USO11657161B2

a2 United States Patent (10) Patent No.: US 11,657,161 B2
Hendrickx et al. 45) Date of Patent: May 23, 2023

(54) CORRELATION BETWEEN SOURCE CODE (56) References Cited

REPOSITORIES AND WEB ENDPOINTS |
U.S. PATENT DOCUMENTS

(71) Applicant: MICROSOFT TECHNOLOGY

6,269,153 B1* 7/2001 Carpenter HO4M 1/645
LICENSING, LLC., Redmond, WA 704/9
(US) 9,390,268 B1* 7/2016 Martini HO4L 63/1433
10,484,419 B * 112019 Davis ..., GOO6F 21/564
(72) Inventors: Michael Hendrickx, Bellevue, WA 11,537,400 B1* 12/2022 Zhang GOGL 9/3005
_ 2005/0108325 Al* 5/2005 Ponteoeeveeeee, GO6F 16/95
(US); Safwan Mahmud Khan, 20717107
Woodinville, WA (US) 2005/0283834 Al* 12/2005 Hallccoooevrvveene.. GOGF 21/577
713/188
(73) Assignee: MICROSOFT TECHNOLOGY 2007/0234304 Al* 10/2007 Bergccccoeeene. GO6F 11/3604
LICENSING, LLC., Redmond, WA 7177126
(US) (Continued)
(*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS
patent 1s extended or adjusted under 35
CN 109657208 A 4/2019
U.S.C. 134(b) by 192 days.
(21) Appl. No.: 17/131,540 OTHER PUBLICATIONS

“Displaying a NuGet package’s dependencies” Jan. 17, 2017,
retrieved form Internet Archive Wayback Machine < https://web.
: P archive.org/web/20170117064436/https://stackoverflow.com/questions/
(65) Prior Publication Data 9037745/displaying-a-nuget-packages-dependencies > on Aug. 27,

US 2022/0198024 Al Jun. 23, 2022 2022 (Year: 2017).*

(22) Filed: Dec. 22, 2020

(Continued)

(51) Inmt. CL _
Primary Examiner — Eric W Shepperd

GO6F 21/57 (2013.01)

GO6L 8/70 (2018.01) (57) ABSTRACT

Goor 21/51 (2013.01) An automated tool analyzes source code repositories and

HO4L 9/40 (2022.01) web endpoints for unique characteristics that they both share
(52) U.S. CL in order to predict the likelihood that a particular source code

CPC ..ccoovl. GO6F 21/577 (2013.01); GO6F 8/70 repository contains source code files used 1n a web endpoint

(2013.01); GO6F 21/51 (2013.01); HO4L and to predict the likelihood that a web endpoint uses source
63/1433 (2013.01) code files of a particular repository. The unique character-
(58) Field of Classification Search istics are referred to as fingerprints and include unique

CPC . GOGF 21/128: GOGF 21/445:- GOGE 21/577: combination of public-facing entities, unique tokens, and
j jHO AT 63/1 4335 umque DOM characteristics.

See application file for complete search history. 20 Claims, 7 Drawing Sheets

y

300

- IDENTIFY FILES IN SQURCE CODE REPOS AND AT WEB ENDPOINTS
- STATIC ANALYSIS: FIND FILES IN REPOS AND IN EXTERNAL LIBRARIES
- DYNAMIC ANALYSIS: USE WEBSCRAPING AND DOM-BASED WEBSCRAPING TO FIND MORE
CONTENT DATA AT WEB ENDPOINTS
- TRACK UNIQQUE COMBINATION OF PUBLIC-FACING ENTITIES

DO FOR EACH IDENTIFIED FILE 306 308

FIND UNIQUE TOKENS AND STORE IN TOKEN DATABASE
-STATIC ANALYSIS AND DYNAMIC ANALYSIS

FIND DCM CHARACTERISTICS AND STORE IN TCKEN DATABASE
-STATIC ANALYSIS AND DYNAMIC ANALYSIS

COMPUTE CORRELATION COEFFICIENT FOR EACH SOURCE CODE REPOSITORY/ WEB
ENDPOINT PAIR
FIG. 3B

US 11,657,161 B2
Page 2

(56)

2008/0098360
2011/0283270
2012/0180024
2013/0160131
2014/0281535

2015/0302198

2017/0147810
2018/0074818
2018/0157842
2018/0191764
2019/0007444
2020/0142674

U.S. PATENT DOCUM

Al*

Al*

Al*

Al*

Al*

Al*

AN N

* % % % ¥ %

References Cited

4/200

11/201

7/201

6/201

8

1

2

3

9/2014

10/201

5/201
3/201
6/201
7/201
1/201
5/202

5

7
8
8
8
9
0

Richardson
Carmack
Holz

****************** GO6F 8/70

ttttttttttttt

iiiiiiiiiiiiiiii

iiiiiiiiiiiiiiiiiii

ttttttttttttttttttt

ttttttttttttttttttttt
ttttttttttttttttt
ttttttttttttttttt

ttttttttttttttttttt

..... GO6F 8/71

HO4L 63/1433

GO6F 21/6209

HO4W 12/128
................... GO6F 8/73

iiiiiiiii

2020/0153850 Al
2020/0218535 Al
2021/0124575 Al
2021/0173926 Al
2021/0319026 Al

717/128

************************* G06F 8/65

717/168

717/109

726/25 ~ rages.

713/168
GO6F 21/562

726/23

GO6F 16/338
GO6F 16/951
GOO6F 21/56
GO6F 9/541

2020, 3 Pages.

A B

* cited by examiner

5/2020
7/2020
4/2021
6/2021
10/2021

Krishnan HO4L 63/101
Alomart GOO6F 8/425
Bell, IV GO6F 16/152
Slipenchuk GOG6F 21/566
Sethoooovvviiiinnnnn, GO6N 20/20

OTHER PUBLICATTIONS

“International Search Report and Written Opinion Issued in PCT
Application No. PCT/US21/060908”, dated Mar. 17, 2022, 10

Urbanadventurer, et al., “WhatWeb”, Retrieved From: https://github.
com/urbanadventurer/ WhatWeb, Oct. 1, 2020, 15 Pages.
“DOMParser”, Retrieved From: https://web.archive.org/web/
20200814230001/https://developer.mozilla.org/en-US/docs/Web/
API/DDOMParser, Aug. 14, 2020, 12 Pages.

“Site2: Go Beyond Compliance” Retrieved From: https://web.
archive.org/web/20200607083610/https:// www.site2.com/. Jun. 7,

—XUSE SNJIEJuUoD
aAle|3
vl | enewmRy | meWOO. odins,| ¥

u_ Jualld AVY HETES) ..mmwm.smoss__H

US 11,657,161 B2

L W02"0S0ID] ¢ | 1un
E@E&a.s_as__ T | 1od3y
[e —
g2 ISVaV1va
: EE S3ILIINT ONIOV4-2178nd
.............. — 10 NOILYNISWOD 3NDINN
............ 9zl VZl SNd¥0D .~
e~ T NOILYJO0T NayOol YEN o)
s T e ﬁ INIOJON3 83M
T T 50
S ININOdINOD ———1— /N80l
o — SISATYNY T
cch JINYNAQ SIILINT | INIOJQN3 93m
$3114 d3ISVE-WOQ ONOVd |
NOcA onand | 1 b
en 3T SHIVd INTVYA-AIN LANOSVAYT |
S 2SvavLvd NIYOL INOINN ANDINN ‘SIOVd | |
~ gIMTWIH | | 0d3y
~ 3002
WJ 701 334N0S
S ININOdINOJ
0zr SISATVYNY
3714 JILVLS WOYA INLVLS T ¥
SHIVd INTVA-AIN (S31yvygl) Odid
ISNIYOL INDINN S3714 3009
1193roYd/ 304N0s
S3ILILNI
ONIDVA
-2119nd

U.S. Patent

US 11,657,161 B2

Sheet 2 of 7

May 23, 2023

U.S. Patent

b1l 3Svaviva
NOILV134409

ZIE ININOdINOD
NOILV 134402

0€1 SNIYOL ANDINN
‘SOILSINILIVEVHD
INOQ INDINN
‘S3ILILNT ONIJV4-217and
40 NOILVYNIGINOI INDINN

8¢l 3Svav.iva

S3ILILNS ONIOV4-0118Nnd
40 NOILVYNIGWOI INDINN

(]1}

3SVavLiva NIMOL INODINN

US 11,657,161 B2

Sheet 3 of 7

May 23, 2023

U.S. Patent

cle
INIOddN3 g93M d31vi3d

90¢ AJOLISOd3d
30092 F24N0S d31vi3d

d¢ OIA

11

35VAV1vAd NOILV134409

80¢ 1001

Ve OIA

11

35vaV1vd NOILV13d402

¢0¢ 1001

0L¢ AdO1ISOd3d
300J J2dNO0S

-+
¥0¢ INIOdUN3 1M

U.S. Patent May 23, 2023 Sheet 4 of 7 US 11,657,161 B2

FIND UNIQUE COMBINATION OF PUBLIC-FACING ENTITIES
- IDENTIFY FILES IN SOURCE CODE REPOS AND AT WEB ENDPOINTS
- STATIC ANALYSIS: FIND FILES IN REPOS AND IN EXTERNAL LIBRARIES
- DYNAMIC ANALYSIS: USE WEBSCRAPING AND DOM-BASED WEBSCRAPING TO FIND MORE
CONTENT DATA AT WEB ENDPOINTS
- TRACK UNIQUE COMBINATION OF PUBLIC-FACING ENTITIES

302

304

DOWNLOAD IDENTIFIED FILES

DO FOR EACH IDENTIFIED FILE 306 308

FIND UNIQUE TOKENS AND STORE IN TOKEN DATABASE
-STATIC ANALYSIS AND DYNAMIC ANALYSIS

310

FIND DOM CHARACTERISTICS AND STORE IN TOKEN DATABASE

-STATIC ANALYSIS AND DYNAMIC ANALYSIS

312

COMPUTE CORRELATION COEFFICIENT FOR EACH SOURCE CODE REPOSITORY/ WEB
ENDPOINT PAIR
FIG. 3B

FIG. 54

U.S. Patent May 23, 2023 Sheet 5 of 7 US 11,657,161 B2

LA
—
N

DETERMINE WEIGHTS 31

oo

DO FOR EACH SOURCE CODE REPOSITORY AND WEB ENDPOINT PAIR 316

COLLECT FINGERPRINTS FOR WEB ENDPOINT AND SOURCE CODE REPOSITORY 318

FIND MATCHING FINGERPRINTS AND APPLY WEIGHTS 320

COMPUTE CORRELATION COEFFICIENT AS SUM OF WEIGHTED MATCHES 322

STORE CORRELATION COEFFICIENT 32

FIG. 5B

oo

U.S. Patent May 23, 2023 Sheet 6 of 7 US 11,657,161 B2

402
(__)
DETECT SECURITY VULNERABILITY AT WEB ENDPOINT
404
FIND SOURCE CODE REPOSITORIES CORRELATED TO THE WEB ENDPOINT
406

ANALYZE THE SOURCE CODE IN THE SOURCE CODE REPOSITORIES TO REMEDY
THE SECURITY VULNERABILITY

@

FIG. 44

DETECT SECURITY VULNERABILITY IN SOURCE CODE REPOSITORY

414

FIND WEB ENDPOINTS CORRELATED TO THE SOURCE CODE REPOSITORY

416

PERFORM REMEDIATION MEASURES TO LIMIT SECURITY RISKS AT WEB ENDPOINT

S OIA

US 11,657,161 B2

V1vVQd ANV SNOILVII1ddV 43H10

U.S. Patent

876
- 3Svav.Lvad SIILIIN
o 07¢ ONIJV4-2179Nd 40 NOILYNISWOD INDINN
&
— 3SvaY.Lvd NOILY13HH0D
2 ves ININOJIWO) NOILY13HHO0)
7> ¢ 3SVav1va NIYOL INDINN
M_NM ININOJINOD SISATYNY JINVYNAQ

(8)301A3a ININOJIWOD SISATVNY JILVIS
e LNdLNO! LNdNI 915
e~ bl WILSAS ONILVYIdO
~ —~
o LS 0LS SIDIAIA AYOWIN
g
-~
> (S)321A30 (S)30V4Y3INI

I9VHOILS NOILYIINNWINOD (S1408$3004«
806 905 b0S
205 (S)3JIAIA ONILNAINOID

0¢

US 11,657,161 B2

1

CORRELATION BETWEEN SOURCE CODE
REPOSITORIES AND WEB ENDPOINTS

BACKGROUND

Software development tools, such as an integrated devel-
opment environment, often utilize a project to store a
collection of related files that are compiled into an execut-
able, library, web page, or web application. The project may
include source code files, icons, 1mages, data files, scripts
that are used to build, edit, and debug code. The project may
be stored 1mn a source code repository that 1s shared by
multiple developers.

A web service 1s an application that 1s accessible over the
Internet through a standard web protocol (e.g., HyperText
Transter Protocol (HTTP/Hypertext Transfer Protocol
Secure (HT'TPS)) which uses a standard messaging system
for communications with other Internet-connected devices.
A web service exposes one or more web endpoints where
messages are sent. The web endpoint 1s where files or active
server pages are exposed (e.g., JavaScript files, Javascript
Object Notation (JSON) files, Hypertext Markup Language
(HITML) web pages, etc.).

At times, a security vulnerability may be traced to a web
endpoint or to a source code file used 1n a web endpoint. To
analyze the 1ssue further, the 1dentity of the source code files
of the web endpoint or the identity of the web endpoints that
utilize a particular source code file 1s needed to remedy the
vulnerability. However, the location of the source code files
used 1n a web endpoint or the identity of the web endpoints
that utilize particular source code files may not be known.
Often, there 1s no mechanism that correlates a web endpoint
with the source code repository that stores the source code
files exposed by the web endpoint or the web endpoints that
utilize a particular source code file.

SUMMARY

This Summary 1s provided to introduce a selection of
concepts 1 a simplified form that are further described
below 1n the Detailed Description. This Summary 1s not
intended to identily key features or essential features of the
claimed subject matter, nor 1s 1t intended to be used to limait
the scope of the claimed subject matter.

An automated tool 1s disclosed that analyzes source code
repositories and web endpoints for unique characteristics
that they both share 1n order to predict the likelihood that a
particular source code repository contains source code files
used 1 a web endpoint and to predict the likelihood that a
web endpoint uses source code files of a particular reposi-
tory. The unique characteristics are referred to as fingerprints
and 1nclude unique combinations of public-facing entities,
unique tokens, and unique Document Object Model (DOM)
characteristics.

The unique characteristics are discovered using a static
analysis component and a dynamic analysis component. The
static analysis component scans the static version of source
code files stored 1n a project of a source code repository and
the dynamic analysis component scans the rendered versions
found at the web endpoint and other content data of the web
endpoint.

A correlation coeflicient 1s computed for a source code
repository and web endpoint pair which indicates the degree
of similarity between the source code repository and the web
endpoint based on the fingerprints of each partner of the pair.
A high degree of similarity indicates a strong likelithood that
the source code repository and the web endpoint are related.

10

15

20

25

30

35

40

45

50

55

60

65

2

The automated tool may be part of a security service that
uses the correlation between source code repositories and
web endpoints to detect the origin of a security vulnerability
that may surface 1n a web endpoint or 1 a source code
repository. The identification of the related web endpoint or
source code repository improves the response time of the
security service 1n remedying the security vulnerability.

These and other features and advantages will be apparent
from a reading of the following detailed description and a
review of the associated drawings. It 1s to be understood that
both the foregoing general description and the following
detailed description are explanatory only and are not restric-
tive of aspects as claimed.

BRIEF DESCRIPTION OF DRAWINGS

FIGS. 1A-1B are block diagrams illustrating an exem-
plary system for detecting fingerprints from source code

repositories and web endpoints which are used to generate
correlation coetlicients predicting the relationship between a
source code repository and a web endpoint.

FIGS. 2A-2B are block diagrams illustrating exemplary
scenarios for utilizing the correlation coetflicients.

FIGS. 3A-3B are tlow diagrams 1illustrating an exemplary
method for analyzing source code repositories and web
endpoints for fingerprints and to compute a correlation
coellicient for a source code repository and web endpoint
pair based on the fingerprints.

FIGS. 4A and 4B are flow diagrams illustrating exem-
plary methods for utilizing the correlation coethicients.

FIG. 5§ 1s a block diagram illustrating an exemplary
operating environment.

DETAILED DESCRIPTION

Overview

The subject matter disclosed pertains to a mechanism that
predicts the relationship between a static source code reposi-
tory ol a web application and 1ts compiled and published
version that 1s publicly-accessible on a web endpoint.

Software companies utilize tens of thousands of source
code projects that are spread across multiple repositories and
used 1n several web endpoints. Cataloguing a source code
repository with the location of the web endpoints that utilize
the source code files of a project within a repository and/or
the source code repositories that store files used 1 a web
endpoint 1s a challenging effort that 1s prone to human errors
and 1s olten outdated.

An automated tool 1s disclosed that analyzes source code
repositories and web endpoints for unique characteristics
that they both share 1n order to predict the likelihood that a
particular source code repository contains source code files
used 1 a web endpoint and to predict the likelihood that a
web endpoint uses source code files of a particular reposi-
tory. The umique characteristics are referred to as fingerprints
and include unique combinations of public-facing entities,
unmique tokens, and unique DOM characteristics.

A public-facing entity 1s a library that contains source
code that may be found in code used by a web endpoint.
There are many widely-popular libraries but the existence of
an individual public-facing entity 1s not unique enough. The
combination of the public-facing entities found in a reposi-
tory and web endpoint 1s a umique characteristic that 1s used
as a fingerprint.

Tokens are static values or attribute-value pairs found 1n
a source code file of a repository or web endpoint. DOM
characteristics are attribute-value pairs found 1n the DOM of
a rendered web page.

US 11,657,161 B2

3

The unique characteristics are discovered using a static
scanning process performed by a static analysis component
and a dynamic scanning process performed by a dynamic
analysis component. The static analysis component scans

the static version of source code files stored 1n a project of 53

a source code repository and the dynamic analysis compo-
nent scans the rendered versions of these files and other
content found at the web endpoint.

A correlation coeflicient 1s computed for a source code
repository and web endpoint pair which indicates the degree
of similarity between the source code repository and the web
endpoint based on the fingerprints found 1n each part of the
pair. A high degree of similarity indicates a strong likelihood
that the source code repository and the web endpoint are
related.

The correlation or association between the source code
repository and 1ts use 1n a web endpoint may be used in
different scenarios. The correlation aids 1n finding the source
of a security vulnerability that may be hidden 1 a web
endpoint or 1n related source code files stored 1 a source
code repository. When a security vulnerability 1s found in an
endpoint, knowledge of the origin of the security 1ssue is
crucial to resolving the issue and this requires knowing
where the source code files of the web endpoint are located.
Likewise, when a security vulnerability 1s found 1n source
code file of a source code repository, knowledge of the web
endpoints that utilize the faulty source code file 1s crucial to
resolving the vulnerability.

Attention now turns to a further discussion of the system,
devices, components, and methods utilized 1n the discovery
of the correlation between source code repositories and web
endpoints.

System

FIGS. 1A-1B illustrate an exemplary system 100 in which
various aspects of the invention may be practiced. A static
analysis component 102 performs a static analysis of the
source code files 1n one or more source code repositories
104A-104N (*104”) to find fingerprints, such as unique
tokens, 1n each source code file of a source code repository
and the combination of public-facing entities of a source
code repository 116. The static analysis component 102
analyzes source code files written 1n a programming lan-
guage, a text-based markup language (e.g., HITML/EXten-
sible Markup Language (XML)), scripting language (e.g.,
JavaScript), Cascading Style Sheet (CSS) files, configura-
tion files, and so forth. The unique tokens found by the static
analysis component 102 include unique static values and
attribute-value pairs 120.

A dynamic analysis component 106 performs a dynamic
analysis of the web content of a web endpoint 108 A-108N
(“108"). Dynamic analysis includes a combination of web
crawling and webscraping since the content data of a web
endpoint 1s rendered at runtime and differs from the static
versions of the originating files. The dynamic content of a
web endpoint includes Uniform Resource Locator (URL)
patterns, JavaScript files, CSS files, web fonts, images, and
downloadable public media 118. The unique tokens obtained
from the dynamic content include string literals, file names,
path names, DOM eclements, and attribute-value pairs 122
which are stored in token database 110. In addition, the
dynamic analysis component 106 1dentifies the unique com-
bination of public-facing entities (e.g., libraries) 118 found
at the web endpoint 108 which are stored 1n database 128.

A source code repository 104 1s a file archive that hosts
projects having source code files 116. The source code
repository 104 may be private and internal to an organiza-
tion, group, enterprise or user or may be publicly-accessible

10

15

20

25

30

35

40

45

50

55

60

65

4

through the Internet. The source code repository 104 may
include a version control system that manages changes made
to the source code files. The source code repository 104 may
be distributed or centralized. In a centralized source code
repository, there 1s a single repository that contains all
versions of the source code. There 1s one copy of the
repository and a developer gets the latest copy of the source
code from the centralized repository. Changes made by the
developer are committed to the master copy 1n the central-
1zed repository. In a distributed source code repository (e.g.,
GIT), each developer has their own local repository of the
source code with the history and versions of the source code.
The developer’s changes are made to their local repository
and then a set of changes 1s applied to the master repository.

In one aspect, a web endpoint 108 1s accessed through one
or more web Application Programming Intertaces (APIs),
such as a Representational State Transfer (REST) APIs. A
REST API 1s used to initiate a request to a web endpoint,
where the request specifies an HI'TP operation or method to
be performed to create, retrieve, update or delete a resource
of the web service. The request may include a request
Uniform Resource Identifier (URI) and a HTTP request
message header. The URI may indicate the protocol used to
transmit the request (e.g., http, https), the domain name or
Internet Protocol (IP) address of the server of the REST
service endpoint, the resource path and parameters. The
HTTP request message header includes a HI'TP method
(e.g., GET, HEAD, PUT, POST, and PATCH methods) that
tells the web service the type of operation that 1s being
requested. The response may include a HTTP response
message header and a HI'TP response message body. The
HTTP response message header may include a status code
and other optional data. The HTTP response message body
includes the requested data.

A token 1s a value of an element of the source code. In one
aspect, a token 1s a literal that has a fixed value or an attribute
value. For example, 1n the following JavaScript code,

var mstKey = “1111-22-33333-444444";

callToFunction(*“#mput_form™, “VC23-162b”);

the tokens are the strings, “1111-22-33333-444444”, “#imput_form™,
and “V(C23-162b”, since they are fixed-valued literals.

In the following HI'ML code,

<div 1d ="main_screen_customer” class ="fullscreen> ... </ div>

<gcript src="//mycdn.net/path/to/ibrary.js?v=3" > </script>

the tokens are the attribute values, “main screen customer”,
“fullscreen, and “mycdn.net/path/to/library.js?v=3".

A token may also be an attribute-value pair. In a webpage,
some of the elements are HTML elements that contain a
combination of attribute names and values. The values may
not be unique but the combination of the attribute name and
its value have a higher uniqueness. For this reason, a token
includes attribute-value pairs which are a combination of an
attribute name and 1ts value. For example, for the following
code snippet:

,
the tokens include the following attribute-value pairs: (1) name: “title”,
(2) rel: “mask-1con”, and (3) src: “https://contoso.com”.

A umique token 1s a token that has a high degree of
randomization and has a significant length that makes 1t

US 11,657,161 B2

S

appear less frequently. To determine uniqueness, a token 1s
stored 1n a token database 110 along with its location. A
count 1s used to track the frequency the token appears in a
particular source. If token appears too often, 1t not consid-
ered a unique token and 1s deleted from the token database.

In one aspect, the token database 110 may include a token
corpus file 124 and a token location file 126. The token
corpus lile 124 contains the source of the token, which 1s
either a source code repository name or a URL of a web
endpoint (e.g., REP01, URL1, REP02), and a token ident-
fier for the token. The token location file 126 includes the
token i1dentifier (e.g., 1, 2, . . .), the token, the source of the
token (e.g., JavaScript (J S) llteral DOM attr, etc.), metadata
(¢.g., when the token was first found, when the token was
last found), and the count, which 1s the frequency that the
token 1s discovered 1n a particular source.

Turning to FIG. 1B, a correlation component 112 scans
the token database 110 and the unique combination of
public-facing entities database 128 to obtain the fingerprints
which are the unique combination of public-facing entities,
the unique DOM characteristics, and the unique tokens 130
used to compute a correlation coeflicient that represents the
likelithood that a particular web endpoint and source code
repository are related. The correlation coetlicients of a
respective source code repository and web endpoint are
stored 1n a coellicient database 114.

It should be noted that FIGS. 1A-1B show components of
the system 1n one aspect of an environment 1n which various
aspects of the mvention may be practiced. However, the
exact configuration of the components shown i FIGS.
1A-1B may not be required to practice the various aspects
and variations 1n the configuration shown in FIGS. 1A-1B
and the type of components may be made without departing
from the spirit or scope of the invention.

Turning to FIGS. 2A and 2B, the coetlicient database 114
may be used 1 a tool 202 (e.g., software component,
plug-in, add-1n, etc.) to predict the source code repository
that 1s related 206 to a web endpoint 204 by virtue of the
fingerprints common to both the repository 206 and the web
endpoint 204. Additionally, the coellicient database 114 may
be used 1n a tool 208 to predict the web endpoint 212 related
to a source code repository 210 by virtue of the web
endpoint 212 exposing fingerprints originating from the
repository 210. In one aspect, the tool may be part of an
Integrated Development Environment. In other aspects, the
tool may be integrated with a source code repository and
used to track back snippets of source code or source code
files to 1ts original libraries or renaming libraries.

Methods.

Attention now turns to a description of the various exem-
plary methods that utilize the system and devices disclosed
herein. Operations for the aspects may be further described
with reference to various exemplary methods. It may be
appreciated that the representative methods do not neces-
sarily have to be executed in the order presented, or 1n any
particular order, unless otherwise indicated. Moreover, vari-
ous activities described with respect to the methods can be
executed 1n serial or parallel fashion, or any combination of
serial and parallel operations. In one or more aspects, the
method illustrates operations for the systems and devices
disclosed herein.

FIGS. 3A-3B illustrate an exemplary method 300 for
discovering the relationship between a source code reposi-
tory and a web endpoint.

Turning to FIG. 3A, mitially, the unique combination of
public-facing entities 1s discovered. The static component
searches for files that contain source code used i web

10

15

20

25

30

35

40

45

50

55

60

65

6

applications. The dynamic component searches for the con-
tent data of a web endpoint. In one or more aspects, the
method 1s pre-configured with a set of web endpoints to
analyze and a number of source code repositories to analyze.
(Collectively, block 302)

In addition to the known source code repositories, the
static component searches for external libraires or public-
facing entities that are used 1n web applications. Web-based
projects rely on a number of public-facing entities to provide
client-side functionality and visual components which may
be contained 1n JavaScript libraries, Cascade Style Sheet
(CSS) files, web fonts, images and the like. The public-
facing entities may be found in well-known open source
libraries, such as React, Vue, JQuery, Google Analytics, etc.
(Collectively, block 302).

The location of the public-facing entities may not be

known. In this case, the static component may search
package managers associated with a web application frame-
work to find these external librarnies. A web application
framework 1s a collection of resources that support the
development of web applications, web APIs, and web ser-
vices. A web application framework may include a package
manager that automates the process of installing, upgrading,
configuring, and removing computer programs for a com-
puter’s operating system 1n a consistent manner The package
managers include libraries having source code used for web
application development. (Collectively, block 302).
The dynamic component analyzes the content data of a
web endpoint. To find the content data of a web endpoint,
webscraping techniques are used. Classic webscraping
involves fetching a web page from a website and then
extracting from it content and additional web pages. Web
pages are constructed from text-based markup languages,
such as HIML, XML and Extensible HyperText Markup
Language (XHTML), and contain content data in text form
which can be readily extracted from the web page. Hyper-
links and references to external-facing entities can be
extracted from the markup language files. (Collectively,
block 302)

At some web endpoints, single page applications are used
which rely on JavaScript and API calls to form the content
of a web page dynamically thereby rendering additional files
and libraries. These files and libraries would not be detected
from classic webscraping. In this scenario, DOM-based
scraping 1s used to find these external-facing entities (e.g.,
JavaScript file and libraries) and to follow hyperlinks.
DOM-based scraping builds the DOM and executes the
scripts located 1 the HITML source code. Data 1s then
extracted from the DOM with selectors. DOM-based scrap-
ing 1s performed using a headless browser. (Collectively,
block 302).

The files 1n these external libraries and the files in the
source code repository are downloaded for further analysis
by the static component and the content data of the web
endpoints are downloaded as well. The unique combination
of the files of a source code repository and web endpoint are
stored 1n a database for further analysis. (Collectively, block
304).

Each of the downloaded files are then analyzed for unique
tokens and DOM characteristics. The static component
analyzes the static files, such as the source code files from
a source code repository and the dynamic component ana-
lyzes the DOM elements 1n the DOM of a rendered web
page. The DOM 1s a data representation of the objects that
comprise the structure and content of a web page. The DOM
1s modified with a scripting language, such as JavaScript.
(Collectively, block 306).

US 11,657,161 B2

7

The static component may parse the source code file mto
a parse tree or abstract syntax tree to extract the literals in the
source code file that represent static values. The dynamic
component analyzes the DOM of a rendered web page to
identify attribute-value pairs from the DOM elements of the
web page. (Collectively, block 308).

The unique tokens are then stored in the token database.
In one aspect, the token database 1s composed of a token
corpus segment and a token location segment. The token
corpus segment identifies the location of a token and an
identifier for the token. The token location segment includes
the token identifier, the token, the token type, the token’s

metadata, and the count of the number of times the token 1s
tound. (Collectively, block 310).

After all the i1dentified files are mined, the correlation
component computes a correlation coeflicient for each
source code repository and web endpoint pair which 1s
stored 1n the correlation database (block 312).

Referring to FIG. 3B, in one aspect, the correlation
coellicient 1s computed as a weighted sum of matched
fingerprints. The weights are configured 1nitially to accom-
modate a target goal. In one aspect, the weights are used to
give 1mportance to certain fingerprints over other finger-
prints. For example, unique tokens are given a higher weight
since they are more unique than the combination of publicly-
facing entities. The weight of a token may represent the
uniqueness of the token. In one aspect, the weight of a token
may be the ratio of the size of the token corpus over the
frequency of the token. In this manner, a higher weight 1s
given to a token that occurs less frequently and deemed very
unique. (Collectively, block 314).

The correlation component computes a correlation coet-
ficient for each source code repository and web endpoint
pair (block 316). Imitially, the fingerprints for the web
endpoint and source code repository of the pair are collected
(block 318).

The correlation component looks for matches between the
fingerprints of a web endpoint and a source code repository.
For tokens, a match 1s when the value of the one token 1s
identical to the value of another token. For a public-facing
entity, a match 1s when the same library 1s found in both
fingerprints and the version of a matched library 1s at least
the same version or more recent as the other matched library.
For each matched fingerprint, a respective weight 1s applied
to the match. (Collectively, block 320).

The correlation component then computes the correlation
coellicient for the source code repository and web endpoint
pair as the sum of the weights of each matched fingerprint.
In one aspect, the correlation coeflicient 1s interpreted as a
high value when the correlation coellicient exceeds a thresh-
old value and 1s a low value when the correlation coetlicient
1s less than the threshold value. A high value indicates that
the source code repository and web endpoint are related.
(Collectively, block 322).

For example, consider the source code repository, REPO,
and web endpoint, EP. The fingerprints for REPO are listed
in the vector, REPO=[L0:v1, L1:v1, L2:vl, L3:v2, T0, T2,
D:[d1,d2]] and the fingerprints for EP are listed 1n the vector
EP=[L0:v1, L1:v1, L2:v2, TO, T1, T2, D:[d1,d2,d3]]. The
fingerprints for REPO include version vl of library LO,
version vl of library L1, version vl of library L2, version v2
of library L3, tokens T0, T2, and DOM attribute-value pairs,
dl and d2. The fingerprints for EP include version vl of

library L0, version v1 for library L1, version v2 of library
L2, tokens T0, T1, T2, and DOM attribute-value pairs, dl,

d2 and d3.

5

10

15

20

25

30

35

40

45

50

55

60

65

8

In this example, there are 7 matches which are as follows:
Match1={REPO, EP, L0} (REPO and EP share the same
library since they both use the same version of library L0),
Match2={REPO, EP, L1} (REPO and EP share the same
library since they both use the same version of library L1),

Match3={REPO, EP, L2} (REPO uses an older version of
library 1.2 and EP uses a newer version of library .2 which

1s considered a match),
Match4={REPO, EP, T0} (REPO and EP both share the

token T0),

Match5={REPO, EP, T2} (REPO and EP both share the
token T12),

Match6={REPO, EP, d1} (REPO and EP both share the
DOM attribute-value pair d1), and

Match7={REPO, EP, d2} (REPO and EP both share the
DOM attribute-value pair d2).

The correlation coeflicient, CC, for REPO, EP 1s the
following sum of the weights of each match:

CC=(Matchl*1)+(Match2*1)+(Match3*1)+
(Match4*Weightl)+(MatchS$*Weight2)+
(Match6*Weight3)+(Match7*Weightd). The value of each
match, Matchl, Match2, Match3, . . . Match7, 1s one.

Attention now turns to the application of the correlation
coellicients. Turning to FIGS. 4A and 4B, 1n one aspect, the
correlation database may be used in a security service to
detect the source of a security vulnerability or to detect the
outcome of a security vulnerability. A security vulnerability
may be detected using a security analysis tool. For example,
web vulnerabilities may be found using Static Analysis
Security Testing (SAST) or Dynamic Analysis Security
Testing (DAST). SAST 1s a testing methodology that ana-
lyzes source code before 1t 1s compiled to detect potential
security vulnerabilities. DAST 1s a testing methodology that
finds potential security vulnerabilities 1n web applications
while running in production mode.

Upon detection of a security vulnerability at a web
endpoint (block 402), the correlation database 1s used to
locate the source code repositories having a high correlation
coellicient with a web endpoint (block 404) 1n order to
analyze the source of the security vulnerability in the
identified source code repositories (block 406).

Upon detection of a security vulnerability 1in source code
of a source code repository (block 412), the correlation
database 1s used to find web endpoints having a high
correlation coetlicient with the source code repository (block
414), 1n order to perform remediation measures to limit the
security risks at the web endpoint (block 416).

Exemplary Operating Environment

Attention now turns to a discussion of an exemplary
operating environment. FIG. 5 illustrates an exemplary
operating environment 300 having one or more computing
devices 502 used to find a correlation between a source code
repository and a web endpoint. However, it should be noted
that the aspects disclosed herein 1s not constrained to any
particular configuration of devices. It should be noted that
the operating environment 1s not limited to any particular
configuration and other configurations are possible.

A computing device 502 may be any type of electronic
device, such as, without limitation, a mobile device, a
personal digital assistant, a mobile computing device, a
smart phone, a cellular telephone, a handheld computer, a
SErver, a server array or server farm, a web server, a network
server, a blade server, an Internet server, a work station, a
mini-computer, a mainirame computer, a supercomputer, a
network appliance, a web appliance, an Internet-of-Things
(I0T) device, a distributed computing system, multiproces-
sor systems, or combination thereof. The operating environ-

US 11,657,161 B2

9

ment 500 may be configured 1n a network environment, a
distributed environment, a multi-processor environment, or
as a combination of one or more stand-alone computing
devices having access to remote or local storage devices.
A computing device 502 may include one or more pro-
cessors 504, one or more communication interfaces 506, one
or more storage devices 508, one or more input/output
devices 512, and one or more memory devices 510. A
processor 504 may be any commercially available central
processing unit (CPU), microprocessor, processor core, or
customized processor and may include dual microprocessors
and multi-processor architectures. The communication 1nter-
face 506 {facilitates wired or wireless communications
between the computing device 502 and other devices. A
storage device 508 may be computer-readable medium that
does not contain propagating signals, such as modulated
data signals transmitted through a carrier wave. Examples of

a storage device 508 include without limitation Random
Access Memory (RAM), Read Only Memory (ROM), E

Elec-

[1

trically Erasable Programmable Read Only Memory (EE-
PROM), flash memory or other memory technology, Com-
pact Disc Read Only Memory (CD-ROM), digital versatile
disks (DVD), or other optical storage, magnetic cassettes,
magnetic tape, magnetic disk storage, all of which do not
contain propagating signals, such as modulated data signals
transmitted through a carrier wave. There may be multiple
storage devices 508 in the computing device 502. The
input/output devices 512 may include a keyboard, mouse,
pen, voice mput device, touch mput device, display, speak-
ers, printers, etc., and any combination thereof.

A memory 510 may be any non-transitory computer-
readable storage media that may store executable proce-
dures, applications, and data. The computer-readable storage
media does not pertain to propagated signals, such as
modulated data signals transmitted through a carrier wave.
It may be any type of non-transitory memory device (e.g.,
random access memory, read-only memory, etc.), magnetic
storage, volatile storage, non-volatile storage, optical stor-
age, DVD, CD, tfloppy disk drive, etc. that does not pertain
to propagated signals, such as modulated data signals trans-
mitted through a carrier wave. A memory 510 may also
include one or more external storage devices or remotely
located storage devices that do not pertain to propagated
signals, such as modulated data signals transmitted through
a carrier wave. The memory 510 may include an operating
system 514, a static analysis component 5316, a dynamic
analysis component 518, a unique token database 520, a
correlation component 522, a correlation database 524, a
unique combination of public-facing entities database 526,
and other applications and data 528.

The computing device 502 may be commumnicatively
coupled to a network 530. The network 530 may be con-
figured as an ad hoc network, an intranet, an extranet, a
virtual private network (VPN), a local area network (LAN),
a wireless LAN (WLAN), a wide area network (WAN), a
wireless WAN (WWAN), a metropolitan network (MAN),
the Internet, portions of the Public Switched Telephone
Network (PSTN), plain old telephone service (POTS) net-
work, a wireless network, a WiFi® network, or any other
type of network or combination of networks.

The network 530 may employ a varnety of wired and/or
wireless communication protocols and/or technologies.
Various generations of diflerent communication protocols
and/or technologies that may be employed by a network may

include, without limitation, Global System for Mobile Com-
munication (GSM), General Packet Radio Services (GPRS),

Enhanced Data GSM Environment (EDGE), Code Division

10

15

20

25

30

35

40

45

50

55

60

65

10

Multiple Access (CDMA), Wideband Code Division Mul-
tiple Access (W-CDMA), Code Division Multiple Access
2000, (CDMA-2000), High Speed Downlink Packet Access
(HSDPA), Long Term Evolution (LTE), Universal Mobile
Telecommunications System (UMTS), Evolution-Data
Optimized (Ev-DO), Worldwide Interoperability for Micro-
wave Access (WiMax), Time Division Multiple Access

(TDMA), Orthogonal Frequency Division Multiplexing
(OFDM), Ultra Wide Band (UWB), Wireless Application

Protocol (WAP), User Datagram Protocol (UDP), Transmis-
sion Control Protocol/Internet Protocol (TCP/IP), any por-
tion of the Open Systems Interconnection (OSI) model
protocols, Session Initiated Protocol/Real-Time Transport
Protocol (SIP/RTP), Short Message Service (SMS), Multi-
media Messaging Service (MMS), or any other communi-
cation protocols and/or technologies.

Conclusion

A system 1s disclosed comprising: one or more proces-
sors; a memory; and one or more programs, wherein the one
or more programs are stored 1n the memory and are config-
ured to be executed by the one or more processors, the one
or more programs including instructions that: find finger-
prints of a source code repository, wherein the fingerprints
of the source code repository include at least one of a unique
combination of public-facing entities of the source code
repository, unique tokens of the source code repository, or
unique Document Object Model (DOM) characteristics of
the source code repository; find fingerprints of a web end-
point, wherein the fingerprints of the web endpoint include
at least one of a umique combination of public-facing entities
of the web endpoint, unique tokens of the web endpoint, or
unmique DOM characteristics of the web endpoint; relate, the
source code repository with the web endpoint and/or the web
endpoint with the source code repository, upon a high
correlation detected between the fingerprints of the source
code repository and the fingerprints of the web endpoint;
upon detection of a security vulnerability with the web
endpoint, identify the related source code repository; and
upon detection of a security vulnerability with the source
code repository, identily the related web endpoint.

In one aspect, the one or more programs include turther
instructions that: identity the unique combination of public-
facing entities of the web endpoint through DOM webscrap-
ing. In one aspect, the one or more programs include further
instructions that: identify the unique combination of public-
facing entities of the source code repository through package
managers. In one or more aspects, the umique tokens of the
source code repository include static values of source code
files of the source code repository and the unique tokens of
the web endpoint include attribute-value pairs of a rendered
web page.

In an aspect, the one or more programs include further
instructions that: apply a weight to each fingerprint of the
web endpoint and to each fingerprint of the source code
repository; and i1dentily a relationship between the source
code repository and the web endpoint based on a weighted
sum of fingerprints of the source code repository that match
fingerprints of the web endpoint. In an aspect, the weight of
a unique token of the source code repository and a unique
token of the web endpoint 1s based on frequency of occur-
rence ol a value of the unique token.

A method 15 disclosed that 1s performed on a computing
device having a processor and a memory. The method
comprising: identifying a relationship between a web end-
point and a source code repository based on fingerprints of
the source code repository matching fingerprints of the web
endpoint, wherein the fingerprints of the source code reposi-

US 11,657,161 B2

11

tory include unique tokens found in source code files of the
source code repository, wherein the fingerprints of the web
endpoint include umique tokens found 1n dynamic content of
the web endpoint; upon detection of a security vulnerability
with the source code repository, obtaining the related web
endpoint for analysis of the security vulnerability with the
related web endpoint; and upon detection of a security
vulnerability with the web endpoint, obtaiming the related
source code repository for analysis of the security vulner-
ability with the related source code repository.

In an aspect, the fingerprints of the source code repository
include unique combinations of publicly-facing entities of
the source code repository, wherein the fingerprints of the
web endpoint include unique combinations of public-facing,
entities of the web endpoint. In an aspect, the dynamic
content of the web endpoint includes attribute-value pairs of
a rendered web page of the web endpoint.

In one or more aspects, the method further comprises
applying a weight to each unique token of the source code
repository and each unique token of the web endpoint;
computing a correlation coetlicient based on unique tokens
of the source code repository matching unique tokens of the
web endpoint; and relating the web endpoint to the source
code repository based on the correlation coeflicient. In one
or more aspects, the method further comprises generating
the weight of each unique token based on a frequency of
occurrence of a unique token.

In an aspect, the method further comprises applying a
weight to each fingerprint of the source code repository and
to each fingerprint of the web endpoint; and establishing a
relationship between the web endpoint and the source code
repository based on a weighted sum of matched fingerprints.
In an aspect, the method further comprises: matching a
combination of publicly-facing entities based on a version of
a publicly-facing entity of the source code repository match-
ing a same or later version of a same publicly-facing entity
of the web endpoint. In an aspect, the unique tokens of the
source code repository are static values, wherein the unique
tokens of the web endpoint are attribute-value pairs of a
Document Object Model (DOM) element.

A device 1s disclosed comprising: a processor coupled to
a memory; wherein the processor 1s configured to execute
instructions stored in the memory that perform acts that:
aggregate unique tokens found in source code files of a
source code repository and unique tokens found 1n content
of a web endpoint; compute a correlation coeflicient for the
source code repository and the web endpoint, wherein a high
correlation coeflicient represents an association between the
source code repository and the web endpoint, wherein the
correlation coeflicient 1s based on a number of matches
between the unique tokens of the source code repository and
the unique tokens of the web endpoint; and upon detection
of a security vulnerability with the source code repository or
the web endpoint, use the correlation coetlicient of the
source code repository or the web endpoint to find a related
source code repository or related web endpoint.

In an aspect, the processor 1s configured to execute
instructions stored in the memory to perform acts that:
aggregate public-facing entities of the source code files of
the source code repository and public-facing entities of the
web endpoint; and wherein the computation of the correla-
tion coellicient 1s based further on a number of matches of
the public-facing entities of the source code repository with
the public-facing entities of the web endpoint.

In an aspect, the processor 1s configured to execute
instructions stored in the memory to perform acts that:
aggregate attribute-value pairs from Document Object

10

15

20

25

30

35

40

45

50

55

60

65

12

Model (DOM) elements of a rendered web page of the web
endpoint and attribute-values pairs of DOM elements of a
source code repository; and wherein the computation of the
correlation coeflicient 1s based further on a number of
matches of the attribute-value pairs of a web endpoint with
the attribute-value pairs of the source code repository.

In an aspect, the processor i1s configured to execute
instructions stored in the memory to perform acts that: apply
a weight to each unique token; and wherein the computation
of the correlation coeflicient 1s a weighted sum of the
matches between the unique tokens of the source code
repository and the unique tokens of the web endpoint. The
processor 1s further configured to execute nstructions stored
in the memory to perform acts that: apply a weight to each
public-facing entity; and wherein the computation of the
correlation coeflicient 1s a weighted sum of the matches
between the unique tokens of the source code repository and
the unique tokens of the web endpoint and matches between
the unique combination of public-facing entities of the
source code repository and the public-facing entities of the
web endpoint.

While this specification contains many specific imple-
mentation details, these should not be construed as limita-
tions on the scope of what may be claimed, but rather as
descriptions of features that may be specific to particular
implementations. Certain features that are described 1n this
specification i the context of separate embodiments may
also be 1mplemented in combination 1 a single embodi-
ment. Conversely, various features that are described in the
context of a single embodiment may also be implemented 1n
multiple embodiments separately or in any suitable sub-
combination. Moreover, although features may be described
above as acting 1n certain combinations and even initially
claimed as such, one or more features from a claimed
combination may in some cases be excised from the com-
bination, and the combination may be directed to a sub-
combination or variation of a sub-combination.

Although the subject matter has been described 1n lan-
guage specific to structural features and/or methodological
acts, 1t 1s to be understood that the subject matter defined 1n
the appended claims 1s not necessarily limited to the specific
features or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
implementing the claims.

What 1s claimed:

1. A system comprising:

Oone or more processors; a memory; and

one or more programs, wherein the one or more programs

are stored 1n the memory and are configured to be
executed by the one or more processors, the one or
more programs including instructions that:
find fingerprints of a source code repository, wherein the
fingerprints of the source code repository comprise at
least one of unique combination of public-facing enti-
ties of the source code repository, unique tokens of the
source code repository, or unique Document Object
Model (DOM) characteristics of the source code
repository, wherein the fingerprints of the source code
repository are based on an aggregation of fingerprints
of each source code file of the source code repository;

find fingerprints of a web endpoint, wherein the finger-
prints of the web endpoint comprise at least one of
unique combination of public-facing entities of the web
endpoint, unique tokens of the web endpoint, or unique
DOM characteristics of the web endpoint;

relate, the source code repository with the web endpoint

and/or the web endpoint with the source code reposi-

US 11,657,161 B2

13

tory, based on a similarity between the fingerprints of
the source code repository and the fingerprints of the
web endpoint;

upon detection of a security vulnerability with the web

endpoint, 1dentity the related source code repository;
and

upon detection of a security vulnerability with the source

code repository, 1dentity the related web endpoint.

2. The system of claim 1, wherein the one or more
programs include further instructions that:

identity the umique combination of public-facing entities

of the web endpoint through DOM webscraping.

3. The system of claim 1, wherein the one or more
programs include turther instructions that:

identify the unique combination of public-facing entities

of the source code repository through package manag-
Crs.
4. The system of claim 1, wherein the unique tokens of the
source code repository comprise static values of source code
files of the source code repository.
5. The system of claim 1, wherein the unique tokens of the
web endpoint comprise attribute-value pairs of a rendered
web page.
6. The system of claiam 1, wherein the one or more
programs include further nstructions that:
apply a weight to each fingerprint of the web endpoint and
to each fingerprint of the source code repository; and

identify a relationship between the source code repository
and the web endpoint based on a weighted sum of
fingerprints of the source code repository that match
fingerprints of the web endpoint.

7. The system of claim 6, wherein the weight of a unique
token of the source code repository and a unique token of the
web endpoint 1s based on frequency of occurrence of a value
of the unique token.

8. A method, performed on a computing device having a
processor and a memory, the method comprising;:

identifying a relationship between a web endpoint and a

source code repository based on fingerprints of the
source code repository matching fingerprints of the web
endpoint, wherein the fingerprints of the source code
repository comprise unique tokens found 1n an aggre-
gation of source code files of the source code reposi-
tory, wherein the fingerprints of the web endpoint
comprise unique tokens found in dynamic content of
the web endpoint;

upon detection of a security vulnerability with the source

code repository, obtaining the related web endpoint for
analysis of the security vulnerability with the related
web endpoint; and

upon detection of a security vulnerability with the web

endpoint, obtaining the related source code repository
for analysis of the security vulnerability with the
related source code repository.

9. The method of claim 8, wherein the fingerprints of the
source code repository include comprise unique combina-
tions of publicly-facing entities of the source code reposi-
tory, wherein the fingerprints of the web endpoint include
unique combinations of public-facing entities of the web
endpoint.

10. The method of claim 9, further comprising;:

applying a weight to each fingerprint of the source code

repository and to each fingerprint of the web endpoint;
and

establishing a relationship between the web endpoint and

the source code repository based on a weighted sum of
the weights of the matched fingerprints.

10

15

20

25

30

35

40

45

50

55

60

65

14

11. The method of claim 9, further comprising:

matching a combination of publicly-facing entities based

on a version ol a publicly-facing entity of the source
code repository matching a same or later version of a
same publicly-facing entity of the web endpoint.
12. The method of claim 8, wherein the dynamic content
of the web endpoint includes attribute-value pairs of a
rendered web page of the web endpoint.
13. The method of claim 8, further comprising:
applying a weight to each unique token of the source code
repository and each unique token of the web endpoint;

computing a correlation coetlicient based on unique
tokens of the source code repository matching unique
tokens of the web endpoint; and

relating the web endpoint to the source code repository

based on the correlation coetlicient.

14. The method of claim 13, further comprising:

generating the weight of each unique token based on a

frequency of occurrence of a unique token.

15. The method of claim 8, wherein the unique tokens of
the source code repository are static values, wherein the
unique tokens of the web endpoint are attribute-value pairs
of a Document Object Model (DOM) element.

16. A device, comprising:

a processor; and

a memory coupled to the processor;

wherein the processor 1s configured to execute instruc-

tions stored in the memory that perform acts that:

aggregate unique tokens found in each source code file
ol a source code repository and unique tokens found
in content of a web endpoint;

compute a correlation coeflicient for the source code
repository and the web endpoint, wherein a high
correlation coeflicient represents an association
between the source code repository and the web
endpoint, wherein the correlation coetlicient 1s based
on a number of matches between the unique tokens
ol the source code repository and the unique tokens
of the web endpoint; and

upon detection of a security vulnerability with the source

code repository or the web endpoint, use the correlation
coeflicient of the source code repository or the web
endpoint to find a related source code repository or
related web endpoint.

17. The device of claim 16, wherein the processor 1s
configured to execute mnstructions stored 1n the memory to
perform acts that:

aggregate public-facing entities of the source code files of

the source code repository and public-facing entities of
the web endpoint; and

wherein the computation of the correlation coetlicient 1s

based further on a number of matches of the public-
facing entities of the source code repository with the
public-facing entities of the web endpoint.

18. The device of claim 17, wherein the processor 1s
configured to execute instructions stored in the memory to
perform acts that:

apply a weight to each public-facing entity; and

wherein the computation of the correlation coeflicient 1s a

weighted sum of the matches between the unique
tokens of the source code repository and the unique
tokens of the web endpoint and matches between the
unique combination of public-facing entities of the
source code repository and the public-facing entities of
the web endpoint.

US 11,657,161 B2

15

19. The device of claim 16, wherein the processor 1s
configured to execute instructions stored in the memory to
perform acts that:

aggregate attribute-value pairs from Document Object

Model (DOM) elements of a rendered web page of the
web endpoint and attribute-values pairs of DOM ele-
ments of a source code repository; and

wherein the computation of the correlation coeflicient 1s

based further on a number of matches of the attribute-
value pairs of a web endpoint with the attribute-value
pairs of the source code repository.

20. The device of claim 16, wherein the processor 1s
configured to execute instructions stored in the memory to
perform acts that:

apply a weight to each unique token; and

wherein the computation of the correlation coeflicient 1s a

weighted sum of the matches between the unique

tokens of the source code repository and the unique
tokens of the web endpoint.

[l

G x e Gx o

10

15

20

16

	Front Page
	Drawings
	Specification
	Claims

