNIC 625. The process of creation of the
forwarding elements 715-720, connecting VNICs 630-635
to the forwarding elements, and connecting the forwarding,
clements to VFs 650-652 1s completely transparent to the
VNICs and VMs 1n some embodiments.

Now there 1s a single uplink and a single VM connected
to each of the forwarding elements 715-720 and whenever a
set of conditions (as described below) 1s satisfied, each of the
forwarding elements 715-720 can be bypassed. When the set
of conditions fails, then all forwarding elements 715-720 are
deleted and the VNICs are connected back to the forwarding
clement 690 (shown 1n FIG. 6), which frees all VFs 650-652.

Some embodiment, dynamically identity the condition
where a forwarding element 715-720 can be bypassed 1n the
connection between a VNICs 630-635 and a VFs 650-652.
Since each forwarding element 715-720 1s connected to only
one of the VNICs 630-635 and one of the VFs 650-652, the
forwarding elements satisty the condition that only two ports
to be used on the forwarding element. Another condition for
bypassing the forwarding element 1s that port mirroring 1s
not enabled on the forwarding element.

As another condition, some embodiments determine (as
described above by reference to operation 425) whether the
port connected to the VINIC has proper security credentials
before allowing the bypass. Yet another condition for
bypassing a forwarding element 1s the network virtualization
(c.g., tunnels for overlay networks such as VXLAN,
GENEVE, NVGRE, and STT) 1s not performed by the
tforwarding element. In some embodiments, the forwarding
clement encapsulates the outgoing packets and decapsulates
the incoming packets. In such cases, the forwarding element
cannot be bypassed due to the required encapsulation/
decapsulation functionality of the forwarding element. In
some embodiments, the encapsulation and decapsulation of
packets for such tunnels 1s done outside of a forwarding
clement.

Theretfore, the condition that the forwarding element does
not encapsulate and decapsulate packets 1s satisfied either
when the encapsulation and decapsulation of packets 1s done
outside the forwarding element or the forwarding element 1s
capable of encapsulating and decapsulating the packets but
such encapsulation and decapsulation 1s not enabled (e.g.,
the overlay network tunnels are not used by the VM that 1s
connected to the forwarding element).

Another condition that prevents bypassing of the forward-
ing elements 1s when n+l VMs are powered on and/or
moved to the host, 1.e., when the number of VMs becomes
larger than the number of available VFs on the PNIC. For
instance, as a new VM 1s powered on or a VM 1s moved
(from another host) to the host, the networking layer 1n the
host creates a new lorwarding element for the VM and
assigns one of the n VFs 1n the SR-IOV PNIC to the VM.
Alternatively, an administrator can enable a previously dis-
abled VNIC to connect the VNIC to one of the VFs through
a forwarding element. Eventually, the number of VMSs on the
host may become larger than the number of available VFs,
which prevents bypassing of the forwarding elements.

10

15

20

25

30

35

40

45

50

55

60

65

10

FIG. 8 conceptually illustrates SR-I0OV virtualization on a
host 1n some embodiments of the invention where a VM that
cannot bypass virtualization software stack bypasses the
forwarding element and connects to a VF through a VNIC.
As shown, the forwarding element 6135 1s bypassed for
exchanging packets between VM 605 and VF 650. As
conceptually shown by line 805, there are no forwarding
clements 1n the path between VNIC 630 and VF 650. The
path between the VM 605, VNIC 630, and VF 650, still goes
through the virtualization software stack (as opposed to the
paths between VMs 520 and VFs 510 1n FIG. 5 that bypass
the virtualization software stack).

On the other hand, 1n the example of FIG. 7, the forward-
ing element 620 does not satisty all conditions for bypassing
(e.g., port mirroring may be enabled on the forwarding
clement or forwarding element may be used to encapsulate/
decapsulate packets for an overlay network). Forwarding
clement 620, 1s therefore, not bypassed.

The decision whether or not to bypass a forwarding
clement to connect a VM and the corresponding VNIC
directly to a VF 1s dynamically made in some embodiments.
FIG. 9 conceptually illustrates a process 900 for determining
whether each VMs on a host can be connected to a VF of an
SR-IOV capable PNIC in some embodiments of the mnven-
tion. As shown, the process connects (at 905) all VMSs’
VNICs through a single forwarding element to a PF of an
SR-IOV capable PNIC (e.g., as shown i FIG. 6).

The process then determines (at 910) whether the number
of available VFs on the PNIC is the same or larger than the
number of VMs. If not, the process proceeds (e.g., after a
predetermined delay) to 905, which was described above.
Otherwise, the process creates (at 915) one forwarding
clement for each VM. The process then connects (at 920)

cach forwarding element to (1) the VNIC of the correspond-
ing VM and (11) one of the PNIC’s available VFs (e.g., as

shown 1n FIG. 7)

As long as a set of conditions 1s satisiied for a forwarding
clement, the process bypasses (at 925) the forwarding ele-
ment and connects the VM’s VNIC to the associated VF
(c.g., as shown m FIG. 8). Details of operation 9235 are
further described by reference to FIG. 10, below. The
process then determines (at 930) whether the number of
available VFs on the PNIC 1s the same or larger than the
number of VMs. I not, the process proceeds (e.g., after a
predetermined delay) to 905 to connect all VINICs to a single
forwarding element. Otherwise, the process proceeds (e.g.,
alter a predetermined delay) to 920, which was described
above.

FIG. 10 conceptually illustrates a process 1000 for deter-
mining whether a forwarding element can be bypassed in the
path between a VM and a VF of an SR-IOV enabled PNIC
in some embodiments of the invention. As shown, the
process 1nitially uses (at 1005) a forwarding element for
exchanging packets between the VM (and the VM’s corre-
sponding VNIC) and a VF of an SR-TOY enabled physical
NIC. The process then determines (at 1010) whether port
mirroring 1s enabled on the forwarding element. If yes, the
process proceeds (e.g., alter some predetermined delay) to
805, which was described above. Otherwise, the process
determines (at 1020) whether there are any other conditions
that require the use of the forwarding element for exchang-
ing packets between the VM and the PNIC. For instance,
some embodiments determine whether the port connected to
the VM has proper security credentials before allowing the
bypass (e.g., whether the port can send arbitrary MAC
address packets and can recerve arbitrary MAC address
packets, 1.e., to operate 1n promiscuous mode).

US 11,683,256 B2

11

Another condition for bypassing a forwarding element 1s
the network virtualization 1s not performed by the forward-
ing element (as described above by reference to operation
425 1n FIG. 4). In other words, the forwarding element 1s not
a part of a software-defined network. If there are any other
conditions that require the use of the forwarding element, the
process proceeds (e.g., after some predetermined delay) to
1005, which was described above. Otherwise, the process
bypasses (at 1025) the forwarding element for exchanging
packets between the VM and the VF (e.g., as shown for VM
605 1n FIG. 8).

The process then dynamically determines whether the
conditions have changed and the forwarding element can no
longer be bypassed. The process determines (at 1030)
whether port mirroring 1s enabled on the forwarding ele-
ment. If yes, the process proceeds back to 1005 to use the
forwarding element for exchanging the packets between the
VM and the physical NIC. Otherwise, the process deter-
mines (at 1035) whether any other conditions (as described
above by reference to operation 4235) exist that require the
use of forwarding element for exchanging packets between
the VM and the PNIC. If yes, the process proceeds back to
1005 to use the forwarding element for exchanging the
packets between the VM and the physical NIC. Otherwise,
the process proceeds (e.g., after some predetermined delay)
back to 1030 and continues to bypass the forwarding ele-
ment for exchanging packets between the VM and the
physical NIC.

In some embodiments, VM 605 can have more than one
VNIC (not shown). Fach of the VM’s VNICs can be
connected to a separate forwarding element. Similar to the
example of FIG. 8, a VM with multiple VNICs can bypass
any or all of the forwarding elements connected to it as long
as all conditions (as described above) for bypassing the
forwarding element are satisfied.

SR-IOV PNICs have built in switches. As long as all VMs
are assigned separate VFs, the SR-IOV PNIC can be relied
to do the switching. However, this path 1s more expensive
than doing the switching with a forwarding element, but the
optimization 1s more targeted towards packets transiting
through the SR-IOV PNIC.

As discussed by reference to FIGS. 3 and 8 above, a
forwarding element 1s dynamically bypassed under certain
conditions. Different embodiments provide diflerent mecha-
nisms for bypassing the forwarding element. Some embodi-
ments provide a fast path through the forwarding element
soltware to bypass the functionality of the forwarding ele-
ment. Other embodiments bypass the forwarding element by
providing a direct software link between the uplink and the
VNIC driver for the duration that the forwarding element 1s
bypassed.

I1. Selective Use of Polling Instead of Interrupt Processing
tor High Packet Rate Applications

Some embodiments 1dentity applications that consistently
have high packet rates. These embodiments provide a
tradeotl between the processing resources and higher packet
rates. These embodiments modify virtual device processing
to occur 1n polling mode rather then interrupt (or sys-call)
driven mode. Streamlining virtual device processing pro-
vides a two-fold advantage. First, packet processing does not
incur any latency. Second, the virtual backend, wvirtual
machine monitor, guest kernel, and guest device driver for
the virtual network device do not have to execute interrupt
coalescing and interrupt processing code. The processing
overhead 1s reduced by 1%-2%, increasing packet process-
ing by a similar amount. Some embodiments turn on/ofl the
polling mode when a VNIC 1s initialized (e.g., at the time of

10

15

20

25

30

35

40

45

50

55

60

65

12

VM boot or VNIC reset). In other embodiments, the polling
mode 1s adaptively turned on or ofl during the runtime. In
these embodiments, polling 1s turned on when packet rate 1s
high and turns off polling when the packet rate 1s low.

Interrupt coalescing 1s a techmque to hold back events
that generate interrupts until a certain amount of time passes
or a certain about of data to process 1s collected. When a VM
generates a packet to send out (a transmait packet), the VNIC
deriver generates an interrupt (e.g., by performing a call) to
the virtualization soitware to inform the virtualization soft-
ware of the pending transmait packet. In some embodiments,
the VNIC driver implements interrupt coalescing by keeping
the transmuit packets in a builer until a predetermined number
of transmit packets are received from the VM or a prede-
termined amount of time since the last interrupt by the VNIC
driver to the virtualization software has elapsed. In some
embodiments, whichever of these two conditions occur, the
VNIC dniver interrupts the virtualization software.

FIG. 11 conceptually illustrates a process 1100 for
dynamically determining whether to use polling or interrupts
to send transmit packets from each of a tenant’s VMs to the
virtualization software in some embodiments of the iven-
tion. In the following discussions, a transmit packet refers to
a packet generated by the VM {for transmission to entities
outside the VM. As shown, the process sets (at 1105) the
current VM to the tenant’s first VM.

The process then determines (at 1110) whether the rate of
packets recerved at the VNIC from the VM 1s higher than a
predetermined threshold. If yes, the process determines (at
1120) that polling between the virtualization soitware and
the current VM’s VNIC shall be used to indicate the
availability of transmit packets received at the VNIC from
the VM. The process then proceeds to 1125, which 1s
described below.

Otherwise, the process determines (at 1115) that interrupts
shall be used by the VM’s VNIC to inform the virtualization
soltware of the availability of transmit packets received at
the VNIC from the VM. As described below, some embodi-
ments perform mechanisms such as interrupt coalescing to
interrupt the virtualization software. The process then deter-
mines (at 1125) whether all VMs of the tenant are examined.
If yes, the process proceeds to 1110, which was described
above. Otherwise, the process sets (at 1130) the current VM
to the tenant’s next VM. The process then proceeds to 1110,
which was described above.

FIG. 12 conceptually illustrates a process 1200 for per-
forming interrupt coalescing 1 some embodiments of the
invention. As shown, the process determines (at 1205)
whether packets are received from the VM. If not, the
process returns (e.g., aiter a predetermined delay) to 1205).
Otherwise, the process determines (at 1210) whether a
predetermined number of packets 1s received from the VM.
It yes, the process proceeds to 1220, which 1s described
below.

Otherwise, the process determines (at 1215) whether a
predetermined amount of time has elapsed since the first
packet currently 1n the bufler has arrived. If no, the process
proceeds to 1225, which 1s described below. Otherwise, the
process generates (at 1220) an interrupt to the virtualization
software and provides the location and the number of
packets that the virtualization software (e.g., the forwarding,
clement of the virtualization software) has to pick up from
the builer to transmit. In some embodiments, the interrupt 1s
generated by a calling mechanism to virtualization software.
For mstance a hypercall 1s made from the VNIC driver to the
virtualization soitware to generate a software trap to activate
the transmit processing. The process then proceeds to 1205,

US 11,683,256 B2

13

which was described above. The process saves (at 1225) the
transmit packet in a bufiler to inform the virtualization
soltware at a later time. The process then proceeds to 1205,
which was described above. Generation of an interrupt to
virtualization software causes the virtualization software to
pick up the packets and reset the number of packets 1n the
bufler to zero.

FIG. 13 conceptually 1llustrates a process 1300 performed
by the VNIC when the virtualization soiftware performs
polling to determine the availability of VM transmit packets
in some embodiments of the invention. As shown, the
process 1nitializes (at 1305) a buller for saving VM transmit
packets for pick up by the virtualization software.

The process then determines (at 1310) whether a transmait
packet 1s recerved from the VM. If not, the process proceeds
(e.g., after a predetermined time) to 1310. Otherwise, the
process saves (at 1315) the transmit packet 1n a bufler to be
picked up by the virtualization software at a later time. The
process then updates (at 1320) the number of packets to pick
up by the virtualization software. The process then proceeds
to 1310, which was described above.

FI1G. 14 conceptually 1llustrates a process 1400 performed
by the virtualization software 1n some embodiments to poll
a VNIC to determine whether transmit packets are available
from the VM. As shown, the process starts (at 1405) a timer
to perform the next poll. The process then determines (at
1410) whether 1t 1s time to poll the VNIC for the availability
of a VM transmit packet. For instance, the process deter-
mines whether the timer started at 1405 has expired.

If not, the process returns (at aiter a predetermined time
delay) to 1410. Otherwise, the process determines (at 1415)
whether any VM transmit packets are available 1n VNIC
butler to pick up (e.g., as set by process 1300 in operation
1315). If not, the process proceeds to 1430, which 1s
described below.

Otherwise, the process picks up (at 1420) the transmit
packets from the bufler. The process then imitializes (at
1425) the bufler to be filled up by the VNIC. For instance,
the process sets the number of packets in the bufler to zero.
The process then starts (at 1430) a timer for performing the
next poll. The process then proceeds to 1410, which was
described above.

III. Electronic System

Many of the above-described features and applications are
implemented as software processes that are specified as a set
of instructions recorded on a computer readable storage
medium (also referred to as computer readable medium).
When these instructions are executed by one or more
processing unit(s) (e.g., one or more processors, cores of
processors, or other processing units), they cause the pro-
cessing unit(s) to perform the actions indicated in the
instructions. Examples of computer readable media include,
but are not limited to, CD-ROMs, flash drives, RAM chips,
hard drives, EPROMSs, etc. The computer readable media
does not include carrier waves and electronic signals passing
wirelessly or over wired connections.

In this specification, the term “software” 1s meant to
include firmware residing in read-only memory or applica-
tions stored in magnetic storage, which can be read into
memory for processing by a processor. Also, mn some
embodiments, multiple software imventions can be imple-
mented as sub-parts of a larger program while remaining,
distinct software inventions. In some embodiments, multiple
soltware inventions can also be implemented as separate
programs. Finally, any combination of separate programs
that together implement a software mvention described here
1s within the scope of the mvention. In some embodiments,

10

15

20

25

30

35

40

45

50

55

60

65

14

the software programs, when installed to operate on one or
more electronic systems, define one or more specific
machine implementations that execute and perform the
operations of the solftware programs.

FIG. 15 conceptually illustrates an electronic system 1500
with which some embodiments of the invention are imple-
mented. The electronic system 1500 can be used to execute
any of the control, virtualization, compute manager, network
manager, or operating system applications described above.
The electronic system 1500 may be a computer (e.g., a
desktop computer, personal computer, tablet computer,
server computer, mainframe, a blade computer etc.), phone,
PDA, or any other sort of electromic device. Such an
clectronic system 1ncludes various types of computer read-
able media and interfaces for various other types of com-
puter readable media. Electronic system 1500 includes a bus
1505, processing unit(s) 1510, a system memory 1520, a
read-only memory (ROM) 1530, a permanent storage device
1535, mput devices 1540, and output devices 1545.

The bus 1505 collectively represents all system, periph-
eral, and chipset buses that commumicatively connect the
numerous internal devices of the electronic system 1500.
For instance, the bus 1505 communicatively connects the
processing unit(s) 1510 with the read-only memory 1530,
the system memory 13520, and the permanent storage device
1535.

From these various memory units, the processing unit(s)
1510 retrieve nstructions to execute and data to process 1n
order to execute the processes of the invention. The pro-
cessing unit(s) may be a single processor or a multi-core
processor 1n different embodiments.

The read-only-memory 1530 stores static data and
instructions that are needed by the processing unit(s) 1510
and other modules of the electronic system. The permanent
storage device 1335, on the other hand, 1s a read-and-write

memory device. This device 1s a non-volatile memory unit
that stores instructions and data even when the electronic
system 1500 1s off. Some embodiments of the invention use
a mass-storage device (such as a magnetic or optical disk
and 1ts corresponding disk drive) as the permanent storage
device 1535.

Other embodiments use a removable storage device (such
as a floppy disk, flash drive, etc.) as the permanent storage
device. Like the permanent storage device 1535, the system
memory 1520 1s a read-and-write memory device. However,
unlike storage device 1535, the system memory 1s a volatile
read-and-write memory, such a random access memory. The
system memory stores some of the instructions and data that
the processor needs at runtime. In some embodiments, the
invention’s processes are stored in the system memory 1520,
the permanent storage device 1535, and/or the read-only
memory 1530. From these various memory units, the pro-
cessing unit(s) 1510 retrieve instructions to execute and data
to process 1n order to execute the processes of some embodi-
ments.

The bus 1505 also connects to the mput and output
devices 1540 and 1545. The input devices enable the user to
communicate mnformation and select commands to the elec-
tronic system. The mput devices 1540 include alphanumeric
keyboards and pointing devices (also called “cursor control
devices”). The output devices 1545 display 1mages gener-
ated by the electronic system. The output devices include
printers and display devices, such as cathode ray tubes
(CRT) or liquid crystal displays (LCD). Some embodiments
include devices such as a touchscreen that function as both
input and output devices.

US 11,683,256 B2

15

Finally, as shown i FIG. 15, bus 1505 also couples
clectronic system 1500 to a network 1523 through a network
adapter (not shown). In this manner, the computer can be a
part of a network of computers (such as a local area network
(“LAN”), a wide area network (“WAN”), or an Intranet, or
a network ol networks, such as the Internet. Any or all
components of electronic system 1500 may be used in
conjunction with the ivention.

Some embodiments 1include electronic components, such
as microprocessors, storage and memory that store computer
program instructions in a machine-readable or computer-
readable medium (alternatively referred to as computer-
readable storage media, machine-readable media, or
machine-readable storage media). Some examples of such
computer-readable media include RAM, ROM, read-only
compact discs (CD-ROM), recordable compact discs (CD-
R), rewritable compact discs (CD-RW), read-only digital
versatile discs (e.g., DVD-ROM, dual-layer DVD-ROM), a
variety ol recordable/rewritable DVDs (e.g., DVD-RAM,
DVD-RW, DVD+RW, etc.), flash memory (e.g., SD cards,
minm-SD cards, micro-SD cards, etc.), magnetic and/or solid
state hard drives, read-only and recordable Blu-Ray® discs,
ultra density optical discs, any other optical or magnetic
media, and tloppy disks. The computer-readable media may
store a computer program that 1s executable by at least one
processing unit and includes sets of instructions for per-
forming various operations. Examples of computer pro-
grams or computer code include machine code, such as 1s
produced by a compiler, and files including higher-level
code that are executed by a computer, an electronic com-
ponent, or a mICroprocessor using an interpreter.

While the above discussion primarily refers to micropro-
cessor or multi-core processors that execute soltware, some
embodiments are performed by one or more integrated
circuits, such as application specific integrated circuits
(ASICs) or field programmable gate arrays (FPGAs). In
some embodiments, such integrated circuits execute instruc-
tions that are stored on the circuit itself.

As used 1 this specification, the terms “computer”,
“server”, “processor”’, and “memory’” all refer to electronic
or other technological devices. These terms exclude people
or groups ol people. For the purposes of the specification,
the terms display or displaying means displaying on an
clectronic device. As used 1n this specification, the terms
“computer readable medium,” “computer readable media,”
and “machine readable medium™ are enftirely restricted to
tangible, physical objects that store mmformation 1 a form
that 1s readable by a computer. These terms exclude any
wireless signals, wired download signals, and any other
ephemeral or transitory signals.

While the invention has been described with reference to
numerous specific details, one of ordinary skill 1n the art waill
recognize that the invention can be embodied i1n other
specific forms without departing from the spirit of the
invention. In addition, a number of the figures including
FIGS. 4A-4B and 9-14 conceptually illustrate processes.
The specific operations of these processes may not be
performed 1n the exact order shown and described. The
specific operations may not be performed 1n one continuous
series of operations, and diflerent specific operations may be
performed 1n different embodiments. Furthermore, the pro-
cess could be implemented using several sub-processes, or
as part of a larger macro process.

This specification refers throughout to computational and
network environments that include virtual machines (VMs).
However, virtual machines are merely one example of data
compute nodes (DCNs) or data compute end nodes, also

10

15

20

25

30

35

40

45

50

55

60

65

16

referred to as addressable nodes. DCNs may include non-
virtualized physical hosts, virtual machines, containers that
run on top ol a host operating system without the need for
a hypervisor or separate operating system, and hypervisor
kernel network interface modules.

VMs, 1n some embodiments, operate with their own guest
operating systems on a host using resources of the host
virtualized by virtualization software (e.g., a hypervisor,
virtual machine monitor, etc.). The tenant (1.e., the owner of
the VM) can choose which applications to operate on top of
the guest operating system. Some containers, on the other
hand, are constructs that run on top of a host operating
system without the need for a hypervisor or separate guest
operating system. In some embodiments, the host operating
system uses name spaces to 1solate the containers from each
other and therefore provides operating-system level segre-
gation of the different groups of applications that operate
within different containers. This segregation 1s akin to the
VM segregation that 1s offered in hypervisor-virtualized
environments that virtualize system hardware, and thus can
be viewed as a form of virtualization that 1solates diflerent
groups of applications that operate 1n different containers.
Such containers are more lightweight than VMs.

Hypervisor kernel network interface module, 1n some
embodiments, 1S a non-VM DCN that includes a network
stack with a hypervisor kemel network interface and
receive/transmit threads. One example of a hypervisor ker-
nel network interface module 1s the vmknic module that 1s
part of the ESX1™ hypervisor of VMware, Inc.

One of ordinary skill in the art will recognize that while
the specification refers to VMs, the examples given could be
any type of DCNs, including physical hosts, VMs, non-VM
containers, and hypervisor kernel network interface mod-
ules. In fact, the example networks could include combina-
tions of different types of DCNs in some embodiments.

In view of the foregoing, one of ordinary skill in the art
would understand that the invention 1s not to be limited by
the foregoing illustrative details, but rather 1s to be defined
by the appended claims.

What 1s claimed 1s:

1. A method of optimizing network processing in a system
comprising a physical host and a set of physical network
interface controllers (PNICs), the physical host comprising
a forwarding element, virtual machines (VMs), and virtual
network 1interface controllers (VNICs) corresponding to
each of the VMs, wherein each of the VNICs are connected
to a physical function of the PNIC through the forwarding
clement, the method comprising:

determining whether a quantity of available virtual func-

tions on the PNIC 1s equal to or greater than a quantity
of the VMs; and

based at least on determining that the quantity of available

virtual functions on the PNIC 1s equal to or greater than
the quantity of the VMs:
for each of the VMs:
creating a forwarding element for the VM;
connecting a VNIC associated with the VM to the
created forwarding element;
connecting the created forwarding element to one of
the virtual functions; and
based at least on a first set of conditions being satisfied,
using the created forwarding element to exchange
packets between the VM and the one of the virtual
functions; and
based on determiming that the created forwarding ele-
ment can be bypassed 1n a path between the virtual
machine and the virtual function of a particular

US 11,683,256 B2

17

PNIC, determining that a second set of conditions 1s
satisfied to bypass the forwarding element for
exchanging packets between a particular data com-
pute node (DCN) and the particular PNIC; and

exchanging packets between the particular DCN and
the particular PNIC bypassing the forwarding ele-
ment when the set of conditions are satisfied.

2. The method of claim 1, further comprising connecting,
all of the VNICs through a single forwarding element to a
physical function of an single Root input-output (I/O) Vir-
tualization (SR-IOV) capable PNIC.

3. The method of claim 2, further comprising connecting,
a plurality of virtual NICs of corresponding ones of a
plurality of data compute node (DCN) through the forward-
ing element to a physical function of the SR-IOV enabled
PNIC.

4. The method of claim 1, turther comprising;:

determining that the forwarding element can be bypassed

in a path between the virtual machine and the virtual
function of the PNIC; and

based on determining that the forwarding element can be

bypassed 1n a path between the virtual machine and the
virtual function of a particular PNIC, determining
whether the set of conditions 1s satisfied.

5. The method of claim 1, wherein the physical host
comprises the virtualization software.

6. The method of claim 1, wherein the second set of
conditions comprises port mirroring being disabled on the
created forwarding element.

7. The method of claam 1, wherein the second set of
conditions comprises the particular DCN being the only
DCN connected to the forwarding element and the particular
PNIC being the only PNIC connected to the forwarding
clement.

8. A non-transitory machine-readable medium storing a
program for optimizing network processing in a system
comprising a physical host and a set of physical network
interface controllers (PNICs), the physical host comprising
a forwarding element, virtual machines (VMs), and virtual
network interface controllers (VNICs) corresponding to
each of the VMs, wherein each of the VNICs are connected
to a physical function of the PNIC through the forwarding
clement, the program comprising sets of mstructions for:

determining whether a quantity of available virtual func-
tions on the PNIC 1s equal to or greater than a quantity
of the VMs; and
based at least on determiming that the quantity of available
virtual functions on the PNIC 1s equal to or greater than
the quantity of the VMs:
for each of the VMs:
creating a forwarding element for the VM;
connecting a VNIC associated with the VM to the
created forwarding element;
connecting the created forwarding element to one of
the virtual functions; and
based at least on a set of conditions being satistied,
using the created forwarding element to exchange
packets between the VM and the one of the virtual
functions.
9. The non-transitory machine-readable medium of claim
8, wherein the program further comprises sets of instructions
for: based on determiming that the created forwarding ele-
ment can be bypassed 1n a path between the virtual machine
and the virtual function of a particular PNIC, determining
that a second set of conditions 1s satisfied to bypass the

5

10

15

20

25

30

35

40

45

50

55

60

65

18

forwarding element for exchanging packets between a par-
ticular data compute node (DCN) and the particular PNIC;
and
exchanging packets between the particular DCN and the
particular PNIC bypassing the forwarding element
when the set of conditions are satisfied.
10. The non-transitory machine-readable medium of
claim 9, wherein the particular PNIC 1s a Single Root 10
Virtualization (SR-I0V) enabled PNIC.

11. The non-transitory machine-readable medium of
claam 10, wherein the program further comprises sets of
istructions for:

connecting a plurality of virtual NICs of corresponding,

ones of a plurality of DCNs through the forwarding
clement to a physical function of the SR-IOV enabled

PNIC.
12. The non-transitory machine-readable medium of
claam 11, wherein the second set of conditions comprises
port mirroring being disabled on the forwarding element.
13. The non-transitory machine-readable medium of
claiam 9, wherein the set of conditions comprises the par-
ticular DCN being the only DCN connected to the forward-
ing element and the particular PNIC being the only PNIC
connected to the forwarding element.
14. The non-transitory machine-readable medium of
claim 8, wherein the physical host comprises the virtualiza-
tion software.
15. A physical computing device comprising:
a set of processing units; and
a non-transitory machine-readable medium storing a pro-
gram for execution by the set of processing units for
optimizing network processing in a system comprising
a physical host and a set of physical network 1nterface
controllers (PNICs), the physical host comprising a
forwarding element, the sets of instructions for:

determining whether a quantity of available virtual func-
tions on the PNIC 1s equal to or greater than a quantity
of the VMs; and

based at least on determining that the quantity of available

virtual functions on the PNIC 1s equal to or greater than
the quantity of the VMs:
for each of the VMs:
creating a forwarding element for the VM;
connecting a VNIC associated with the VM to the
created forwarding element;
connecting the created forwarding element to one of
the virtual functions; and
based at least on a set of conditions being satisfied,
using the created forwarding element to exchange
packets between the VM and the one of the virtual
functions.

16. The physical computing device of claim 135, wherein
the program further comprises sets of instructions for:

based on determining that the created forwarding element

can be bypassed 1n a path between the virtual machine
and the virtual function of a particular PNIC, deter-
mining that a second set of conditions 1s satisfied to
bypass the forwarding element for exchanging packets
between a particular data compute node (DCN) and the
particular PNIC; and

exchanging packets between the particular DCN and the

particular PNIC bypassing the forwarding element
when the set of conditions are satisfied.

17. The physical computing device of claim 16, wherein
the particular PNIC 1s a Single Root 10 Virtualization
(SR-MY) enabled PNIC.

US 11,683,256 B2
19

18. The physical computing device of claim 17, wherein
the program further comprises sets of instructions for:

connecting a plurality of virtual NICs of corresponding

ones ol a plurality of DCNs through the forwarding
clement to a physical function of the SR-IOV enabled 5
PNIC.

19. The physical computing device of claim 18, wherein
the second set of conditions comprises port mirroring being,
disabled on the forwarding element.

20. The physical computing device of claim 16, wherein 10
the second set of conditions comprises the particular DCN
being the only DCN connected to the forwarding element
and the particular PNIC being the only PNIC connected to
the forwarding element.

x x * Cx x 15

	Front Page
	Drawings
	Specification
	Claims

