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(57) ABSTRACT

Systems and methods described herein relate to controlling
a robot. One embodiment receives an 1nitial state of the
robot, an 1nitial nominal control trajectory of the robot, and
a Kullback-Leibler (KL) divergence bound between a mod-
cled probability distribution for a stochastic disturbance and
an unknown actual probability distribution for the stochastic
disturbance; solves a bilevel optimization problem subject to
the modeled probability distribution and the KL divergence
bound using an iterative Linear-Exponential-Quadratic-
Gaussian (1LEQG) algorithm and a cross-entropy process,
the 1ILEQG algorithm outputting an updated nominal control
trajectory, the cross-entropy process outputting a risk-sen-
sitivity parameter; and controls operation of the robot based,
at least 1n part, on the updated nominal control trajectory and
the risk-sensitivity parameter.
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SYSTEMS AND METHODS FOR
CONTROLLING A ROBOT

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the benefit of U.S. Provisional
Patent Application No. 63/077,971, “DR-ILEQG: Daistribu-

tionally-Robust Optimal Control of Nonlinear Dynamical
Systems for Safety-Critical Applications,” filed Sep. 14,
2020, which 1s incorporated by reference herein in 1ts
entirety.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with government support under
contract N0O0014-18-1-2830 awarded by the Office of Naval

Research (ONR). The government has certain rights in the
invention.

TECHNICAL FIELD

The subject matter described herein relates 1n general to
robots and, more specifically, to systems and methods for
controlling a robot.

BACKGROUND

Proper modeling of a robot (one example of a stochastic
system) 15 an 1mportant aspect of successiul control and
decision making under uncertainty due to probabilistically-
described disturbances (e.g., noise). In particular, accurate
characterization of the underlying probability distribution
associated with those disturbances 1s important, since it
encodes how the system 1s expected to behave unexpectedly
over time. However, such a modeling process can pose
significant challenges in real-world problems. On the one
hand, only limited knowledge of the underlying system may
be available, resulting 1n the use of an erroneous model (the
“model-mismatch” problem). On the other hand, even if a
complicated stochastic phenomenon, such as a complex
multi-modal distribution, can be perfectly modeled, 1t may
still not be appropriate for the sake of real-time control or
planning. Indeed, many model-based stochastic control
methods require a Gaussian noise assumption, and many of
the other methods require computationally intensive sam-

pling.
SUMMARY

An example of a system for controlling a robot 1s pre-
sented herein. The system comprises one or more processors
and a memory communicably coupled to the one or more
processors. The memory stores an input module including
instructions that when executed by the one or more proces-
sors cause the one or more processors to receive an 1nitial
state of the robot, an 1nitial nominal control trajectory of the
robot, and a Kullback-Leibler (KL) divergence bound
between a modeled probability distribution for a stochastic
disturbance and an unknown actual probability distribution
for the stochastic disturbance. The memory also stores a
computation module including instructions that when
executed by the one or more processors cause the one or
more processors to solve a bilevel optimization problem
subject to the modeled probability distribution and the KL
divergence bound using an iterative Linear-Exponential-

10

15

20

25

30

35

40

45

50

55

60

65

2

(Quadratic-Gaussian (1ILEQG) algorithm and a cross-entropy
process, the 1LEQG algorithm outputting an updated nomi-

nal control trajectory, the cross-entropy process outputting a
risk-sensitivity parameter. The memory also stores a control
module including instructions that when executed by the one
Oor more processors cause the one or more processors to
control operation of the robot based, at least 1n part, on the
updated nominal control trajectory and the risk-sensitivity
parameter.

Another embodiment 1s a non-transitory computer-read-
able medium for controlling a robot and storing instructions
that when executed by one or more processors cause the one
Or more processors to receive an initial state of the robot, an
initial nominal control trajectory of the robot, and a Kull-
back-Leibler (KL) divergence bound between a modeled
probability distribution for a stochastic disturbance and an
unknown actual probability distribution for the stochastic
disturbance. The instructions also cause the one or more
processors to solve a bilevel optimization problem subject to
the modeled probability distribution and the KL divergence
bound using an iterative Linear-Exponential-Quadratic-
Gaussian (1ILEQG) algorithm and a cross-entropy process,
the 1ILEQG algorithm outputting an updated nominal control
trajectory, the cross-entropy process outputting a risk-sen-
sitivity parameter. The instructions also cause the one or
more processors to control operation of the robot based, at
least 1n part, on the updated nominal control trajectory and
the risk-sensitivity parameter.

Another embodiment 1s a method of controlling a robot,
the method comprising recerving an 1nitial state of the robot,
an 1nitial nominal control trajectory of the robot, and a
Kullback-Leibler (KL) divergence bound between a mod-
cled probability distribution for a stochastic disturbance and
an unknown actual probabaility distribution for the stochastic
disturbance. The method also includes solving a bilevel
optimization problem subject to the modeled probability
distribution and the KL divergence bound using an iterative
Linear-Exponential-Quadratic-Gaussian 1LEQG) algorithm
and a cross-entropy process, the 1ILEQG algorithm output-
ting an updated nominal control trajectory, the cross-entropy
process outputting a risk-sensitivity parameter. The method
also includes controlling operation of the robot based, at
least 1n part, on the updated nominal control trajectory and
the risk-sensitivity parameter.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated 1n
and constitute a part of the specification, illustrate various
systems, methods, and other embodiments of the disclosure.
It will be appreciated that the illustrated element boundaries
(e.g., boxes, groups of boxes, or other shapes) 1n the figures
represent one embodiment of the boundaries. In some
embodiments, one clement may be designed as multiple
clements or multiple elements may be designed as one
element. In some embodiments, an element shown as an
internal component of another element may be implemented
as an external component and vice versa. Furthermore,
clements may not be drawn to scale.

FIG. 1 1llustrates a robot, in accordance with an illustra-
tive embodiment of the invention.

FIG. 2 illustrates one embodiment of a robot control
system.

FIG. 3A 1llustrates a reference probability distribution, 1n
accordance with an illustrative embodiment of the invention.

FIG. 3B illustrates an actual probability distribution, 1n
accordance with an i1llustrative embodiment of the invention.
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FIG. 4 1s a flowchart of a method of controlling a robot,
in accordance with an illustrative embodiment of the inven-
tion.

To facilitate understanding, identical reference numerals
have been used, wherever possible, to designate i1dentical
clements that are common to the figures. Additionally,
clements of one or more embodiments may be advanta-
geously adapted for utilization in other embodiments
described herein.

DETAILED DESCRIPTION

In various embodiments disclosed herein, systems and
methods for controlling a robot address the problem of
model mismatch via distributionally robust control, wherein
a potential distributional mismatch 1s considered between a
baseline Gaussian process noise and the true, unknown
model within a certain Kullback-Leibler (KL) divergence
bound. The use of the Gaussian distribution 1s advantageous
to retain computational tractability without the need for
sampling in the state space. Some embodiments include a
model predictive control (MPC) method for nonlinear, non-
(Gaussian systems with non-convex costs. In some embodi-
ments, the robot 1s an autonomous vehicle, and the tech-
niques disclosed herein can be used, for example, to safely
navigate the autonomous vehicle among human pedestrians
where the stochastic transition model for the human pedes-
trians 1S 1mperiect.

The various embodiments described herein make use of
the equivalence between distributionally robust control and
risk-sensitive optimal control. Unlike the conventional sto-
chastic optimal control that 1s concerned with the expected
cost, risk-sensitive optimal control seeks to optimize the
following entropic risk measure:

||

1
a lﬂng [EKP(QJ)] .

Rpe(J)
where p 1s a probability distribution characterizing any
source ol randomness in the system, 0>0 1s a user-defined
scalar parameter called the risk-sensitivity parameter, and J
1s an optimal control cost. The risk-sensitivity parameter O
determines a relative weight between the expected cost and
other higher-order moments such as the variance. Loosely
speaking, the larger 0 becomes, the more the objective cares
about the variance and the more risk-sensitive it becomes.

The distributionally robust control algorithms employed
by various embodiments disclosed herein can alternatively
be viewed as algorithms for automatic online tuning of the
risk-sensitivity parameter in applying risk-sensitive control.
Risk-sensitive optimal control has been shown to be eflec-
tive and successiul 1n many robotics applications. However,
conventional approaches require the user to specily a fixed
risk-sensitivity parameter ofiline. This requires an extensive
trial and error process until a desired robot behavior 1s
observed. Furthermore, a risk-sensitivity parameter that
works 1n a certain state can be infeasible in another state.
Ideally, the risk-sensitivity should be adapted online depend-
ing on the situation to obtain a specifically desired robot
behavior, yet this 1s nontrivial because no simple general
relationship 1s known between the risk-sensitivity parameter
and the performance of the robot. The embodiments dis-
cussed herein address that challenge. Due to the fundamen-
tal equivalence between distributionally robust control and
risk-sensitive control, those embodiments provide nonlinear
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risk-sensitive control that can dynamically adjust the risk-
sensitivity parameter depending on the state of the robot as
well as the surrounding environment.

In some embodiments, a system for controlling a robot
receives an 1nitial state of the robot, an initial nominal
control trajectory of the robot, and a KL divergence bound
between the modeled probability distribution for a stochastic
disturbance and the unknown actual probability distribution
for the stochastic disturbance. The system solves a bilevel
optimization problem subject to the modeled probability
distribution and the KL divergence bound using an iterative
Linear-Exponential-Quadratic-Gaussian (1LEQG) algorithm
and a cross-entropy process. The 1ILEQG algorithm outputs,
among other things, an updated nominal control trajectory,
and the cross-entropy process outputs a risk-sensitivity
parameter. In U.S. Provisional Patent Application No.
63/077,971, the algorithm for solving the bilevel optimiza-
tion problem was called the Distributionally Robust iLEQG
(DR-ILEQG) algorithm. Herein, this algorithm 1s sometimes
referred to as the Risk Auto-Tuning iterative Linear-Qua-
dratic Regulator (RAT 1LQR) algorithm.

The various embodiments described herein perform the
bilevel optimization based on the worst-case distribution
within a set of possible distributions that also includes the
distribution used 1n the stochastic-system model. Such a set
of distributions can be analyzed using a metric such as the
KL divergence bound. Importantly, the system does not have
to know, a prior1, what that worst-case distribution 1is.

The remainder of this Detailed Description 1s organized as
follows. First, an overview of a robot 100 and an associated
robot control system 120 i1s provided in connection with
FIGS. 1 and 2. A more detailed explanation of the RAT
1LOQR algorithm employed by robot control system 120,
including the underlying mathematical concepts, 1s then
presented. That explanation includes reference to FIGS. 3A
and 3B. This explanation 1s then followed by a discussion of
the method flowchart of FIG. 4.

Referring to FIG. 1, an example of a robot 100 1s
illustrated. Some examples of a robot 100 include, without
limitation, an autonomous or semi-autonomous vehicle
(c.g., an autonomous or semi-autonomous automobile), an
autonomous aerial drone (e.g., a quadrotor), a security robot,
a customer-service robot, and a delivery robot. The robot
100 also includes various elements. It will be understood
that 1n various embodiments 1t may not be necessary for the
robot 100 to have all of the elements shown 1n FIG. 1. The
robot 100 can have any combination of the various elements
shown 1n FIG. 1. Further, the robot 100 can have additional
clements to those shown 1n FIG. 1. In some arrangements,
the robot 100 may be implemented without one or more of
the elements shown 1n FIG. 1.

Some of the possible elements of the robot 100 are shown
in FIG. 1, and some of those elements will be described 1n
greater detail 1in connection with subsequent figures. Addi-
tionally, 1t will be appreciated that for simplicity and clarity
of 1llustration, where appropnate, reference numerals have
been repeated among the different figures to indicate corre-
sponding or analogous elements. In addition, the discussion
outlines numerous specific details to provide a thorough
understanding of the embodiments described herein. Those
skilled 1n the art, however, will understand that the embodi-
ments described herein may be practiced using various
combinations of these elements.

Robot 100 includes a sensor system 110 including any of
a variety ol different types of sensors, depending on the
particular kind of robot and application. Such sensors can
include, without limitation, cameras, Light Detection and
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Ranging (LIDAR) sensors, infrared sensors, radar sensors,
and sonar sensors. In a vehicular embodiment, sensor system
110 can also include sensors that produce Controller-Area-
Network (CAN-bus) data such as position, heading, speed,
acceleration, etc., ol robot 100 1tself. Sensor system 110
outputs various corresponding types of sensor data 135 (e.g.,
images, LIDAR point clouds, CAN-bus data, etc.).

The sensor data 135 is input to a perception system 1135,
which performs tasks such as 1mage segmentation and object
detection, trajectory prediction, and tracking. These percep-
tual tasks can apply to robot 100 1tself, other objects 1n the
environment (e.g., other road users, 1n a vehicular embodi-
ment), or both. Perception system 115 outputs an 1nitial state
140, an initial nominal control trajectory 145, and a KL
divergence bound 150 for robot 100. Those inputs are
processed by a robot control system 120 that executes the
RAT 1LQR algorithm, an algorithm for solving the bilevel
optimization problem mentioned above. Robot control sys-
tem 120 outputs an updated nominal control trajectory 155,
control gains 160, and a risk-sensitivity parameter 165.
These outputs are fed to one or more actuators 1235 1n robot
100, which output forces and torques 170 to control robot
100. These forces and torques 170 impact the movement of
robot 100 (robot dynamics) and, 1n some cases, its mnterac-
tions with other objects 1n the environment (dynamics and
environment 130, in FIG. 1), which involve motion and
forces 175 that are detected via sensor system 110. In some
embodiments, robot 100 may be classified as a stochastic
nonlinear system.

With reference to FIG. 2, one embodiment of the robot
control system 120 of FIG. 1 1s further illustrated. The robot
control system 120 i1s shown as including one or more
processors 210. Robot control system 120 also includes a
memory 220 communicably coupled to the one or more
processors 210. The memory 220 stores an mmput module
230, a computation module 240, and a control module 250.
The memory 220 1s a random-access memory (RAM),
read-only memory (ROM), a hard-disk drive, a flash
memory, or other suitable memory for storing the modules
230, 240, and 250. The modules 230, 240, and 250 are, for
example, computer-readable instructions that when executed
by the one or more processors 210, cause the one or more
processors 210 to perform the various functions disclosed
herein.

In connection with its control functions, robot control
system 120 can stores various kinds of data 1n a database
260. For example, 1n the embodiment shown in FIG. 2, robot
control system 120 stores, 1n database 260, input data 270,
model data 280 (e.g., data associated with solving the bilevel
optimization problem such as intermediate calculations,
model parameters, probability distributions, etc.), and output
data 290 (e.g., updated nominal control trajectory 155,
control gains 160, and risk-sensitivity parameter 165).

Input module 230 generally includes instructions that
when executed by the one or more processors 210 cause the
one or more processors 210 to receive an mitial state 140 of
the robot 100, an nitial nominal control trajectory 145 of the
robot 100, and a KL divergence bound 150 between a
modeled probability distribution for a stochastic disturbance
and an unknown actual probability distribution for the
stochastic disturbance. Initial state 140 can include, for
example, the position, velocity, and heading/pose of robot
100, as well as object-tracking information concerning the
state of objects 1n the environment near robot 100. In an
autonomous-vehicle embodiment, the objects 1 the envi-
ronment could include, for example, other road users and
obstacles. Other road users include, without limitation, other
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vehicles, motorcyclists, bicyclists, and pedestrians. As dis-
cussed above, the various embodiments described herein
perform the bilevel optimization based on the worst-case
distribution within a set of possible distributions that also
includes the distribution used i the stochastic-system
model. Such a set of distributions can be analyzed using a
metric such as the KL divergence bound 150. As also
mentioned above, the robot control system 120 does not

have to know, a prior1, what that worst-case distribution 1s.
This 1s one of the advantages of the various embodiments
disclosed herein.

The stochastic disturbance can take on different forms,
depending on the particular embodiment. For example, in an
embodiment 1n which robot 100 1s an autonomous vehicle,
the stochastic disturbance could be slippery road conditions
caused by rain, 1ce, or snow. Another example of a stochastic
disturbance 1s that associated with the motion of an other
road user such as another vehicle, a motorcyclist, a bicyclist,
or a pedestrian. As discussed further below, 1n some embodi-
ments the modeled probability distribution for the stochastic
disturbance 1s a Gaussian distribution.

Computation module 240 generally includes instructions
that when executed by the one or more processors 210 cause
the one or more processors 210 to solve a bilevel optimi-
zation problem subject to the modeled probability distribu-
tion and the KL divergence bound 150 using an 1LEQG
algorithm and a cross-entropy process in combination. The
1LEQG algorithm outputs, among other things, an updated
nominal control trajectory 155, and the cross-entropy pro-
cess outputs a risk-sensitivity parameter 1635. The details of
the iILEQG algorithm and the cross-entropy process included
in the overall RAT 1LQR algorithm, including the underlying
mathematical concepts, are presented below.

Control module 250 generally includes instructions that
when executed by the one or more processors 210 cause the
one or more processors 210 to control the operation of the
robot 100 based, at least in part, on the updated nominal
control trajectory 155 and the risk-sensitivity parameter 165.
In an autonomous-vehicle embodiment, the instructions in
the control module 250 to control operation of the robot 100
can also include, for example, 1nstructions to avoid a colli-
sion with an other road user (e.g., another vehicle, a motor-
cyclist, a bicyclist, or a pedestrian). The instructions to
control the operation of the robot 100 can include nstruc-
tions to control the movement (e.g., speed, trajectory) of
robot 100. For example, in an autonomous-vehicle embodi-
ment, the mnstructions can cause the one or more processors
210 to control the steering, acceleration, and braking of the
vehicle (robot 100).

This description next turns to a more detailed explanation
of the RAT 1LQR algonthm employed by robot control
system 120 (specifically, computation module 240). Con-
sider the following stochastic nonlinear system: x, ,=1(X,,

u, )+g(x,, u,)w,, where x, € R” denotes the state, u, € R

the control, and w, € R” the noise input to the system at
time k. For some fimite time horizon N, let w, =
(W, - . . , Wa) denote the joint noise vector with probability
distribution p(w,.,,). In this embodiment, this distribution 1s
assumed to be a known Gaussian white noise process; 1.€.,
w, 1s 1ndependent of w, for all 1=, and the stochastic
nonlinear system defined above 1s considered to be the
reference system.

Ideally, the model distribution p would pertectly charac-
terize the noise in the dynamical system. However, 1n reality
the noise may come from a different, more complex distri-

bution that 1s not known exactly. This 1s 1llustrated 1n FIGS.
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3A and 3B. FIG. 3A depicts a reference distribution 310, and
FIG. 3B depicts an actual distribution 320. Let w2
(Wo, . . . , W) denote a perturbed noise vector that is
distributed according to q(w.»/). The perturbed system that
characterizes the true but unknown dynamics can be defined
as follows: x, ,=f(x,, u,)+g(X,, u,)w,. Note that no assump-
tions are made that q 1s Gaussian or that 1t 1s white noise.
One could also attribute it to potentially unmodeled dynam-
ics. The true, unknown probability distribution g 1s con-
tained 1n the set P of all probability distributions on the

support R”**Y_ The unknown distribution q is assumed not
to be “too different” from p. This 1s expressed as the
tollowing constraint (bound) on the KL divergence between
qand p: D ., (q|lp)=d, where I ., (*||*) 1s the KL divergence,
and d>0 1s a given constant. Note that D ., (q|jp)=0 always
holds, with equality 1f and only 1f p=qg. The set of all possible
probability distributions q € P satistying the above KL
divergence constraint 1s denoted by = which is defined as the
ambiguity set. Note that = 1s a convex subset of P for a fixed

P

One objective 1s to control the perturbed system defined
above using a state feedback controller of the form u, =% (k,

X,). The operator K (k,*) defines a mapping from R” into

R ™. The class of all such controllers is denoted A.

The cost model considered 1n this embodiment 1s defined
as follows: J(Xg.nu s Ugn) 2 h(Xn )+2, o ek, X,, u,). The
foregoing objective 1s assumed to satisity the following

non-negativity constraints: The functions h(*) and c(k,e,*)
satisfy h(x)=0 and c(k, x, u)z0 forallk € {0, . .. , N}, x €

R” andu & R™.

Under the above dynamics model for the perturbed sys-
tem, cost model, and KL divergence constraint on g, an
admissible controller X € A 1s sought that minimizes the
worst-case expected value of the cost model. In other words,
in this embodiment, computation module 240 solves the
following distributionally robust optimal control problem:

inf SHE[Eq (J(xﬂ;wﬂa ”O:N)]=
Kehgen

where L , [*] ndicates that the expectation 1s taken with
respect to the true, unknown distribution q 1n the ambiguity
set =.

Unfortunately, the foregoing distributionally robust opti-
mal control problem 1s 1intractable because 1t involves maxi-
mization with respect to the unknown probability distribu-
tion . To overcome this, 1t can be shown that the foregoing,
distributionally robust optimal control problem 1s equivalent
to a bilevel optimization problem involving risk-sensitive
optimal control with respect to the model distribution p.
Before summarizing this equivalence 1n equation form, the
following additional assumption 1s made: For any admis-
sible controller ' €& A, the resulting closed-loop system
satisfies

suple, [J(XD:N+I’ ”D:N)] = ©2.
veyP

This assumption means that, without the KL divergence
constraint, some adversarially-chosen noise could make the
expected cost objective arbitranily large, in the worst case.
This amounts to a controllability-type assumption with
respect to the noise 1nput and an observability-type assump-
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tion with respect to the cost objective. Under this assumption
and the non-negativity assumption discussed above, the
following equivalence holds for the distributionally robust
optimal control problem defined above:

Jx.. , U
inf inf Tlc:g[Ep[exp( ( O D'N)]

el KeA T

inf SHP[EQ(J(XD: N+1° ”D:N)] = +7d,

KeA gel=

provided that the set

[ 2 {r >0 inf Tng[Ep[E:Kp(J [T)] 15 finite}
Keh

1s non-empty. Observe that the first term 1n the right-hand

side of the foregoing equivalence relationship 1s the entropic
risk measure

R 1(J),

1
p!?

where the rnisk 1s computed with respect to the model
distribution p and t©>0 serves as the inverse of the risk-
sensitivity parameter. Rewriting the above equivalence rela-
tionship 1n terms of the risk-sensitivity parameter

the right-hand side of the equation 1s equivalent to

. _ g
;gf(?i]; RP:-E(J(":D:MU ”ﬂzw)) + 5]’

where [ = {9 > 01 inf Ryo(J) is fim'te}.

KeA

Note that the new problem does not mvolve any optimiza-
tion with respect to the true distribution q.

The above background leads to formulation of the RAT
1LQR algorithm. Even though the mathematical equivalence
discussed above 1s general, 1t does not immediately lead to
a tractable method to efliciently compute a solution for
general nonlinear systems. Two remaining challenges need
to be addressed. First, exact optimization of the entropic risk
with a state feedback control law 1s intractable, except for
linear systems with quadratic costs. Second, the optimal
risk-sensitivity parameter needs to be searched efliciently
over the feasible space F, which not only 1s unknown but
also varies depending on the initial state x,. The RAT iLQR
algorithm overcomes these challenges for general nonlinear
systems. An explanation of how the algorithm solves both
the 1ner and outer loop of

e d
g(;g Rp ol (¥o.n 1> Hoen ) + g]

to develop a distributionally-robust, risk-sensitive MPC
follows.
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First, consider the inner minimization:

inf Rp,ﬂ(u’(xo:mu ”D:N))ﬂ
Ken

where the term d/0 has been omitted, since it 1s constant with
respect to the controller K . This amounts to solving a
risk-sensitive optimal control problem for a nonlinear
Gaussian system. In this embodiment, a variant of the
discrete-time 1LEQG algorithm 1s employed to obtain a
locally optimal solution to the above inner minimization. In
what follows, 1t 1s assumed that the noise coeflicient function
o(X,, u;) discussed above 1s the identity mapping, for sim-
plicity. The algorithm begins by applying a given nominal
control sequence 1, ,, to the noiseless dynamics to obtain the
corresponding nominal state trajectory X,.., . During each
iteration, the algorithm maintains and updates a locally
optimal controller K of the form K (k, x,)=L (XX, )+l,,

where L, © R " denotes the feedback gain matrix. The i-th
iteration of the iILEQG implementation includes four steps
that are described 1n detail below.

Step 1 1s local approximation. Given the nominal trajec-
tory {ly.2/Xp.n1 }, the following linear approximation of
the dynamics, as well as the quadratic approximation of the
cost functions, are computed by computation module 240:

A =D fx P 5)

B, =D, fx;",5,')
q,=clh,x, 1,y
q;,=D,c(k E;c(f): Z;c(i))
0,=D,.clkx; V5,7
=D, clkx; L)
R=D,,clhk,x, ", 1)

P k:D mc(kf';k(f)r zk(z))

for k=0 to N, where D 1s the differentiation operator. Also,

let qN—_l—l:h(}_{j\Ml(I))ﬂ qN+l:]:))fh(}_{j"»@l(I))!J and QN+l:D;cx
h(Xp1™):

Step 2 1s the backward pass. In this step, computation
module 240 performs approximate dynamic programming,
(DP) using the current feedback gain matrices L., as well
as the approximate model obtained 1n Step 1. In this embodi-

ment, 1t 1s assumed that the noise vector w, 1s Gaussian-

distributed according to N (0, W,) with W_> 0. Also, let

Sare1 = Aarets Save1 = Qv and S, 2 Q... G1ven these ter-
minal conditions, computation module 240 recursively com-

putes the following quantities:

M,=W,'-05,,,

g =1t B (1408, M )Sy,
Gp=Pi+B; (1408, My Sk 14
H =RiAB, (I+0Si, My )Sii 1By

SEr=qxtSr+1—1/20 log det(/-0 WkSk+1)+n/23k+lT
M s+ 2L H L P P g

Si= qk"'ATki({ +0S; My s+ L T H L O+L, D gt
Gl

Sk= Qk'l'{ikf(f +05;1 M) DS 1dpt L H L D+
LG A+G, LY
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from k=N down to 0. Note that M, > 0 1s assumed so that 1t
1s 1nvertible, which might not hold 1 0 1s too large. This 1s
sometimes referred to as “neurotic breakdown,” when the
optimizer 1s so pessimistic that the cost-to-go approximation
becomes infinity. Otherwise, the approximated cost-to-go

for this optimal control (under the controller {L,.,, I, H)
1s given by s,.

Step 3 1s regularization and control computation. Having
derived the DP solution, computation module 240 computes
new control gains L., and offset updates dl,., as fol-

lows:

L, V= (Hul™ G,

dl=—(H+ul) g,

where u=0 1s a regularization parameter to prevent (H,+ul)
from having negative eigenvalues. Computation module 240
adaptively changes this regularization parameter | across
multiple 1terations so the algorithm enjoys fast convergence
near a local minimum while ensuring the positive-definite-
ness of (H, +ul) at all times.

Step 4 1s a line search for ensuring convergence. It 1s
known that the update could lead to increased cost or even
divergence 1f a new trajectory strays too far from the region
where the local approximation 1s valid. Thus, computation
module 240 computes the new nominal control trajectory
Lo by backtracking line search with line search param-
cter €. Imtially, e=1 and computation module 240 derives a
new candidate nominal trajectory as follows:

=L, D%, ~x, )+, Dredl,

Xer1 S ?k)'
If this candidate trajectory {1,.,» Xo.nuq+ results in a lower
cost-to-go than the current nominal trajectory, then the
candidate trajectory is accepted and returned as {I,., "+,
Ronve UL, Otherwise, the trajectory is rejected and re-
derived with e<—e€/2 until 1t 1s accepted.

The above inner-loop procedure (Steps 1-4) 1s 1terated
until the nominal control 1, does not change beyond some
threshold 1 a norm. Once converged, the algorithm returns
the updated nominal trajectory {1,.,» Xo.xi } as well as the
teedback gains L., and the approximate cost-to-go s,.

Having implemented the iLEQG algorithm for the inner-

loop optimization of

)
Ea

computation module 240 employs a cross-entropy process to
solve the outer-loop optimization for the optimal risk-sen-
sitivity parameter 0*. This 1s a one-dimensional optimiza-
tion problem i1n which the function evaluation 1s done by
solving the corresponding risk-sensitive optimal control
discussed above. In some embodiments, the cross-entropy
method 1s adapted somewhat to derive the approximately
optimal value for 0*. This approach 1s favorable for online
optimization due to the any-time and highly-parallel nature
of the Monte Carlo sampling. However, 1n other embodi-
ments, a diflerent approach can be used. The cross-entropy
process 1s a stochastic method that maintains an explicit
probability distribution over the design space. At each step,
a set of m, Monte Carlo samples are drawn from the
distribution, from which a subset of m_ “elite samples™ that

inf Rp,ﬁ'(J('xD:N+l’ ”D:N)) +
Ken

inf (

=l
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achieve the best performance are selected and retained. The
parameters of the distribution are then updated according to
the maximum likelihood estimate based on the elite samples.
The algorithm terminates after a desired number of steps M.

In one embodiment, computation module 240 models the

distribution as univariate Gaussian NV (u, 0°). Another issue
mentioned above 1s that the iILEQG algorithm may return a
cost-to-go of infinity 11 a sampled 0 1s too large due to
neurotic breakdown. Since the search space 1s limited to I
where 0 yields a finite cost-to-go, computation module 240
ensures that each iteration has suflicient samples i I'.

To address this problem, the cross-entropy process 1s
augmented, 1 some embodiments, with rejection and re-

10

12

m_ samples are valid, computation module 240 accepts them
but doubles ., and o, . because 1t implies that the 1nitial set
of samples 1s not wide-spread enough to cover the whole
feasible set 1'. The parameters u, , and o, .. can be stored
internally 1n the cross-entropy solver of computation module
240 and carried over to the next call to the algorithm.

At runtime, the RAT 1LQR algorithm, in some embodi-
ments, 1s executed as an MPC 1n a receding-horizon fashion.
The control 1s re-computed after executing the first control
iput u,=l, and transitioning to a new state. A previously
computed control trajectory 1., can be reused for the 1nitial
nominal control trajectory at the next time step to warm-start
the computation. The RAT 1LQR algorithm (“Algorithm 1)

can be summarized by the following pseudocode:

Input: Initial state x,, tnitial nominal control trajectory 1., KL divergence bound d
Output: New nominal trajectory {lo.n, Xo.ne1 [, control gains Lg., risk-sensitivity
parameter O*

1: Compute initial nominal state trajectory Xg.nr,; using lg.as
2: 1< 1

3: while 1 = M do

4; while True do

5: if 1 =1 then

6: Osmprea — AraWSAMples(in, 1 Gy
7 clse

&: O cmprea < drawSamples(mg, p, ©)

9: end 1f

10: array r t> Empty array of size m,

11: forj < 1:m,do

12: Solve iILEQG with {lg.n, Xo.n54 15 Osampreali] }
13: Obtain approximate cost-to-go s

14: 1] <= So + A/Bcmmpieall]

15: end for

16: m, < countValidSamples(0,,,,, eq T)

17: if 1 =1 and m,, < max(m_, m.2) then

18: Hinie <= Hinid 2> Ciniz < O 2

19: else 1If 1 = 1 and m, = m_ then

20: Mirie <= 2linies Oimir < 2044

21: break

22: ¢lse if m,, = max(m,_, m/2) then

23: break

24: end if

235: end while

26: 0,5 < selectElite(m,, 0,700 T)

27: {u, o} < fitGaussian(_,,. )

28: 1< 1+1

29: end while

30: 0F < |1

31:  Solve iLEQG with {l.A» Xo.nr 1> 0%}

32:  Obtain new nominal trajectory {lg.n» Xo.v. t and control gains Ly »
33:  return lo.a, Xo.ae1s Lo, OF

sampling. Out of the m_ samples drawn from the univarnate
Gaussian distribution, all non-positive samples are first
discarded. For each of the remaining samples, computation
module 240 evaluates the objective function discussed
above by a call to 1ILEQG and counts the number of samples
that obtained a finite cost-to-go. Let m , be the number of
such valid samples. If m =zmax(m_, m/2), computation
module 240 proceeds to fit the distribution. Otherwise,
computation module 240 repeats the sampling procedure,
since there are insuflicient valid samples from which to
choose the elite samples.

In practice, re-sampling 1s unlikely to occur after the first
iteration of the cross-entropy process. However, to avoid the
risk that the first iteration might result in re-sampling
multiple times, degrading efliciency, computation module
240 also performs an adaptive initialization of the Gaussian
parameters |, .. and G, .. in the first iteration as follows. IT

IREL
the first iteration with NV (u, .. o, .) results in re-sampling,

computation module 240 not only re-samples but also
divides u, . and o, .. by half. On the other hand, if all of the
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FIG. 4 1s a flowchart of a method of controlling a robot,
1n accordance with an illustrative embodiment of the inven-

tion. Method 400 will be discussed from the perspective of
robot control system 120 1n FIGS. 1 and 2. While method

400 1s discussed in combination with robot control system
120, 1t should be appreciated that method 400 1s not limited
to being implemented within robot control system 120, but
robot control system 120 1s instead one example of a system
that may implement method 400.

At block 410, input module 230 receives an 1nitial state
140 of the robot 100, an initial nominal control trajectory
145 of the robot 100, and a KL divergence bound 150
between a modeled probability distribution for a stochastic
disturbance and an unknown actual probability distribution
for the stochastic disturbance. As discussed above, 1nitial
state 140 can include, for example, the position, velocity,
and heading/pose of robot 100, as well as object-tracking
information concerning the state ol objects 1n the environ-
ment near robot 100. In an autonomous-vehicle embodi-
ment, the objects i the environment could include, for
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example, other road users and obstacles. Other road users
include, without limitation, other vehicles, motorcyclists,
bicyclists, and pedestrians. As also discussed above, the
various embodiments described herein perform the bilevel
optimization based on the worst-case distribution within a
set of possible distributions that also includes the distribu-
tion used in the stochastic-system model. Such a set of
distributions can be analyzed using a metric such as the KL
divergence bound 150.

As discussed above, the stochastic disturbance can take
on different forms, depending on the particular embodiment.
For example, 1n an embodiment in which robot 100 1s an
autonomous vehicle, the stochastic disturbance could be
slippery road conditions caused by rain, ice, or snow.
Another example of a stochastic disturbance 1s that associ-
ated with the motion of an other road user such as another
vehicle, a motorcyclist, a bicyclist, or a pedestrian. As
discussed further below, 1n some embodiments the modeled
probability distribution for the stochastic disturbance 1s a
(Gaussian distribution.

At block 420, computation module 240 solves a bilevel
optimization problem subject to the modeled probability
distribution and the KL divergence bound using an iterative
Linear-Exponential-Quadratic-Gaussian (1LEQG) algorithm
and a cross-entropy process. The iILEQG algorithm outputs
an updated nominal control trajectory, and the cross-entropy
process outputs a risk-sensitivity parameter. The details of
the 1ILEQG algorithm and the cross-entropy process included
in the overall RAT 1LQR algorithm (Algorithm 1), including
the underlying mathematical concepts, are discussed above.

At block 430, control module 250 controls operation of
the robot 100 based, at least 1n part, on the updated nominal
control trajectory and the risk-sensitivity parameter. As
discussed above, 1n an autonomous-vehicle embodiment, the
instructions in the control module 250 to control operation
of the robot 100 can also include, for example, mstructions
to avoid a collision with an other road user (e.g., another
vehicle, a motorcyclist, a bicyclist, or a pedestrian). The
instructions to control the operation of the robot 100 can
include instructions to control the movement (e.g., speed,
trajectory) of robot 100. For example, 1n an autonomous-
vehicle embodiment, the instructions can control the steer-
ing, acceleration, and braking of the vehicle.

Detailed embodiments are disclosed herein. However, 1t 1s
to be understood that the disclosed embodiments are
intended only as examples. Theretfore, specific structural and
tfunctional details disclosed herein are not to be interpreted
as limiting, but merely as a basis for the claims and as a
representative basis for teaching one skilled 1n the art to
variously employ the aspects herein 1n virtually any appro-
priately detailed structure. Further, the terms and phrases
used heremn are not mtended to be limiting but rather to
provide an understandable description of possible 1mple-
mentations. Various embodiments are shown in FIGS. 1-4,
but the embodiments are not limited to the illustrated
structure or application.

The flowcharts and block diagrams 1n the figures 1llustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer pro-
gram products according to various embodiments. In this
regard, each block in the flowcharts or block diagrams may
represent a module, segment, or portion of code, which
comprises one or more executable instructions for imple-
menting the specified logical function(s). It should also be
noted that, 1n some alternative implementations, the func-
tions noted in the block may occur out of the order noted in
the figures. For example, two blocks shown in succession
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may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality 1nvolved.

The systems, components and/or processes described
above can be realized in hardware or a combination of
hardware and software and can be realized 1n a centralized
fashion 1n one processing system or 1n a distributed fashion
where different elements are spread across several intercon-
nected processing systems. Any kind of processing system
or another apparatus adapted for carrying out the methods
described herein 1s suited. A typical combination of hard-
ware and software can be a processing system with com-
puter-usable program code that, when being loaded and
executed, controls the processing system such that 1t carries
out the methods described herein. The systems, components
and/or processes also can be embedded in a computer-
readable storage, such as a computer program product or
other data programs storage device, readable by a machine,
tangibly embodying a program of instructions executable by

the machine to perform methods and processes described
herein. "

These elements also can be embedded 1n an appli-
cation product which comprises all the features enabling the
implementation of the methods described herein and, which
when loaded in a processing system, 1s able to carry out
these methods.

Furthermore, arrangements described herein may take the
form of a computer program product embodied in one or
more computer-readable media having computer-readable
program code embodied, e.g., stored, thereon. Any combi-
nation ol one or more computer-readable media may be
utilized. The computer-readable medium may be a com-
puter-readable signal medium or a computer-readable stor-
age medium. The phrase “computer-readable storage
medium”™ means a non-transitory storage medium. A com-
puter-readable storage medium may be, for example, but not
limited to, an electronic, magnetic, optical, electromagnetic,
inirared, or semiconductor system, apparatus, or device, or
any suitable combination of the foregoing. More specific
examples (a non-exhaustive list) of the computer-readable
storage medium would include the following: a portable
computer diskette, a hard disk drive (HDD), a solid-state
drive (SSD), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), a portable compact disc read-only memory (CD-
ROM), a digital versatile disc (DVD), an optical storage
device, a magnetic storage device, or any suitable combi-
nation of the foregoing. In the context of this document, a
computer-readable storage medium may be any tangible
medium that can contain or store a program for use by or in
connection with an 1nstruction execution system, apparatus,
or device.

Program code embodied on a computer-readable medium
may be transmitted using any appropriate medium, includ-
ing but not limited to wireless, wireline, optical fiber, cable,
RF, etc., or any suitable combination of the foregoing.
Computer program code for carrying out operations for
aspects of the present arrangements may be written 1n any
combination of one or more programming languages,
including an object-oriented programming language such as
Java™ Smalltalk, C++ or the like and conventional proce-
dural programming languages, such as the “C” program-
ming language or similar programming languages. The
program code may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer, or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
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connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider).

Generally, “module,” as used herein, includes routines,
programs, objects, components, data structures, and so on
that perform particular tasks or implement particular data
types. In further aspects, a memory generally stores the
noted modules. The memory associated with a module may
be a buller or cache embedded within a processor, a RAM,
a ROM, a flash memory, or another suitable electronic
storage medium. In still further aspects, a module as envi-
sioned by the present disclosure 1s implemented as an
application-specific integrated circuit (ASIC), a hardware
component of a system on a chip (SoC), as a programmable
logic array (PLA), or as another suitable hardware compo-
nent that 1s embedded with a defined configuration set (e.g.,
instructions) for performing the disclosed functions.

The terms “a” and ““an,” as used herein, are defined as one
or more than one. The term “plurality,” as used herein, 1s
defined as two or more than two. The term “another,” as used
herein, 1s defined as at least a second or more. The terms
“including” and/or “having,” as used herein, are defined as
comprising (1.e. open language). The phrase “at least one
of ...and . ..” as used herein refers to and encompasses
any and all possible combinations of one or more of the
associated listed items. As an example, the phrase “at least
one of A, B, and C” includes A only, B only, C only, or any
combination thereotf (e.g. AB, AC, BC or ABC).

Aspects herein can be embodied 1n other forms without
departing from the spirit or essential attributes thereof.
Accordingly, reference should be made to the following
claims rather than to the foregoing specification, as indicat-
ing the scope hereof.

What 1s claimed 1s:

1. A system for controlling a robot, the system compris-

ng:

one or more processors; and

a memory communicably coupled to the one or more
processors and storing:

an 1nput module including instructions that when
executed by the one or more processors cause the one
or more processors to receive an initial state of the
robot, an 1nitial nominal control trajectory of the robot,
and a Kullback-Leibler (KL) divergence bound
between a modeled probability distribution for a sto-
chastic disturbance and an unknown actual probabaility
distribution for the stochastic disturbance;

a computation module including instructions that when
executed by the one or more processors cause the one
or more processors to solve a bilevel optimization
problem subject to the modeled probability distribution
and the KL divergence bound using an iterative Linear-

Exponential-Quadratic-Gaussian (1LEQG) algorithm
and a cross-entropy process, the 1LEQG algorithm
outputting an updated nominal control trajectory, the
cross-entropy process outputting a risk-sensitivity
parameter; and

a control module including instructions that when
executed by the one or more processors cause the one
or more processors to control operation of the robot
based, at least 1n part, on the updated nominal control
trajectory and the risk-sensitivity parameter.

2. The system of claim 1, wherein the robot 1s a stochastic

nonlinear system.

10

15

20

25

30

35

40

45

50

55

60

65

16

3. The system of claim 1, wherein the robot 1s one of an
autonomous vehicle, an autonomous aerial drone, a security
robot, a customer-service robot, and a delivery robot.
4. The system of claim 1, wherein the stochastic distur-
bance 1s associated with motion of an other road user.
5. The system of claim 4, wherein the other road user 1s
one of a vehicle, a motorcyclist, a bicyclist, and a pedestrian.
6. The system of claim 1, wherein the modeled probability
distribution for the stochastic disturbance 1s a (Gaussian
distribution.
7. The system of claim 1, wherein the mstructions in the
control module to control operation of the robot include
instructions to avoid a collision with an other road user.
8. A non-transitory computer-readable medium for con-
trolling a robot and storing instructions that when executed
by one or more processors cause the one or more processors
to:
recelve an 1mitial state of the robot, an 1nitial nominal
control trajectory of the robot, and a Kullback-Leibler
(KL) divergence bound between a modeled probability
distribution for a stochastic disturbance and an
unknown actual probability distribution for the stochas-
tic disturbance;
solve a bilevel optimization problem subject to the mod-
cled probability distribution and the KL divergence
bound using an 1terative Linear-Exponential-Qua-
dratic-Gaussian (1LEQG) algorithm and a cross-en-
tropy process, the 1LEQG algorithm outputting an
updated nominal control trajectory, the cross-entropy
process outputting a risk-sensitivity parameter; and

control operation of the robot based, at least 1n part, on the
updated nominal control trajectory and the risk-sensi-
tivity parameter.

9. The non-transitory computer-readable medium of claim
8. wherein the robot 1s one of an autonomous vehicle, an
autonomous aerial drone, a security robot, a customer-
service robot, and a delivery robot.

10. The non-transitory computer-readable medium of
claim 8, wherein the stochastic disturbance i1s associated
with motion of an other road user.

11. The non-transitory computer-readable medium of
claim 10, wherein the other road user 1s one of a vehicle, a
motorcyclist, a bicyclist, and a pedestrian.

12. The non-transitory computer-readable medium of
claim 8, wherein the modeled probability distribution for the
stochastic disturbance 1s a Gaussian distribution.

13. The non-transitory computer-readable medium of
claim 8, wherein the mstructions to control operation of the
robot include mstructions to avoid a collision with an other
road user.

14. A method of controlling a robot, the method compris-
ng:

recetving an initial state of the robot, an initial nominal

control trajectory of the robot, and a Kullback-Leibler
(KL) divergence bound between a modeled probability
distribution for a stochastic disturbance and an
unknown actual probabaility distribution for the stochas-
tic disturbance;

solving a bilevel optimization problem subject to the

modeled probability distribution and the KL divergence
bound using an 1terative Linear-Exponential-Qua-
dratic-Gaussian (1LEQG) algorithm and a cross-en-
tropy process, the 1LEQG algorithm outputting an
updated nominal control trajectory, the cross-entropy
process outputting a risk-sensitivity parameter; and
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controlling operation of the robot based, at least 1n part, on
the updated nominal control trajectory and the risk-
sensitivity parameter.

15. The method of claim 14, wherein the robot 1s a
stochastic nonlinear system.

16. The method of claim 14, wherein the robot 1s one of
an autonomous vehicle, an autonomous aerial drone, a
security robot, a customer-service robot, and a delivery
robot.

17. The method of claim 14, wherein the stochastic
disturbance 1s associated with motion of an other road user.

18. The method of claim 17, wherein the other road user
1s one of a vehicle, a motorcyclist, a bicyclist, and a
pedestrian.

19. The method of claim 14, wherein the modeled prob-
ability distribution for the stochastic disturbance 1s a Gauss-
1an distribution.

20. The method of claim 14, wherein controlling opera-
tion of the robot includes avoiding a collision with an other

road user.
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