12 United States Patent

USO011651081B1

10) Patent No.: US 11,651,081 B1

Powers 45) Date of Patent: May 16, 2023
(54) SYSTEMS AND METHODS OF 11,238,163 B1* 2/2022 Shihccoeeveen., GO6F 21/577
APPLICATION LAYER SECURITY 2010/0293407 Al* 11/2010 LoCaSto GOG6F 11/3672
714/2
(71) Applicant: ARCHITECTURE TECHNOLOGY 2016/0105308 AL™ 472016 Dutt ...oooooovvrvvvvvnnns HOAL %Q?S
%%RPORATION’ Eden Prairie, MN 2017/0329289 AL* 11/2017 Kohn .oooooooeceevecc.... F24F 11/46
(US) 2018/0322004 Al* 11/2018 Jain ..o.cooooveeven.. GOGF 11/3476
. . 2019/0052664 Al* 2/2019 Kiblerc.....o.... HO4L 63/20
(72) Inventor: Judson Powers, Eden Prairie, MN (US) 2020/0110588 Al* 4/2020 Barton ... GO6N 20/00
2020/0236122 Al1* 7/2020 Ott ...ocooveevinnnnnnl, HO4L 63/1408
(73) Assignee: ARCHITECTURE TECHNOLOGY
CORPORATION, Eden Prairie, MN OTHER PURT ICATIONS
(US)
Architect Technol C tion, P 1 No. N192-118,
(*) Notice: Subject to any disclaimer, the term of this N 1(;217(1: 8111‘ 503 4ecJ111110 fggmgorggra;o; FOPOREL P
patent 1s extended or adjusted under 35 A ¥ PAgES
U.S.C. 134(b) by 309 days. ¥ cited by examiner
(21) Appl. No.: 16/891,559
(22) TFiled: Jun. 3, 2020 Primary Examiner — Dant B Shaifer Harriman
(74) Attorney, Agent, or Firm — Foley & Lardner LLP
(51) Int. CL
GO6F 21/57 (2013.01)
GO6N 20/00 (2019.01) (57) ABSTRACT
(52) US. Cl. | A computer-implemented method of securing vulnerabilities
CPC GO6F 21/{5 77 (2013.01); GO6N 20/00 in a program, the method including receiving, by a com-
_ _(201?'01)! GO6r 2221/033 (2013.01) puter, state information generated by an executed applica-
(58) Field of Classification Search tion program, training, by the computer, a constraints model
CPC ., GO6F 21/577; GO6N 20/00 based on the state information, generating, by the computer,
USPC S AN T ROIR o 726/25 one or more constraints with the constraints model, each of
See application file for complete search history. the one or more constraints describing an execution con-
_ straint for executing the application program, wherein the
(56) References Cited

U.S. PATENT DOCUMENTS

6,230,312 B1* 5/2001 Hunt GOOF 9/465
719/331
10,489,274 B2* 11/2019 Stern GOOF 11/3652
300
T,

execution constraint enforces an itended operation of the
application program, and applying, by the computer, the one
or more constraints to the application program.

18 Claims, 4 Drawing Sheets

Monitor execution of an application program on a
processing device

Receive normal state
information generated by
application program

304

302

Receive abnormal state
information generated by
application program
306

Train a constraints model based on the state information
to determine vulnerabilities associated with executing

application program

308

Generate constraints with constraints model to enforce

an intended operation of the application program
310

Apply the constrains to application program
312

US 11,651,081 Bl

Sheet 1 of 4

May 16, 2023

U.S. Patent

£ Ol

0G1l
aseqeleq

SJUIBJISUOD

H
alempleH
091

AIJOM]SN AN
aJeM)0S WaISAS

47"
alemljos uoneolddy

Ol1

92IA3Q 3unNdwo)

001

US 11,651,081 Bl

Sheet 2 of 4

May 16, 2023

U.S. Patent

0€¢

0G¢ °0Aa(
uollnDax3
uoneoljddy

uonewJoju| 91e1s

¢le

14 X4
JOJIUO|A ele(
SAIJOY bulures|

(44
|I9POIA SIUIRIISUOD)

a|NPO\ UOoNeIaUas) SJUIBIISUOD

907 J0SSa20.d

022 2|NPOIAl Suluiea sulyde|A

807 Alowa|\
02 1IN2JID buissasold

Z0Z JoAI2g SUleIISUOD ANIN9oag

00¢

US 11,651,081 Bl

Sheet 3 of 4

May 16, 2023

U.S. Patent

A%
wessold uonedydde 01 sulRsIsu0D ayi Alddy

01t
wesdoad uonedlidde ayl Jo uoileIado popuajul ue

9040 1UD O [DPOW STUIEALSUQD UM STUIEAISUGS 9]eiolog)

80¢
wesgold uofiesijdde

UIIN39XD UM PI1BIDOSSE S2NIGRISUINA SUIULLISISP 01
LOIIBWIOLUT 18]S Y1 UO Pase(JopOotll SIUIBJIISUOD B UIRS

90t 74113
wesgdoud ucneddde wesdosd uoledsydde

AQ po1eiousg UoIIB IO Ag paieJtausd uoneuLIoLUl
D1L1S {BULIOUCE DAIDIDY 91E15 {BUIIOU BAIBITY

<0t
oA 3UIS$3D0UC

B uo weldold uoneddae ue Jo UsiINIBXe JOHUON

00¢

US 11,651,081 B1

Sheet 4 of 4

May 16, 2023

U.S. Patent

¥y Saueidi
uoneoljddy

c8Y¥
salielqi] waisAg

08 saouspuada

LY

S)OO0H
Umw%m__.__w._wﬂc_ uoneolddy
Z0v 9221na Bbunndwon

S|ied
pajdaoisiuj

0cy
alemMyosg

uoneol|ddy

JOAIBG SjUIBIISUOD

AUN2ag 0

JaADG SsjuleljsuoD

¥ 00t

>”—_._BU@W LoJ 4

US 11,651,081 Bl

1

SYSTEMS AND METHODS OF
APPLICATION LAYER SECURITY

TECHNICAL FIELD

This application generally relates to cyber defense tools
and techniques, including dynamaically 1dentifying and gen-
crating application-layer constraints that enforce secure
execution of software applications.

BACKGROUND

Software tools are oiten used to 1dentily potential vulner-
abilities in software systems. The security and operational
integrity of soltware systems may be compromised by such
vulnerabilities. It can be helptul to identity and mitigate such
vulnerabilities. For example, developers may identily soft-
ware bugs in software systems and push updates to the
software systems to eliminate the software bugs. Existing
systems may not facilitate automated vulnerability 1dentii-
cation for an application layer of a software system.

What 1s needed 1s a means to secure an application layer
of a software system. Software systems such as an applica-
tion program oiten include flaws that cause the software
system to behave 1n an unexpected manner. Various coun-
termeasures exist to mitigate such tlaws. However, existing
countermeasures fail to address business logic vulnerabili-
ties associated with an application layer of a software
system. Existing countermeasures and soltware systems
often interpret such vulnerabilities as “normal operation.”
Business logic vulnerabilities may be avoided through vari-
ous means, such as rigorous testing. However, such eflorts
are often limited by resources and therefore producing
provably secure software systems (e.g., those without busi-

ness logic vulnerabilities, etc.) 1s extremely dithcult.

SUMMARY

For at least the shortcomings discussed above, there 1s a
need for systems and methods to automatically identify
business logic vulnerabilities 1n application programs and
mitigate such vulnerabilities whenever a device executes
such application programs. This disclosure addresses the
technological shortcomings 1n the art as mentioned above
and may also offer additional or alternative benefits. In
particular, described herein are systems and methods that
facilitate secure execution of software application. For
example, embodiments described herein may automatically
identify business logic vulnerabilities 1n application pro-
grams using machine state information, and mitigate such
vulnerabilities by generating execution constraints config-
ured to mnhibit damaging or exploitable machine states
whenever a device executes an application program. The
systems and methods of the present disclosure facilitate
automatic detection of application layer vulnerabilities aris-
ing when device execute a software application, which are
used to generate execution constraints to mitigate or elimi-
nate such vulnerabilities. Moreover, systems and methods
herein provide for downstream deployment of generated
security constraints to computing devices that will execute
the software application, such that the security constraints
are implemented by the computing devices, thereby securing
an application layer of the computing device.

In one embodiment, a computer-implemented method of
securing vulnerabilities 1n a program comprises receiving,
by a computer, state information generated by an application
program; training, by the computer, a constraints model

10

15

20

25

30

35

40

45

50

55

60

65

2

based on the state information during execution of the
application program; generating, by the computer, one or
more constraints with the constraints model, each of the one
or more constraints containing an execution constraint hav-
ing a machine-readable mstruction that prevents the appli-
cation program from instructing the machine to deviate from
a normal operation; and applying, by the computer, the one
or more constraints to the application program.

In another embodiment, a system for determining security
vulnerabilities associated with an application program com-
prises a non-transitory computer-readable storage medium
having instructions stored thereon; and a processor config-
ured to execute the 1structions to: receive state information
generated by an application program; train a constraints
model based on the state information during execution of the
application program; and generate one or more constraints
with the constraints model, each of the one or more con-
straints containing an execution constraint having a
machine-readable 1nstruction that prevents the application
program Irom instructing the machine to deviate from a
normal operation.

In yet another embodiment, a non-transitory computer-
readable storage medium has instructions stored thereon
that, when executed by a processor, causes the processor to
receive state imnformation comprising internal variables gen-
crated by an application program executed under normal
conditions, wherein the internal variables are associated
with a business logic of the application program; train a
constraints model based on the state information; generate
one or more constraints with the constraints model, each of
the one or more constraints describing an execution con-
straint for executing the application program, wherein the
execution constraint includes at least one of an allowable
range for an internal variable, an allowable state transition
sequence, or an expected state dependent internal variable
value; generate executable code for a processing device
running the application program based on the one or more
constraints; and transmit the executable code to the process-
ing device.

The various aspects and implementations may be com-
bined where appropriate.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a system for securing application programs
executed by a number of systems, according to an 1llustra-
tive implementation.

FIG. 2 1s a block diagram illustrating a security con-
straints system for monitoring and identifying potential
vulnerabilities, according to an illustrative embodiment.

FIG. 3 1s a flow diagram 1illustrating a method of gener-
ating security constraints for the security constraints system,
according to an illustrative implementation.

FIG. 4 1s a block diagram illustrating data flow between
the security constraints system and a computing device,
according to an 1illustrative implementation.

DETAILED DESCRIPTION

References will now be made to the 1llustrative embodi-
ments depicted 1n the drawings, and specific language will
be used here to describe the same. It will nevertheless be
understood that no limitation of the scope of the claims or
this disclosure 1s thereby intended. Alterations and further
modifications of the inventive features 1llustrated herein, and
additional applications of the principles of the subject matter
illustrated herein, which would occur to one skilled 1n the

US 11,651,081 Bl

3

relevant art and having possession of this disclosure, are to
be considered within the scope of the subject matter dis-
closed herein. Other embodiments may be used and/or other
changes may be made without departing from the spirit or
scope of the present disclosure. The illustrative embodi-
ments described 1n the detailed description are not meant to
be limiting of the subject matter presented.

The following are more detailed descriptions of various
concepts related to, and implementations of, methods, appa-
ratuses, and systems for identifying vulnerabilities associ-
ated with application programs, automatically generating
security constraints based on the i1dentified vulnerabailities,
and applying the security constraints to the application
programs. The various concepts introduced above and dis-
cussed 1n greater detail below may be implemented 1n any of
numerous ways, as the described concepts are not limited to
any particular manner ol implementation. It would be appre-
ciated that an application software program may include any
collection of machine-executable instructions, inputs/out-
puts, and other components. A machine state or state infor-
mation may include data in any machine or human readable
format 1ndicating prior, current, or anticipated information
for aspects of the executing device; non-limiting examples
of state information may include the data contents (e.g.,
executable mstructions, memory points, data inputs/outputs,
parameters, variables) in a memory (e.g., RAM, buflers,
registers, hard disk), the contents or physical status of logic
units (e.g., CPU, ALU, GPU, registers), or the contents or
physical status of an execution pipeline or system bus,
among other forms of device state information. It will be
turther appreciated that a secure execution constraint may
include machine-readable data inputs or machine-executable
instructions that constrain and/or control how a computing
device executes a soltware application 1n order to inhibit
and/or correct a damaging, exploitable, or otherwise unde-
sirable machine state.

Often application programs include errors, flaws, or other
faults that cause the application program to produce an
incorrect or unexpected result, or to behave 1n an unintended
manner. These errors are oiten called “software bugs.”
Software bugs generally result from mistakes and/or errors
in the design or implementation of a software program.
Additionally or alternatively, application programs may
include business logic vulnerabilities. Business logic vul-
nerabilities are exploitations of the business logic of an
application program. One having skill in the art would
appreciate that business logic includes the machine-ex-
ecuted 1nstructions and operational inputs/outputs that are
executed and/or generated by a computing device when
executing a soiftware application program. Business logic
vulnerabilities subvert the logic of an application program to
cause undesired or unintended behavior 1n the application
program. For example, an attacker may transmit a network-
ing utility “ping” to a vulnerable system that exceeds the
expected maximum allowable message size for the system,
thereby causing the system to crash.

Various countermeasures exist to inhibit or mitigate busi-
ness logic vulnerabilities arising when certain software or
soltware 1nstructions are executed by i1dentifying and maiti-
gating software bugs, malware, or other forms vulnerabili-
ties. For example, existing software-execution controls and
security vulnerability reduction programs (e.g., anti-virus
soltware, intrusion detection systems, local firewall soft-
ware) may be configured by an administrator to prevent a
computing device from executing certain undesirable pro-
grams or program instructions. As an additional example of
countermeasures, compiler-based defense systems may

10

15

20

25

30

35

40

45

50

55

60

65

4

inject “checks™ ito the execution flow of an application
program to prevent an attacker from changing the data or
control flow of the application program in an unintended
mannet.

Existing countermeasures, however, may not be capable
of 1dentifying business logic vulnerabilities and/or prevent-
ing exploitation at the application-layer. Typical software
security appliances and programs often mitigate security
vulnerabilities 1n system software (e.g., operating system,
firmware), but often not at the application layer for particular
soltware programs. For example, anti-virus soltware may
monitor system software, such as an operating system, to
identify and terminate execution of a malware program (e.g.,
rootkit, worm, Trojan horse, keylogger, ransomware) based
on known information about the malware program (e.g.,
filename), sometimes called a “signature.” In similar
examples, an 1ntrusion detection system or a local firewall
may monitor system software or data communications for
known signatures associated with black-listed programs or
communication partners. These approaches 1n existing coun-
termeasures monitor and mitigate vulnerabilities at a system
soltware or hardware level, based on signatures or pre-
configured rules. Existing software security systems are
typically unable to monitor and mitigate, at an application
layer (e.g., mitigate business logic vulnerabilities, etc.), of a
computing device.

Furthermore, existing security countermeasures typically
do not facilitate dynamic monitoring of a computing device/
soltware system. For example, as mentioned above, existing,
security countermeasures, such as anti-virus software, detect
vulnerabilities or attacks by comparing a signature or other
features associated with a software program or communi-
cation data against published or pre-configured malicious
signatures or black-list of known malicious signatures. Yet,
these existing countermeasures cannot dynamically identify
or intuit the state of the computing device/software system
to determine whether the current state of the computing
device/software system makes sense given the context of the
computing device/soltware system (e.g., “given imput A,
does mput B make sense?”).

Business logic vulnerabilities arising from executed soit-
ware applications may be avoided through rigorous testing,
analysis, and software specification—however, these eflorts
are limited by, e.g., time, resources, and the ability of human
developers to anticipate possible deviations from expected
behavior (e.g., unexpected user input, etc.). For example,
exhaustive testing ol even a relatively simple application
program may involve executing the application program
across a matrix of billions of possible mput sequences.
Therefore, provably secure application programs (e.g., those
without business logic vulnerabilities, etc.) are generally
prohibitively expensive to develop. Moreover, 1t 1s not
always possible to fix business logic vulnerabilities once a
system having an application program 1s deployed. For
example, 1n an unmanned underwater vehicle (UUV) con-
text, updates to fix business logic vulnerabilities may be
impossible due to the 1nability to efliciently transmit high-
bandwidth signals underwater. Therefore, there 1s a need for
systems and methods to 1dentify business logic vulnerabili-
ties 1n application programs, automatically generate security
constraints to mitigate and/or eliminate the vulnerabilities,
and apply the security constraints to the application pro-
grams.

Systems and methods of the present disclosure relate
generally to securing business logic of an application pro-
gram at the application layer. More specifically, systems and
methods of the present disclosure relate to unique machine

US 11,651,081 Bl

S

learning and security constraint enforcing methodologies to
(1) describe security vulnerabilities associated with applica-
tion program business logic, (1) automatically identify
potential security vulnerabilities associated with application
program business logic and generate security constraints
addressing the identified potential security vulnerabilities,
and (111) apply the security constraints to secure the appli-
cation program.

In various embodiments, systems and methods of the
present disclosure improve the functioning of computer
systems by automatically identifying and mitigating busi-
ness logic vulnerabilities 1n application programs, thereby
reducing an attacker’s ability to exploit the application
program. For example, an attacker may attempt to perform
a demal-of-service (DoS) attack by sending an unexpected
input to a system (e.g., a desktop/laptop computer, a car, a
mobile device, an unmanned vehicle, etc.) runming an appli-
cation program, thereby taxing system of its re causing the
system to enter a fault state and/or cease operation. The
teatures and benefits of the present disclosure may facilitate
identifying and dynamically responding to unexpected or
problematic iputs (e.g., 1gnoring inputs, halting application
execution, modifying application execution, etc.), thereby
preventing DoS attacks. Moreover, in various embodiments,
systems and methods of the present disclosure improve the
field of software verification and validation by automatically
identifyving business logic vulnerabilities that human devel-
opers may not have anticipated. Further, systems and meth-
ods of the present disclosure may eliminate the need for
exhaustive testing ol application programs (e.g., analyzing
every possible deviation from expected behavior, etc.). It
should be noted that the terms “business logic™ and “appli-
cation logic” as used herein are interchangeable except
where context dictates otherwise, and include, for example,
machine-executable mstructions.

Referring now to FIG. 1, system 100 for securing appli-
cation programs 1s shown, according to an illustrative
embodiment. System 100 may include one or more com-
puting devices 110, such as commercial devices 110a-1104d,
security constraints server 140, and constraints database
150. In various embodiments, components of system 100 are
communicably connected via network 160. Security con-
straints server 140 may monitor and secure commercial
devices 110a-1104d. For example, security constraints server
140 may receive state information from commercial devices
110a-110d, generate security constraints based on the state
information, and deploy the security constraints on com-
mercial devices 110a-110d, thereby securing an application
layer of commercial devices 110a-1104d.

A computing device 110 1s any system, device, or com-
ponent that executes an application program. Non-limiting,
examples of a computing device 110 may be a vehicle 110a
(e.g., a car having an embedded processing circuit, etc.), an
embedded processor (e.g., a motion controller, etc.), a
mobile device 110b (e.g., a smartphone, etc.), a computer
110¢ (e.g., a desktop computer, a laptop computer, etc.), a
smart device (e.g., a smart thermostat, a smart television,
etc.), an autonomous vehicle 1104 (e.g., an autonomous
UuV, etc.), and the like.

A computing device 110 may include application software
112, system software 114, and hardware 116. Hardware 116
may 1nclude physical and low-level components of the
computing device 110, such as a processing circuit having a
processor and memory. For example, hardware 116 may
include random-access memory (RAM), a hard disk, a
central processing unit (CPU), and/or input/output (I/0)
devices.

10

15

20

25

30

35

40

45

50

55

60

65

6

System soitware 114 may include or constitute machine-
executable instructions that operate on, and control and
manage operations of, the hardware 116. The system soft-
ware 114 may include instructions that operate in between
the hardware 114 and application software 112 at an appli-
cation layer, and may control interactions between the
hardware 114 and application software 112. For example,
system software 114 may include low-level firmware, an
operating system, or an interface between hardware 116 and
application software 112. In operation, system software 114
may manage I/O requests or I/O data from application
software 112 by translating the I/O requests into data-
processing instructions for hardware 112 (e.g., CPU).

Application software 112 may include one or more appli-
cation programs that run on system soiftware 114. Non-
limiting examples of application software 112 may include
a word processor, a web browser, a system controller (e.g.,
an autonomous vehicle control system, etc.), and a naviga-
tion system, among others. In some embodiments, the appli-
cation soitware 112 includes a user interface, which may
include a command-line interface or graphical user interface
(GUI), or a user interface device (e.g., a touchscreen, mouse,
monitor, keyboard) that may receive mputs from a user and
display imnformation to the user. In some cases, application
software 112 may function imndependently of an end user,
such as a temperature controller 1n a smart thermostat.

In some embodiments, computing device 110 includes or
constitutes a commercial device. For example, computing
device 110 may be one of commercial devices 110a-1104.
Commercial devices 110a-1104 may include cars, mobile
devices, computers, unmanned aerial vehicles (UAVs), and/
or the like. Additionally or alternatively, commercial devices
1104-1104 may include any system, device, and/or compo-
nent having a processing circuit executing program instruc-
tions. For example, commercial devices 110q-110d may
include an embedded proximity sensor.

Security constraints server 140 may be or include one or
more servers. Bach of the one or more servers may include
a processing circuit having a processor and memory. The
memory may have instructions stored thereon that, when
executed by the processor, cause the processing circuit to
perform the operations described herein. In brief summary,
security constraints server 140 may monitor an operation of
commercial devices 110a-110d to train a model, generate
security constraints based on the model to address potential
application layer vulnerabilities (e.g., business logic vulner-
abilities, etc.) associated with commercial devices 110a-
110d, and deploy the security constraints to commercial
devices 1104-1104 to mitigate and/or secure the potential
application layer vulnerabailities.

Constraints database 150 may be any machine-readable
storage media (e.g., RAM, magnetic hard disk) that stores
constraints, constraints models, and any other data associ-
ated with business logic vulnerabilities 1dentified in various
application software 112. In operation, the constraints data-
base 150 may receirve the various forms of data (e.g.,
constraints, constraints models, identified wvulnerabilities,
state mnformation) from a security constraints server 140.
Some of the data stored in the constraints database 150 may
include machine-executable instructions (e.g., an applica-
tion programming interface (API) library, compiler mnstruc-
tions, process injection instructions, introspection hooks,
etc.), which may be transmitted to, and executed by, a
computing devices 110 or a security constraints server 140.
For instance, constraints may comprise machine-readable
inputs or executable instructions that the constraints data-
base 150 or constraints server 140 transmit to one or more

US 11,651,081 Bl

7

computing devices 110 to mitigate and/or secure against
identified business logic vulnerabilities. In another example,
constraints models may be retrieved by the constraints
server 140 to update or modily the constraints model and
resulting constraints. Non-limiting examples of a constraints
database 150 may include but are not limited to magnetic
storage, optical storage, flash storage, and RAM, among
others. It should be appreciated that the constraints database
150 may be embodied on any number of computing devices
(e.g., a server computer), which may include the constraints
server 140 or a server in communication with the constraints
server over one or more private networks.

Network 160 may include any number electronic com-
munication networking hardware implementing one or more
forms of device communications protocols. The network
160 may include any number public and/or private networks
and may include the Internet, LAN, WAN, MAN, intranets,
satellite networks, and other forms of device networks.
Network 160 may include voice or data mobile phone
communication networks, combinations thereof, or any
other type of electronic communications network. Network
160 may include or constitute a public network (e.g., the
Internet, etc.) and/or a private network (e.g., VPN, intranet,
etc.). Components of the network 160, such as computing
devices 110 or security devices (e.g., firewall, proxy server,
VPN appliance), may provide secure communication
between components of system 100 by implementing vari-
ous secure protocols, such as transport layer security (TLS),
secure sockets layer (SSL), hypertext transfer protocol
secure (HTTPS), and any other secure communication pro-
tocol.

A security constraints server 140 may receive a corpus of
training state mformation, or test state information, associ-
ated with computing devices 110 executing application
software 112. In some cases, the state information may be
received directly from a database or administrator device.
And 1n some cases, the security constraints server 140 may
monitor execution of application software 112 to identify
and capture state mformation for a computing device 110
executing the application software 112. The security con-
straints server 140 may also receive or automatically 1den-
tify business logic vulnerabilities associated with the state
information and the application software 112. In operation,
the security constraints server 140 may monitor or otherwise
receive the state information, identify or receive business
logic vulnerabilities i application software 112, and gen-
crate security constraints to mitigate the business logic
vulnerabilities for downstream computing devices 110 (e.g.,
commercial devices 110a-1104) that will execute the appli-
cation software 112. As an example, security constraints
server 140 may monitor state information of application
software 112 to determine an expected input length for a
parameter results in a favorable machine state. So in this
example, the constraints server 140 may generate a security
constraint that enforces an expected input length or range for
the parameter, thereby mitigating a business logic vulner-
ability that may exist. The constraint, as executed by the
computing device 110, prevents the computing device 110
from entering nto a machine state that would otherwise
arise¢ from an attacker injecting an input triggering or
exposing an exploitable error 1n the application software 112
and/or system software 114. Additionally or alternatively, a
security constraints may include an allowable or prohibited
state transition sequence or series ol variable/parameter
values.

FIG. 2 shows a system 200 for identifying business logic
vulnerabilities associated with application execution device

10

15

20

25

30

35

40

45

50

55

60

65

8

250 and automatically generating security constraints based
on the business logic vulnerabilities 1s shown, according to
an exemplary embodiment. The system 200 may include a
security constraints server 202 in communication with any
number of application execution devices 250. It should be
appreciated that an application execution device 250 may be
any computing device comprising a processor and non-
transitory storage and capable of executing solftware pro-
gram applications. In some cases, application execution
device 250 may be similar to computing device 110 in FIG.
1, which might include a computing device similar to one of
commercial devices 110a-1104d.

A security constraints server 202 1s shown to include
processing circuit 204 having processor 206 and memory
208. In some embodiments, the security constraints server
202 1s a cloud-based processing system including one or
more servers. A memory 208 may store machine-readable
and machine-executable instructions that, when executed by
a processor 206, cause a processing circuit 204 to perform
the various operations described herein. The operations of
the constraints server 202 may be implemented using soft-
ware, hardware, or a combination thereof. The processor 206
may include a microprocessor, ASIC, FPGA, etc., or com-
binations thereof. In many implementations, processor 206
may be a multi-core processor or an array of processors. The
memory 208 may include, but 1s not limited to, electronic,
optical, magnetic, or any other storage devices capable of
providing the processor 206 with program instructions. The
memory 208 may include a floppy disk, CD-ROM, DVD,
magnetic disk, memory chip, ROM, RAM, EEPROM,
EPROM, flash memory, optical media, or any other suitable
memory from which the processor 206 can read instructions.
The 1nstructions may include code from any suitable com-
puter programming language such as, but not limited to, C,
C++, C#, Java, JavaScript, Perl, HIML, XML, Python and
Visual Basic.

The memory 208 1s shown to include machine-readable,
processor-executable computer software or firmware. The
machine-readable instructions may function as various task-
oriented software modules that allow the constraints server
202 to provide the various benefits operations described 1n
this disclosure. As shown 1n the illustrative embodiment, the
machine-readable instructions 1n the memory 208 include an
active monitor 212, a training data database 214, a machine
learning module 220, and a constraints generation module
230.

An active monitor 212 executed by the constraints server
202 may momitor application execution device 250 to collect
data (e.g., state information) to train a constraints model for
a certain software application program, where the con-
straints model 1s later used by other software components
(e.g., constraints generation module 230) to generate secu-
rity constraints. The active monitor 212 gathers state infor-
mation of an application execution device 250 during run-
time of the software application program. For example, the
active monitor 212 may gather information associated with
system memory, intercepted system calls, execution state,
and/or stack traces that are associated with processes execut-
ing on application execution device 250.

The active monitor 212 enables the constraints server 202
to monitor various types of data in the memory of the
execution device 250, such as pointers, variables (e.g., a
variable associated with an application program, etc.),
parameters (e.g., an execution stack pointer, etc.), and any
other type of data associated with the application execution
device 250. In some embodiments, the active monitor 212
may capture state information generated by code-execution

US 11,651,081 Bl

9

review soltware during execution of the application program
by the application execution device 250. One having skill in
the art would recognize that code-execution testing software
may be any software program configured to conduct, for
example, automated testing, static code analysis, secure
code testing, data-flow analysis, unit test or test-case gen-
eration and execution, runtime error detection, and the like.
The code-execution testing soltware may be any program
customized or designed for the system 200, or the testing
soltware may be a publically available testing program (e.g.,
ITest, CTest, etc.). Additionally, in some embodiments, the
active monitor 212 captures information from software
function-hooking and/or API-hooking processes that are
specific to particular functions and/or APIs executed during
runtime of the application program by the application execu-
tion device 250. Additionally or alternatively, the active
monitor 212 may generate wrappers and/or instrumented
code for software function calls and/or API calls, as gener-
ated by the application execution device 250 during runtime.

The active monitor 212 may generate training data based
on the observed or otherwise collected state information. In
operation, after the active monitor 212 generates and/or
receives state 1nformation associated with application
execution device 2350, the constraints server 202 may store
at least a portion of the state information into the training
data database 214 for later use as training data by a machine
learning module 220. In some cases, the state information 1s
associated with a “normal” operating state of the application
execution device 250 executing an application program. The
active momtor 212 may collect state information generated
by the execution device 250 operating in an mtended man-
ner. The normal state information may be automatically
detected based on, for example, prior state information, an
output of the active monitor 212 (e.g., no error tlag); or the
normal state information may be manually indicated by an
administrator user’s mput. Additionally or alternatively, the
active monitor 212 may collect state information associated
with an “abnormal” operating state of an application pro-
gram. The active monitor 212 may collect abnormal state
information generated by the execution device 250, may
mimic a scenario in which the software application or
execution device 250 1s under attack from an attacker (e.g.,
an attacker targeting an application layer of the application
program), or as a part of an automated or a user-generated
test-case scenar1io. In some implementations, the active
monitor 212 may be configured to monitor particular aspects
of execution. For example, the active momitor may monitor
the application program variables that are modified or
accessed (e.g., active monitor 212 does not monitor every
variable). Similarly, the active monitor 212 may monitor all
aspects of the application execution device 250, or only the
application program being executed by application execu-
tion device 250 during testing. The active monitor 212 may
generate the state information from the application program
under test by executing the automated testing software (e.g.,
black-box testing), such as an American fuzzy loop (AFL)
tuzz tester, which may automatically generate inputs to
soltware under test 1n order to elicit program and/or machine
states (e.g., unexpected, abnormal, etc.) associated with the
application program.

Traiming data database 214 may store training data based
on state information associated with an application program
and/or execution devices 2350, as generated during testing or
otherwise received from other sources. Training data data-
base 214 may include any number of machine-readable
storage mediums (e.g., hard disk). The storage mediums
may include but are not limited to magnetic storage, optical

10

15

20

25

30

35

40

45

50

55

60

65

10

storage, flash storage, and/or RAM. Training data database
214 may implement or facilitate various APIs to perform
database functions (i.e., managing stored data). The APIs
can be but are not limited to SQL, ODBC, JDBC, and/or any
other data storage and manipulation API. Although the
training data database 214 1s shown 1n FIG. 2 as a compo-
nent of the constraints server 202, it should be appreciated
that the training data database 214 may be embodied 1n any
number of additional or alternative computing devices.

A machine learning module 220 may include machine-
executable software instructions the enable the constraints
server 202 (or other computing device) to execute any
number of machine learning algorithms. The machine learn-
ing module 220 1s configured to train constraints models 222
using the data stored in the training database 214, where a
constraints model 222 may be any form of machine learning
model generated by a machine learning algorithm, and may
be implemented when executing any number of rules-based
engines and/or artificial intelligence programs. The machine
learning module 220 may train the constraints model 222
(e.g., a neural network, a Bayesian model, etc.) using state
information to detect and/or mitigate application layer vul-
nerabilities associated with an application soitware program
when executed by an application execution device 2350. In
operation, the machine learning module 220 receives, as an
input, traimng data (e.g., state information, etc.) for any
number of application execution devices 250, via the train-
ing data database 214 and/or the active monitor 212; and the
machine learning module 220 generates a constraints model
222 as an output. Additionally or alternatively, the machine
learning module 220 may output mnformation associated
with the constraints model 222, such as particular security
constraints, the associated vulnerabilities, predicted state
information, and the operational parameters, among others.
The machine learning module 220 may implement, for
example, supervised machine Ilearning, unsupervised
machine learning, semi-supervised machine learning, rein-
forcement machine learning, self-learning, feature learning,
sparse dictionary learning, anomaly detection, association
rules learning, or the like. Additionally or alternatively, the
machine learning module 220 may implement, for example,
an artificial neural network, a decision tree, a support vector
machine, a regression analysis system, and a Bayesian
network system, among others.

A constraints model 222 may be generated and/or trained
through a machine learning processes executed by the
constraints server 202 or other computing device, where the
constraints model 222 may be used by downstream
machine-executed processes to generate security con-
straints. The constraints model may be trained using state
information from application execution devices 250. The
constraints model 222 may be or may include, for example,
a statistical machine-learning model (e.g., Gaussian matrix)
or neural network (e.g., convolutional neural network, auto-
encoder neural network). Additionally or alternatively, the
constraints model 222 may be or may include an association
rule learning system. For example, the constraints model
222 may include an association rule learning system con-
figured to generate security constraints. In some embodi-
ments, the constraints model 222 models expected behavior
of an application program associated with application execu-
tion device 250 (e.g., machine state of an application pro-
gram operating under “normal” conditions, machine state of
an application program operation under “abnormal™ condi-
tions).

In some cases, the machine learning module 220 receives
training data from training data database 214, and prepares

US 11,651,081 Bl

11

the training data for mput into a constraints model 222. To
prepare the data, the machine learning module 220 may map
and convert structure or unstructured training data (stored 1n
the training data database 214) to mputs of the constraints
model 222 and/or neural network. In some embodiments, the
machine learning module 220 manages training of con-
straints model 222. In some embodiments, the machine
learning module 220 identifies the training data associated
with “normal” and “‘abnormal™ states. For example, the
machine learning module 220 may include an unsupervised
machine-learning algorithm to 1dentily certain training data
as representing “normal” and/or “abnormal” machine states.
As an additional example, the machine learning module 220
may model training data using a one-class support vector
machine to automatically i1dentity “abnormal” machine
states.

In some embodiments, the machine learning module 220
receives output from the constraints model 222 and prepares
the output for constraints generation module 230. For
example, the machine learning module 220 may receive
numerical outputs from the constraints model 222 or a
neural network associated with constraints model 222, and
convert the numerical output into security constraint or
security constraints data to be employed by a constraints
generation module 230. Additionally or alternatively, the
machine learning module 220 may assemble outputs from
multiple models included 1n a constraints model 222. For
example, a constraints model 222 may include a first neural
network model that generates a state condition and a second
neural network model that generates a partial security con-
straint associated with the state condition. In this example,
the machine learning module 220 may assemble the state
condition and/or any security constraint data to generate
security constraint data to be used when generating a con-
straint.

A constraints generation module 230 may receive infor-
mation, such as a constraints model 222 or constraint data
outputs, from the machine learning module 220 and generate
security constraints using such data inputs. In some 1mple-
mentations, the constraints generation module 230 may also
receive additional types of information that was used to
generate the constraints model 222, the constraints outputs,
or other types of information associated with the constraints
model 222, such as state information, information describing
the execution device 250, information describing the soft-
ware application information, and vulnerability information,
among other types of information. When executed by the
security constraints server 202, the constraints generation
module 230 may receive (from the machine learning module
220) the constraints model 222 or constraints data outputs
generated by executing the constraints model 222. The
constraints generation module 230 may perform various
operations that, using one or more data mputs (e.g., con-
straints model 222, constraints data, training state informa-
tion, test state information, software application informa-
tion, application execution device 230 information),
generates security constraints configured to be implemented
downstream by any number of application execution devices
250 during execution.

In some embodiments, a constraints model 222 may be
applied by the constraints server 202 on inputted (training or
testing) state mformation. This may include, for example,
comparing the constraints model 222 or predicted state
information (as generated by the machine learning module
220), against test state information (as generated by appli-
cation execution device 250), to determine whether the
application execution device 250 deviates from expected

10

15

20

25

30

35

40

45

50

55

60

65

12

operation. In some implementations, the constraints genera-
tion module 230 may generate constraints indicating or
preventing machine state exposing a potential security vul-
nerability associated with a software application during
runtime. For example, the constraints generation module
230 may receive state information data that describes an
expected mput size for a parameter of the application
program ol application execution device 230. The con-
straints generation module 230 may receive the predicted
data as a component or an output of a constraints model 222.
In some implementations, the constraints generation module
230 may generate a security vulnerability category or other
form of classitying data, based on known or expected forms
ol data, such as received state information, expected state
information (e.g., expected mput size), and the software
application, among others. This categorization data may be
used by the constraints generation module 230 when gen-
erating the constraints for later implementation by execution
devices 250.

In operation, the constraints generation module 230
executes processes to convert data outputs received from the
machine learning module 220 (e.g., outputs of constraints
model 222, the constraints model 222) into a machine-
readable syntax for a security constraint. In some embodi-
ments, the syntax 1s an 1f-then syntax (e.g., if state cond-
ition(s) 1s A, then execute constraint B). However, 1t should
be understood that the syntax may take many forms and that
the examples provided herein are non-limiting. It should be
appreciated that machine state conditions may include, for
example, a vaniable (e.g., a variable value, a range, a
threshold, etc.), a parameter (e.g., an execution stack pointer,
etc.), an expected value, or any other types of data. The
executable constraint may include machine-executable pro-
cesses, such as, for example, “checks™ on inputs and state
variables, invariants met by state variables, legal application
state transitions, and/or other data-centric security or
machine state controls. For example, the security constraints
may specily that sizes (e.g., data structure sizes, string
lengths, etc.) and indexes (e.g., array indexes, etc.) are
expected to be small positive numbers. As an additional
example, the security constraints may specity that a system
that 1s “active” should always have a non-zero program
counter and a system that 1s “inactive” should always have
a zero program counter. As another example, the security
constraints may specily that “action 2” must always occur
after “action 1” and never before.

In some embodiments, the security constraints facilitate
custom responses (€.g., custom mitigation, etc.) to detected
application layer attacks and/or vulnerabilities (e.g., busi-
ness logic vulnerabilities, etc.). For example, 1n response to
a detected application layer attack, a first security constraint
may cause an application program to terminate (e.g., halt
execution, restart, etc.) and a second security constraint may
cause the application program to i1gnore the attack and/or
vulnerability (e.g., reject an 1improper or unexpected user
input, etc.). And 1n some embodiments, security constraints
are generated by humans (e.g., a human writes a security
constraint, etc.). Additionally or alternatively, security con-
straints generated by constraints generation module 230 may
be edited (e.g., by a human, etc.).

In some embodiments, the constraints generation module
230 generates executable mnstructions for application execu-
tion device 250 to implement the security constraints. It
should be understood that many possible implementations
schemes exist and that the examples provided herein are
non-limiting. In some embodiments, constraints generation
module 230 generates an API library for application execu-

US 11,651,081 Bl

13

tion device 250 to facilitate security checks associated with
the security constraints. Additionally or alternatively, con-
straints generation module 230 may implement compiler
soltware. For example, a program compiler may be used to
automatically 1nject calls to security checks associated with
the security constraints. Additionally or alternatively, con-
straints the generation module 230 1s configured to perform
process 1njection to mject security checks into an executable
code of an application program at runtime. Additionally or
alternatively, the constraints generation module 230 may
perform an introspection operation. For example, the con-
straints generation module 230 may generate an external
soltware component to monitor state information of an
application program on application execution device 250
and prevent specific processes from executing and/or cause
security processes associated with the security constraints to
execute.

Referring now to FIG. 3, process 300 for monitoring and
securing an application program is shown, according to an
illustrative embodiment. In various embodiments, security
constraints server 202 performs process 300. At step 302, a
security constraints system monitors execution of an appli-
cation program on a processing device. In some embodi-
ments, the processing device 1s a computer. Additionally or
alternatively, the processing device may be an embedded
processing device. For example, the processing device may
be a processing device embedded within an autonomous
UUV. Step 302 may include monitoring the application
program using application hooks.

At step 304, the security constraints system receives
normal state information generated by the executed appli-
cation program. The state information may completely
describe a current configuration of the executed application
program at a point 1n time. For example, the state informa-
tion may include an entire call stack of the executed appli-
cation program and the values associated with every register
of the processing device. In various embodiments, the state
information 1s associated with an intended operation of the
executed application program. At step 306, the security
constraints system receives abnormal state information gen-
crated by the executed application program. In various
embodiments, the state information 1s associated with an
unintended operation of the executed application program.
For example, the state information may be associated with
the executed application program under attack (e.g., an
attempted exploitation of business logic of the executed
application program, etc.).

At step 308, the security constraints system ftrains a
constraints model based on the state information to deter-
mine vulnerabilities associated with execution of the appli-
cation program. In various embodiments, the vulnerabilities
are application layer vulnerabilities (e.g., business logic
vulnerabilities, etc.). In various embodiments, the con-
straints model 1s or includes a machine learning model (e.g.,
a neural network, etc.). For example, the security constraints
system may train a neural network using state information
from execution of an application program associated with an
application execution device. In some embodiments, the
neural network models normal operation of an application
program. For example, the security constraints system may
train the neural network with normal state information. In
some embodiments, the security constraints system trains
the machine learning model with historical values of a
variable, parameter, or state associated with operation of an
application program.

At step 310, the security constraints system generates one
or more constraints with the constraints model to enforce an

10

15

20

25

30

35

40

45

50

55

60

65

14

intended operation of the application program. In various
embodiments, the one or more constraints are security
constraints. In some embodiments, step 310 includes com-
bining one or more outputs from the constraints model. For
example, multiple constraints model outputs may be com-
bined to generate a security constraint. In some embodi-
ments, the constraints model generates data that 1s used to
generate a security constraint. For example, the constraints
model may generate expected state information for an
application program and the security constraints system may
compare the expected state information to actual state infor-
mation of the application program to generate one or more
security constraints. In some embodiments, step 310
includes generating executable istructions based on the one
Or more constraints.

At step 312, the security constraints system applies the
one or more constraints to the application program. In
various embodiments, step 312 includes transmitting execut-
able instructions to the application program. For example,
step 312 may include transmitting an API library, compiler
instructions, process injection instructions, introspection
hooks, and/or the like to the processing device. In various
embodiments, the processing device executes the executable
instructions to mitigate and/or defend against application
layer vulnerabilities (e.g., business logic vulnerabilities,
etc.). In some embodiments, the one or more constraints
include an allowable range for an internal variable. Addi-
tionally or alternatively, the one or more constraints may
include an allowable state transition sequence. Additionally
or alternatively, the one or more constraints may include an
expected state dependent internal variable value.

For example, step 312 may include applying the one or
more constraints to a computer executing one or more
applications (e.g., a web browser, an email client, photo
editing software, etc.) to secure the one or more applications.
Additionally or alternatively, step 312 may include applying
the one or more constraints to an embedded processing
device such as a computer embedded within a vehicle. For
example, step 312 may include applying the one or more
constraints to a computer embedded 1n an autonomous UUV
to secure a control system of the autonomous UUV. As an
additional example, step 312 may include applying the one
or more constraints to a distributed processing system (e.g.,
a cloud server, etc.) running one or more applications (e.g.,
cloud processing applications, server management systems,
etc.) to secure the one or more applications. It should be
understood that other implementations not expressly con-
templated herein are within the scope of the present disclo-
sure.

Referring now to FIG. 4, a non-limiting example of an
implementation 400 of security constraints to secure an
application program 1s shown, according to an exemplary
embodiment. Implementation 400 1s shown to include com-
puting device 402 (such as execution device 250 1n FIG. 2,
or computing device 110 or commercial devices 110a-110d
in FIG. 1). It should be understood that while implementa-
tion 400 1s described 1n reference to an introspection opera-
tion (e.g., using introspection hooks), other implementations
are possible and implementation 400 1s non-limiting. For
example, as described above a security constraints server
may generate security constraints as an API library, compiler
istructions, process injection nstructions, and/or the like.
In various embodiments, computing device 402 1s commu-
nicably connected to a security constrains system (such as a
security constraints server 202 in FIG. 2, or server 140 1n
FIG. 1). Additionally or alternatively, computing device 402
1s communicably connected to a database having security

US 11,651,081 Bl

15

constraints (such as constraints database 150 in FIG. 1). In
some embodiments, computing device 402 1s not connected
to an external system. For example, computing device 402
may be an autonomous UUV having security constraints
loaded thereon.

The 1llustrative embodiment 1n FI1G. 4 shows the deploy-
ment of security constraints to computing device 402 (e.g.,
sending security constraints to computing device 402 for
execution). Additionally or alternatively, implementation
400 may 1nclude processes for monitoring computing device
402 to collect state information. For example, a constraints
server may collect state information from computing device
402 to train a constraints model.

The computing device 402 1s shown to include application
soltware 420, application hooks 416, and dependencies 480.
In various embodiments, application software 420. For
example, application software 420 may include a media
player, a file viewer, a simulator, a control system (e.g., a
traction control system (TCS), an autonomous vehicle con-
trol system, a process controller, a temperature controller,
etc.), an embedded program, and/or any other software
having and/or constituting an application layer. Dependen-
cies 480 may include additional code and/or resources used
by application soitware 420. For example, dependencies 480
may 1nclude libraries used by application software 420. As
an additional example, dependencies 480 may include sys-
tem (e.g., operating system level, kernel level, etc.) func-
tions used by application software 420.

Application hooks 416 may be generated by an external
system (e.g., security constraints server) and deployed to
computing device 402. In various embodiments, the appli-
cation hooks 416 intercept calls (e.g., system calls, library
calls, etc.) from application soitware 420 and transmit the
intercepted calls to an external system (e.g., security con-
straints server). Additionally or alternatively, the application
hooks 416 may 1nject calls into computing device 402. For
example, the application hooks 416 may provide wrappers
and/or instrumented code for corresponding function and/or
API calls to dependencies 480 that are generated during
execution of application software 420. When the application
software 420 generates function and/or API calls, applica-
tion hooks 416, the wrappers and/or instrumented code
intercept such calls and may perform other analysis or
monitoring functions, such as reporting the entire call stack
and/or arguments for selected functions within a binary,
system libraries 482, application libraries 484, and/or a
kernel. In various embodiments, application hooks 416 send
the mtercepted data as state information to a database (e.g.,
training data database). Additionally or alternatively, the
application hooks 416 may facilitate monitoring of the
application software 420 by a security constraint. For
example, a security constraint on the computing device 402
having executable code may monitor the application soft-
ware 420 and/or computing device 402 via the application
hooks 416 and may perform various actions (e.g., mitigation
actions such as process termination, etc.) based on detecting
certain conditions (e.g., detecting a potential business logic
attack, etc.). In some embodiments, the application hooks
416 facilitate detection of usage patterns and examination of
function call stacks of each function and/or API call gener-
ated by application software 420. Additionally or alterna-
tively, the application hooks 416 may facilitate injecting
executable 1instructions into computing device 402. For
example, the application hooks 416 may intercept calls
generated by application software 420 and replace the
intercepted calls with executable instructions associated
with a security constraint.

10

15

20

25

30

35

40

45

50

55

60

65

16

Implementations of the subject matter and the operations
described 1n this specification can be carried out using
digital electronic circuitry, or 1n computer software embod-
ied on a tangible medium, firmware, or hardware, including
the structures disclosed in this specification and their struc-
tural equivalents, or 1n combinations of one or more of them.
Implementations of the subject matter described in this
specification can be implemented as one or more computer
programs, 1.€., one or more modules of computer program
istructions, encoded on one or more computer storage
medium for execution by, or to control the operation of, data
processing apparatus. Alternatively or 1n addition, the pro-
gram 1nstructions can be encoded on an artificially-gener-
ated propagated signal, ¢.g., a machine-generated electrical,
optical, or electromagnetic signal, that 1s generated to
encode 1nformation for transmission to suitable receiver
apparatus for execution by a data processing apparatus. A
computer-readable storage medium can be, or be included
in, a computer-readable storage device, a computer-readable
storage substrate, a random or serial access memory array or
device, or a combination of one or more of them. Moreover,
while a computer storage medium 1s not a propagated signal,
a computer storage medium can be a source or destination of
computer program instructions encoded in an artificially-
generated propagated signal. The computer storage medium
can also be, or be included in, one or more separate
components or media (e.g., multiple CDs, disks, or other
storage devices). Accordingly, the computer storage medium
1s both tangible and non-transitory.

The operations described 1n this specification can be
implemented as operations performed by a data processing
apparatus on data stored on one or more computer-readable
storage devices or received from other sources.

The term “data processing apparatus” or “computing
device” encompasses all kinds of apparatus, devices, and
machines for processing data, including by way of example,
a programmable processor, a computer, a system on a chip,
or multiple ones, or combinations of the foregoing. The
apparatus can include special purpose logic circuitry, €.g., an
FPGA (field programmable gate array) or an ASIC (appli-
cation-specific itegrated circuit). The apparatus can also
include, 1n addition to hardware, code that creates an execu-
tion environment for the computer program in question, €.g.,
code that constitutes processor firmware, a protocol stack, a
database management system, an operating system, a cross-
plattorm runtime environment, a virtual machine, or a
combination of one or more of them. The apparatus and
execution environment can realize various different com-
puting model infrastructures, such as web services, distrib-
uted computing and grid computing inirastructures.

A computer program (also known as a program, software,
soltware application, script, or code) can be written 1 any
form of programming language, including compiled or
interpreted languages, declarative or procedural languages,
and 1t can be deployed 1n any form, including as a stand-
alone program or as a module, component, subroutine,
object, or other unit suitable for use 1n a computing envi-
ronment. A computer program may, but need not, correspond
to a file 1n a file system. A program can be stored in a portion
of a file that holds other programs or data (e.g., one or more
scripts stored 1 a markup language document), in a single
file dedicated to the program in question, or in multiple
coordinated files (e.g., files that store one or more modules,
sub-programs, or portions of code). A computer program can
be deployed to be executed on one computer or on multiple

US 11,651,081 Bl

17

computers that are located at one site or distributed across
multiple sites and interconnected by a communication net-
work.

The processes and logic flows described 1n this specifi-
cation can be performed by one or more programmable
processors executing one or more computer programs to
perform actions by operating on mput data and generating,
output. The processes and logic flows can also be performed
by, and apparatus can also be implemented as, special
purpose logic circuitry, e.g., an FPGA (field programmable
gate array) or an ASIC (application-specific mtegrated cir-
cuit). Circuit as utilized herein, may be implemented using
hardware circuitry (e.g., FPGAs, ASICs, etc.), software
(instructions stored on one or more computer readable
storage media and executable by one or more processors), or
any combination thereof.

Processors suitable for the execution of a computer pro-
gram 1nclude, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor will
receive istructions and data from a read-only memory or a
random access memory or both. The essential elements of a
computer are a processor for performing actions 1n accor-
dance with 1nstructions and one or more memory devices for
storing instructions and data. Generally, a computer will also
include, or be operatively coupled to receive data from or
transier data to, or both, one or more mass storage devices
for storing data, e.g., magnetic, magneto-optical disks, or
optical disks. However, a computer need not have such
devices. Moreover, a computer can be embedded in another
device, e.g., a mobile telephone, a personal digital assistant
(“PDA”), a mobile audio or video player, a game console, a
Global Posttioning System (“GPS”) receiver, or a portable
storage device (e.g., a universal serial bus (“USB”) flash
drive), to name just a few. Devices suitable for storing
computer program instructions and data include all forms of
non-volatile memory, media and memory devices, including,
by way of example, semiconductor memory devices, e.g.,
EPROM, EEPROM, and flash memory devices; magnetic
disks, e.g., mnternal hard disks or removable disks; magneto-
optical disks; and CD-ROM and DVD-ROM disks. The
processor and the memory can be supplemented by, or
incorporated 1n, special purpose logic circuitry.

To provide for interaction with a user, implementations of
the subject matter described in this specification can be
carried out using a computer having a display device, e.g.,
a CRT (cathode ray tube) or LCD (liquid crystal display)
monitor, for displaying information to the user and a key-
board and a pointing device, e.g., a mouse or a trackball, by
which the user can provide input to the computer. Other
kinds of devices can be used to provide for interaction with
a user as well; for example, feedback provided to the user
can be any form of sensory feedback, e.g., visual feedback,
auditory feedback, or tactile feedback; and input from the
user can be recetved 1n any form, including acoustic, speech,
or tactile mput. In addition, a computer can interact with a
user by sending documents to and receiving documents from
a device that 1s used by the user; for example, by sending
web pages to a web browser on a user’s client device in
response to requests recerved from the web browser.

Implementations of the subject matter described in this
specification can be carried out using a computing system
that includes a back-end component, e.g., as a data server, or
that includes a middleware component, e.g., an application
server, or that includes a front-end component, e.g., a client
computer having a graphical user interface or a Web browser
through which a user can interact with an implementation of

10

15

20

25

30

35

40

45

50

55

60

65

18

the subject matter described in this specification, or any
combination of one or more such backend, middleware, or
frontend components. The components of the system can be
interconnected by any form or medium of digital data
communication, €.g., a communication network. Examples
of communication networks include a local area network

(“LAN”) and a wide area network (“WAN”), an inter-
network (e.g., the Internet), and peer-to-peer networks (e.g.,
ad hoc peer-to-peer networks).

The computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other. In some implemen-
tations, a server transmits data (e.g., an HI'ML page) to a
client device (e.g., for purposes of displaying data to and
receiving user mput from a user interacting with the client
device). Data generated at the client device (e.g., a result of
the user interaction) can be received from the client device
at the server.

While this specification contains many specific imple-
mentation details, these should not be construed as limita-
tions on the scope of any inventions or of what may be
claimed, but rather as descriptions of features specific to
particular implementations of particular inventions. Certain
features that are described 1n this specification 1n the context
of separate implementations can also be carried out 1n
combination or in a single implementation. Conversely,
various features that are described 1n the context of a single
implementation can also be carried out in multiple 1mple-
mentations, separately, or in any suitable subcombination.
Moreover, although features may be described above as
acting in certain combinations and even 1itially claimed as
such, one or more features from a claimed combination can,
in some cases, be excised from the combination, and the
claimed combination may be directed to a subcombination
or variation of a subcombination. Additionally, features
described with respect to particular headings may be utilized
with respect to and/or in combination with 1llustrative imple-
mentations described under other headings; headings, where
provided, are included solely for the purpose of readability
and should not be construed as limiting any features pro-
vided with respect to such headings.

Similarly, while operations are depicted 1n the drawings in
a particular order, this should not be understood as requiring
that such operations be performed 1n the particular order
shown or 1n sequential order, or that all 1llustrated operations
be performed, to achieve desirable results. In certain cir-
cumstances, multitasking and parallel processing may be
advantageous. Moreover, the separation of various system
components 1n the implementations described above should
not be understood as requiring such separation 1n all imple-
mentations, and i1t should be understood that the described
program components and systems can generally be inte-
grated together 1n a single software product or packaged into
multiple software products embodied on tangible media.

Thus, particular implementations of the subject matter
have been described. Other implementations are within the
scope of the following claims. In some cases, the actions
recited 1n the claims can be performed in a different order
and still achieve desirable results. In addition, the processes
depicted 1n the accompanying figures do not necessarily
require the particular order shown, or sequential order, to
achieve desirable results. In certain implementations, mul-
titasking and parallel processing may be advantageous.

US 11,651,081 Bl

19

What 1s claimed 1s:

1. A computer-implemented method of securing vulner-
abilities 1n a program, the method comprising:

receiving, by a computer, state information generated by

an application program;

training, by the computer, a constraints model based on

the state information during execution of the applica-
tion program;

generating, by the computer, one or more constraints with

the constraints model based on a difference between the
state information and expected state information, the
constraints model configured to output the expected
state information, each of the one or more constraints
containing an execution constraint having a machine-
readable instruction that prevents the application pro-
gram from instructing the machine to deviate from a
normal operation; and

applying, by the computer, the one or more constraints to

the application program.

2. The computer-implemented method of claim 1,
wherein applying the one or more constraints to the appli-
cation program includes generating executable code for a
processing device running the application program and
transmitting the executable code to the processing device.

3. The computer-implemented method of claim 1,
wherein the state information results from business logic of
the application program.

4. The computer-implemented method of claim 3,
wherein the state information comprises internal variables of
the application program.

5. The computer-implemented method of claim 1,
wherein the computer trains the constraints model with
normal state information from the executed application
program under normal operation.

6. The computer-implemented method of claim 1,
wherein the one or more constraints address security vul-
nerabilities 1n a business logic of an application layer of the
application program.

7. The computer-implemented method of claim 1,
wherein the one or more constraints include at least one of
an allowable range for an internal variable, an allowable
state transition sequence, or an expected state dependent
internal variable value.

8. A system for determining security vulnerabilities asso-
ciated with an application program, the system comprising:

a non-transitory computer-readable storage medium hav-

ing instructions stored thereon; and

a processor configured to execute the instructions to:

receive state information generated by an application
program;

train a constraints model based on the state information
during execution of the application program; and

generate one or more constraints with the constraints
model based on a difference between the state infor-
mation and expected state information, the con-
straints model configured to output the expected state
information, each of the one or more constraints
containing an execution constramnt having a
machine-readable 1nstruction that prevents the appli-

10

15

20

25

30

35

40

45

50

55

20

cation program from instructing the machine to
deviate from a normal operation.

9. The system of claim 8, wherein the state information
results from business logic of the application program.

10. The system of claim 9, wherein the state information
comprises 1nternal variables of the application program.

11. The system of claim 8, wherein the processor 1s further
configured to train the constraints model with normal state
information from the executed application program under
normal operation.

12. The system of claim 8, wherein the one or more
constraints address security vulnerabilities 1 a business
logic of an application layer of the application program.

13. The system of claim 8, wherein the one or more
constraints include at least one of an allowable range for an
internal variable, an allowable state transition sequence, or
an expected state dependent 1nternal variable value.

14. The system of claim 8, wherein the processor 1s
turther configured to apply the one or more constraints to the
application program.

15. The system of claim 14, wherein applying the one or
more constraints to the application program includes gen-
erating executable code for a processing device running the
application program and transmitting the executable code to
the processing device.

16. A non-transitory computer-readable storage medium
having instructions stored thereon that, when executed by a
processor, cause the processor to:

recerve state information comprising internal variables

generated by an application program executed under
normal conditions, wherein the internal variables are
associated with a business logic of the application
program,

train a constraints model based on the state information;

generate one or more constraints with the constraints

model based on a difference between the state infor-
mation and expected state information, the constraints
model configured to output the expected state informa-
tion, each of the one or more constraints describing an
execution constraint for executing the application pro-
gram, wherein the execution constraint includes at least
one of an allowable range for an internal variable, an
allowable state transition sequence, or an expected state
dependent internal variable value;

generate executable code for a processing device running,

the application program based on the one or more
constraints; and

transmit the executable code to the processing device.

17. The non-transitory computer-readable storage
medium of claim 16, wherein the instructions further cause
the processor to apply the one or more constraints to the
application program.

18. The non-transitory computer-readable storage
medium of claim 17, wheremn applying the one or more
constraints to the application program includes generating
executable code for a processing device runming the appli-
cation program and transmitting the executable code to the
processing device.

	Front Page
	Drawings
	Specification
	Claims

