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FLEXIBLE PHYSICAL FUNCTION AND
VIRTUAL FUNCTION MAPPING

CROSS-REFERENCE TO RELATED
APPLICATIONS

Under 35 U.S.C. § 120, this application 1s a continuation
of U.S. patent application Ser. No. 16/190,099, entitled

“Flexible Physical Function and Virtual Function Mapping,”
filed on Nov. 13, 2018, which 1s a continuation of U.S. patent
application Ser. No. 15/425,746, entitled “Flexible Physical
Function and Virtual Function Mapping,” filed on Feb. 6,
2017, which 1s a continuation of U.S. patent application Ser.
No. 14/697,307, entitled “Flexible Physical Function and
Virtual Function Mapping,” filed on Apr. 27, 2013, all of
which are incorporated by reference herein in their entireties
for all purposes.

TECHNICAL FIELD

This disclosure generally relates to integrated circuits.
More specifically, the disclosure relates to a flexible map-
ping between physical functions and virtual functions.

DESCRIPTION OF THE RELATED
TECHNOLOGY

Network Functions Virtualization (NFV) allows for a
plattorm 1ncluding virtualized functions. In some NFV
platforms, a processor may interface with a co-processor
acceleration circuit providing additional functionality. The
processor may be running multiple virtual machines (VMs),
cach accessing the additional functionality 1n the co-proces-
sor acceleration circuit by using a mapping ol physical
tfunctions (PFs) and virtual functions (VFs). The mapping
between PFs and VFs may allow the single co-processor
acceleration circuit to be perceived as multiple resources
available to the VMs.

In some devices, such as programmable devices providing
the additional functionality for the co-processor accelera-
tion, the functionality may be changed. Accordingly, a

designer may wish for a more flexible mapping between PFEs
and VFs.

SUMMARY

The subject matter described herein provides a flexible
mapping between physical functions and virtual functions in
an environment including virtual machines.

Physical functions (PFs) may provide an interface to
particular functionality. Virtual functions (VFs) may provide
an 1nterface for virtual machines (VMs) to access the func-
tionality by mapping the VFs to PFs. The PF to VF mapping
may be flexible to allow for particular scenarios to 1mple-
ment better resource utilization.

These and other features will be presented 1n more detail
in the following specification and the accompanying figures,
which 1illustrate by way of example.

BRIEF DESCRIPTION OF THE

DRAWINGS

FIG. 1 1illustrates an example of a co-processor environ-
ment 1n accordance with some 1mplementations.

FIG. 2 illustrates an environment providing flexible PF-
VF mapping in accordance with some implementations.

FIG. 3 illustrates a PF-VF mapping 1n accordance with
some 1mplementations.
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FIG. 4 illustrates another PF-VF mapping i accordance
with some 1implementations.

FIG. 5 1s a flowchart illustrating a process tlow for a
flexible PF-VF mapping in accordance with some imple-
mentations.

FIG. 6 1llustrates a technique for implementing a pro-
grammable chip.

FIG. 7 illustrates one example of a computer system.

DETAILED DESCRIPTION OF PARTICULAR
EMBODIMENTS

FIG. 1 illustrates an example of a co-processor environ-
ment 1n accordance with some implementations. The com-
ponents 1n the co-processor environment may allow for a
physical device to appear as multiple devices for use in
multiple virtual machines (VMs). Each VM may emulate a
computer system that can access the components in the
CO-processor environment.

For example, 1n FIG. 1, processor 105 may be a processor
circuit (or multiple processor circuits operating together)
running four virtual machines (VMs) 110q, 1105, 110¢, and
110d. VMs 110a-d may be able to access function blocks
130a and 1306 in co-processor 135 with interface 120.
Interface 120 may be a Peripheral Component Interconnect
Express (PCle) interface used to send and receive data
between processor 105 and co-processor 135. The data
transmitted on interface 120 may be provided to and from
processor 1/0 logic 115 and co-processor /O logic 125.

In some implementations, processor I/O logic 115 and
co-processor 1/0 logic 125 may include a variety of logical
functionality allowing Single Root I/O Virtualization (SR-
IOV), which may allow for PCle devices on the PCle
interface to appear as multiple separate physical PCle
devices. For example, processor 1/0O logic 115 may include
a PCle SR-My root. Co-processor 1/O logic 125 may include
a variety of logic including a PCle SR-IOV endpoint and
virtualization management logic. Accordingly, components
within co-processor 135 (i.e., at the endpoint of the SR-IOV
PCle interface) may appear as multiple separate physical
PCle devices to VMs 110a-d (i.e., at the root of the SR-IOV
PCle mterface). As a result, each VM 110a-d may be able to
emulate a computer system with co-processor 135.

For example, function block 130a may appear as four
separate function blocks to VMs 110a-d despite only having
a single, physical instantiation. As another example, 1f
function block 130q provides logic implementing a network
interface controller (NIC), then 1t may be presented as four
separate NICs, one for each of VMs 110a-d. The NIC may
be a full-featured and configurable PCle function that may
be discovered, managed, etc. just like a physical PCle
device. A physical function (PF) implemented by co-pro-
cessor 135 may provide access to the NIC. Each of the
presented four separate NICs may be a virtual function (VF)
of the full-featured NIC that may receive and provide data,
but may lack the full-featured aspect of the PF. The VF
implemented by co-processor 135 may allow for a VM to
access a PF and the physical PCle device through the VF.
Likewise, function block 1306 may also be presented as four
separate VFs to VMs 110a-1104.

Accordingly, each PF can be an interface to a particular
function (e.g., NIC for function block 130a) with multiple
VFs as interfaces for the VMs to use the particular functions.
In one example, function block 130q¢ may provide the
functionality of a NIC as a PF with up to 16 VFs for the NIC
functionality for VMs to utilize, while function block 1305
may provide a different functionality with a different number
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of VFs (e.g., 128) for VMs to utilize. As a result, a mapping
may include a function block (e.g., function block 130a as
a NIC) corresponding to a PF, the PF may correspond to
VFs, with each VF corresponding to a VM.

In some systems, the mapping between PFs and VFs may
be fixed. For example, 1f function block 130qa 1s a NIC, then
cach VF mapped to a corresponding PF associated with
function block 130a may represent a NIC. However, 1n
systems using programmable devices (e.g., field program-
mable gate arrays, complex programmable logic devices,
etc.), the functionality corresponding to the PFs may be
changed. For example, function block 130a may be recon-
figured from a NIC to an Internet Small Computer System
Interface (1SCSI). Accordingly, the functionality mapped
with the PF may change, and therefore, the number of VFEs
or the VFs associated to VMs 110a-1104 may change, for
example, by having a different subset of VMs 110a-110d be
provided access to function block 130a. Additionally, new
VMs may be started which may need VFs to map to new
PFs, and therefore, be provided access to certain function-
ality. Moreover, new function blocks may be configured 1n
co-processor 135 and may need to be associated with
corresponding PFs and VFs. Accordingly, a flexible PF-VF
mapping may be useful in some systems.

A flexible PF-VF mapping also may allow for a better
balanced datatlow. For example, any combination of func-
tionality provided by co-processor 135 may be mapped to
particular PFs and the PFs may be mapped to VFs to provide
flexible mappings. Accordingly, some subset of functional-
ity provided by co-processor 135 may be provided by a first
PF and a second subset of functionality may be provided by
a second PF, with some (or none) overlap of functionality
between the two PFs. For example, VFs may be mapped to
PFs based on characteristics of the VMs. As another
example, each PF may be associated with different clients
and each VF of the VMs of each client may be mapped to
a PF such that each client may have its own PF. This type of
mapping may allow more control over datatlow because one
PF (associated with one client) may be provided a higher
priority to access the function blocks within co-processor
135 over another PF (associated with a second client). As a
result, rather than representing specific functionality, each
PF may represent individual clients or groups of clients.

FIG. 2 illustrates an environment providing flexible PF-
VF mapping in accordance with some implementations. In
FIG. 2, co-processor 1/0 logic 125 includes management
logic for managing the relationships between function
blocks, PFs, VFs, and VMs. For example, in FIG. 2, PF0
(1.e., a physical function) may be associated with function
block 130q and PF1 (1.e., another physical function) may be
associated with function block 1305. Accordingly, PF0 may
provide the functionality provided by function block 130q to
the VFs mapped to 1t. Likewise, PF1 may provide the
functionality provided by function block 1306 to the VFs
mapped to 1t. In FIG. 2, VF0-4 may be virtual functions for
VMs 110a-d to communicate with 1n order to access func-
tion blocks 130a or 13056. That 1s, VF0-4 may be mapped to
PF0 and PF1 to allow for VMs 110a-d to use the logic
provided by function blocks 130a and 13054. For example,
VM 110a may connect to 2 VFs: VF0 and VF1. VF0 may
connect to PF0. VF1 may connect to PF1. Since PFO
provides access to the logic of function block 130q and PF1
provides access to the logic of function block 13056, VM
110a may have access to both function blocks 130a and
1305.

As previously discussed, a flexible PF-VF mapping may
allow for different setups for the mappings. For example,
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characteristics of the VMs (e.g., being associated with a
particular customer) may be used for the mapping. FIG. 3
illustrates a PF-VF mapping in accordance with some 1mple-
mentations. In FIG. 3, the PF-VF mapping includes VMs
110a and 1105 of customer 305q and VMs 110¢ and 1104 of

customer 3055H. That 1s, different customers of the co-

processor environment may have VMs on the same proces-
sor 105. Each of VMs 110a-d map to a corresponding VFO,

VF1, VF3, and VF4. VF0 and VF1 map to PF0. VF3 and
VF4 map to PF1. Both PF0 and PF1 map to function blocks
130a and 13056. Accordingly, 1n the mapping of FIG. 3, each
VM may be provided the functionality provided by the logic
of function blocks 130a and 1305/ because the function
blocks both map to each of PF0 and PF1. Since each of
customers 305a and 3056 have their VMs mapped to VFs
mapped to specific PFs (e.g., all of the VFs for the VMSs of
customer 3054 map to PF0), the PFs can be associated with
a priority order (e.g., requests recerved at PF0 may have a

higher prionity, and therefore serviced prior to requests
received at PF1) and all of the VMSs of the customers can be
organized 1n terms of priority by having the PFs ordered 1n
a particular priority order. In some implementations, the
priority may be managed 1n higher management or orches-
tration layers.

In some 1implementations, when new VMs of a customer
are instantiated (e.g., when another computer system needs
to be emulated), then the VMs may be mapped to newly-
created VFs and the newly-created VFs may be mapped to
the PFs for the customer. For example, 1n FIG. 3, 1f a new
VM of customer 3034 1s mstantiated, then 1t may be mapped
to VF2, which may be mapped to PF0, and therefore also
provided the functionality of function blocks 130a and 1305.
If a new VM of customer 3055 1s instantiated, then it may
be mapped to a new VFE, which may then be mapped to PF1
to also provide the functionality of function blocks 1304 and
13056 to the new VM.

In some implementations, the virtualization management
logic of co-processor I/O logic 125 may recognize that VE2
1s associated with customer 3054 and then assign it to PF0.
In some implementations, co-processor /O logic 125 may
receive a customer identifier (e.g., each customer may have
a unique 1dentification that may be used with all of 1ts VMs)
data from processor 105 indicating that a newly-instantiated
VM associated with customer 3054 has been instantiated.
Accordingly, co-processor 1/0 logic 125 may then assign 1t
to a new VF and assign that new VF to the correct PF. As a
result, the virtualization management logic may track which
PFs and VFs are assigned to each other.

In some i1mplementations, each PF may represent all
capabilities of co-processor 135. For example, 11 co-proces-
sor 135 1s a programmable device (e.g., an FPGA), then it
may 1include hard logic functionality (1.e., fixed circuitry
providing fixed functionality), soft logic functionality (i.e.,
logic configured within the FPGA to provide tunctionality),
and 1nputs/outputs (I/Os) as resources that may be available
to VMs that are mapped to VFs mapped to a PF.

In some 1implementations, each PF may represent a com-
bination of resources on co-processor 135. For example, PF0
may provide 100% of the available functionality of co-
processor 135 and PF1 may provide 50% of the available
functionality of co-processor 135. Accordingly, 1n the envi-
ronment of FIG. 3, each VM of customer 3054 may be able
to access the full range of available functionality of co-
processor 135, but each VM of customer 3055 may be able
to access only a subset of the functionality available to the
VMs of customer 305a.
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Accordingly, each PF may represent any combination of
capabilities of co-processor 135 and any VF mapped to the
PFs may have the combination of capabilities of the corre-
sponding PF 1t 1s mapped to. For example, if function block
130a provides functionality for a NIC and function block
13056 provides functionality for 1SCSI, then a VM needing
access to both function blocks 130q and 1306 may be
mapped to a VF mapped to a PF mapped to both function-
alities.

In some 1mplementations, the logic provided by function
blocks 130a and 1306 may change. For example, 1I co-
processor 135 1s an FPGA (or other programmable device),
then function block 130a may be reconfigured from one
functionality to another functionality. That 1s, co-processor
135 may be partially reconfigured such that the functionality
of function block 1304 may be changed while the function-
ality of function block 1306 remains the same and 1s still
accessible to VMs.

As an example, FI1G. 4 illustrates another PF-VF mapping
in accordance with some implementations. In FIG. 4, VM
110a 1s mapped to VFO0 (as indicated by association 405).
VFO0 1s mapped to PF0, which 1s mapped to function block
130a. Function block 130a may provide the functionality for
a cryptography algorithm. However, function block 130a
may be reconfigured to provide a compression algorithm
(and no longer provide the cryptography algorithm). The
virtualization management logic may receive data indicating,
that function block 1304 has begun reconfiguration from the
cryptography algorithm to the compression algorithm, and
therefore, may block all traflic (1.e., requests to or transmis-
sions from) associated with function block 130a as function
block 130a 1s being reconfigured to provide the compression
algorithm. When function block 130q has finished being
reconfigured, the traflic may be allowed to resume. For
example, the virtualization management logic may inform
VMs that function block 130q has finished reconfiguring,
and therefore, new requests may be provided.

In some implementations, the PF-VF mappings may
change as a result of reconfiguring a function block (e.g.,
reconfiguring function block 130a from the cryptography
algorithm to the compression algorithm). For example, 1n
FIG. 4, VM 110a may be restricted from accessing the
compression algorithm, but allowed to access the cryptog-
raphy algorithm. Accordingly, in FIG. 4, while function
block 130a provides the cryptography algorithm, the map-
pings may be appropriate. However, when function block
130a 1s reconfigured to the compression algorithm, the
virtualization management logic may change the mappings,
for example, by removing association 4035 such that VM
110a no longer has access to a VF mapped to PF0 providing
access to Tunction block 130a when it 1s configured with the
compression algorithm. In another example, association 406
may be removed such that VFO0 1s no longer mapped to PFO,
and therefore, ensuring that VM 110a also no longer has
access to function block 130aq. In other mappings, the
association between a PF and the function block itself may
be updated (e.g., added or removed).

As a result, the mappings between VMs to VFs, VFs and
PFs, and PFs and function blocks may be added or removed.
For example, imn FIG. 4, association 405 representing a
mapping of VM 110a to VF0 may be removed and a new
mapping of VM 110q to another VF may be generated such
that VM 110q 1s provided access to another function block
(e.g., FB 13054 1nstead of FB 1304 by mapping VM 1104 to
VE2 or VF3). In some implementations, a new VF can be
generated and VM 110aq may be mapped to the new VF, or
VM 110a may be mapped to an existing VF. In another
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example, association 406 may be removed and a new
mapping of VFO0 to another PF (e.g., PF1) may be provided
to give VM 110a access to function block 13054. In another
example, the mapping between PF0 to function block 130q
itsell may be removed and a mapping between PFO to
function block 1305 may be generated. In this scenario, both
VM 110a and VM 11056 may no longer have access to
function block 130aq. In some implementations, multiple
mappings may be adjusted. For example, the mappings
between VFs and PFs, and PFs to function blocks may both
be modified. Accordingly, mappings between VMs and VFs,
VFs and PFs, and PFs and function blocks may be removed
and/or added.

In some implementations, certain customers and their
corresponding VMs may be restricted from certain function-
alities. Accordingly, as a function block 1s reconfigured, the
virtualization management logic may recognize that a map-
ping ol a VM to the function block (including the VM to VF
and VF to PF mappings) may need to be updated, for
example, by deleting an association such that the VM no
longer has access to the particular function block.

In some 1implementations, extra access controls may be
implemented within the virtualization management logic,
function blocks, or both. The access controls may allow
different VFs mapped to the same PF to have access to
different functionality of co-processor 133. For example, 1f
a Tunction block provides both packet processing and traflic
management logic, one VF may be allowed access to both
packet processing and traflic management logic while
another VF may be allowed only access to the packet
processing logic even though 1t may be mapped to a PF
providing access to both the packet processing and traflic
management logic.

FIG. 5 1s a flowchart illustrating a process tlow for a
flexible PF-VF mapping in accordance with some imple-
mentations. In method 500, at block 510, a virtualization
management circuit may receive data indicating virtual
machines to be provided access to functionality i1mple-
mented 1 function blocks. For example, a user may specily
a particular mapping of VMs 1n a graphical user interface
(GUI) 1 a software-based electronic design automation
(EDA) tool implemented by the processor circuit of FIG. 7
and the appropriate mappings between the VMs, VFEs, PFs,
and function block may be established. As another example,
the virtualization management circuit may receive data from
processor 105 indicating VMs, characteristics (e.g., cus-
tomer 1dentifier), analyze function blocks, etc. At block 520,
the virtualization management circuit may establish map-
ping to provide the virtual machines access to functionality
implemented 1n the function blocks.

In some 1implementations, the techniques disclosed herein
may be implemented with one or more programmable chips.
For example, co-processor 135 may be implemented within
a field programmable gate array (FPGA) or other program-
mable chip. FIG. 6 1llustrates a technique for implementing
a programmable chip. An input stage 1301 receives selection
information typically from a user for logic such as a pro-
cessor core as well as other components to be implemented
on an electronic device. In one example, the mput received
1s 1n the form of a high-level language program. A generator
program 1305 creates a logic description and provides the
logic description along with other customized logic to any of
a variety ol synthesis tools, place and route programs, and
logic configuration tools to allow a logic description to be
implemented on an electronic device.

In one example, an input stage 1301 often allows selection
and parameterization of components to be used on an
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clectronic device. The input stage 1301 also allows configu-
ration of hard coded logic. In some examples, components
provided to an mput stage include intellectual property
functions, megatunctions, and intellectual property cores.
The input stage 1301 may be a graphical user interface using
wizards for allowing eflicient or convenient entry of infor-
mation. The input stage may also be a text interface or a
program reading a data file such as a spreadsheet, database
table, or schematic to acquire selection information. The
input stage 1301 produces an output containing information
about the various modules selected. At this stage, the user
may enter security information about individual components
that needs to be 1solated. For example, different levels of
component security and which components are allowed to
communicate with each other may be entered.

In typical implementations, the generator program 1305
can 1dentily the selections and generate a logic description
with information for implementing the various modules. The
generator program 1305 can be a Perl script creating HDL
files such as Verilog, Abel, VHDL, and AHDL files from the
module information entered by a user. In one example, the
generator program identifies a portion of a high-level lan-
guage program to accelerate. The other code 1s left for
execution on a processor core. According to various embodi-
ments, the generator program 1303 identifies pointers and
provides ports for each pointer. One tool with generator
program capabilities 1s System on a Programmable Chip
(SOPC) Builder available from Altera Corporation of San
Jose, Calif. The generator program 1305 also provides
information to a synthesis tool 1307 to allow HDL files to be
automatically synthesized. In some examples, a logic
description 1s provided directly by a designer. Hookups
between various components selected by a user are also
interconnected by a generator program. Some of the avail-
able synthesis tools are Leonardo Spectrum, available from
Mentor Graphics Corporation of Wilsonville, Oreg. and
Synplify available from Synplicity Corporation of Sunny-
vale, Calif. The HDL files may contain technology specific
code readable only by a synthesis tool. The HDL files at this
point may also be passed to a simulation tool.

As will be appreciated by one of skill in the art, the input
stage 1301, generator program 1305, and synthesis tool 1307
can be separate programs. The interface between the sepa-
rate programs can be a database file, a log, or simply
messages transmitted between the programs. For example,
instead of writing a file to storage, the input stage 1301 can
send messages directly to the generator program 1305 to
allow the generator program to create a logic description.
Similarly, the generator program can provide information
directly to the synthesis tool mnstead of writing HDL files.
Similarly, mput stage 1301, generator program 1305, and
synthesis tool 1307 can be integrated into a single program.

A user may select various modules and an integrated
program can then take the user selections and output a logic
description 1n the form of a synthesized netlist without
intermediate files. Any mechanism for depicting the logic to
be implemented on an electronic device 1s referred to herein
as a logic description. According to various embodiments, a
logic description 1s an HDL file such as a VHDL, Abel,
AHDL, or Verilog file. A logic description may be 1n various
stages of processing between the user selection of compo-
nents and parameters to the final configuration of the device.
According to other embodiments, a logic description 1s a
synthesized netlist such as an Electronic Design Interchange
Format Input File (EDF file). An EDF file 1s one example of
a synthesized netlist file that can be output by the synthesis
tool 1307.

10

15

20

25

30

35

40

45

50

55

60

65

8

A synthesis tool 1307 can take HDL files and output EDF
files. Tools for synthesis allow the implementation of the
logic design on an electronic device. Some of the available
synthesis tools are Leonardo Spectrum, available from Men-
tor Graphics Corporation of Wilsonville, Oreg. and Synplify
available from Synplicity Corporation of Sunnyvale, Calif.
Various synthesized netlist formats will be appreciated by
one of skill in the art.

A verification stage 1313 typically follows the synthesis
stage 1307. The venification stage checks the accuracy of the
design to ensure that an intermediate or final design realizes
the expected requirements. A verification stage typically
includes simulation tools and timing analysis tools. Tools for
simulation allow the application of inputs and the observa-
tion of outputs without having to implement a physical
device. Simulation tools provide designers with cost eflec-
tive and eflicient mechanisms for both functional and timing
verification of a design. Functional verification involves the
circuit’s logical operation independent of timing consider-
ations. Parameters such as gate delays are disregarded.

Timing verification involves the analysis of the design’s
operation with timing delays. Setup, hold, and other timing
requirements for sequential devices such as flip-flops are
confirmed. Some available simulation tools include Synop-
sys VCS, VSS, and Scirocco, available from Synopsys
Corporation of Sunnyvale, Calif. and Cadence NC-Verilog
and NC-VHDL available from Cadence Design Systems of
San Jose, Calif. After the verification stage 1313, the syn-
thesized netlist file can be provided to physical design tools
1319 including place and route and configuration tools. A
place and route tool locates logic cells on specific logic
clements of a target hardware device and connects wires
between the mputs and outputs of the various logic elements
in accordance with logic and security provided to implement
an electronic design. According to various embodiments of
the present invention, the place and route tool may perform
the techniques of the present invention to implement the
various security requirements and rules as defined by the
user. The 1iterative technique may be transparent to the user,
but the resulting device can be physically tested at 1323.

For programmable logic devices, a programmable logic
configuration stage can take the output of the place and route
tool to program the logic device with the user selected and
parameterized modules. According to various embodiments,
the place and route tool and the logic configuration stage are
provided 1n the Quartus Development Tool, available from
Altera Corporation of San Jose, Calif. As will be appreciated
by one of skill i the art, a variety of synthesis, place and
route, and programmable logic configuration tools can be
used using various techniques of the present invention.

As noted above, different stages and programs can be
integrated 1n a variety of manners. According to one embodi-
ment, the imput stage 1301, the generator program 1305, the
synthesis tool 1307, the verification tools 1313, and physical
design tools 1319 are integrated into a single program. The
various stages are automatically run and transparent to a
user. The program can receive the user-selected modules,
generate a logic description depicting logic for implement-
ing the various selected modules, and implement the elec-
tronic device. As will be appreciated by one of skill 1in the
art, HDL files and EDF f{iles are mere examples of a logic
description. Other {file formats as well as internal program
representations are other examples of a logic description.

FIG. 7 illustrates one example of a computer system
implementing the techmiques disclosed herein. The com-
puter system 900 includes any number of processors 1402
(also referred to as central processing units, or CPUs) that
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are coupled to devices including memory 1406 (typically a
random access memory, or “RAM™), memory 1404 (typi-
cally a read only memory, or “ROM?”). The processors 1402
can be configured to generate an electronic design. As 1s well
known 1n the art, memory 1404 acts to transier data and
instructions uni-directionally to the CPU and memory 1406
are used typically to transfer data and instructions 1n a
bi-directional manner.

Both of these memory devices may include any suitable
type ol the computer-readable media described above. A
mass storage device 1408 1s also coupled bi-directionally to
CPU 1402 and provides additional data storage capacity and
may include any of the computer-readable media described
above. The mass storage device 1408 may be used to store
programs, data and the like and 1s typically a secondary
storage medium such as a hard disk that 1s slower than
memory. The mass storage device 1408 can be used to hold
a library or database of prepackaged logic or itellectual
property functions, as well as information on generating,
particular configurations. It will be appreciated that the
information retained within the mass storage device 1408,
may, 1n appropriate cases, be mncorporated in standard fash-
ion as part of memory 1406 as virtual memory. A specific
mass storage device such as a CD-ROM 1414 may also pass
data uni-directionally to the CPU.

CPU 1402 1s also coupled to an interface 1410 that
includes one or more mmput/output devices such as such as
video monitors, track balls, mice, keyboards, microphones,
touch-sensitive displays, transducer card readers, magnetic
or paper tape readers, tablets, styluses, voice or handwriting
recognizers, or other well-known mput devices such as, of
course, other computers. The CPU 1402 may be a design
tool processor. Finally, CPU 1402 optionally may be
coupled to a computer or telecommunications network using
a network connection as shown generally at 1412. With such
a network connection, 1t 1s contemplated that the CPU might
receive information from the network, or might output
information to the network in the course of performing the
above-described process steps. It should be noted that the
system 1400 might also be associated with devices fo
transferring completed designs onto a programmable chip.
The above-described devices and materials will be familiar
to those of skill in the computer hardware and software arts.

Although many of the components and processes are
described above 1n the singular for convenience, 1t will be
appreciated by one of skill in the art that multiple compo-
nents and repeated processes can also be used to practice the
techniques of the present invention.

While particular embodiments of the invention have been
particularly shown and described with reference to specific
embodiments thereof, 1t will be understood by those skilled
in the art that changes 1n the form and details of the disclosed
embodiments may be made without departing from the spirit
or scope of the invention. For example, embodiments of the
present invention may be employed with a variety of com-
ponents and should not be restricted to the ones mentioned
above. It 1s therefore intended that the mvention be inter-
preted to include all vanations and equivalents that fall
within the true spirit and scope of the present invention.

What 1s claimed 1s:

1. An mtegrated circuit device comprising:

a function block configurable to provide a first function-

ality and a second functionality; and

virtualization management circuitry configured to:

when the function block is configured to provide the
first functionality, provide a first virtual machine
associated with a first customer access to the func-
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tion block before providing a second virtual machine
associated with a second customer access to the
function block due to data indicative of the first
customer having a higher priority than the second
customer; and

prohibit the second virtual machine from accessing the
tfunction block when the function block 1s configured
to provide the second functionality.

2. The integrated circuit device of claim 1, wherein the
data indicates that the first virtual machine has a higher
priority than the second virtual machine.

3. The ntegrated circuit device of claim 1, comprising,
input/output (I/O) circuitry configured to enable communi-
cation between the integrated circuit device and a second
integrated circuit device that hosts the first and second
virtual machines.

4. The mtegrated circuit device of claim 3, wherein the
I/O circuitry comprises the virtualization management cir-
cultry.

5. The mtegrated circuit device of claim 1, wherein the
integrated circuit device comprises a programmable logic
device.

6. The integrated circuit device of claim 5, wherein the
programmable logic device comprises a field-programmable
gate array (FPGA).

7. The integrated circuit device of claim 6, wherein the
function block 1s implemented on a reconfigurable portion of
the FPGA.

8. The integrated circuit device of claim 6, wherein the
function block 1s implemented on hard logic of the FPGA.

9. A system comprising;:

processing circuitry configured to implement a first virtual

machine and a second virtual machine; and

CO-processing circuitry comprising:

a Tunction block configurable to provide a first func-
tionality and a second functionality; and
virtualization management circuitry configured to:
provide the first virtual machine and the second
virtual machine access to the function block when
the function block 1s configured to provide the first
functionality; and
prohibit the first virtual machine from accessing the
function block when the function block 1s config-
ured to provide the second functionality.

10. The system of claim 9, wheremn the virtualization
management circuitry 1s configured to establish a mapping
between the first virtual machine and the function block,
wherein the mapping 1ndicates:

the first virtual machine has access to the function block

when the function block i1s configured to provide the
first functionality; or

the first virtual machine does not have access to the

function block when the function block 1s configured to
provide the second functionality.

11. The system of claim 9, wherein the virtualization
management circuitry 1s configured to provide the second
virtual machine access to the function block when the
function block 1s configured to provide the second function-
ality.

12. The system of claim 9, wherein the co-processing
circuitry comprises a field-programmable gate array
(FPGA).

13. The system of claim 9, wherein the function block 1s
implemented using a reconfigurable portion of the co-
processing circuitry.

14. The system of claim 13, wherein upon reconfiguring
the function block to provide the first functionality, the
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virtualization management circuitry 1s configured to provide
the first virtual machine access to the function block before
providing the second virtual machine access to the function

block.
15. The system of claim 14, wherein the virtualization
management circuitry 1s configured to provide the first
virtual machine access to the function block betfore provid-
ing the second virtual machine access to the function block
based on data indicating that first virtual machine 1s asso-
ciated with a first customer and the second virtual machine
1s associated with a second customer.
16. The system of claim 14, wherein the virtualization
management circuitry 1s configured to provide the first
virtual machine access to the function block before provid-
ing the second virtual machine access to the function block
based on data indicating that first virtual machine has a
higher priority than the second virtual machine.
17. A method comprising;:
receiving, at virtualization management circuitry of an
integrated circuit device, first data indicating a first
virtual machine to be provided access to a first func-
tionality and a second functionality implemented 1n one
or more function blocks of the integrated circuit device;

receiving, at the virtualization management circuitry, sec-
ond data indicating a second virtual machine to be
provided access to the first functionality;

when the one or more function blocks are configured to

provide the first functionality, providing, via the virtu-
alization management circuitry, the first wvirtual
machine and the second virtual machine access to the
one or more function blocks; and
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when the one or more function blocks are configured to
provide the second functionality:
providing, via the virtualization management circuitry,
the first virtual machine access to the one or more
function blocks; and
prohibiting, via the virtualization management cir-

cuitry, the second virtual machine from accessing the
one or more function blocks.

18. The method of claim 17, wherein the first virtual
machine and second virtual machine are implemented on a
second integrated circuit device that 1s communicatively
coupled to the mtegrated circuit device.

19. The method of claim 17, wherein the one or more
function blocks are implemented on one or more reconiig-
urable portions of the ntegrated circuit device.

20. The method of claim 17, comprising:

establishing, via the virtualization management circuitry,

a mapping between the one or more function blocks

and the first and second virtual machines, wherein the

mapping indicates:

the first virtual machine and the second virtual machine
have access to the one or more function blocks when
the one or more function blocks are configured to
provide the first functionality; or

the first virtual machine has access to the one or more

function blocks and the second virtual does not have
access to the one or more function blocks when the one
or more function blocks are configured to provide the
second functionality.
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