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1

SYSTEMS, METHODS, AND APPARATUS
FOR SYMBOL TIMING RECOVERY BASED
ON MACHINE LEARNING

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims priority to, and the benefit of, U.S.
Provisional Patent Application Ser. No. 63/174,530 ftitled
“Systems, Methods, and Apparatus for Symbol Timing
Recovery Based on Supervised Learning” filed Apr. 13,
2021 which 1s mcorporated by reference.

TECHNICAL AREA

This disclosure relates generally to communication sys-
tems, and specifically to systems, methods, and apparatus
for symbol timing recovery based on machine learning.

BACKGROUND

A communication system may use a transform such as a
fast Fourier transform (FFT) to determine the frequency
content of a signal. An FFT may be performed on samples
ol a signal 1n a timing window that may driit.

The above information disclosed in this Background
section 1s only for enhancement of understanding of the
background of the invention and therefore 1t may contain
information that does not constitute prior art.

SUMMARY
A method may include generating an estimated time offset
based on a reference signal 1n a commumnication system, and
adjusting a transform window 1n the communication system
based on the estimated time oflset, wherein the estimated
time oflset 1s generated based on machine learning. Gener-
ating the estimated time oflset may include applying the
machine learning to one or more channel estimates. Gener-
ating the estimated time offset may include extracting one or
more features from one or more channel estimates, and
generating the estimated time offset based on the one or
more features. Extracting the one or more features may
include determining a correlation between a first channel
and a second channel. The correlation may include a fre-
quency domain correlation between the first channel and the
second channel. Extracting the one or more features may
include extracting a subset of a set of features of the one or
more channel estimates. The set of features may include a set
of frequency domain channel correlations. The set of fre-
quency domain channel correlations may be calculated
based on frequency domain channels separated by A sub-
carriers. The set of frequency domain channel correlations
may be based on channel correlations corresponding to a
series of A, and the subset may include frequency domain
channel correlations based on one or more highest A and one
or more lowest A. A neural network may generate the
estimated time offset based on the one or more features.
Generating the estimated time oflset based on the one or
more features may be performed, at least 1n part, by a neural
network. The neural network may generate one or more
classification outputs based on the one or more features.
Generating the estimated time offset may include combining
two or more classification outputs from the neural network.
The reference signal may include a first reference signal, the
estimated time oflset may include a first estimated time
offset, and the method may further include generating a
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2

second estimated time oflset based on a second reference
signal that may be generated less frequently than the first
reference signal, and adjusting the transform window based
on a combination of the first estimated time offset and the
second estimated time offset.

A method may include estimating a time oflset 1n a
communication system based on a first reference signal,
estimating a first arrival path based on a second reference
signal that may be transmitted less frequently than the first
reference signal, and adjusting a transform window based on
the time oflset and the first arrival path. Estimating a time
oflset based on the first reference signal may include gen-
erating one or more channel estimates based on the first
reference signal, extracting one or more features from the
one or more channel estimates, and generating, by a machine
learning process, the time offset based on the one or more
teatures. The one or more channel estimates may provide a
set of frequency domain channel correlations between chan-
nels separated by A subcarriers, and extracting the one or
more features may include extracting a subset of the set of
frequency domain channel correlations. A number of can-
didate frequency domain channel correlations may be based
on a reference signal configuration and a resource block
bundling configuration. The machine learning process may
be based on a neural network.

An apparatus may include a feature extractor configured
to extract one or more features from one or more channel
estimates based on a reference signal, trained logic config-
ured to generate an estimated time oflset based on the one or
more features, and a window processor configured to adjust
a transform window based on the estimated time oflset. The
feature extractor may include a channel correlator, and the
trained logic may include a neural network.

BRIEF DESCRIPTION OF THE DRAWINGS

The figures are not necessarily drawn to scale and ele-
ments of similar structures or functions are generally rep-
resented by like reference numerals or portions thereot for
illustrative purposes throughout the figures. The figures are
only intended to facilitate the description of the various
embodiments described herein. The figures do not describe
every aspect of the teachings disclosed herein and do not
limit the scope of the claims. To prevent the drawing from
becoming obscured, not all of the components, connections,
and the like may be shown, and not all of the components
may have reference numbers. However, patterns of compo-
nent configurations may be readily apparent from the draw-
ings. The accompanying drawings, together with the speci-
fication, 1illustrate example embodiments of the present
disclosure, and, together with the description, serve to
explain the principles of the present disclosure.

FIG. 1A 1s a timing diagram that illustrates a timing
window for an FFT having a positive time oflset in a
communication system using orthogonal frequency-division
multiplexing (OFDM) 1n accordance with example embodi-
ments of the disclosure.

FIG. 1B 1s a timing diagram that illustrates a timing
window for an FFT having a negative time offset in a
communication system using OFDM 1n accordance with
example embodiments of the disclosure.

FIG. 2 illustrates an embodiment of a system for estimat-
ing a time oflset 1n accordance with the disclosure.

FIG. 3 1llustrates an example embodiment of a system for
estimating a time offset using channel correlations 1n accor-
dance with the disclosure.
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FIGS. 4A through 4E illustrate examples of subsets of
channel correlations that may be used as mputs to a neural

network 1n accordance with example embodiments of the
disclosure.

FI1G. 5 1llustrates an example embodiment of a multi-layer
perceptron 1n accordance with the disclosure.

FIG. 6 illustrates another example embodiment of a
multi-layer perceptron in accordance with the disclosure.

FI1G. 7 1llustrates an example embodiment of a system for
adjusting the timing of a transform window 1n accordance
with the disclosure.

FIG. 8 1s a timing diagram 1llustrating the operation of an
embodiment of system combining timing estimates from
multiple sources 1n accordance with the disclosure.

FIG. 9 illustrates an example embodiment of a user
equipment 1n accordance with the disclosure.

FIG. 10 1llustrates an example embodiment of a base
station 1n accordance with the disclosure.

FI1G. 11 illustrates an embodiment of a method for adjust-
ing the timing of a transform window in accordance with the
disclosure.

DETAILED DESCRIPTION

Overview

In some communication systems in accordance with
example embodiments of the disclosure, a transform such as
a Tast Fourier transform (FFT) may be performed on a signal
to determine the frequency content of a symbol that may be
transmitted 1n the signal. The transform may be performed
in a timing window that may align with the symbol. Timing
drifts may cause the window to shiit relative to the symbol,
thereby resulting 1n errors in the transform. Thus, one or
more symbol timing recovery (STR) techmiques may be used
to adjust the timing of the transform window to keep it
synchronized with a symbol.

In some embodiments, an STR technique may be based on
a periodic wideband reference signal (RS) such as a syn-
chronization signal block (SSB) 1n a 5G wireless network.
An SSB may be used to estimate a first arrival path (FAP),
which may then be used to adjust the window timing.
However, such reference signals may be transmitted rela-
tively infrequently. Thus, 1t may be difficult to use one of
these reference signals to adjust a timing window that may
drift rapidly during the time between the infrequently trans-
mitted reference signals.

In some embodiments, an STR technique may be based on
a more Irequently transmitted reference signal such as a
demodulation reference signal (DMRS) for a physical down-
link shared channel (PDSCH) 1n a 5G wireless network. For
example, some embodiments may adjust a timing window
based on the difference between two center of mass (COM)
estimates for a frequency domain correlation between chan-
nels. However, some COM techniques may have accuracy,
stability, and/or residual offset problems, as well as requiring
a previous COM estimate to be stored to calculate difler-
ences.

In some STR schemes in accordance with example
embodiments of the disclosure, a machine learning tech-
nique may be used to estimate a time offset to adjust a
transform window. For example, 1n some embodiments, a
neural network may be trained to generate an estimated time
oflset based on one or more features extracted from channel
estimates. The channel estimates may include timing infor-
mation based on a relatively frequent reference signal such

as PDSCH DMRS. Although not limited to any particular

10

15

20

25

30

35

40

45

50

55

60

65

4

features, 1n some embodiments, one or more Irequency
domain (FD) channel correlations may be used as input
features to a neural network.

Depending on the implementation details, an STR scheme
in accordance with example embodiments of the disclosure
may provide a direct estimate of a time oflset, and therefore,
previous time estimates may not be used. Additionally, or
alternatively, some embodiments include a residual time
oflset within an estimated time offset. Additionally, or alter-
natively, because some embodiments may estimate time
oflsets based on multiple FD channel correlations, they may
provide estimates that may be more stable, accurate, and/or
robust.

In some embodiments, a time estimate generated using
machine learning based on a relatively frequent reference
signal may be combined with a time estimate based on a
relatively infrequent reference signal. Depending on the
implementation details, this may exploit existing apparatus
and/or processing, thereby reducing cost, complexity,
energy consumption, processing time, and/or the like.

In some embodiments, the features used as i1nputs to a
neural network may be selected as a subset of a greater
number of candidate features. For example, in an embodi-
ment that uses FD channel correlations as mput features,
there may be a total number of candidate FD channel
correlations based, for example, on a reference signal con-
figuration and/or resource block bundling size. By using
only a subset of the candidate FD channel correlations, some
embodiments may reduce the cost, complexity, processing
time, storage space, mtegrated circuit (IC) area, power
consumption, and/or the like of the neural network and/or
associated apparatus.

Depending on the implementation details, some embodi-
ments may operate on any type of channel regardless of
system bandwidth, channel selectivity, and/or the like.

This disclosure encompasses numerous nventive prin-
ciples relating to symbol timing recovery. These principles
may have independent utility and may be embodied indi-
vidually, and not every embodiment may utilize every
principle. Moreover, the principles may also be embodied in
various combinations, some of which may amplity the
benelits of the individual principles in a synergistic manner.

Example Embodiments

Some example embodiments of systems, apparatus,
devices, processes, methods, and/or the like illustrating
some possible implementation details according to this
disclosure are described herein. These examples are pro-
vided for purposes of illustrating the principles of this
disclosure, but the principles are not limited to or defined by
these embodiments, implementation details, and/or the like.
For example, some embodiments may be described 1n the
context of 3G and/or New Radio (NR) wireless communi-
cation systems, but the principles may also be applied to any
other types of wired and/or wireless systems including 3G,
4G and/or future generations of wireless networks, and/or
any other communication systems that may implement sym-
bol timing recovery, frequency transiorm window adjust-
ment, and/or the like.

Timing Oflset

FIG. 1A and FIG. 1B illustrate timing windows for an
FFT having a positive time oflset (1TO) and a negative TO,
respectively, 1n a communication system using orthogonal
frequency-division multiplexing (OFDM) 1n accordance
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with example embodiments of the disclosure. Each OFDM
symbol may include a data portion and a cyclic prefix (CP)
portion. In some embodiments, a CP may be implemented as
a copy of a final portion of the data.

The term 1., may represent the starting point of a correct
FFT timing window for an OFDM symbol, and the term 1.,
may represent the absolute value of the TO which may be
measured, for example, 1n terms of FFT samples. For a

positive TO case as shown 1in FIG. 1A, the starting point of
the FFT window may be given by 1., —1..,. For a negative
TO case as shown 1n FIG. 1B, the starting point of the FFT
window may be given by 1., +1.

In anegative TO case, inter-symbol mterference (ISI) may

occur because the FFT window may occupy a portion of the

next OFDM symbol (in the example 1llustrated 1n FIG. 1B,
the CP portion of the next OFDM symbol).

In a positive TO case, the presence of the CP may prevent
ISI depending on the magnitude of the TO. The term 1, may
represent the CP length, and 1, may represent the delay
spread (DS) of the channel. When 1., —1,,>1., —1 -+l (that
1s, 1->1-,+1 <), there may be essentially no ISL

In some embodiments, the sampling location may be set
to a few samples before the estimated sampling location to
prevent a negative TO situation. However, 1f the TO 1s too
large, or the delay spread of the channel 1s too large such that
IC . <l,,+1,¢, the FFT window may occupy a portion of a
previous OFDM symbol and ISI may occur. Regardless of

the source, ISI may degrade the performance of the system.

Effects of Timing Offset

To 1llustrate the effects of a time offset, the received signal
at time samples n may be represented as 'y _, n=0, ..., N-1.
After an FFT, the received signal at subcarrier k may be
represented as Y, k=0, . .., N—1. The transmitted reference
signal symbol and frequency domain channel at subcarrier k
may be represented as X, and H,, respectively. Thus, the
received signal may be given by

Yi=H Xt W,

(1)

where W, may represent the noise at subcarrier k. The time
offset may be represented as 1, samples, 1 -, may represent
the cyclic prefix (CP) length, and 1, may represent the
channel delay spread length. If there 1s essentially no ISI
from a previous or next OFDM symbol (that 1s, 0<1,,<1-—
1,¢), then the received signal at the k-th subcarrier with time
offset 1, may be given by

, N-1 _p2Am _J2nkpg (2)
Yk — 0 yﬂ—fTGE N =€ N Yk:

and therefore, the channel estimate at the k-th subcarrier
may be given by

(3)

JlakiTo  Jinkiro
N Hp+e N

H =Y X =e¢ W, X

which may be a phase rotated version of the original channel
plus some noise. Thus, information about a time offset 1,
may be embedded in the channel estimates H,'.

Symbol Timing Recovery Based on Power Delay
Profile

Because channel estimates may contain information about
a time offset, some STR techniques i1n accordance with
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example embodiments of the disclosure may extract timing
information from one or more channel estimates (that may
include reference signal information) to adjust the timing of
an FFT window. For example, i1n some embodiments, an
STR technique may be based on a periodic wideband
reference signal such as a synchronization signal block
(SSB) or tracking reference signal (TRS) 1n a 5G wireless
network. The power delay profile (PDP) may be calculated
from one or more channel estimates based on the wideband
reference signal. The PDP information may be used to
estimate a first arrival path (FAP) which may then be used
to adjust the timing of the FFT window.

In some embodiments, a wideband reference signal such

as SSB or TRS may be transmitted relatively infrequently.
Thus, 1f the time offset for the FFT window drifts too much

between the reference signal transmissions, for example, due
to a large sampling clock error, then a PDP based STR
algorithm may not adjust the timing of the FFT window with
acceptable accuracy.

Symbol Timing Recovery Based on Center of Mass

Some STR techniques 1n accordance with example
embodiments of the disclosure may track timing drift based
on a more frequently transmitted reference signal such as a
PDSCH DMRS signal in a 5G wireless system. For
example, some embodiments may estimate a center of mass
(COM) based on a frequency domain correlation between
channels. However, 1n some embodiments, a single COM
estimate may not be used to adjust a timing window directly.
Instead, a previous COM estimate may be saved, and the
difference between two consecutive COM estimates may be
used to determine the time offset. Also, 1n some embodi-
ments, COM estimation techniques may not be able to
accommodate residual time offsets. Additionally, because a
COM estimate may be based on a single FD channel
correlation, COM estimates may be unstable. Moreover,
because a COM-based time offset estimate may only 1ndi-
cate a change 1n the time offset, 1t may need an additional
STR technique such as a PDP based STR technique to

provide a complete reference timing.

Learning-Based Symbol Timing Recovery

Some STR technmiques 1n accordance with example
embodiments of the disclosure may use machine learning to
estimate a time offset for adjusting a transform window.
Logic based on machine learning may act as a mapping
function to map one or more 1input features having reference
signal fiming information to one or more time offsets. The
logic may be trained, for example, based on data collected
over a wide range of channel types, signal-to-noise ratios
(SNRs), and/or the like.

In some embodiments, learning-based STR may be char-
acterized as a data-driven technique, whereas the PDP
and/or COM-based STR techniques described above may be
characterized as model-driven.

FIG. 2 1llustrates an embodiment of a system for estimat-
ing a time offset 1n accordance with the disclosure. The
embodiment 1llustrated in FIG. 2 may include a feature
extractor 202 and logic 204 based on machine learnming. In
some embodiments, the logic 204 based on machine learn-
ing may be referred to as trained logic. The feature extractor
202 may receive one or more channel estimates H,' (e.g.,
frequency domain channel estimates) that may be estimated
based on a reference signal. Examples of reference signals

may 1nclude SSB, TRS, PDSCH DMRS, and/or the like. In
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some embodiments, the use of a reference signal that may be
transmitted relatively frequently such as PDSCH DMRS

may enable the system to track fast timing changes mn a
transform window.

The feature extractor 202 may extract one or more fea-
tures g from the one or more channel estimates H,'
Examples of features may include frequency domain (FD)
channel correlations, delay spread estimates (DSE), and/or
the like. In some embodiments, depending on a subcarrier
distance, the feature extractor 202 may calculate multiple
FD channel correlations as candidate features.

The logic 204 may implement any type of machine
learning to estimate one or more time offsets 1., based on
one or more mput features. For example, 1n some embodi-
ments, supervised learning may be used to enable the logic
204 to learn a mapping function from one or more frequency
domain channel correlations (input features) to one or more
time offsets (output labels). In some embodiments, other
types of machine learning such as unsupervised learning
and/or reinforced learning (e.g., learming from experience)
may be used to train the logic 204.

In some embodiments, the logic 204 may be trained
offline (e.g., prior to operation), online (e.g., during real-time
operation), or 1n a hybrid combination with 1nitial offline
training that may be refined or augmented based on online
tramning. In some embodiments, the logic 204 may be
implemented with one or more neural networks of any type
such as a convolutional neural network (CNN), deep neural
network (DNN), perceptron, multi-layer perceptron (MLP)
(e.g., a feed-forward MLP), and/or the like.

Frequency Domain Channel Correlation

In some embodiments, frequency domain (FD) channel
correlations may be used as mput features for a learning-
based STR because time offsets may cause a linear phase
rotation at different subcarriers. Thus, a time offset may be
determined using FD channel correlations between channel
estimates from a reference signal.

FIG. 3 1llustrates an example embodiment of a system for
estimating a time offset using channel correlations 1n accor-
dance with the disclosure. The system 1llustrated in FIG. 3
may 1llustrate some example implementation details that
may be used, for example, to implement the system 1llus-
trated 1n FIG. 2.

The system 1illustrated 1 FIG. 3 may include a channel
estimation block 300, a channel correlator 302, and a neural
network which, 1n this example, may be implemented as an
MLP 304. The channel estimation block 300 may provide
any number of channel estimates H,', where k may indicate
a number of subcarriers, for example, k=0, . . . , N—1. The
channel correlator 302, which may operate as a feature
extractor, may generate any number of channel correlations
F . based on the channel estimates H,'. The channel corre-
lations F, may be applied as input features to the MLP 304
which may generate an estimated time offset 1, based on a
mapping learned, for example, during a training process.

In some embodiments, one or more different precoding
matrices may be applied to a PDSCH DMRS 1n different
bundles. Thus, 1n some embodiments, frequency domain
channel correlations may be calculated on a per-bundle
basis.

In some embodiments, F&?m, may refer to a frequency
domain (FD) channel correlation between channels sepa-
rated by A subcarriers, which may be estimated, for
example, based on PDSCH DMRS channels in the m-th

bundle. Thus, F, ,, may be calculated as
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Where Ijlm:k' may refer to the frequency domain channel
estimate at the k-th subcarrier in the m-th bundle, and K,
may refer to a set which includes subcarrier indexes that may

satisfy two conditions: (1) the subcarrier index corresponds
to a PDSCH DMRS location, and (2) both subcarrier index

k and subcarrier index k+A belong to the same bundle.

In one example embodiment, resources may be allocated
for a DMRS configuration type 1, the DMRS may start from
0-th subcarrier, and the bundle size may be configured to 2.
In this example, a set of possible subcarrier indexes corre-
sponding to the PDSCH DMRS locations 1n a bundle may be
{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22}. In some
embodiments, 1t may be convenient to drop the final entry.
Thus, for purposes of 1llustration, 1n this example embodi-
ment, the set of possible subcarrier indexes corresponding to
the PDSCH DMRS locations 1n a bundle may be {0, 2, 4, 6,
8, 10, 12, 14, 16, 18, 20}. Continuing this example, for K,
with A=2, since the subcarrier index k and subcarrier index
k+A both belong to the same bundle, K,={0, 2, 4, 6, 8, 10,
12, 14, 16, 18}. Sumilarly, for K, with A=20, K,,={0}. In
other embodiments, however, different values may be used
for the DMRS configuration type, values of A, and/or any
other parameters.

After Fﬁam 1s calculated for the m-th bundle, the final
frequency domain channel correlation F, may be given by

. 1 M (5)
Fo=—)> F,..
ﬂM;ﬁ,

where M may represent the total number of configured
bundles. One or more final frequency domain channel cor-
relations F, may then be used as input features to the neural
network which, 1n this example, may be implemented as an

MLP 304.

Feature Selection—Subset of Channel Correlations

In some embodiments, the total number of candidate
channel correlations F, may depend on the DMRS type
and/or the bundle size. In one example 1n which DMRS 1s
configured as type 1, and the bundle size 1s configured as 2,
the candidate set of A may be {2, 4, 6, 8, 10, 12, 14, 16, 18,
20}, such that the total number of possible A values may be
10. Since F, may be a complex number, the real and
imaginary part of F, may be separately treated as inputs to
the neural network. As a result, there may be a total of 20
candidate features such that real{F ﬂh},,imag{l"i A1, A=2, 4, 6,
8,10, 12, 14, 16, 18, 20.

However, 1n some embodiments, some of the candidate
features may be omitted while still providing acceptable
performance. By using only a subset of the set of possible
(e.g., available) mnput features, the number of mputs to the
neural network may be reduced. Depending on the 1mple-
mentation details, this may reduce the size, cost, complexity,
computational load, power consumption, storage space, and/
or the like of the neural network.

FIGS. 4A through 4E 1illustrate some examples of subsets
of channel correlations F,, that may be used as inputs to a
neural network 1n accordance with example embodiments of
the disclosure. In the embodiments illustrated in FIGS. 4A
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through 4E, shaded blocks indicate values of A for which
channel correlations F, may be calculated and applied as

inputs to a neural network, whereas unshaded blocks indi-
cate values of A for which channel correlations F, may be
omitted.

FIG. 4A 1llustrates an embodiment 1n which all available
channel correlations F A~ may be calculated and applied as
inputs to a neural network. FIG. 4B illustrates an embodi-
ment 1n which only some of the outermost channel corre-
lations F A (€.g., two end portions for which A=2, 4, 6, 16, 18,
20) may be calculated and applied as mputs to a neural
network. FIG. 4C illustrates an embodiment in which only
some of the left channel correlations F, (e.g., left portions
for which A=2, 4, 6, 8§, 10, 12) may be calculated and applied
as 1puts to a neural network. FIG. 4D 1illustrates an embodi-
ment 1n which only some of the right channel correlations F
(e.g., right portions for which A=10, 12, 14, 16, 18, 20) may
be calculated and applied as inputs to a neural network. FIG.
4E 1llustrates an embodiment in which only some of the
innermost channel correlations F, (e.g., middle portion for
which A=6, 8, 10, 12, 14, 16) may be calculated and applied
as mputs to a neural network.

In some embodiments, utilizing features that include only
two end portions of a set of FD channel correlations may
provide performance that may be close to that provided by
the full set of correlations while reducing the number of
input features to the neural network. For example, the
number of input features may be reduced from 20 features

(e.g., real{F,},imag{F,}, A=2, 4,6, 8, 10, 12, 14, 16, 18, 20,
to 12 features (e.g., real{F,}, 1mag{F&} A=2, 4, 6, 16, 18,
20) while still providing adequate performance. Thus, some
embodiments discussed below may be described in the
context of an implementation 1 which only the outermost
FD channel correlations (e.g., end portions) may be used,
but 1n other embodiments, the full set of available channel
correlations, or any subset thereof, may be used. Likewise,
any other types ol features such as DSE may be used.

Feature Selection—Input Features for Diflerent
DMRS Types

In some example embodiments configured for DMRS
type 1, the following 12 features: real{F,},imag{F,}, A=2,
4, 6, 16 18, 20 may be applied as imputs to a neural network
regardless of whether the bundle size 1s configured to 2 or 4.

In some example embodiments configured for DMRS
type 2, the DMRS may start from O-th subcarrnier, and the
bundle size may be configured to 2. In this configuration, a
set of all possible subcarrier indexes that may correspond to
the PDSCH DMRS locations in a bundle may be {0, 1, 6, 7,
12, 13, 18, 19}. In some embodiments, it may be convenient
to drop some of the subcarrier indexes and use {0, 6, 12, 18}
as the set of all possible subcarrier indexes. Thus, the
candidate A for DMRS type 2 may be {6, 12, 18}. The real
and 1maginary parts of F, may be treated separately. How-
ever, 1n this example, since there may only be a total of three
candidate A, it may not be beneficial or feasible to use only
a subset of the set of possible mput features, and all of the
candidate A may be included as mput features for DMRS
type 2. Thus, mm some example embodiments, the input
features for a neural network with DMRS type 2 may be
real{F ,},imag{F,}, A=6, 12, 18. This set of six features may
be applied as mputs to a neural network regardless of
whether the bundle size 1s configured to 2 or 4.

Table 1 illustrates some example mput features for a
neural network for different DMRS types based on the
example embodiments described above. These details are
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only provided for purposes of illustrating the principles of
this disclosure, and any other values may be used.

TABLE 1
DMRS Type Input Features
Type 1 real{F,}, imag{F,}, A = 2, 4, 6, 16, 18, 20
Type 2 real{F,}, imag{F,}, A =6, 12, 18

Multi-Layer Perceptron

FIG. 5 1llustrates an example embodiment of an MLP 1n
accordance with the disclosure. The MLP illustrated in FIG.
5 may be used, for example, to implement the MLP 304
illustrated 1n FIG. 3 for DMRS configured as Type 1 as
shown 1 Table 1. The MLP may include an input layer
including mput nodes 5A-1, 5A-2, . . ., 5A-12, each of
which may receive a respective one of the input FD channel
correlations real{F,},imag{F.,}, A=2, 4, 6, 16, 18, 20.

The MLP may also include an output layer including
output nodes 5C-1, 5C-2, . . ., 3C-5, each of which may

provide an output label corresponding to a probability of the
time oflset being a certain value. In the example illustrated
in FIG. 5, each output label may correspond to a probability
P of the time ofiset 1., being x such that P(l,=x) where
x&{-4, -2, 0, 2, 4}.

The MLP may further include a hidden layer including
hidden nodes 5B-1, 5B-2, . . ., 5B-N, each of which may
receive one or more mputs from one or more of the input
nodes 5A-1,5A-2, ..., 5A-12 and provide an output to one
or more of the output nodes 5C-1, 5C-2, . . ., 5C-5. In
vartous embodiments, a hidden layer may include any
number of nodes, e.g., 64 nodes.

FIG. 6 illustrates another example embodiment of an
MLP 1n accordance with the disclosure. The embodiment
illustrated 1n FIG. 6 may be used, for example, to implement
the MLP 304 illustrated 1n FIG. 3 for DMRS configured as
Type 2 as shown 1n Table 1. The MLP may include an input
layer including input nodes 6A-1, 6A-2, ..., 6A-6, cach of
which may receive a respective one of the mput FD channel
correlations real{F,},imag{F,}, A=6, 12, 20.

The MLP may also include an output layer including
output nodes 6C-1, 6C-2, . . ., 6(C-5, each of which may
provide an output label corresponding to a probability of the
time oflset being a certain value. In the example illustrated
in FIG. 6, each output label may correspond to a probability
P of the time ofifset 1., being x such that P(1,,,=x) where
x&{-4, -2, 0, 2, 4}.

The MLP may further include a hidden layer including
hidden nodes 6B-1, 6B-2, . . . , 6B-N, each of which may
receive one or more mputs from one or more of the input
nodes 6 A-1, 6A-2, ..., 6A-6 and provide an output to one
or more of the output nodes 6C-1, 6C-2, . .., 6C-5.

For purposes of 1illustrating the principles of the disclo-
sure, some embodiments have been described with example
implementation details, but the principles may be realized
with any other implementation details. For example, any
type ol neural network or other logic based on machine
learning such as CNN, DNN, and/or the like may be used as
mentioned above. In embodiments implemented with an
MLP or other neural network, any number of layers includ-
ing hidden layers may be used, and any number of nodes
may be used in any layer. Outputs of the logic based on
machine learning may be implemented as continuous out-
puts (e.g., for regression), discrete outputs, or hybrid com-
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binations thereof. In some embodiments in which timing
may be implemented 1n units of samples, an implementation
with discrete outputs may be beneficial because one or more
values may already be 1n discrete form.

As another example, any sets and/or subsets of 1nput
features may be applied to a neural network. For example,
some embodiments may have been described as using 12 FD
channel correlations corresponding to A=2, 4, 6, 16, 18, 20
(for DMRS type 1), however, other subsets such as A=2, 4,
6, 8, 14, 16, 18, 20 or A=2, 4, 18, 20 may be used, as well
as other subsets of all, middle, ends, right side, left side,
and/or the like.

Time Offset Estimation

In some embodiments, a learning-based STR algorithm 1n
accordance with the disclosure may be formulated as a
classification problem. For example, in the embodiments
illustrated 1n FIG. 5 and FIG. 6, a neural network (e.g.,
MLP) may have an output layer with 5 nodes corresponding
to time offsets of —4, -2, 0, 2, or 4, and thus, providing a total
of 3 classes. (In some embodiments, these time offsets may
be 1mplemented 1n terms of sample clock cycles.) In
embodiments 1mplemented as a classification problem, a
cross-entropy cost function may be used and a soft-max
function may be applied after the nodes in the output layer.
As a result, the output of the MLP may correspond to the
probability that the input feature belongs to each class, e.g.,
the probability that the time offset equals —4, -2, 0, 2, or 4.

In some embodiments, the final estimated time offset may
be obtained using a mean combining technique in which the
final time offset may be estimated by averaging one or more
of the output time offsets with a weight that may equal the
output of the MLP network as follows

Iro = Z (6)

xe{—4,-2,0,2.4}

P(ZTQ = .JL‘)-JL‘

where P may represent a probability of the time offset 1,
being a certain value Xx.

In some embodiments, the final estimated time offset may
be obtained using a maximum combining technique 1n
which the final time offset may be estimated as the time
offset label that corresponds to the largest output of the MLLP
network as follows

?m = argmax P(lrp =x). (7)
xe{—4,-2,0,2.4}

Although some example embodiments may have been
1llustrated as having five output labels corresponding to time
offsets of —4, -2, 0, 2, 4 samples, any number of labels
having any values of time offsets covering smaller or larger
ranges may be used. For example, some embodiments may
implement three output labels corresponding to time offsets
—2, 0, 2, five output labels corresponding to time offsets —8,

—4. 0, 4, 8, and/or the like.

Combined Estimates

In some embodiments, an estimated time offset generated
by logic based on machine learning may be used to directly
adjust the timing window of an FFT or other transform.
However, 1n some embodiments, it may be beneficial to
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combine timing estimates from multlple sources. For
example, depending on a range of time offsets that may be
used for a specilic implementation, a neural network may
use a relatively large number of labels to cover the range
with adequate resolution (e.g., 17 output labels correspond-
ing to time offsets —16, —14, —-12, -10, -8, —6, -4, -2, 0, 2,
4, 6, 8, 10, 12, 14, 16). This, 1n turn, may involve the use of
a relatively large amount of resources for the neural network
such as memory, processing resources, training resources,
and/or the like.

In some embodiments, an estimated time offset generated
by tramed logic may be combined with another timing
estimate, for example, an estimated FAP based on a PDP
from one or more channel estimates. Depending on the
implementation details, this type of combination may enable
an STR system to cover a wide range of time offsets while
reducing the amount of resources used by the tramned logic.

FIG. 7 1llustrates an example embodiment of a system for
adjusting the timing of an FFT or other transform window 1n
accordance with the disclosure. The embodiment 1llustrated
in FIG. 7 may include a first processing path having a feature
extractor 702 and trained logic 704, a second processing
path including a PDP processor 706 and an STR block 708,
and a window processor 710.

In some embodiments, the feature extractor 702 and
trained logic 704 may operate 1n a manner similar to those
1in the embodiment 1llustrated 1n FIG. 2 to implement learn-
ing-based STR. The feature extractor may receive one or
more FD channel estimates H,' based on a reference signal
that may be transmitted relatively frequently such as
PDSCH DMRS. The feature extractor 702 may generate one
or more 1mput features g that may be applied to the trained
logic 704 which may generate an estimated time offset 1.,.

The PDP processor 706 may generate PDP information
from one or more FD channel estimates H,' based on a
reference signal that may be transmitted relatively infre-
quently, for example, a periodic wideband reference signal
such as SSB or TRS. The STIR block 708 may use the PDP
information to estimate an FAP.

The window processor 710 may combine the estimated
FAP and estimated time offset 1., to adjust the timing
window of an FFT or other transform.

In the embodiment 1llustrated 1n FIG. 7, the trained logic
704 may be implemented with relatively small neural net-
work (e.g., MLP) that may be trained to provide a relatively
small number of output labels (e.g., five labels that may
represent time offsets 1,,=—4, =2, 0, 2, 4), so the maximal
time offset the learning-based STR can compensate may be
+/—4. However, these relatively small number of output
labels may be combined in a synergistic manner with the
underlying PDP based STR algorithm to provide complete
reference timing over a wider range of time offsets. More-
over, because the feature extractor 702 and trained logic 704
may operate based on a reference signal that may be
transmitted relatively frequently such as PDSCH DMRS,
they may track relatively fast timing changes that may occur
between transmissions of the wideband reference signals
such as SSB or TRS.

FIG. 8 1s a timing diagram 1illustrating the operation of an
embodiment of a system that may combine timing estimates
from multiple sources 1n accordance with the disclosure. The
timing diagram shown 1n FIG. 8 may 1llustrate, for example,
some aspects of the operation of the system 1llustrated in
FIG. 7.

FIG. 8 illustrates time periods for two different STR
algorithms. For example, the PDP based STR implemented
by the PDP processor 706 and STR block 708 may operate
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on time period T,, while the learning-based STR imple-
mented by the feature extractor 702 and trained logic 704

may operate on a time period T,.
Time period T, for PDP based STR may depend on the

configurations of the period of the underlying reference
signal. For example, for an SSB reference signal with a
period 10 ms, the PDP based STR may have a period T,=10
ms, which may correspond to 80 slots for subcarrier spacing
(SCS) set to 120 KHz. However, i the time offset driits
during the period between transmissions of the wideband
reference signal, e.g., due to large sampling clock error, PDP
based STR algorithm may be unable to track the fast time
oflset drift completely because the next reference signal has
not been transmitted yet.

To track the fast timing drift, the learning-based STR may
utilize channel estimates from a PDSCH DMRS reference
signal which may be transmitted more frequently (e.g.,
having a shorter period T, ). In some embodiments, PDSCH
DMRS can be transmitted 1n every slot in which PDSCH
data 1s transmitted. In some embodiments, the period T, of
the learning-based STR may be implemented as a config-
urable parameter that may be set based on the anticipated
speed of timing driit the system may be configured to track.
For example, 1f the fastest timing driit the system may be
configured to track 1s 1 sample/ms, the period T, of the
learning-based STR may be set to T,=1 ms, which may
correspond to 8 slots if SCS 1s set to 120 KHz.

Iterative Pruning

In some embodiments, 1terative pruming may be used to
reduce the number of parameters 1n trained logic, e.g., the
number of weights 1n a neural network. Depending on the
implementation details, this may reduce the cost, complex-
ity, processing time, storage space, IC area, power consump-
tion, and/or the like of the neural network and/or associated
apparatus.

In an example embodiment of an iterative pruning process
in accordance with the disclosure, at each iteration, training
may be conducted with a mask applied to the weights and/or
gradients of the neural network, which may force some
clements of the weights to zero 11 those elements are smaller
than the multiplication of a predefined threshold and the
standard deviation of some or all of the weights. The mask
set may be enlarged after one or more iterations, and the
output weights in the last iteration may be used as the final
output weights for the trained neural network.

User Equipment

FIG. 9 illustrates an example embodiment of a user
equipment (UE) 1 accordance with the disclosure. The
embodiment 900 illustrated 1n FIG. 9 may include a radio
transceiver 902 and a controller 904 which may control the
operation of the transceiver 902 and/or any other compo-
nents 1n the UE 900. The UE 900 may be used, for example,
to 1mplement any of the functionality described in this
disclosure including learning-based STR, PDP based STR,
feature extraction, FD channel correlation, neural network
training and/or inference, estimation of time offsets, com-
bining of time estimates and/or offsets and/or the like.

The transceiver 902 may transmit/receive one or more
signals to/from a base station, and may include an interface
unit for such transmissions/receptions. For example, the
transceiver 902 may receive PDSCH signals and/or refer-
ence signals such as SSB, TRS, PDSCH DMRS and/or the

like from a base station.
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The controller 904 may include, for example, one or more
processors 906 and a memory 908 which may store mnstruc-
tions for the one or more processors 906 to execute code to
implement any of the functionality described 1n this disclo-
sure. For example, the controller 904 may be used to
implement learning-based STR, PDP based STR, feature
extraction, FD channel correlation, neural network training
and/or inference, estimation of time oflsets, combining of
time estimates and/or oflsets and/or the like.

Base Station

FIG. 10 illustrates an example embodiment of a base
station 1n accordance with the disclosure. The embodiment
1000 1llustrated 1n FIG. 10 may include a radio transceiver
1002 and a controller 1004 which may control the operation
of the transcerver 1002 and/or any other components 1n the
base station 1000. The base station 1000 may be used, for
example, to implement any of the functionality described 1n
this disclosure including learning-based STR, PDP based
STR, feature extraction, FD channel correlation, neural
network training and/or inference, estimation of time oflsets,
combining of time estimates and/or oflsets and/or the like.

The transceiver 1002 may transmit/receive one or more
signals to/from a user equipment, and may include an
interface unit for such transmissions/receptions. For
example, the transceiver 1002 may transmit PDSCH signals
and/or reference signals such as SSB, TRS, PDSCH DMRS
and/or the like to a UE.
The controller 1004 may include, for example, one or
more processors 1006 and a memory 1008 which may store
instructions for the one or more processors 1006 to execute
code to implement any of the base station functionality
described 1n this disclosure. For example, the controller
1004 may be used to implement learning-based STR, PDP
based STR, feature extraction, FD channel correlation, neu-
ral network traiming and/or inference, estimation of time
oflsets, combining of time estimates and/or oflsets and/or the
like.

In the embodiments illustrated 1n FIGS. 9 and 10, the
transceivers 902 and 1002 may be implemented with various
components to recerve and/or transmit RF signals such as
amplifiers, filters, modulators and/or demodulators, A/D
and/or DA converters, antennas, switches, phase shifters,
detectors, couplers, conductors, transmission lines, and/or
the like. The controllers 904 and 1004 may be implemented
with hardware, software, and/or any combination thereof.
For example, full or partial hardware implementations may
include combinational logic, sequential logic, timers, coun-
ters, registers, gate arrays, amplifiers, synthesizers, multi-
plexers, modulators, demodulators, filters, vector proces-
sors, complex programmable logic devices (CPLDs), field
programmable gate arrays (FPGAs), application specific
integrated circuits (ASICs), systems on chip (SOC), state
machines, data converters such as ADCs and DACs, and/or
the like. Full or partial software implementations may
include one or more processor cores, memories, program
and/or data storage, and/or the like, which may be located
locally and/or remotely, and which may be programmed to
execute 1nstructions to perform one or more functions of the
controllers. Some embodiments may include one or more
CPUs such a complex mstruction set computer (CISC)
processors such as x86 processors and/or reduced mstruction
set computer (RISC) processors such as ARM processors,
and/or the like, executing instructions stored 1n any type of
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memory, graphics processing units (GPUs), neural process-
ing units (NPUs), tensor processing units (1PUs), and/or the

like.

Additional Embodiments

FIG. 11 illustrates an embodiment of a method for adjust-
ing the timing of a transform window 1n accordance with the
disclosure. The method may begin at operation 1102. At
operation 1104, the method may generate an estimated time
oflset based on a reference signal 1n a communication
system. At operation 1106, the method may adjust a trans-
form window in the communication system based on the
estimated time oflset, wherein the estimated time oflset may
be generated based on machine learning. The method may
end at operation 1108.

In the embodiment illustrated 1n FIG. 11, the illustrated
components and/or operations are exemplary only. Some
embodiments may involve various additional components
and/or operations not illustrated, and some embodiments
may omit some components and/or operations. Moreover, in
some embodiments, the arrangement ol components and/or
temporal order of the operations may be varied. Although
some components may be illustrated as individual compo-
nents, 1 some embodiments, some components shown
separately may be integrated into single components, and/or
some components shown as single components may be
implemented with multiple components.

The embodiments disclosed herein may be described in
the context of various implementation details, but the prin-
ciples of this disclosure are not limited to these or any other
specific details. Some functionality has been described as
being implemented by certain components, but in other
embodiments, the functionality may be distributed between
different systems and components 1n different locations. A
reference to a component or element may refer to only a
portion of the component or element. The use of terms such
as “first” and “second” 1n this disclosure and the claims may
only be for purposes of distinguishing the things they
modily and may not indicate any spatial or temporal order
unless apparent otherwise from context. A reference to a first
thing may not mmply the existence of a second thing.
Moreover, the various details and embodiments described
above may be combined to produce additional embodiments
according to the mventive principles of this patent disclo-
sure. Various organizational aids such as section headings
and the like may be provided as a convenience, but the
subject matter arranged according to these aids and the
principles of this disclosure are not defined or limited by
these organizational aids.

Since the mmventive principles of this patent disclosure
may be modified 1n arrangement and detail without depart-
ing from the iventive concepts, such changes and modifi-
cations are considered to fall within the scope of the fol-
lowing claims.

The 1nvention claimed 1s:

1. A method comprising;

generating a first estimated time oflset based on a first
reference signal periodically recurring with a first
period 1n a communication system, wherein the first
estimated time oflset 1s generated based on machine
learning;

generating a second estimated time oflset based on a
second reference signal 1n the communication system
periodically recurring with a second period that 1s
longer than the first period; and
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adjusting a transform window 1n the communication
system based on a combination of the first estimated
time oflset and the second estimated time oflset.

2. The method of claim 1, wherein generating the first
estimated time oflset comprises applying the machine leamn-
ing to one or more channel estimates derived from the {first
reference signal.

3. The method of claim 1, wherein generating the first
estimated time oflset comprises:

extracting one or more features from one or more channel

estimates derived from the first reference signal; and
generating the first estimated time offset based on the one
or more features.

4. The method of claim 3, wherein extracting the one or
more features comprises determining a correlation between
a first channel and a second channel.

5. The method of claim 4, wherein the correlation com-
prises a frequency domain correlation between the first
channel and the second channel.

6. The method of claim 4, wherein extracting the one or
more features comprises extracting a subset of a set of
teatures of the one or more channel estimates.

7. The method of claim 6, wherein the set of features
comprises a set of frequency domain channel correlations.

8. The method of claim 7, wherein:

the set of frequency domain channel correlations are

calculated on a per-bundle basis based on frequency
domain channels separated by bundle-specific subcar-
riers, wherein each bundle includes a pre-determined
number of bundle-specific subcarriers;

the set of frequency domain channel correlations are

based on channel correlations corresponding to a series
of bundles of different numbers of bundle-specific
subcarriers; and

the subset comprises frequency domain channel correla-

tions based on one or more highest number of bundle-
specific subcarriers and one or more lowest number of
bundle-specific subcarriers.
9. The method of claim 3, wherein a neural network
generates the first estimated time oifset based on the one or
more features.
10. The method of claim 3, wherein generating the first
estimated time oflset based on the one or more features 1s
performed, at least 1n part, by a neural network.
11. The method of claim 10, wherein the neural network
generates one or more classification outputs based on the
one or more features.
12. The method of claim 11, wherein generating the first
estimated time oflset comprises combining two or more
classification outputs from the neural network.
13. A method comprising:
estimating a time offset 1n a communication system based
on a first reference signal periodically recurring with a
first period, wherein the time offset 1s estimated using
a machine learning process;

estimating a first arrival path based on a second reference
signal 1n the communication system that 1s transmitted
periodically with a second period longer than the first
period; and

adjusting a transform window 1n the communication

system based on a combination of the time oflset and
the first arrival path.

14. The method of claim 13, wherein estimating the time
oflset based on the first reference signal comprises:

generating one or more channel estimates based on the

first reference signal;
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extracting one or more features from the one or more
channel estimates; and
generating, by the machine learning process, the time

offset based on the one or more features.
15. The method of claim 14, wherein: d

the one or more channel estimates provide a set of
frequency domain channel correlations between chan-
nels separated by a pre-determined number of subcar-
riers; and

extracting the one or more features comprises extracting,

a subset of the set of frequency domain channel cor-
relations.

16. The method of claim 15, wherein a number of
candidate frequency domain channel correlations 1s based on
a signal configuration of the first reference signal and a
resource block bundling configuration.

17. The method of claim 14, wherein the machine learning
process 1s based on a neural network.
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18. An apparatus comprising;:

a lfeature extractor configured to extract one or more
features from one or more channel estimates based on
a first reterence signal periodically recurring with a first
period;

trained logic configured to generate a first estimated time

offset based on the one or more features;

a timing recovery block configured to generate a second
estimated time oflset based on a second reference
signal periodically recurring with a second period that
1s longer than the first period; and

a window processor configured to adjust a transform
window based on a combination of the first estimated
time offset and the second estimated time oflset.

19. The apparatus of claim 18, wherein:

the feature extractor comprises a channel correlator; and

the trained logic comprises a neural network.
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