12 United States Patent

US011651030B2

(10) Patent No.: US 11,651,030 B2

Solomon et al. 45) Date of Patent: May 16, 2023
(54) DELTA-BASED CONFLICT-FREE (56) References Cited
REPLICATED DATA TYPE ARRAYS USING |
U.S. PATENT DOCUMENTS

DOT STORES THAT MAP DOTS TO DOT
STORES
(71)

Applicant: International Business Machines

Corporation, Armonk, NY (US)
(72) Tomer Solomon, Tel Aviv (IL); Roee
Shlomo, Petah Tikva (IL); Paula Kim
Ta-Shma, Tel Aviv (IL); Arik Rinberg,
Zichron Yaakov (IL)

Inventors:

International Business Machines
Corporation, Armonk, NY (US)

(73) Assignee:

(*) Notice:

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 62 days.

(21) 17/223,306

(22)

Appl. No.:

Filed: Apr. 6, 2021

(65) Prior Publication Data

US 2022/0327160 Al Oct. 13, 2022

Int. CI.
GO6F 16/27
GO6F 16/84
GO6F 167182
GO6F 16/838

U.S. CL
CPC

(51)
(2019.0°
(2019.0°
(2019.0°

(2019.0°

)
)
)
)

(52)
.......... GO6I' 16/88 (2019.01); GO6I 16/1844
(2019.01); GO6F 16/273 (2019.01); GO6F
16/838 (2019.01)

(58) Field of Classification Search
CPC GO6F 16/27-273

See application file for complete search history.

2017/0024451 Al 1/2017 Sullivan
2020/0311082 Al1* 10/2020 Mayr
2021/0064590 Al1l* 3/2021 Venkatesh

GOO6F 16/24542
GO6F 16/215

tttttttttttttttt

ttttttttttttt

FOR.

NS

SIGN PATENT DOCUM

CN 110569267 A 12/2019

OTHER PUBLICATIONS

Ahmed-Nacer, Mehdi et al., “Concurrency Control and Awareness

support for Multi-synchronous Collaborative Edition”, Col-
laboratecom 2013—9th IEEE International Conference on Collab-

orative Computing: Networking, Applications and Worksharing,

Oct. 15, 2013, 11 pages.

Auvolat, Alex et al., “Merkle Search Trees: Efhcient State-Based
CRDTs 1n Open Networks”, SRDS 2019—38th IEEE International
Symposium on Reliable Distributed Systems, Oct. 3, 2019, 11

pages.

Enes, Vitor et al., “Efficient Synchronization of State-based CRDTs”,
arX1v:1803.02750v3, Mar. 11, 2019, 13 pages.

Kleppmann, Martin, “Moving elements in List CRDt”, PaPoC, Apr.
27, 2020, 6 pages.

* cited by examiner

Primary Examiner — Robert W Beausoliel, Jr.
Assistant Examiner — Nirav K Khakhar

(74) Attorney, Agent, or Firm — Barry D. Blount

(57) ABSTRACT

An example system includes a processor to receive deltas
corresponding to concurrently executed operations of a
number of other replicas on an element of a delta-based
contlict free replicated data type (CRDT) array of a distrib-
uted computing system. The processor 1s to modily, at the
first replica, the element of the delta-based CRDT array
based on the deltas using a dot store that maps dots to a dot
store.

19 Claims, 14 Drawing Sheets

102

Replica

Delta-Based CRDT Array Module

et 106

f

Dot Stores 14
Gompotrun Dot Store

108
Causal Context

Delta CRDT Array

110

Lo

Array Updater

112

LT

.S. Patent May 16, 2023 Sheet 1 of 14 S 11,651,030 B2

~eplica

- -
- -
- -
- .
I EEEE N
- -
- -
- .
- -
- -
- .
- -
- -
- e I
- -
- -
- -
- -
- -
- .
- -
- -
- .
- -
- -
- -
- -
-
- -
-
- -
-
- .
-
- -
-
- -
-
- .
-
- -
H -
- -
-
- .
- IEEREAEEEEEEE
- -
-
- -
-
- . !
-
- -
-
- : -
- -
. . . el
- -
-
- -
y -
- .
-
- -
-
- -
-
- .
-
- -
-
- IEREREREEEEEEEEEE E R E R E R E E E E E E R E E R E E R R E R E E R R E E E E R E E R E E R E E E E K . -
- .
-
- -
-
- -
- .
- -
- -
- -
-
- -
-
- -
-
- .
-
- -
- &
- -
-
- .
-
- -
-
- -
-
- .
-
- -
-
- P
- -
.
-
- - -
-
- -
-
- .
-
- -
-
- -
-
- .
-
- -
-
- -
-
- .
-
- -
-
- -
-
- .
-
- -
-
- -
-
- .
- -
- -
- . R
- iiiiiiiiiiiiiiiii'i'i'i'ii'ii -
- -
- H
- .
-
- -
-
- -
-
- .
-
- -
-
- -
-
- .
-
- -
-
- -
-
- .
-
- -
-
- -
-
- .
-
- -
-
- -
-
- - .
-
- - -
- f
- - -
- LB BE BE BE NE L BE UL U BE DR B B BN |
- - .
-
- - -
-
- - ..
-
- - .
-
- - -
-
- - -
-
- M .
-
- - -
-
- 4 - -
-
- - .
-
- - -
-
- - -
-
- - .
-
- - -
-
- - -
-
- - .
- - * -
. Ak ok ko h ok ok h ko ko ko h ok ok h ok ok ko oh ok ok ok h ok ok h ko h ok ok ok ko ko h ok ok ok ok ok ok h h ok ok ok ok ok ok h ok h ok ok ok h ok ok h ok ok ok ok ok ok ok ok - .
-
- .
-
- -
-
- -
-
- .
-
- -
s -
- -
- .
- -
- -
- .
- -
- -

L B N N B B B B O B O B B B O I O D I O O B B O I O D I O B I O D I O B B B O B O D B O B B O O B O B B B D B O DL B O B B B D B O D I O DL B B B B DN DL B D B B O DL B BN D B B B B B D N B DL BN D B B D B B B B N

LB B B B B B

LB B B B B BN

LI B N B B BN

LR B B B N B N R B N N B N B B R B N R R N B R N N B N N O N N N O B O DR B R B B N N N N B O N N N N N N RN NN N B N N N N O N O N N R O B O B B N N N O B O O B O B O B O O B B O B N O N N O B O O O B O NN B O B O O N N O B O O O O B O B O B N N N N O N

100

-G, T

S. Patent

-

-

May 16, 2023 Sheet 2 of 14 S 11,651,030 B2

-
L
1
4
W
L

.
n
L
L
*
s
u

LF
L

-

m,; m'.ch

[T B N T N e N T I L N N T N O I N I T o A N N I |

B, 1

-
LN L S B B B B B A A LS D R B B N R O B B B B B B N S T R A B R A B S B B A D B R BN B B B B D BN AL S B B D B B BN AL S T L B B DR B B SO T N B B N N BN S Y U N B B B N B N T U N N N R B B N N UL N N B B B N B U N B N N B N B U N B N N N T B

o A by ok ok o koMo o h b d e ok g od ko Ry h ey ko d A

LR B R O B B B B N I I B B B B BN O N N BN B B N I N B B R A

L O T B N N B B I A O B DR BN B N NN I N I N N B N BN NN T NI B N N I B N R N BN N

ok f b ko ko ko kb ohohododhohh hohohohohhhh b bk ok o—hodhdhh hohoh ook hh ok ok ok hoh hohoh ko chch hohohohfodddchochohoh Lok chohoch oy b ohohohohdhch ohohohoh b ohhochohohohodod h ohhochohohop ok o hohochohochohohoLodow hohohochh F A ko hohohohohochdodokchch hoh ochh ok hoadh

200
G.

S. Patent May 16, 2023 Sheet 3 of 14 S 11,651,030 B2

SUBA ~

P‘-'«‘a'«‘a'«‘a'«‘al‘alI"-I-J-'a‘-'l-l-l+l+l-+l-+'|-‘|'I-l-l-'a‘al-il‘al‘a‘-‘a‘-P‘-'«‘a'«‘u'«‘a'«‘u-l‘a‘-l-‘-l"-'l*'a‘a'l*\‘a‘

+ d & + F B

Alice
doc.ansert omalo-2

Lo
e

A0C.Inse
goc.insert{’c

-
4
LI
L FLEC LN Y = =
1w w 4L
-+
o

1 m 2 m o4 % omva W R} R} ERW RS omo.a R

rivirdrie

r 2 md r ra raradardeodrraidrer
* ok F ok d kA F Ak kPP

-
- L)
-k i
- EEEEE "
A 41

r

[]
*

| -+

-
1
T -
T T T O O T T I T P AL L RN N,
‘.i -
+ 3 I
Pl - . 4 4 d i e d dddsdwcwddwd bddwwddsinddddddddd
-k CREG -
+ h ok LI i Ak Ak ok ok ko kA ok ek b h Ak Nk bk ok kh Ak Ak d
470 Tt e g - -
] :)
4+ A - + 1
iy i -l
- b
-
¥ + 4

L]

{ad
s
N
2>

&

o

{0
Y
)
£ 3
N
I
N
el
ol
o
el
5

'y

F]

L
+
[

'h koA F
S

ox
3>

rimerd W

£
*

s 0 S TSP ES

=
L
o
D

w d bk d ol FF
2 _L A FaFaAJ LA Fa

4 4 + &

A A& A A A

3228~ 3220

o
N
&
e

324/~ 3I7AR 3540~

L A N N R N R N N N N N N N N N N N N N N N Nl N N N N N N N N N N N N N N N N N N I - A T O O R A I N N I I A N I N A - - N T R N N I N N L I N N N N N N N N N N L e N L N N N

wd Fawr s a2 raseadasrarhrsras arhrssadaramsara s arh raras da ks ra s arkhrdrararagaddesddrwseasdarara piesrfpararararararrtidsesrasrarsrehvr

'_'I-F'I-IFF'I-

L]
LB N N N B N R BN B N A AR R T I B IR B A I BN B N R AL D S R B N NN R BE L NN B N I B B T R B R N N A B U N N BN L I R R T N R B B I R R N RS B R N I R BN R B R B N B N N N B N B B B B N BAOBE B S RN B R N B

.S. Patent May 16, 2023 Sheet 4 of 14 S 11,651,030 B2

P R I T T O T O T N, T O U OO O T I O O O IO . O T L L I T T T O T O T O T O R D . O D T O D O D I B T T T O O I O OO T I S D O O T D T D T I O N . . B D O T B |

ng = fomato-2, miik-

L T O . I O |

aoe.s

L cucumber-2

3088

R L I I T I T O I I N I I N I I I I e e e I e I O e I e

Alice

+ ¥ + F + 1

doc.update milk-37, 1

- LA N A

doc.delete(1;

Lty L !
4
L]
o I I A S
T N =
+

& ik
+

+ F + F + 01 + F + 1 & &~ + & 5 &

-
- L]
= m -
- Ad khdLd LA
LI B |

- - I
1 = = ooty
- 4 d ok -
L] - 1] . - -
e -
- 4 [l -
- [+
- = 1 1
N =
- k4 d [
) + &
. = 1 "L
O
'L w w il [l L -
- H &
- - 1 4 T
* 1 L] . I
- 4 4
- H - 1 -
- =
- - N] -
- - +
- 4 M
- [
- -
- .
* h 1
- L
= . [
- M
"
. - m a r i,
- .
i i * L []
- - - L]
=
. ¥ h X o
* - K - L]
- ¥ - t
. - - .
- ¥ E - b
" * F
- 0 - L]
=
- - .
e T T N R N RO PN N N - .
o . -
+ + . b
i [A .
LA L m R L m o E A n o Lom L hoLE o m e o LLR L . .
e, i

&
€
L]
Iy

F B 2 ras rd rw rada s ks r s ad s rarara ks ks Fdrs s rFrarhrldrhraraa

]
r m ¢ 2 rFr rh re rardraer

+ F + F + &~ ¥

-,
L
= 4

d
[N K

[

L A A el -

-

L B B O B N B N N L A N N ML L N L BT DL B O B B B A N N N N N N T N N N N NN NN N A NN LN NN N N N P I N A I N I B M N LA L M B B B B A B I L B I BN P N L WA] L N R N N N N N N L N B T N A T O N N N I A - N N L L I O B N N B N B B A D L B R B A - N N N N NN N NN NN

w2 wa Fid hrrd ardrdh ra b sdrs arrd ardrar

f P % F & F +

l",i-
.llll '.l
L

L
m bk hwdwmd e ed el ke b hwd e ke d A e d 1= 1= =l o d orh A d b d b ke h Lkl d e mkdhdw ded ey el hm b Ll dwdwd e ew b L h e bk e d e dh e d e AL R A E L

A0C.ShopPRIng

G, 3B

S. Patent May 16, 2023 Sheet 5 of 14 S 11,651,030 B2

[
-
-
+
-
+

r
&+

r
-
-

[
-

=
-
-
-
-
+
-
+

r
&+

r

=
-

=
-

=
-
-
-
-
+
-
+*

r
>

r

[
-

=
-

[
-
-
-
-
+
-
+

r
>
-

[
-

=
-

[
-
-
-
-
+*

r

" F F 8 4 8§ 4 & F FEEECEE RNy Ry RS RS RS YTy Ry AR A SRS

= ipmate-2, milk-3, cucmber-

F + F &~ 08 F =4 1 F ~+5 % F &

306C ~ SUBO~

L I I R L I I L T T I I I O e T e e T L T T I T L O I e e T T I I e T I T T e L I I O T O

= s+ B

o B R N B R R ko B Rk Rk Rk ok h kb Bk B B ko ke B By B by ko

Alice

doc.move(Z,

: Prh o1 4

rarh aderaemd alamwsilararp
AR E N N N N NN

3
= 41 v
- =L
i 4
A4 R A RN Rk g *
L r = - =
L3
.
+ - -

-
b1 4
= m -
- k4 & dd
=
-
"
]
L]
]
L]
[]
L]
]
r
*1- L]
. []
L]
w
-
- []
[]
2 2
-
-
.l
] []
L]
L] L]
r
n
*]
- []
-
* A
-
-]
L] 4! L]
» & L]
- w! w
- r []
< L]
L] . L]
- - 4
-]
4
- - . - 1 1
i [] = .
] i +
- - - L]]
- ¥ L
4 - [n
L &
- - r []
- ¥ E
R - 3 o ¥ N - N i
- -] n
" . W sk . : :
g 4
- - l]
l.-i+i+-ii‘a-i'r-i-!-il.il.-i-I-‘a-l-‘a-l-h-i‘ai'a‘a'r‘a"-l--i-l-‘a-l-li " . .
L] - - -]]
-+ ++ - - L] L]
i = - - . m il o= e b obhd4ddid=rsesessesecasnbeoges = ew s s
4 1 < 4 & - - [] []
4k h L L DA B P N O DL N DL O O B - B I L I O O O O O I O I B BN
L | + 4 % 4 L L]
- g -
L] - -]
L] LA
- + - - L]
'Il.q 1 [Y []
+ 4w
=L L K - L]
.
]
[]
[]
'
]
L]
]
L]
]
L]
[]
1 4 + &
2] 2
[]]
1 L]
h []
-
+* L]
- < -
L]
+ Ld o]
-
%]
+* - n
&od h B4
-, 2
y
4 4 []
-
-I."
-

L |
-

T
a2 a s s ra wra ra dkarard Fidhrrdardrlradhsdrsarrdarh:rar

]

T

[]

r]

]

L]

]

L

[]

L]

=

[]

[]

L]

L

]

L]

'r-i-l-i-l-‘a-l-‘aiﬁi4i4i1i+i+ﬁ+*iqiqilidi+*+*+*i*ilili4i”i*ililili+i+*+*i*i*i**1*+*+*+*iﬁi*i-|*-|.‘|+*+i+‘|+‘|+'|-l-|-l+i+i+‘ai‘¢il1'¢-ili-l.-i-l-‘l-l-‘a-i‘l-lQi-I-l-I-i-l‘a-l-‘l-l-*-i‘ai‘ail-i-li+i+i+‘|i*i¥ili4i+i¥i‘l!4ililili+i+ﬁ+*®i+*+***ibﬁl*{*+i+*i4i4i1i+i+ﬁ+‘aiﬁi4ililili+‘
=
L
=
4
=
[8
=
*
+ 4

_1."!"
-
x
=
1 4 4 b b w od hkd o ddld LA L d LAk ke rd L ed e bkl E e h e d o hmd L ddLd d ey h kA Fh L d L dE L e e d o dh L Ld L h dh d e b Bl LI T L T D T I Y 1 4 1k

S. Patent May 16, 2023 Sheet 6 of 14 S 11,651,030 B2

L T O . I O |

J0C.8hopT

P R I T T O T O T N, T O U OO O L T O IO O IO O T O L O I T, T T O T O T O T T R D . B D . O D O P I D T T T D O I O OO T I T B O O T D T D T I O N . . B D O T B |

ato-2, milk-3, cucmber-

4 ¥

e
Ml

-
r-- -3
-,

3060 ~ SUG LI~

-
L N I e I . I O e o I I R . I I N

Alice

s F FF1

adoc. movel?Z,

}
4

goc.dgietel?

-
= 4 W
4 I
L]
i L I B K J Ll
- = a =
—+
& LI
+

e i e T i el e B i

b Ak Pk Y kP kA ke

-

- L] L]
[= = =

- L I) Ah bk Add kA
+ & - 41
- -

- 4 Ak 4 4
L] - 1] . - -
AL]
bk [l -
- [+
LY = 1 1
N =
H = - b 4 n [
) * &
. = 1 "L
- O
L w w il [l L -
- H &
- - - 1 & -
* L] K) I
- 4 4
. - = -
- = |
n = -
- - -k 4 +
L 4k ok M
- . 4 L] +
- - n - -
i L =
1 [W & - +
- - 4 R)] 4+
- N - u - 1 k]
4 L) - 4 b
. - = m ot . a L]
i 4 - - . =
i - 1 - -
- L) - - L]
- + ¥ * H - -
i K [b |
- - L]
. : " ¥ i % £ : i :
i oL | E Cd ¥)
. - l 'k ‘h‘l"# 7 . o .
- 0 L] 'h L]
* - - : 4
Lk o+ A+ ch o+ Ak hh bk ch ko F o+ A+ hh A bk k4 kT At A+ ko + i - -
4 Y - 1
I . - i) LW 1) ol
- 4 4
+ + - L]
A £ P L I B, S S R TR N N W . .
et I e e i i
-

&

€
L]
+

F B 2 ras rd rw rada s ks r s ad s rarara ks ks Fdrs s rFrarhrldrhraraa

L oh ¥ A

r m ¢ 2 rFr rh re rardraer

E

L

L
L IR A B
L A A el -

1k w b= <

324D~

w2 wa Fid hrrd ardrdh ra b sdrs arrd ardrar

L L B O B B N B A P B M B B N N N N N P BN T L B A B P B R B N N L N N I B B D B R B R BN B N I N I A N N N N R N N N A NN NN Nl NN ANl N N N EN NN XN N LG B L B O B P N L I BN N I N N N N N N N L N N N N A R N L N I A R N N R N N A N A N N N N N NN NN LN N NN N

L N N T N N N N N N N N I L | = h d 4 brhdwdwdw hdd e d el b Ll L L e d s ew e h Ll L E A h e d e h e el el e A

C.5hopping

S. Patent May 16, 2023 Sheet 7 of 14 S 11,651,030 B2

h 4 h 4 h h 4 4 L b+ h b 4 h 4 h 4 4 4 Fh F P Fh o+ % + 1+ T h A h R4 E4 E Mk oy h o4 h 44 h L p L p 4 h L h o4 h o h 4 h L p L b Lh b hh b 4 b h {4 L b L F L h hh 4G h ko4 4 L f L b1k d bbb g

>.8hopping = [tomato-Z, mi

“mr'wretare

F = F &% &% &4 4 & 4 &4 4 &% 4 4% + 4 + b+ b+ 4 + 54 Fd Fah +a5 4 +F & 58 1 & F 5 +4% +4 5 & b+ b5 F 58 4 +4% + 5 &5 4+ b+ 84 Fa

Alice
doc.update{tomato-37
updatetomato-47, 1) S

&
- =
4 I
L]
i L I B B P T J +
- a [
—+

& LI
+

-
- + 1 L]
- i = & =
- - kd bk -dd dh
L - 41
- -

*
-
-
-
-
-
i
+
-
=
-
i
- a r
-
i - .
i [
. - - L]
+ - -
L . 4 1
. - - i L]
- - a. . ’1
L
. . £ : :; hl |{}I :
n
- - : L]
"
- . ! .
T TN N N T S O, R N) - .
'y . ' I b
- Y
+ - L]
o
-k - .
-k
A -

-
r
-
iy *
-
: ;
T
>
F
L]
+
-
c
-
-
&+ &
* F
ra
-
=
L]
F B 2 ras rd rw rada s ks r s ad s rarara ks ks Fdrs s rFrarhrldrhraraa

.
™
]
'
.
L]
]
LA A
L1 r
. .
] 2]
]
-
* .
i n
* .
- .
[
+ + .
+ -
P 1K 4 =) wy
L] []
L :
Yy Y
" k= = how 1
+ 1]
'
.
"
]
L]
.
.
-
L]
L]
.
b
L]
.
L]
b
'
.
L]
b
L]
-
™

r,
L

(3
Y,
Y,
-

d
r
d
r
d

3240

L B B O B B N DL AN B N L B B N T B N R R BN T O B A B N N B N L A N N I A B B N N N N N N N NN N P B R NN L B O B N I N N N I N N R N N NI NN LI M B B B I N BN A T I N N A N N N N N N N N T N O A I L I O B - AR LI I B L B O B P N L - P I B B M R B N N N T I DL B N L A N P R N T O L I B O B O B O L R LU I L I B AL

2 md r rF rasa darardrihsdfFsarasrararararriJdr

EF & F &2 F +

L]
L

r
-

L

.llll

L L N T T N O N I T I D T N N I L L B D N I N N N N I R R I N o L T o T O L L N L o N T D L D 1 b 4w 4=

C.8NOpRINg

.S. Patent May 16, 2023 Sheet 8 of 14

I T O T O T O T B I T O T IO T O T P O . O O O O O IO O OO T e T I . I T O O T O T OO D I I DN e L T T O D O T I T T O O T . O O O T D S B T O T T T O O O P . I B |

“mr'wretare

pping = Homato-4, mi

F &= F & &% &4 4 & 4 &4 4 & 4 4

L N B I |

e i e T i el e B i

by ok Pk F okl okl AP

P T T I L K Y
- = a

-
- L
- L]
-+ b
5
Y
™
+
w
5
LY
-
) +
. = b
-] -
L r = b [
-
- b
* +
-
- [
.
- » *
- -
- .
. - . u ¥ -
i . i
* - d -
- LI | LA
= . =
- -4
i K]
. - L) -
i .
i -
. - 1 .
, + K
i +
- L]
= +
- = .
L L - -
- & ¥ L
L] -
- -
] -
- =
T o+ A+ ch o+ Ak hh bk ch %k h F o+ A+ hh A bk ki tA +A . -
H -
- &
+ -
+ 1
- -
-k .
-k Ak ke h kT h Lkt h +hhhhk
L] L

L)
+

L oh ¥ A

siokF- 31606~

32087

-
+*

*

-

¥
~ F R F &~ F + 1 + B

3444~

L L B O B B N A I I N N N N B O . BN T B A B P B N B N A L A L O I TN B N B N BN O I N N N N NN N N N N T N N N NN NN N N N RN AN NN NN NN LA N N O I N I I I A B AN D O O P L I L L P I - B P LA D O A . L LA)

P EF & F &~ F &

-’
- +
'.l‘r +
L

L L I T T L I T T N T I N O B T T N L N N N N N NNl NN N N N N N N N N N N P T B N N P T T P)

Taprpd i ¢

b = kP kL

S 11,651,030 B2

4 h h h &

-
L I O e e e I e I e . L I e I

Alice

doc.movell, 0

= m -
L L B K B O
A 4 4

3140
-~ 3180

L]

-

s F &+ 0 &+ F

* &~ F & F + F
&

-
]
-

Y
Ly

- &

r

* ok 4

-

™

Y

EY
d
L]

+

]

[
* Ak 0 F &P

Fs
-
[

-

-

r 2 wra jaarrFoeoarardra¢bhsdrs arrdardedrdeasdd pidrrasrasrasrdrasras s rFrras s rararlsspFps a8 arararadawrasara il rasardrersrada s s r s ad ararara da ks ddrs arardrsdrdrarad

L B B O B N A B L B N P I N P P R B A N L N LT B N T L B B L BN LN I P O B P B B L N N B B L I O L B)

S. Patent May 16, 2023 Sheet 9 of 14 S 11,651,030 B2

iiiiii'iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii@iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii'iii'iiiiii'iii'iii'iii'iiiiii'iii'iiiiii'iii'iii'iii'iiiiii'iii'iii'iii
-
-
L]
-
-
-
-
-
-
-
L]
-
-
-
-
E 3 E -
L]
-
- . =
. -
* b . *
- L]
- -
- - -
e
- -
-
L]
-
* -
. [1] o [[
-
-
-
-
-
-
H -
L]
. . . . -
-
-
- H .
-
L]
-
-
-
L]
-
-
-
-
-
-
-
L]
-
- -
LI B B B B B B O O B O B O O B B O O I O O O O O B O O B O O O O O O O O O O I I I I O]
LB B]
LB |
- 4
L)
-
-
4 }
- .
-
-
-
-
-
-
-
L]
-
-
-
-
-
L]
-
-
-
L]
-
L]
-
-
- . 'i‘
L | I -
L]
- -
- -
. -
LY . .
L]
-
- . . . H H . H H
-
-
-
L]
-
-
-
-
-
L]
-
-
-
L]
-
-
-
-
-
-
-
L]
-
-
-
-
-
LI O T IOE DK DL IO DK AN DOE DN DAL IO DO BT IO DO DO IO DAL DR DOE DAL BN DO DO DK IO DO DAL DOE DR BN DOE BN BN DOE A BT DO DO BOK DO DAL AL BOE DO DK DR DO RO IOE O B IR DO DO IO DO AL BOE RO AL IR DO BN DO DAL BT DR DAL BT DAL DO DO BOE DO BAE DOE DO DAL DR DO AL DR BN B DR DO B BOE BOE DAL BOE DA RO IOE RO B DR DO AL BOE DK DO IO DK DAL DR DO B IR BOE B DOE DO DAL DT BAE DO BOE DO B DR DO B BT B B B B B DL B B B B B DL DO B DAL DA AL DR DO DAL BOE DO DAL DR RO AL DR DA DAL DR RO BAE BOE AL AL DR O AT DR DAL B IR DO B IR DO B IR RO DAL IR DO AL BOE BAC BT IR DO AL DOE O B IR O A DR B B IR B BN
LK
ok ok
- &
- 4
-
-
-
-
-
-
-
L]
-
-
-
-
-
L]
-
-
-
-
-
L]
1 £ :
- H
Al -
-
-
L] -
- -
- 1]
-
-
-
L]
-
-
-
-
-
L]
.) .
-
-
-
- -
L]
-
-
-
-
-
L]
-
-
-
-
-
L]
-
-
-
-
-
L]
-
-
L I I T O IO DO DL IOE O DO RO DAL DR IO DO BN DOE DO BN DAL DO DL BOE DK BN BOE DK DAL DAL DO DR IO DK DO DO DO DR BOE DN DO DOE DK DO BOE O DL DR DK DK IO DO DR DOE DA BN BT DA DO DOE DO BOE IR DK DO DOE DO B DO DO DAL IR DK DO DOE DOC AL BOE DO BT DAL DO AL DOE DAL BT DO DO DO BOE DO AT BOE BOE DR DOE DA DO DOE DA DL BOE BAE AL BN DAE AL BOE DO DAL DOE DO RO DR BOK L BOE DNC BT DR DO BT DAL BOE AL IO DO DO BOE DO RO BN DAL AL DR DO B IO DA DAL BN BAE BEE DR BAC BAE BOE DAL BAE BN DAL BEE BN DAL BN BOE DA BN BN DAL BEE BOE DAL DAL DR BOK DAL DR DAL BEE BOE DAL DAL BOE DAL BAT BN DAL DAL BT DAL BAE DT BAL RO DOE DAL DA BN DAL AL DR DAL B DR DAL B B B)
-
LB |
- 4
- &
-
-
.
L I I RN N N R R R R R R R R R R R R R R e
L]
-
-
-
-

Transmit Delta to Other Replicas of Distributed Computing System

-
L]
-
-
L]
-
-
L]
-
-
L]
-
-
L]
-
-
L]
-
-
L]
-
-
L]
-
-
L]
-
-
L]
-
-

LI} L B B B B LR LU UL DL B B B B B O LI} L B B B B L B B BN LU I B B DR D DR DL D DR DR O DL DR D DR D D B D BN N LR L B B DR DL DR DL D DR DR O D DR D DR D DR B D BN N LUL L B B DR B DR D D DR DR O D DR D DR DR D B D O N LU L B B DR DL DR D D DR DR O DL DR D DL DR DR O D O N LI I I RN RN R REEERREEEEREREEREREEEEEEEEE RN
A h b ok h h ok h ko h ko h ko h ko hhh h ko hhh hhh hh o hhh h R h R hhh hhh hhh hhh hhh hhh h hh hhh hhh h R h hh h R h hh h h h h hh hhh h Rk h h kR ok h hh h Rk h h h h h h R h kR h h h hh h h h h h h h ke h h h h ke h ke h h h h h h ke h ke ke ko

b o o o o o F kS

4004

1G. 4A

U.S. Patent May 16, 2023 Sheet 10 of 14 US 11,651,030 B2

ii

Receive Deltas Corresponding {o Concurrently Executed Qperations of
Number of Other Replicas on Element of Delta-Based Conflict Free L-410
Repiicated Data Type (CRDT) Array at Replica of
Distributed Computing System

-
iii

Miodity Element of Delta-Based CRDT Array on Replica Based on AT
Deitas Using Composable Dot Store that Maps Dots to Dot Store |

iii

4008

-G, 48

ok F ko kA F FSd kS Fh kS kA F Fh F Ak kAt Fw kR ok] F A kA Yk w kAR Rk Rk kA F AT

ok ko kR FhoF kb F Ak F kA s F kA Rk Pk kA kP sk h ok Ak Rk F kol F kA d Ak F Pk Sk kA Fh kA F kP kL F kA kA

ko F ok F A

S. Patent

May 16, 2023

Sheet 11 of 14

Computing Device

-

[]

l-ii-l-li-'-i-.l‘-'li-l-li-i-
L]

*

Frocessor

md d my o mygw o ndfoedh oy ey pdlwd etk dld oy oyt ey maw g ry Ll

-

LS
-

Levice

RN RN NN R RN EREEEREERNERESEEREEIERENRETEIIETEE NN NN

ok d ok d kA kS

L |

s h s h L kd o dkdohdd d Ll d h Lk hd bk h ko hdhh ol h b d h hhh o h L d A h h L h o h AR b bR hh R h ok

Recalver
Moguis

LS N I N A IS B I S N S N N L N I IR B B T B B S N R L N N N N N O B L I L N N N N N N R L N I S I DO N I DO SR B

Array Updater
Module

+ b & h B h o h ¥k oh FhohhhhFhhh N h ok Fh o h Fhh A d F A hhkh hdhh e h A E A Fd LA A

Pk Dk kA kAT A

L O R I I R R RN N N

4 4 4+ + & & F &K 4+ 4+ 8 4 4+ 1 %% 4 & FEE Ry E AL RSy Ry R, Y A Ay h Ty

aita {ransmitier
Module

R moE RN 4 E N G g E G b B G bk L B b L b RN G G R 4 RN G EE G R R G g B b Ry RoE RN 4 N 4

F & bk Pk ko kA AP Fd kPR

r

R EE R EREEE E A R Rk E R EE R E A E E R A E N A R E L R E E E R E E N A R R L N

ok kB kA F Ak F otk kR kAR Ttk Rtk -k rh kP F kF kAR kA PR kP Pk Fh kA kR kP TS

-

4+ 4

- - A - O, L, - - O, |

- 1 +

n

1 Device

B g

~ 4 o d Bk F T F

4 = g & L

interface

LI I I I N I N N R I N T RN RN I
LI AL M L BB B DL M DS B B AL O B DN BN DL B B LN B DL B RN B LN B D B B DO M LD I L B

i e e e
-

-

L]

-

-

-

-

-

-

I

-

-

-

-

- L]

- n

4k % h okl oh kb bk ok kchoch bk ch %k ok T A kWA ko h hchok b choch %k ok bk ochchh ok h LA kLA A

n
w
-

R N N A O N AN RN A R R A RO N RO R AT RO

L] n
L]

* L]
-

- -
-

- +
-

- . L

- *u
+

- %
+

- LN NN

- ‘-
1

- -+
-

- L]

- *a
1

-]
-

- L]
L]

- -

EEEERE EEEE E E A E R E R E R T N I I R

Ak kAP R A kA kAt d ok kP AP A Ak ko Sk kA kR ek b AR kLt d kd kR A R kA kR FFd F

-
+
+
~
4
-
~
+
]
+
+
-
.
o
-
+
.
-
-
n
+
-
L
4
-
~
+
-
-
|
-
-
4
]

S 11,651,030 B2

4
[

4 dd h rd T h L kh Ll bk h b d L sk hhhrd hdh kL b h s kR hh b kL

-
 h rh b rh oLk ok ko ko d h koL ko h ok h o h e h T d N hoh A d Aok d

L IR U N O I N I B I N B NI B NI O B I B L N U N B U I LB O N N O U B S N NN N B B I K O N

4 h h ol kd hk

Y.
Levices

L N

=xterna

omputing

Ak h h hhohadd b Ah L Eh LA h L oh

0+ ¢ F + b 8 F 4 ~F & F1+ ~&F + & Fdq

L DL I N N I R N N BB N DN NN NN e

ek F kA kv ko Pk

d F kv Aok Ak PP ST

U.S. Patent May 16, 2023 Sheet 12 of 14 US 11,651,030 B2

L B N N B R N NN N N N N N N N N N N I DL O B IO DAL B B RO B B)

LA B B B B DL DL B DL DL B B B B BN 1
LI B B
L B N N B N N I N R B N N B B B B B B

L]
-

L]
-

-
L]

-
-

-
L]

-
-

L]
-

L]
-

-
L]

-
-

L]
-

-
-

L]
-

-
L]

-
-

-
-

L]
-

-
L]

-
-

L]
L]

-
-

L]
-

-
-
L]
-

ok ko

-
-
-
L]
- -k -
-
L]
* -
L I N I N N O L L]
L] 4 h ko h ok
- -
-
- -
L] LU DL B B B DL D B B IR) -
- CEE B B N B B B B B B B I I -
- - -
L] -
-
- -
-

L]
-i-ii
ok ok ok -
bk b i AT LI B B] -

L I B B |

-
LI I RO RO IO DO AL IO RO BOE IR B) LB I N N B] 4 & ol
L]

L]
-
4 bk h A A -
LB B B B N B B N N B N O B B B B B B B B N B N B B N R N N O O D OO B B BB
-
- -
-
L
-
-
&
-
L] - L I B
& - L] L B B LB BN]
- - - -
- L] - -
& - L]
& L B B B | a L] - L] &
.] LI] LI] L] - -
"] - & - - - L
) - & & p !
-] - -
] - - L] -
- -
- - -
L] - L]
-
- - -
L | L B | -
- L
- - - - -
b - L L]
- - - -
- L] - 4 &
- - -
L] &
- - -
L] L] &
- - -
- L]
- L
- L)
-
L]
LI I B B B B B -
-
- LI -
- -
- - -
-
- -
- ol
L] - - L]
-
- -
- - L]
- - - - -
- - LEE B iri -
- LIE] LI - L] -
- - LR L] 4 b 4 -
- LR} L] LEE B -
- - Ll L] LI IR L]
- LR} - LEE B LEE B -
- - - LR L] 4 b 4
- LIE] LI LI N
- - Ll L LI L]
- L I I B) - b LR} L] LR L] -
L] L] - - Ll L] LI}
- - - LR} - - k|
- - - LR L] LI -
L] L] LIE] LI LI NE] L]
- - - - LR L] 4 & - -
- - - LR} L] LR L]
L] L] - - Ll L] LI} -
- - - LR} - - k| H - -
- - - LR L] LI - -
- L] L] LI LI NE] -
- - LR L] -
- - - - - - - -
L] L] - L] L] - - L]
- L] L] L] - L L
- - - - -
- L] - - - L]
- - - 4 & -
- - - - -
L] - LI}
- - - - o
- LI -
L] L] L] -
- 4 &
- - - -
L] LI} L]
- - - -
- LI
L] L] L] - L]
- - 4 &
- L] - - -
& 4 4 4 b - & & - " L
h - - - -
- - - -
L] L] LI
- 4 & -
- - e
- LR
- - - -
- - - -
L] L] - gh, &
- - - s -
- - - L] -
4 s &
- - -
EER] L] L
- L] L]
- s -
- -
- LI 4 s
- - - -
al EER] L]
- - L]
al - s
- - - -
Ll B 4 s -
- - - -
- al EER] L]
- - L] L]
al - s
- - - - -
Ll B LI 4 s -
L] - - - -
- al LR L] - EER] L] -
LI LHL] L] - - L] -
al LR L] - - - s -
L] LRE] - - - -
Ll B Ll L] L] Ll L] L] L]
- LRE] - -
al LR L] - L L] - - -
LI LHL] L] - -
- LR L] - s -
L] LRE] -
- Ll L] L] L] B}
- LRE] -
LR L] - s
LI LHL] L]
- LR L] - s -
L] L] LRE] - -
- Ll L] L] L] B} L]
- - LRE] - -
"] LR L] s -
L] L] L] L]
- - - s -
- - - -
- L] B} -
& -
L B B) s
L L]
- s -
- - -
& L] B}
- -
LRE] -
- L] L] L]
- -
- L)
LI L]
- - - -k -
- - - 4 b A - 4
- -
- - -
- -
& L] -
- - - -
- - - -
& - - -
ok - - - -
- - L] -
L | L
d_h ko - o A L) -
- -
-
- -
- -
- -
- -
- -

- -
- -
-k -
L LI B)
-
-

L I I AL B IO B L IO DO AL DR DAL B IO BAE B IR B)
- L]

4 bk h h ko h ko h ko ke

L] -

- -

- -
L]
-
-
L]

-
-
-
iiiiiiiiiiiiiii‘
A
-

L N N N N N N B B N B B N B

o ko o o o o

LI I I B |

@ I RN R EE I L e

US 11,651,030 B2

Sheet 13 of 14

May 16, 2023

U.S. Patent

o

SIEMUOC PUE SIEMDIEH

LROS

; SUISISAL SIBAI
; .‘mamm ;ﬂ.a_,_mm“wrv SUIBISAS 5
mmmmﬁu %mémz Bupomien obeing Mg R St

Ly

- L}
L
- - .
Fl a
l.‘.l.—.l.r‘.‘..sl.r.rl_l.‘
-

+ F 1 ¥ F F¥FFEFFFESR

L

L B S I N

1

+
+
T
-
-
-
-
4
T
4
-
=4

111--1'111
L I N N N

oo F S EFLAFTF

LI NI S B R B B O O T B B I]

L B B U B DL B BN N T B B BN |
L T I N O I I O T T I T O L

-
o
.
i
M

.
¥
*
r
r
"
1

[
*
[
T

4 b ko hhohohh S d o d o h R oA

T
-
-
L)
o
.

-
-

-
* '3
r
L
+d : A
¥ ! 2 mmutm 4113 mw—\w m
¥ FAL o /
A o £ L 4 W]
5 1 b
LY
.
r, -
T
A
. : p
- T -
Fl 1 - b
- + -,
- -+ . - . r L
._.._. 4 . A - .
L] 4] L/
* T - % - +4
A + . +
+ T - ! +
- . -
- T .
-+ e - -
- r .
L] 4 - -,
i-‘ " T " #+ # 4 § f# F 4 F § F T FF F 5§ F R4 5 5 §5070T07F T
+ + I
! + + + A
.h_.. H - H R R R N N B R RN N R [
F] »)
[. . N N N N N N N NN N NN NN NN A
r -+ -+
J-.' 4 1
! LL L4
- T
. -
. o
- r -+
+
e L]
-
-
*
a..' L
._.._..- [])
§ v 1]
-
i/
]
H -
]
- -
. .
.
A O SO S S o o o o S I S Sl ol I I T T - S Tl ol i A i e I I I e I e .._.__.__
4
-
-
["
-
I
-
-
e B b
F. ”~ e Rs k ; F.
4 . nuu_ %
i .-_t. - - J.I__._.ﬁ i ¥ u
- [.}_ f ' ¥ .._.
A ¥ ¥ E] K]
¥ -
-
.
T
MW % _.ﬁf_ .
[4 -
-+ -1
.
r
-]
- -
. L]
- v
- -q
- -)
A PRl T i A Il e I e I e e e e L i R i R I R e i A
-
+
])
-
L
A
~ 4
* T
n .r.‘
- .
3
L
-+
]
-
-
<

F & o 0 A Aok kA Ad 4 F o kadAdFFF T

mmmmm%o&
/LoHDBSURL]

JOBESNPT
LIOBISSE})
{ETHIA

.
* f FFEY P TFdFF ST +FF 4

bm d awwbppAderrwrddfredppaAdrbbryg arrbbppadrrrrsmdbbdlpgprbrrsnmedbdpriedwedrbtdufrerdpgprrrrpaendbdyaedrrbduspgrbedypgprbrrygnndtbdyadwebbdamoidbbdyunpwerbdypdbrrdygprkedudbtbrrdygprbrrygmnddbdeamrebrbdamedbbdypuamerbdyLderrdpuaprrrrenshdibbrdppgrberdygndebrdungorerbrdnmebbdpowyowe b

ZIM0SHUOMN *

.S. Patent May 16, 2023 Sheet 14 of 14 S 11,651,030 B2

LR
-
L) -
-
-
- - -
-
L
-
-
L]
&
&
L] L]
* - L]
LI I T I AL DO IO DO DAL BOE DO DO IO DAL DAL IO DOE DAL IO DAL DAL IO DL DO DAL DO DO IOE DO DO IOE DO AL IOR DOE DO BOE DAL DO DL DOE AL IO DAL DAL BOE DOL DAL DO DAL DO IOL DAL DAL IR BOE BEE IOE DK BN BN) LU B R B B B DL B B B B B B B B B B B B B B B B B DR B DR B B B DR B DR BE DR BE DR DR DR DE DR BE R B BE B B BE BE DR BE DR DR DR DR DR DE DE B DR DR B B DR B B DR B BDE L B B DR B B BE B B NE B B B B B B B B B B B B B B B |
-
-
L]
-
L]
- " -
-
- -

FroCessor

L B B UK B B B BN U D U B D D DN DN DN BN D BN B DN DN D NS DL DN DS DU DN DN DU DL R D D DD DU DL DD U DL DD D DU B N BB N R

ok kR
*
*
L

L L

Deita Transmitier Module b

[N NN N N

LI B R BE BE BE DR DR BE BE DR BE DR DR BE R BE DE DR BE DE DR DR DR DR BE DR DR DR BE DR DR DR DE DR DE DR B DR DR B BE DR B B DR B BE DR B B DR B B DR B B DR DR DR NE B B NE B B R B B N B B R B B NE BE B R BN B N B B B B B BE B B B BE B B |

US 11,651,030 B2

1

DELTA-BASED CONFLICIT-FREE
REPLICATED DATA TYPE ARRAYS USING
DOT STORES THAT MAP DOTS TO DOT
STORES

BACKGROUND

The present techniques relate to distributed computing
systems. More specifically, the techniques relate to distrib-
uted computing systems using delta-based contlict-free rep-
licated data types.

Distributed collaboration on semi-structured data docu-
ments 1s a major challenge 1n the distributed computing
domain. For example, semi-structured data models are typi-
cally composed of primitive types, maps, and arrays. Primi-
tive types may include a string or an integer. Maps may be
an unordered list of values 1dentified by keys. Arrays may
include an ordered list of items. In some examples, any of
these types can be nested. For example, a map may contain
a list which may contain primitive types, etc. Examples of
data formats that support semi-structured models are JSON,
XML, and YAML. In addition, databases such as NoSQL
databases store their content 1n semi-structured data docu-
ments. In distributed environments where databases have
multiple instances, content may need to be coordinated
between multiple replicas. Therelore, such distributed data-
bases may use a mechanism to synchronize these three types
ciiciently between their replicas.

However, due to network latencies, the use of a central-
1zed synchronization mechanisms for semi-structured docu-
ments may be too costly. Therefore, asynchronous methods
for synchronization may be used. Among these asynchro-
nous methods 1s conflict-free replicated data types (CRDT).
For example, major NoSQL databases, such as the Redis,
Riak, and Apache Cassandra databases, utilize CRDTs.

In CRDT systems, many replicas of the same object or
document may exist. As used herein, a replica refers to the
same object or document distributed across some devices.
For example, replicas may be used in distributed data
centers, 1n computing devices such as smartphones or lap-
tops. As one particular example, replicas may be used in
browsers while two users are working on the same docu-
ment. Thus, each user may be working on a local replica of
the document. When a user wants to modily some object, the
user may typically connect to one of the replicas and send an
update. After the replica receives the update, the replica
processes the update. The replicas may then synchronize
asynchronously. For example, each replica may transmuit
data to the rest of the replicas. Conflict-free Replicated Data
Types (CRDTs) allow multiple users to concurrently update
shared objects, while ensuring eventual convergence into
some consistent state. CRDTs are often split into two main
families: operation-based (op-based) CRDTs and state-
based CRDTs. Op-based CRDTs are simpler and use smaller
messages, but they assume reliable exactly once ordered
messaging. However, such reliability may be hard to main-
tain even when Transmission Control Protocol (TCP) 1s
used.

State-based CRDTs were defined by Shapiro et al. 1n
2011. The values of this data structure form a join-semilat-
tice. A join-semilattice 1s a partially ordered set that has a
jo1n (a least upper hound) for any nonempty finite subset. In
the context of State-based CRDTs, a join-semilattice defines
a join operation over 1ts values. For example, when a user
wants to modily data stored in the replicas, the user may
communicate with some replica and not directly with all
replicas. The replicas may then synchronize by sending their

10

15

20

25

30

35

40

45

50

55

60

65

2

entire state to each other. During synchromization, after
replica A recetrves the state of replica B, replica A merges the

state of replica B with 1ts own current state using the join
operation defined by the join-semilattice. Thus, messages 1n
state-based CRDT systems include the entire state. How-
ever, In many cases, including the entire state may be
prohibitively large.

Almeida et al. mtroduced delta-based CRDTs 1n 2016 to
combine the benefits of both state-based CRDT and op-
based CRDTs. Delta-based CRDTs are defined to be the
same as state-based CRDTs, but mstead of sending over the
network the entire state, only a difference, also referred to as
a delta, from previous state 1s sent over the network.
Delta—based CRDTs are therefore also objects that reside 1n
join-semilattices. The state of a delta-based CRDT 1s a dot
store paiwred with a causal context, where the dot store
defines the join operation of a join-semilattice. A delta may
be computed by applying a delta-mutator to the current state
of a replica. For example, a CRD'T may define abstractions
for generating delta-mutators, which may correspond to
operations such as update, insert, delete, etc. A delta-mutator
mo 1s a function, corresponding to an update operation,
which takes a state X 1n a join-semilattice, S as parameter,
and returns a delta-mutation mo(X). For example, when
applied to a current state of a replica, the delta-mutator may
produce a delta-mutation, also referred to herein as a delta.
This delta may then be sent over to other replicas of a
delta-based CRDT system. In some cases, these deltas can
be jomed together to form a delta-group. In various
examples, a delta-group may be a single delta-mutation, or
a join of multiple delta-mutations. Thus, a delta-based-
CRDT may only send a delta instead of the entire state to
other replicas for synchronization, thereby reducing com-
munication overhead. However, the delta-based CRDT
approach includes the use of causal consistency and design-
ing causal delta-CRDTs 1s non-trivial. In particular, arrays
may be particularly diflicult to implement 1n delta-CRDTs.

For example, many existing methods for CRDT array
implementation do not support move operations. In addition,
some methods that do support move operations may create
duplications during the move operations 1 multiple users
move the same element concurrently. Such duplications may
not be desirable. For example, 11 two or more move opera-
tions are received concurrently, some operation moving a
specific word to the beginning of the sentence and some
operation moving it to the end of the sentence, then the result
may be the word being repeated and be both at the beginning
and end of the sentence. Moreover, such methods may not
support nesting. For example, 1n such methods, an array may
not be able to be 1included as an object within another array.
Also, some of these methods 1nvolve the use of tombstones.
Tombstones are placeholders that track information that has
been removed from an array or other data structure. Tomb-
stones may be used to perform undo operations as well as
synchronize arrays. However, the use of tombstones may be
resource intensive with regards to memory usage, particu-
larly in larger data sets. Finally, many of the existing
methods for implementing CFDT arrays are not delta-based
CRDT approaches, and are therefore less eflicient in terms
of data transmitted over the network.

SUMMARY

According to an embodiment described herein, a system
can 1nclude processor to receirve, at a first replica of a
distributed computing system, deltas corresponding to con-
currently executed operations of a number of other replicas

US 11,651,030 B2

3

on an element of a delta-based conflict free replicated data
type (CRDT) array. The processor can also further modity,
at the first replica, the element of the delta-based CRDT
array based on the deltas using a dot store that maps dots to
a dot store. The system may thus enable a delta-based CRDT
array 1n a distributed computing system. Preferably, a con-
current update to a value of a key and a remove of the key
results 1n the key being deleted from the dot store. In this
embodiment, the using dots as the keys enables deletion of
a key when there 1s a concurrent deletion of a key and an
update to 1ts value without keeping tombstones. Optionally,
a position of the element 1s stored 1n a forest in the dot store
and the element 1s modified using the forest, where an
update or a delete operation removes an entire tree from a
root in the forest. In this embodiment, the use of a forest may
ecnable resolution of concurrent moves and updates or
deletes. Preferably, the delta-based CRDT array includes a
remove-wins array based on a set of remove-wins semantics
or an observed-remove array based on a set of update-delete-
move (UDM) semantics. In this embodiment, the use of
remove-wins semantics or UDM semantics enables eflicient
resolution of concurrent moves and updates or deletes.
Optionally, the delta-based CRDT array includes a nested
array. In this embodiment, multiple types of delta-based
CRDT arrays may be used.

According to another embodiment described herein, a
method can 1include receiving, via a processor at a replica of
a distribution computing system, deltas corresponding to
concurrently executed operations of a number of other
replicas on an element of a delta-based contlict free data type
(CRDT) array. The method can further include modifying,
via the processor, the element of the delta-based CRDT array
on the replica based on the deltas using a dot store that maps
dots to a dot store. The method may thus enable a delta-
based CRDT array in a distributed computing system.
Optionally, the delta-based CRDT array includes an
observed-remove array, and modifying the element includes
updating a value of the element in the observed-remove
array 1n response to detecting that the concurrent mutations
include an update operation and a delete operation on the
clement. In this embodiment, giving preference to updates
over delete operations prevents loss of user data during
concurrent operations. Optionally, the delta-based CRDT
array includes an observed-remove array, and modifying the
clement includes updating a value of the element 1n the
observed-remove array in response to detecting that the
concurrent mutations include an update operation and a
move operation on the element. In this embodiment, giving
preference to updates over move operations enables the
replica to save less metadata. Optionally, the delta-based
CRDT array includes an observed-remove array, and
wherein modifying the element includes deleting the ele-
ment from the observed-remove array in response to detect-
ing that the concurrent mutations include a delete operation
and a move operation on the element. In this embodiment,
grving prelerence to delete over move operations enables the
replica to save less metadata. Optionally, the delta-based
CRDT array includes a remove-wins array, and wherein
moditying the element includes both updating and moving
the element 1n the remove-wins array in response to detect-
ing that the concurrent mutations include an update opera-
tion and a move operation on the element. In this embodi-
ment, both updating and moving enables multiple users to
work simultaneously on the same array element, where
some of them move the element and some of them update 1ts
value. Optionally, the delta-based CRDT array includes a
remove-wins array, and wherein moditying the element

10

15

20

25

30

35

40

45

50

55

60

65

4

includes deleting the element from the remove-wins array 1n
response to detecting that the concurrent mutations include
a delete operation and a move operation on the element. In
this embodiment, giving preference to delete over move
operations enables the replica to save less metadata. Option-
ally, the delta-based CRDT array includes a remove-wins
array, and wherein modifying the element includes deleting
the element from the remove-wins array in response to
detecting that the concurrent mutations include a delete
operation and an update operation on the element. In this
embodiment, giving preference to delete over update opera-
tions enables the replica to save less metadata. Optionally,
the delta-based CRDT array includes an observed-remove
array or a remove-wins array, and modifying the element
includes moving the element 1n the observed-remove array
or the remove-wins array to generate a delta-based CRDT
array including an unduplicated moved array element 1n
response to detecting that the concurrent mutations include
a number of move operations. In this embodiment, the
method enables unduplicated concurrent moves 1n delta-
based CRDT arrays. Optionally, the method 1includes receiv-
ing, via the processor, an operation on the delta-based
contlict free data type (CRDT) array via a processor at the
replica of the distributed computing system, executing, via
the processor, a delta-mutator corresponding to the operation
and calculate a delta, merging, via the processor, the delta
internally to update a state of the replica, and transmitting,
via the processor, the delta to the other replicas of the
distributed computing system. In this embodiment, the other
replicas may be synchronized with the replica.

According to another embodiment described herein, a
computer program product for modifying elements of delta-
based contlict-free replicated data types (CRDT) arrays can
include computer-readable storage medium having program
code embodied therewith. The computer readable storage
medium 1s not a transitory signal per se. The program code
executable by a processor to cause the processor to receive,
at a first replica of a distributed computing system, deltas
corresponding to concurrently executed operations of a
number of other replicas on an element of a delta-based
conflict free data type (CRDT) array of a replica. The
program code can also cause the processor to modily the
clement of the delta-based CRDT array on the replica based
on the deltas using a dot store that maps dots to a dot store.
The program code may thus enable a delta-based CRDT
array 1n a distributed computing system. Optionally, the
program code can also cause the processor to update a value
of the element 1n an observed-remove array in response to
detecting that the concurrent mutations include an update
operation and a delete operation on the element. In this
embodiment, giving preference to delete over move opera-
tions enables the replica to save less metadata. Optionally,
the program code can also cause the processor to update a
value of the eclement 1n an observed-remove array in
response to detecting that the concurrent mutations include
an update operation and a move operation on the element. In
this embodiment, giving preference to delete over move
operations enables the replica to save less metadata. Option-
ally, the program code can also cause the processor to delete
the element in an observed-remove array in response to
detecting that the concurrent mutations include a delete
operation and a move operation on the element. In this
embodiment, giving preference to delete over move opera-

tions enables the replica to save less metadata.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 1s a block diagram of an example system for
synchronizing delta-based CRDT arrays;

US 11,651,030 B2

S

FIG. 2 1s a Venn diagram depicting an example set of dots
surviving a join of two mstances of CompDotFun dot store,

where each CompDotFun dot store has i1ts own causal
context;

FIG. 3A 1s a block diagram of an example forest of a
CompDotFun dot store having been synchronized after
receiving concurrent mutations to insert elements into a
delta-based CRDT array;

FIG. 3B 1s a block diagram of the example forest of a
CompDotFun dot store having been synchronized after
receiving concurrent mutations to delete and update an
clement of a delta-based CRDT array;

FIG. 3C 1s a block diagram of the example forest of a
CompDotFun dot store having been synchronized after
receiving concurrent mutations to update and move an
clement of a delta-based CRDT array;

FIG. 3D 1s a block diagram of the example forest of a
CompDotFun dot store having been synchronized after
receiving concurrent mutations to delete and move an ele-
ment of a delta-based CRDT array;

FIG. 3E 1s a block diagram of the example forest of a
CompDotFun dot store having been synchronized after
receiving concurrent mutations to update an element of a
delta-based CRDT array;

FIG. 3F 1s a block diagram of the example forest of a
CompDotFun dot store having been synchronized after
receiving concurrent mutations to move an clement of a
delta-based CRDT array;

FIG. 4A 1s a block diagram of an example method that can
synchronize delta-based CRDT arrays;

FIG. 4B 15 a block diagram of another example method
that can synchronize delta-based CRDT arrays;

FIG. § 1s a block diagram of an example computing
device that can synchromize delta-based CRDT arrays;

FIG. 6 1s a diagram of an example cloud computing
environment according to embodiments described herein;

FIG. 7 1s a diagram of an example abstraction model
layers according to embodiments described herein; and

FIG. 8 1s an example tangible, non-transitory computer-
readable medium that can synchronize delta-based CRDT
arrays.

DETAILED DESCRIPTION

According to embodiments of the present disclosure, a
system can 1nclude a processor to receive, at a first replica
of a distributed computing system, deltas corresponding to
concurrently executed operations of a number of other
replicas on an element of a delta-based contlict free repli-
cated data type (CRDT) array. The processor can modity the
clement of the delta-based CRDT array based on the deltas
using a dot store that maps dots to a dot store. In some
examples, the processor can further transmit a delta to other
replicas of the distributed computing system. For example,
the other replicas may use the delta to similarly modify an
clement and synchronize with the first replica. In some
examples, the delta-based CRDT array may be a nested
array. Thus, embodiments of the present disclosure enable
indefinite nesting within delta-based CRDT arrays. In addi-
tion, the embodiments of the disclosure do not require
duplication of elements within an array to execute opera-
tions such as a move operation. For example, 1f two con-
current users each move the same element to a different
location, the resulting array may include only one instance
of the element that was moved. The embodiments further
enable delta-based CRD'T arrays that are more eflicient 1n
terms ol meta-data and data sent over a network of a

10

15

20

25

30

35

40

45

50

55

60

65

6

distributed computing environment. Moreover, the embodi-
ments enable a JSON-like application programming inter-
face (API) that supports concurrent operations, which may
include an update operation, a move operation that operates
without any duplication, and a delete operation. For
example, the embodiments may be used for JSON data 1n
databases such as NoSQL databases. Finally, because the
embodiments do not use tombstones, the embodiments
enable delta-based CRDT arrays that may be more eflicient
with regard to used data storage.

With reference now to FIG. 1, a block diagram shows an
example system for synchromizing delta-based CRDT
arrays. The example system 1s generally referred to by the
reference number 100. FIG. 1 includes a set of replicas 102.
For example, the replicas 102 may be a set of nodes
communicatively coupled to each other to form a distributed
database. In various examples, each of the replicas 102 may
have i1ts own replica identifier. The replicas 102 each have
local memory but no shared memory. In addition, there may
be no global clock or timing assumptions between the
replicas. In various examples, the replicas 102 can commu-
nicate with each other via messages, but the messages may
be dropped or reordered arbitrarily. However, some of the
messages may eventually be delivered.

Each of the replicas 102 includes a delta-based CRDT
array module 104. The delta-based CRDT array module 104
includes a CompDotFun dot store 106, a causal context 108,
delta CRDT arrays 110, and an array updater 112. The dot
stores 106 include a CompDotFun dot store 114. In various
examples, the dot stores 106 may also include a dot store,
referred to as a DotFun dot store (not shown), that 1s a map
from dots to a join-semilattice. The dot stores 106 may also
include a DotMap dot store (not shown) with values that
map from some set of keys K to some dot store V.

Delta-based CRDTs may be built using dots, dot stores,
and a causal context (CC). A dot, as used herein, 1s a tuple
of values. For example, a dot may be a value pair of a
replica-1d and event number. Given a set of replicas 1, one
way to generate unique identifiers for events 1s for replica
102 1&1 to generate the sequence of pairs (1, 1), (1, 2), . . . and
assign a pair per event. Each such pair may be referred to
herein as a dot. These dots may represent user events
observed by some replica 102 of the set of replicas 102. For
example, the replica-id may be a unique identifier for the
replica, and the event-number may correspond to a particular
observed event by the replica and may indicate the order 1n
which the event was observed relative to other observed
cvents. As one example, a dot may take the form of (1d-1,
event-5), or in the shorter form (d-1, 35). In wvarious
examples, when a user updates a value 1n a register, a new
dot 1s created to represent that event. In this example, both
dots (1d-1, 5) and (1d-1, 4) may represent events that hap-
pened 1n a first replica 102. However, the event represented
by (1d-1, 5) may represent an event that happened after the
event represented by (1d-1, 4). The dots may thus be
assigned unique identifiers used to events to track which
events have been observed.

The dot stores 106 may be containers for data-type
specific information. For example, dot stores 104 may store
dots and data 1n a particular manner. For example, dot stores
106 may store a dots that are both live and up-to-date. A dot
store 106 may also provide a function dots() for querying
the set of event 1dentifiers currently stored 1n a dot store 106.
For example, the dots() function may yield all dots which
are currently stored by a dot store 106. In various examples,
the dot store 106 may hold user data currently stored in the

CRDT.

US 11,651,030 B2

7

Finally, the causal context 108 1s the set of all events 1n
the form of dots that a replica has observed so far. Thus, the
causal context 108 may include dots that are no longer
present 1n any of dot stores 106. In various examples,
because the casual context 108 1s a grow-only set, i1ts size
may be unbounded. In some examples, the dots stored 1n the
causal context 108 may therefore be compacted for more
efficient storage. For example, when using some anti-en-
tropy algorithms, then for each replica 102 11 with causal
context 108 c; and for any replica 102 jel:

Isns=max(c,)={j,n)Ec; Eq. 1

Thus, the casval context can be encoded as a compact
version vector that keeps the maximum sequence number for
each replica.

In various examples, each of the replicas 102 may be able
to call various operations over a causal context 108. In some
examples, each of the replicas 102 may also be able to call
a max() operation. The max() operation may provide the
maximum sequence number seen so far. For example, the
max operation may be defined using the equation:

max {c)=max{{nl(i,n)e c) J{0}) Eq. 2

In some examples, the replicas 102 may also be able to call
an operation next(), which yields the next available dot 1n
that particular replica 102. In some examples, this operation
may be denoted as next-1(), to denote the next dot in the 1-th
replica. For example, 1n the first replica 102, the first time
next() 1s called 1t will produce the dot (1d-1, 1). The next
time the operation next() 1s called may produce (1d-1, 2),
and so on. For example, the next() operation may be defined
using the equation:

next{c)=(, max{(c)+1)

The state of a replica 102 1n delta-based CRDTs may be

formed by a combination of a dot store 106 with a causal
context 108. In this regard, the notation Causal<V>, also
sometimes referred to as Causal<T>, may be used to symbol
a causal context combined with V (or T) as the dot store. In
some cases, the notation (m, ¢) may also be used, where 1n
1S the dot store and c 1s the causal context. Thus, the dot store
106 contains the data currently stored 1n the replica 102, and
the causal context 108 provides a causal history. Therefore,
a dot that 1s present 1n a causal context 108 but not 1n the
corresponding dot store 106, may mean that the dot was
present 1n the dot store 106 at some time 1n the past, but has
since been removed. When joining a replica with a delta or
when joining two deltas, a dot present 1n only one dot store
106, but included i1n the causal context 108 of the other
replica 102, may be discarded.

In the example of FIG. 1, the delta-based CRDT array
module 104 also includes a CompDotFun dot store 114. In
various examples, the values of the CompDotFun dot store
114 are another dot store. An example CompDotFun dot
store 114 may be formally defined as:

Eq. 3

COMPDOTFUN{1xN, V:DotStore):DotStore =1xN -V Eq. 4

dots(m) = dom m | U dots(v)

V= Fil#l i

where I refers to the replica IDs, N refers to sequence
numbers, V 1s a DotStore, m 1s a dot store mapping dots IXN
to dot store V, dom m 1s the domain of all the keys of the dot
store m, and d 1s a key. As used herein, a standard notation
for sets and maps 1s provided, such that a map 1s a set of

10

15

20

25

30

35

40

45

50

35

60

65

3

key-value pairs {k—v} or {d—v}, where each key k or d 1s
from some set K, and associated with a single value v. Given
a map m and a key ke K 1ts associated value may be denoted
by m(k). In other words, m(k) may denote the mapping of
key k. The domain of a map m 1s denoted dom m and the
range of a map m as ran m. In other words, dom
m={kl{k—>v}em} and ran m={vl{k—>v}em}. Most sets
used are at least partially ordered, and the existence of a least
element 1 1s assumed. For a map m and some key k, 1f
ke dom m, then m(k)=1. In other words, all keys not present
1in the map are mapped to 1, unless specified otherwise. In
various examples, dot stores V may themselves reference
additional dot stores, and thus may be referred to as nested.
The function dots(m) 1s used to return all dots existing 1n
DotStore. In various examples, a join-semilattice for causal
delta-CRDTs based on the CompDotFun dot store may be
formally defined as:

Causal (T DﬂtStﬂI‘E) =TxCausalContext
L : Causal (T) xCausal (T) —Causal (T)

when 7~ CDMF‘DDTFUN(_)

(m,c)Ud (m' "h=({d—v(d)lde dom mdom m'/\v(d)
=1t

{(dviemlde ' po{{dviem'ldec},auch)

where v(d)=fst((m(d),c)Hd (m'(d),c)) Eq. 5

where m and m' are dot stores, ¢ and ¢’ are causal contexts,
d 1s a key, and fst (p) and scnd(p) may denote the first
element and second element of a pair p, respectively. In the
example of Eq. 3, arecursive function 1s used to compute the
values resulting from the join of (m, ¢) and (m', c').

In various examples, the values of the CompDotFun dot
store 114 may be combined with a casual context 108 to
generate a jomn-semilattice. As described above, a dot
appearing 1n a causal context has been seen. Therefore, 1f a
dot appears 1n the causal context but not 1n the state then it
has been removed. This enables keeping track of removed
elements. For example, an element may survive a join 1if 1t
appears 1n both maps. In this example, the element has not
been removed. In some examples, the element survive if 1t
appears 1n one CompDotFun dot store 114 but not in the
causal context 106 of the second CompDotFun dot store 114.
In these examples, the element has not been observed by the
replica on the other side. In various examples, a join may
then recursively applied on the elements of the CompDot-
Fun dot store 114. This construction allows forgoing tomb-
stones, because the causal context 106 contains the infor-
mation 1n an efficient and compressed manner. An example
jo1n 1s depicted and described with respect to FIG. 2 below.

In various examples, the delta CRDT array 110 may be a
map from dots to pairs of the form (value, position). The
dots may thus act as unique 1dentifiers. In various examples,
the value may be an arbitrary dot store 106. For example, the
dot store 106 may include any dot store that 1s combinable
with a causal context to create a join-semilattice. Thus, the
delta CRDT array 110 may support nesting because the dot
store 106 that resides i1n the value part of the pair (value,
position) can be a nested dot store. In some examples, the
position may be stored as a forest in the CompDotFun dot
store 114. For example, the roots of the forest may be the
dots corresponding to the last value-updates. The last value-
updates may include the insertion of an element, 1f no further
updates have been made. In various examples, the second
height may be the dots of the last move operations. Other-

US 11,651,030 B2

9

wise, 1f no move happened, then the second height may be
the dot of the last update or the insertion. The leaves may
store the actual position 1dentifier. In various examples, any
suitable scheme 1n which the position 1identifiers themselves
encode their relative ordering may be used as a scheme. For
example, the scheme used may be the LSEQ adapfive
structure first introduced 1n September 2013, the Logoot
algorithm first introduced 2009, or the Treedoc CRDT
design first introduced 1n 2009, etc. In various examples, the
position 1dentifiers may be from a totally ordered set such
that they may be used to sort the array elements 1n a
deterministic order.

The delta CRDT array 110 may support various muta-
tions. For example, the delta CRDT array 110 may include

5

10

10

precedence 1s defined between the operations update, move,
and delete. In particular, the order may be as follows: update
the value of an element with highest precedence, then delete
element, and then move element to a new position with a
lowest precedence. The observed-remove semantics may
thus also be referred to as UDM semantics based on the
order of precedence of update-delete-move. An example set
of UDM semantics representing the causality order are
formally described 1n the following chart:

Let a be an array, H be a full history of events for a, let
< be a partial order of the history, and let o, be an
operation acting on unique element idenfifier 1 1n a.

Then let:

doma = {f ‘ dinsert (i, v, p) € H AY delete (i) € H:dupdate (i, v, p) € H:update (i, v, p)|| delete (f)},

fst(a(D) = || {v‘ [inﬁert (i, v, p)e HY o; € H [{delete (i), update (i, —, —)}:insert ﬂf]

send(a(i) =

V |Jupdate (i, v, p) € H:V delete (i) € H:update (i, v, p) « deletel}

: | | {p ‘ diinsert (i, v, p) € H:¥ 0, € H:nsert (i, v, p) £ ﬂf})

L L {p ‘ dupdate (i, v, p) € H:V o; € H:update (i, v, p) « Gf})

| | ({p ‘ dmove (i, p) € H:¥ o; € H () {delete (i), update (i, —, —)}:0; < move (i, p)})

an application programming interface (API) supporting the
various mutations. In various examples, the mutations may
include an 1nsert operation. For example, the insert operation
may be 1n the form of Insert(val, pos), where val 1s the value
to be inserted and pos refers to the position 1n an array at
which to 1nsert the value. The mutations may also include an
update operation. For example, the update operation may be
in the form Update(new Val, pos), where new Val refers to the
updated value and pos refers to the position 1n an array of the
value to be updated with the updated value newVal. In the
example of a forest, an update operation may delete all roots
and create a new tree. The mutations may also include a
move operation. For example, the move operation may be 1n
the form of Move(oldPos, newPos), where oldPos refers to
the original position of the value to be moved 1n an array,
and newPos refers to the position to which the value 1s to be
moved within the array. A move operation may delete all
children of existing roots, and add a single child tree to all
existing roots. The mutations may also further include a
delete operation. For example, the delete operation may be
in the form Delete(pos), where pos refers to the position
within an array of the element to be deleted. In various
examples, a delete operation at the delta CRDT array 110
may delete all roots in the forest.

In various examples, the delta CRDT array 110 may be a
Remove-Wins Array (RWArray) or an Observed-Remove
Array (ORArray). Both arrays are essentially a map of dots,
acting as unique 1dentifiers, to pairs of value and positions.
The RWArray and the ORArray differ in the way they utilize
the CompDotFun dot store 114. However, 1n both arrays the
stable position identifiers are from some totally ordered set
P, therefore the stable position 1dentifiers can be used to sort
the array elements 1n a deterministic order. Both arrays may
support the four mutations: Insert, Move, Update, and
Delete.

In some examples, the delta CRDT array 110 may be an
observed-remove array (ORArray). In various examples, the
ORArray delta CRDT array 110 may be based on a set of
observed-remove semantics that are specific for the ORAr-
ray array. In the observed-remove semantics, an order of

30

35

40

45

50

35

60

65

where, 1n the above chart, 1 1s an element i1dentifier, v 1s a
value to be stored, and p 1s a position 1n the array. The order
of precedence means that an operation of higher precedence
overrides a concurrently received operation of lower prece-
dence. Thus, update has higher precedence over delete and
move operations and may override these operations when
concurrently received. Similarly, delete has higher prece-
dence over a move operation and may override the move
operation when concurrently received. The precedence
given to the update operation may be due to the update
operation committing some position. For example, the
update operation may be described as recommuitting the
current position. As elements are removed based on their
values and not their positions, this order of operations 1s still
observed-remove (OR) because none of the elements are
blindly removed. In various examples, the precedence 1s
defined per each array element separately. For example,
operations performed on different array elements may not
collide or influence each other with respect to semantics.
Since a value update has higher priority than a delete, a user
can delete an array element only after seeing all updates to
the value of the element. In other words, a delete happening
concurrently with a value update will be 1gnored. An
example of an update overriding a delete 1s shown 1n FIG.
3B below. In addition, since the move operation has the
lowest precedence, any other operation overrides the move
operation. This means that 1f a move operation happens
concurrent to update of value, then the value update wins.
An example of a concurrent move operation and update

operation 1s described 1n FIG. 3C. Also, an element deletion
concurrent to a move operation beats the move operation,
and the 1tem 1s deleted. Thus, the item may be deleted from
both the old and the new location. An example concurrent
move operation and delete operation 1s described 1n FIG.
3D.

An example ORArray vanant of delta CRDT array 110 1s
formally described 1n the following chart:

OR Array (Causal (V) ,P) =

US 11,651,030 B2

11

Causal (Dthap(IxN, Pair (V,Cc-ch-TFUN(Dot-

Fun{ 7) })))

insert,”(vp,(m,c))=({d—= v {d—={d—=p}})}.{d})

where d=next.(c)

apply;°(d,0,".p,(m,0))=({d—=w{d'—={d'=p} D},
cU{d'}Uroots)

where (v,c")=0(fst(m(d)),c) and d'=next,{cUc")
and roots={r|(r,_)Sscnd(m(d))}
move,>(d,p,(m,c))=({d—(L ps)},clU{d}Uchildren)

where d=next;(c) and children={dots(child)|(_,child)
Cscnd(m(d)) }

and ps={{r—={d—p};|(r,_)Escnd(m(d))}
delete,°(d,(m,c))=(L, dots(m(d)))

clear,®((m,c))=(L, dots(m))

In various examples, the position may be stored as a forest
of directed graphs stored 1n CompDotFun dot stores 114. In
some examples, the root 1s the dot of the last seen update.
Otherwise, 1f no update exists, then the root may be the dot
of corresponding to the insertion of the element to the array.
In various examples, the second height 1s the dot of the last
move operation. Otherwise, 1 no move exists, then the
second height may be the dot after an insertion. In some
examples, the second height may also be the dot of the last
update. The second and the third heights may be stored in a
DotFun dot store 106. In some examples, on an update
operation, the replica 102 deletes all observed roots and adds
a single tree of height 3. On a move operation, the replica
102 deletes all children of all existing roots, and adds a
single child tree to all roots. The worst case memory
complexity of a single element in an array is O(n”), where
n 1s the number of replicas 102. This 1s achieved when all
replicas 102 concurrently update an element without observ-
ing each other, all these updates are received by every
replica 102, and then every replica 102 concurrently moves
the element. By the formal definition, the values of a DotFun
dot store 106 used as position identifiers should come from
a lattice. However, 1n this use of DotFun dot store 106, there
1s no merge between different “values™ under the same key,
or dot. Therefore, 1n some examples, position i1dentifiers
which do not necessarily form a lattice may be used. An
example operation of the OR Array 1s described with respect
to the example systems of FIGS. 3A-3F below.

In various examples, the delta CRDT array 110 may
alternatively be a remove-wins array (RWArray). The
RWArray delta CRDT array 110 may be a variant that
supports remove-wins semantics. In RW semantics, 1f a
Delete of an array element occurs concurrently to any other
operation on that element, then the element 1s deleted. The
Move and Update operations may be equal. For example,
neither happening concurrently aflfects the other. For
example, the precedence of a set of remove-wins semantics
may be such that a delete operation beats a concurrent move
operation or a concurrent update operation. However, 1f
concurrent move and an update operations are received, then
the precedence of the set of remove-wins semantics may be
such that the item 1s both moved and updated. An example
ORArray vaniant of delta CRDT array 110 1s formally

described in the following chart:

10

15

20

25

30

35

40

45

50

55

60

65

12

RWArray (Causal (V)) =Causal (CGMPDDTFUN(Pair
{ ¥, DotFun({ P}) })

insert,”(v,p,(m,c))=({d—= v {d—p})}.{d})

where d=next/c)

apply;*(d,0,(m,c))=({d—=(v,1)},c)

where (v,¢")=0,(fst(m(d)),c)
move,”(d,p,(m,c))=({d—(L{d—=p})},{d}}Uc)
where d'=next,(c) and ¢'=dots(scnd(m(d)))
remove,>(d,(m,c))=(L,{d})

clear,®((m,c))=(L,dom m)

In the RWArray, the top level dot store 1s the CompDotFun
dot store 114. A dot present in the causal context 108 but that
does not exist as a key 1 the CompDotFun dot store 114
represents an 1tem which has been deleted from the array.
Theretore, this element will not be in the array after a join
with a delta. In various examples, the positions may stored
in a Multi-Value Register (MVReg), such that a single value
can be chosen 1n a deterministic fashion, but conflicts are
kept. In some examples, i conflicts are of no interest, then
a Last-Write-Wins Register (LW WReg) can be used instead.

The array updater 112 may thus modily the delta CRDT
array based on any combination of received deltas from
other replicas 102. In some examples, the array updater 112
may thus modily the delta CRDT array using any combi-
nation of delta CRDT array 110. In various examples, a
nested delta CRDT array may include both an OR Array and
an RWArray. For example, the ORArray and an RWArray
semantics may be used for the semantics of the nested delta
CRDT array, and the RWArray or ORArray semantics used
for one or more of the nested elements of the nested delta
CRDT array. The array updater 112 can also modity the delta
CRDT array i response to any operation executed on the
local replica 102. For example, locally executed operations
may be performed 1n the order 1n which they are received.

It 1s to be understood that the block diagram of FIG. 1 1s
not intended to indicate that the system 100 1s to include all
of the components shown in FIG. 1. Rather, the system 100
can include fewer or additional components not illustrated 1n
FIG. 1 (e.g., additional replicas, or additional dot stores,
delta CRDT arrays, etc.). For example, the replicas may
include additional modules for other CRDT data structures,
such as maps and registers. For example, the maps may
include an ORMap and the registers may include an MVReg
register.

FIG. 2 1s a Venn diagram depicting an example set of dots
surviving a join of two instances of CompDotFun dot store,
where each CompDotFun dot store has its own causal
context. The CompDotFun dot store 200 may be imple-
mented 1n the replicas 102 of FIG. 1 using the computing
device 500 of FIG. 5 or the computer-readable media 800 of
FIG. 8.

FIG. 2 includes an overlapping set of casual contexts 202
and 204 with corresponding overlapping CompDotFun dot
stores m and m'. A set of dots surviving the join of Com-
pDotFun dot stores m and m' 1s mndicated by shaded areas
206, 208, and 210. In particular, the set of dots 206 1ncludes
the dots 1n CompDotFun dot store m that do not appear in
the causal context 204. The set of dots 208 includes the dots
in CompDotFun dot store m' that do not appear 1n the causal

US 11,651,030 B2

13

context 202. The set of dots 210 includes dots that appear 1n
both causal contexts 202 and 204 and 1n both CompDotFun
dot stores 1n and CompDotFun dot store m'.

It 1s to be understood that the block diagram of FIG. 2 1s
not intended to indicate that the CompDotFun dot store 200
1s to 1nclude all of the components shown 1n FIG. 2. Rather,
the CompDotFun dot store 200 can include fewer or addi-
tional components not 1llustrated in FIG. 2 (e.g., additional
dot stores, or additional causal contexts, etc.). For example,
the CompDotFun dot stores m and m' may be nested dot
stores that contain one or more additional dot stores, and
these dot stores could be nested themselves. However, only
one causal context 202 and 204 may be associated with each
of the dot stores m or m'.

FIG. 3A 15 a block diagram of an example system with a
forest of a CompDotFun dot store having been synchronized
alter recerving concurrent mutations to insert elements into
a delta-based CRDT array. The example system 300A may
be implemented using the system 100 of FIG. 1, the com-

puting device 500 of FIG. 5 or the computer-readable media
800 of FIG. 8.

The system 300A of FIG. 3A includes an ORArray CRDT
302A based on an empty mput array 304A and mutations
306A and 308A, recerved from users Bob and Alice, respec-
tively. The ORArray CRDT 302A 1s shown outputting an
output array 310A. The ORArray CRDT 302A maps unique
identifiers (uid) node 312 to three array elements 314A,
314B, and 314C. In the examples of FIGS. 3A-3F, each of
the array elements 314A, 314B, and 314C have a unique
identifier 312 associated with a particular items including
cucumbers, tomatoes, and milk. In various examples, the
uids 312 may each be 1n the form of a dot. Each of the 1tems
312A, 3128, and 312C are split into two sub-1tems including
values 316 and positions 318. For example, the values 316
may 1include the number and name of the items and the
positions 318 may include the relative position of the 1tems
in the array. In some examples, any of the values 316 may
be nested. For example, the values 316 themselves may be
arbitrary CRDTs. In various examples, the positions 320A,
320B and 320C may be used to sort the items 314A, 314B,
and 314C. The positions 318 are each split into three levels.
A first level of positions includes positions 320A, 320B, and
320C. The first level, or root, may be the dot of the last seen
update or insertion 1f no update exists. A second level of
positions includes positions 322A, 322B, and 322C. The
second level 1s the dot of the last move operation or dot of
the last update 1 no move exists, or dot of the insertion 1f no
update was made. A third level of positions includes posi-
tions 324A, 3248, and 324C. The third level of positions
may be values of the positions. In various examples, the
third level of positions may include any type of suitable
position identifiers. In the examples of FIGS. 3A-3F, a
simple integer system 1s provided i which each of the
clements 314A, 3148, and 314C i1s assigned an integer. For
example, the assigned integers may be values such as -1, 0,
1, 2 etc. The ordering of the array elements may be based on
the ordering of these integers. For example, if element A has
position value O, and element B has position value 1, then
clement A 1s before element B. If, element B has position
value -1, then 1t would be before element A. In the example
of FIG. 3A, the element 314A 1s assigned the mteger O, the
clement 314B 1s assigned the mnteger 1, and the clement
314C 1s also assigned the integer 0. In some examples, each
clement may have a different position identifier. However, 1f
two items have the same position i1dentifier such as in FIG.
3A, then a tie-breaking mechanism may be used. For
example, the tie-breaking mechanism may be based on the

10

15

20

25

30

35

40

45

50

55

60

65

14

dots 1n the forest. In various examples, a position identifier
may not be an integer. For example, the position 1dentifiers
may use fractions instead of integers. In some examples, the
position 1dentifiers may be alternatively stored as dots. In
these examples, the values of the dots may be used for the
tie-breaking mechanism, which may be an alphabetical
order or any other suitable rule. For example, given two dots
(Alice, 0) and (Bob, 0), (Alice, 0) may be given a preference
in order because Alice 1s alphabetically ordered before Bob.

In the example of FIG. 3A, a first user Alice adds
tomatoes to the virtual shopping cart that 1s implemented
using a distributing computing system using a delta CRDT
array, as indicated by mutation 308A. A second user Bob
adds two cucumbers and milk to the virtual shopping cart, as
indicated by mutation 306A.

As shown 1 FIG. 3A, three array elements are generated
with each corresponding to an item in the shopping cart. The
resulting output array 310A may be [tomato—2, milk—1,
cucumber—2], indicating two tomatoes at the beginning,
one milk 1n the middle of the list, and two cucumbers at the
end of the list.

It 1s to be understood that the block diagram of FIG. 3A
1s not mtended to indicate that the system 300A 1s to include
all of the components shown 1n FIG. 3A. Rather, the system
300A can include fewer or additional components not 1llus-
trated 1n FIG. 3A (e.g., additional users, mutations, trees,
forests, umique identifiers, or alternative semantics, etc.). For
example, the system 300A may alternatively have used
remove-wins semantics, in which case the output array
310A would remain the same and the forest structure would
not be used. In various examples, the third level of position
values may be replaced with any suitable position 1dentifiers
of any suitable position identifier system.

FIG. 3B 1s a block diagram of the example system with a
forest of a CompDotFun dot store having been synchronized
alter recerving concurrent mutations to delete and update an
clement of a delta-based CRDT array. The example system
300B may be implemented using the system 100 of FIG. 1,

the computing device 500 of FIG. 5 or the computer-
readable media 800 of FIG. 8.

The system 300B of FIG. 3B includes similarly refer-
enced elements from FIG. 3A. In addition, FIG. 3B includes
an ORArray CRDT 302B based on an 1nput array 304B and
mutations 306B and 308B, received from users Bob and
Alice, respectively. For example, the input array 304B may
be the output array 310A of FIG. 3A. The ORArray CRDT
302B 1s shown outputting an output array 310B. Moreover,
value 316A has been replaced with value 316D and the
branch including positions 320A, 322A, and 324 A has been
deleted. A new branch with positions 320D, 322D, and 324D
1s 1ncluded in the forest under 318 1n 314A.

In the example of FIG. 3B, a first user Alice updates the
number of milk cartons in the virtual shopping cart. The
second user Bob concurrently removes the milk cartons item
from the virtual shopping cart that 1s implemented using a
distributing computing system using a delta CRDT array.
Because the values 316 are governed by observed-remove
semantics in the example of FIGS. 3A-3F, the array element
314A has not been deleted, but instead its value 316 1s
updated with a new amount to reflect Alice’s update. Thus,
the milk value has been updated to 316D to indicate three
milks. With regards to positions 318, the tree including
320A, 322A, and 324 A corresponding to Bob’s previous
milk order 1s removed and replaced by a new tree including
positions 320D, 322D, and 324D to retlect Alice’s update. In
particular, the value of 324D 1s the same as previous value
324 A, retlecting that the updated value should be kept 1n the

US 11,651,030 B2

15

original position. The removed tree would also be removed
by the delete mutation 306B from Bob to delete the milks,
but 1s already removed by the update mutation 308B from
Alice. The resulting final output array 310B 1s therefore
[tomato—2, milk—3, cucumber—2], indicating an updated
amount of milk, and no removal of any milk.

It 1s to be understood that the block diagram of FIG. 3B
1s not mtended to indicate that the system 300B 1s to include
all of the components shown in FIG. 3B. Rather, the system
300B can include fewer or additional components not 1llus-
trated in FIG. 3B (e.g., additional users, mutations, trees,
forests, unique 1dentifiers, or alternative semantics, etc.). For
example, the system 300B may alternatively have used
remove-wins semantics, in which case the output array 3108
would have the milk deleted and the forest structure would
not be used. In various examples, the third level of position
values may be replaced with any suitable position identifiers
of any suitable position identifier system.

FI1G. 3C 15 a block diagram of the example system with a
forest of a CompDotFun dot store having been synchronized
alter receiving concurrent mutations to update and move an
clement of a delta-based CRDT array. The example system
300C may be implemented using the system 100 of FIG. 1,
the computing device 500 of FIG. 5 or the computer-
readable media 800 of FIG. 8.

The system 300C of FIG. 3C includes similarly refer-
enced elements from FIG. 3B. In addition, FIG. 3C includes
an ORArray CRDT 302C based on an 1nput array 304C and
mutations 306C and 308C, received from users Bob and
Alice, respectively. For example, the input array 304C may
be the output array 310B of FIG. 3B. The ORArray CRDT
302C 1s shown outputting an output array 310C.

In the example of FIG. 3C, Alice concurrently moves the
cucumbers to a beginning of the list 1n the virtual shopping
cart. Bob concurrently updates the number of cucumbers 1n
the virtual shopping cart that 1s implemented using a dis-
tributing computing system using a delta CRDT array. The
move operation of Alice 1s reflected 1n the new values 322F
and 324F 1n the tree beginning with value 320B. However,
this tree 1s deleted by the update operation from Bob and a
new tree with values 320F, 322E., and 324E 1s added to
reflect the update operation in mutation 306C. In addition,
the new number of cucumbers 1s indicated by an updated
value 316E that replaces 316B. Thus, the output final array
310C 1s [tomato—2, milk—3, cucumber—3], having an
updated number of cucumbers that remains 1n 1ts original
position.

It 1s to be understood that the block diagram of FIG. 3C
1s not mtended to indicate that the system 300C 1s to include
all of the components shown in FIG. 3C. Rather, the system
300C can include fewer or additional components not 1llus-
trated in FIG. 3C (e.g., additional users, mutations, trees,
forests, unique 1dentifiers, or alternative semantics, etc.). For
example, the system 300C may alternatively have used
remove-wins semantics, 1n which case the element of the
output array 310C would have been both updated and moved
and the forest structure would not be used. In various
examples, the third level of position values may be replaced
with any suitable position identifiers of any suitable position
identifier system.

FIG. 3D 1s a block diagram of the example system with
a forest of a CompDotFun dot store having been synchro-
nized after receirving concurrent mutations to delete and
move an element of a delta-based CRDT array. The example
system 300D may be implemented using the system 100 of
FIG. 1, the computing device 500 of FIG. 5 or the computer-
readable media 800 of FIG. 8.

10

15

20

25

30

35

40

45

50

55

60

65

16

The system 300D of FIG. 3D includes similarly refer-
enced elements from FIG. 3C. In addition, FIG. 3D includes
an ORArray CRDT 302D based on an input array 304D and
mutations 306D and 308D, received from users Bob and
Alice, respectively. For example, the mput array 304D may
be the output array 310C of FIG. 3C. The ORArray CRDT
302D 1s shown outputting an output array 310D.

In the example of FIG. 3D, Alice again attempts to move
the cucumbers to a beginning of the list in the wvirtual
shopping cart that 1s implemented using a distributing com-
puting system using a delta CRDT array. However, Bob
concurrently removes the cucumbers from the virtual shop-
ping cart. The move operation in the mutation 308D 1s
reflected in the replacement of positions 322E and 324E
with positions 322G and 324G 1n the tree beginning with the
position 320E. However, the entire tree associated with
cucumbers 1s removed, including the tree beginning with
320F as well as the value 316E, due to the delete operation
in the mutation 306D from Bob. Thus, the resulting output
array may be [tomato—2, milk—3], with the cucumbers
removed from the shopping list array.

It 1s to be understood that the block diagram of FIG. 3D
1s not intended to 1indicate that the system 300D 1s to include
all of the components shown 1n FIG. 3D. Rather, the system
300D can include fewer or additional components not 1llus-
trated 1n FIG. 3D (e.g., additional users, mutations, trees,
forests, umique identifiers, or alternative semantics, etc.). For
example, the system 300D may alternatively have used
remove-wins semantics, in which case the output array
310D would have also have the cucumber element deleted
and the forest structure would not be used. In various
examples, the third level of position values may be replaced
with any suitable position identifiers of any suitable position
identifier system.

FIG. 3E is a block diagram of the example system with a
forest of a CompDotFun dot store having been synchronized
alter recerving concurrent mutations to update an element of
a delta-based CRDT array. The example forest system 300E
may be implemented using the system 100 of FIG. 1, the
computing device 500 of FIG. 5 or the computer-readable
media 800 of FIG. 8.

The system 300E of FIG. 3E includes similarly referenced
elements from FIG. 3D. In addition, FIG. 3F includes an
ORArray CRDT 302E based on an imput array 304E and
mutations 306E and 308E, received from users Bob and
Alice, respectively. For example, the input array 304E may
be the output array 310D of FIG. 3D. The ORArray CRDT
302E 1s shown outputting an output array 310FE.

In the example of FIG. 3E, Alice updates the number of
tomatoes to a total of three 1n the virtual shopping cart that
1s implemented using a distributing computing system using
a delta CRDT array. Bob concurrently also updates the
number of tomatoes to a total of four 1n the virtual shopping
cart. In this example, the updated numbers of tomatoes from
Alice and Bob are indicated by updated values 316F and
316G that replace original value 316C. In addition, two new
trees beginming with roots 320F and 320G and include
positions 322H and 324H, and 3221 and 3241, respectively,
have replaced the original tree that began with 320C. Thus,
a conflict 1n the values part (as Alice and Bob both updated
it, each to a diflerent value). In various examples, the
conilict 1n values may be resolved using any suitable deter-
ministic manner. For example, the resolution of contlicting
values may be handled by the underlying dot store which
stores the value. As one example, 1if a MVReg 15 used for
holding the values in the shopping cart, then the MVReg
may resolve contlicts 1n the shopping cart. The resulting

US 11,651,030 B2

17

output array 310E 1s [tomato—4, milk—3] indicating that
the update operation of the mutation 306E was applied and
the value 316F 1s used for the tomatoes.

It 1s to be understood that the block diagram of FIG. 3E
1s not mntended to indicate that the system 300E 1s to include
all of the components shown 1n FIG. 3E. Rather, the system
300E can include fewer or additional components not 1llus-
trated i FIG. 3E (e.g., additional users, mutations, trees,
forests, unique 1dentifiers, or alternative semantics, etc.). For
example, the system 300E may alternatively have used
remove-wins semantics, 1n which case the output array
would be the same and the forest structure would not be
used. In various examples, the third level of position values
may be replaced with any suitable position identifiers of any
suitable position identifier system.

FIG. 3F 1s a block diagram of the example system with a
forest of a CompDotFun dot store having been synchronized
alter recerving concurrent mutations to move an element of
a delta-based CRDT array. The example system 300F may
be implemented using the system 100 of FIG. 1, the com-
puting device 500 of FIG. 5 or the computer-readable media
800 of FIG. 8.

The system 300F of FIG. 3F includes similarly referenced
elements from FIG. 3E. In addition, FIG. 3D includes an
ORArray CRDT 302F based on an imput array 304F and
mutations 306F and 308F, received from users Bob and
Alice, respectively. For example, the mput array 304F may
be the output array 310E of FIG. 3E. The ORArray CRDT
302F 1s shown outputting an output array 310F.

In the example of FIG. 3F, the first user Bob and the
second user Alice both concurrently move the tomatoes to
the beginning of the list 1n the virtual shopping cart that 1s
implemented using a distributing computing system using a
delta CRDT array. In this example, a second branch 1s added
to the trees beginning with positions 320F and 320G corre-
sponding to the move operations received from the muta-

tions 306F and 308F. In particular, the previous positions
322H and 324H have been replaced with positions 322J and

324] and the positions 322K and 324K have been added as
a second branch to the tree with beginning position 320F. In
addition, positions 3221 and 3241 has been replaced with
positions 322K and 324M, and the positions 3221 and 324L
have been added as a second branch to the tree with
beginning position 320G. Thus, the trees of 320F and 320G
are similarly modified, with a current subtree being replaced
with the user’s new position for the element, and a new
separate subtree reflecting the other user’s new position for
the element added. The output array 310F may result in the
moving of milk—3 to the beginning of the array. Moreover,
the moved array element milk—3 only appears once in the
array and 1s thus not duplicated.

It 1s to be understood that the block diagram of FIG. 3F
1s not intended to indicate that the system 300F 1s to include
all of the components shown 1n FIG. 3F. Rather, the system
300F can include fewer or additional components not 1llus-
trated mn FIG. 3F (e.g., additional users, mutations, trees,
forests, unique identifiers, or alternative semantics, etc.). For
example, the system 300F may alternatively have used
remove-wins semantics, 1n which case the output array
would be the same and the forest structure would not be
used. In various examples, the third level of position values
may be replaced with any suitable position 1identifiers of any
suitable position identifier system.

FIG. 4A 1s a process flow diagram of another example
method that can synchronize delta-based CRDT arrays. The
method 400A can be implemented with any suitable com-
puting device, such as the computing device 500 of FIG. 5

10

15

20

25

30

35

40

45

50

55

60

65

18

and 1s described with reference to the system 100 of FIG. 1.
For example, the method described below can be imple-
mented by the processor 502 of the computing device 500 or
the processor 802 of FIGS. 5 and 8.

At block 402, an operation on a delta-based contlict free
data type (CRDT) array is received via a processor at a
replica of a distributed computing system. For example, the
delta-based CRDT array may be an observed-remove array
or a remove-wins array. In various examples, the operation
may be an insert operation, a delete operation, a move
operation, or an update operation.

At block 404, a delta-mutator corresponding to the opera-
tion 1s executed and a delta calculated. For example, the
delta may be generated by applying the delta-mutator to a
current state of the replica.

At block 406, the delta 1s merged internally to update the
state of the replica using a dot store that maps dots to a dot
store. For example, the delta may be merged internally using
the CompDotlFun dot store described herein. In various
example, the delta may be processed recursively by a
number of components. The portion of the delta associated
with the delta-based CRDT array may be processed using
the CompDotFun dot store.

At block 408, the delta 1s transmitted to other replicas of
the distributed computing system. In various examples, the
delta may be used by the other replicas to synchronize with
the transmitting replica. For example, the other replicas may
synchronize with the transmitting replica using the method
400B of FIG. 4B below.

The process tlow diagram of FIG. 4A 1s not mtended to
indicate that the operations of the method 400A are to be
executed 1n any particular order, or that all of the operations
of the method 400A are to be included 1 every case.
Additionally, the method 400A can include any suitable
number of additional operations.

FIG. 4B 1s a process flow diagram of another example
method that can synchronize delta-based CRDT arrays. The
method 400B can be implemented with any suitable com-
puting device, such as the computing device 500 of FIG. 5
and 1s described with reference to the system 100 of FIG. 1.
For example, the method described below can be imple-
mented by the processor 502 of the computing device 500 or
the processor 802 of FIGS. 5 and 8.

At block 410, deltas corresponding to concurrently
executed operations ol a number of other replicas on an
clement of a delta-based contlict free data type (CRDT)
array are received via a processor at a replica of a distribu-
tion computing system. For example, the delta-based CRDT
array may be an observed-remove array or a remove-wins
array. In various examples, the concurrently executed opera-
tions may include any combination of an insert operation, a
delete operation, a move operation, or an update operation.
In some examples, the deltas may be delta-groups.

At block 412, the element of the delta-based CRDT array
on the replica 1s modified based on the deltas using a dot
store that maps dots to a dot store. For example, the dot store
may be the CompDotFun described herein. In some
examples, a value of the element may be updated i an
observed-remove array in response to detecting that the
concurrent mutations include an update operation and a
delete operation on the element. In some examples, a value
of the element may be updated 1n an observed-remove array
in response to detecting that the concurrent mutations
include an update operation and a move operation on the
clement. In various examples, the element may be deleted
from an observed-remove array in response to detecting that
the concurrent mutations include a delete operation and a

US 11,651,030 B2

19

move operation on the element. In some examples, the
clement may be both updated and moved 1n a remove-wins
array in response to detecting that the concurrent mutations
include an update operation and a move operation on the
clement. In various examples, the element may be deleted
from the remove-wins array in response to detecting that the
concurrent mutations include a delete operation and a move
operation on the element. In some examples, the element
may be deleted from the remove-wins array in response to
detecting that the concurrent mutations include a delete
operation and an update operation on the element. In various
examples, the element 1n an observed-remove array or a
remove-wins array may be moved to generate a delta-based
CRDT array including an unduplicated moved array element
in response to detecting that the concurrent mutations
include a number of move operations.

The process tflow diagram of FIG. 4B 1s not intended to
indicate that the operations of the method 4008 are to be
executed 1n any particular order, or that all of the operations
of the method 400B are to be included in every case.
Additionally, the method 400B can include any suitable
number of additional operations. For example, the delta may
transmitted to an additional replica of the distributed com-
puting system.

In some scenarios, the techniques described herein may

be mmplemented mm a cloud computing environment. As
discussed 1n more detail below 1n reference to at least FIGS.
5-8, a computing device configured to modily elements 1n
delta-based CRDT arrays may be implemented in a cloud
computing environment. It 1s understood in advance that
although this disclosure may include a description on cloud
computing, implementation of the teachings recited herein
are not limited to a cloud computing environment. Rather,
embodiments of the present invention are capable of being
implemented 1n conjunction with any other type of comput-
ing environment now known or later developed.

Cloud computing 1s a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g. networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be
rapidly provisioned and released with minimal management
cllort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models.

Characteristics are as follows:

On-demand self-service: a cloud consumer can unilater-
ally provision computing capabilities, such as server time
and network storage, as needed automatically without
requiring human interaction with the service’s provider.

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that
promote use by heterogeneous thin or thick client platforms
(c.g., mobile phones, laptops, and PDAs).

Resource pooling: the provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami-
cally assigned and reassigned according to demand. There 1s
a sense ol location independence in that the consumer
generally has no control or knowledge over the exact
location of the provided resources but may be able to specity
location at a higher level of abstraction (e.g., country, state,
or datacenter).

Rapid elasticity: capabilities can be rapidly and elastically
provisioned, in some cases automatically, to quickly scale
out and rapidly released to quickly scale in. To the consumer,

10

15

20

25

30

35

40

45

50

55

60

65

20

the capabilities available for provisioning often appear to be
unlimited and can be purchased 1n any quantity at any time.

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capa-
bility at some level of abstraction appropriate to the type of
service (e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and
reported providing transparency for both the provider and
consumer of the utilized service.

Service Models are as follows:

Software as a Service (SaaS): the capability provided to
the consumer 1s to use the provider’s applications runming on
a cloud infrastructure. The applications are accessible from
various client devices through a thin client interface such as
a web browser (e.g., web-based email). The consumer does
not manage or control the underlying cloud infrastructure
including network, servers, operating systems, storage, or
even 1mdividual application capabilities, with the possible
exception of limited user-specific application configuration
settings.

Platform as a Service (PaaS): the capability provided to
the consumer 1s to deploy onto the cloud infrastructure
consumer-created or acquired applications created using
programming languages and tools supported by the provider.
The consumer does not manage or control the underlying
cloud infrastructure including networks, servers, operating
systems, or storage, but has control over the deployed
applications and possibly application hosting environment
configurations.

Infrastructure as a Service (laaS): the capability provided
to the consumer 1s to provision processing, storage, net-
works, and other fundamental computing resources where
the consumer 1s able to deploy and run arbitrary software,
which can include operating systems and applications. The
consumer does not manage or control the underlying cloud
inirastructure but has control over operating systems, stor-
age, deployed applications, and possibly limited control of
select networking components (e.g., host firewalls).

Deployment Models are as follows:

Private cloud: the cloud infrastructure i1s operated solely
for an organization. It may be managed by the organization
or a third party and may exist on-premises or oil-premises.

Community cloud: the cloud infrastructure i1s shared by
several organizations and supports a specific community that
has shared concerns (e.g., mission, security requirements,
policy, and compliance considerations). It may be managed
by the organizations or a third party and may exist on-
premises or oll-premises.

Public cloud: the cloud infrastructure 1s made available to
the general public or a large industry group and 1s owned by
an organization selling cloud services.

Hybrd cloud: the cloud infrastructure 1s a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standard-
1zed or proprietary technology that enables data and appli-
cation portability (e.g., cloud bursting for load-balancing
between clouds).

A cloud computing environment 1s service oriented with
a focus on statelessness, low coupling, modularity, and
semantic interoperability. At the heart of cloud computing 1s
an inirastructure comprising a network of interconnected
nodes.

FIG. 5 15 block diagram of an example computing device
that can synchronize delta-based CRDT arrays. The com-
puting device 500 may be for example, a server, desktop
computer, laptop computer, tablet computer, or smartphone.
In some examples, computing device 500 may be a cloud

US 11,651,030 B2

21

computing node. For example, the computing device 500
may be a replica of a distributed computing system. In some
examples, the distributed computing system may be a
NoSQL distributed database system. Computing device 500
may be described 1n the general context of computer system
executable instructions, such as program modules, being
executed by a computer system. Generally, program mod-
ules may include routines, programs, objects, components,
logic, data structures, and so on that perform particular tasks
or 1mplement particular abstract data types. Computing
device 500 may be practiced in distributed cloud computing
environments where tasks are performed by remote process-
ing devices that are linked through a communications net-
work. In a distributed cloud computing environment, pro-
gram modules may be located in both local and remote
computer system storage media including memory storage
devices.

The computing device 500 may include a processor 502
that 1s to execute stored 1nstructions, a memory device 504
to provide temporary memory space for operations of said
instructions during operation. The processor can be a single-
core processor, multi-core processor, computing cluster, or
any number of other configurations. The memory 504 can
include random access memory (RAM), read only memory,
flash memory, or any other suitable memory systems.

The processor 502 may be connected through a system
interconnect 506 (e.g., PCI®, PCI-Express®, etc.) to an
input/output (I/O) device mterface 508 adapted to connect
the computing device 500 to one or more I/O devices 510.
The I/O devices 510 may include, for example, a keyboard
and a pointing device, wherein the pointing device may
include a touchpad or a touchscreen, among others. The I/O
devices 510 may be built-in components of the computing
device 500, or may be devices that are externally connected
to the computing device 500.

The processor 502 may also be linked through the system
interconnect 506 to a display interface 512 adapted to
connect the computing device 500 to a display device 514.
The display device 514 may include a display screen that 1s
a built-in component of the computing device 500. The
display device 514 may also include a computer monitor,
television, or projector, among others, that 1s externally
connected to the computing device 500. In addition, a
network interface controller (NIC) 516 may be adapted to
connect the computing device 500 through the system
interconnect 506 to the network 518. In some embodiments,
the NIC 516 can transmit data using any suitable interface or
protocol, such as the internet small computer system inter-
face, among others. The network 518 may be a cellular
network, a radio network, a wide area network (WAN), a
local area network (LLAN), or the Internet, among others. An
external computing device 520 may connect to the comput-
ing device 500 through the network 518. In some examples,
external computing device 520 may be an external web-
server 520. In some examples, external computing device
520 may be a cloud computing node.

The processor 502 may also be linked through the system
interconnect 506 to a storage device 522 that can include a
hard drive, an optical drive, a USB flash drive, an array of
drives, or any combinations thereof. In some examples, the
storage device may include a receiver module 524, an array
updater module 526, and a delta transmitter module 528. The
receiver module 524 can receive deltas corresponding to
concurrently executed operations of a number of other
replicas on an element of a delta-based contlict free repli-
cated data type (CRDT) array. For example, the processor
502 may be of a first replica of a distributed computing

10

15

20

25

30

35

40

45

50

55

60

65

22

system. In various examples, the concurrently executed
operations may include two of any combination of a delete
operation, a move operation, an insert operation, or an
update operation. In some examples, the delta-based CRDT
array 1s an observed-remove array based on a set of update-
delete-move (UDM) semantics. For example, i an
observed-remove array, a position of the element may be
stored 1 a forest in a CompDotFun dot store. In various
examples, an update or a delete operation removes an entire
tree Irom a root 1n the forest. In some examples, a concurrent
update to a value of a key and a remove of the key may result
in the key being deleted from the CompDotFun dot store. In
some examples, the delta-based CRDT array 1s a remove-
wins array based on a set of remove-wins semantics. In
various examples, the delta-based CRDT array may be a
nested array. In some examples, the recerver module 524 can
receive an operation on the delta-based conflict free data
type (CRDT) array via a processor at the first replica of the
distributed computing system. The array updater module
526 can modily the element of the delta-based CRDT array
based on the deltas using a CompDotFun dot store that maps
dots to a dot store. For example, the element may be
modified using a forest of the CompDotFun dot store. In
various examples, an order of precedence of the operations
performed on each element 1n the delta-based CRDT array
1s applied separately. For example, although all items i each
array may be governed by the same logic and semantics, the
logic may be applied to each element separately. In some
examples, the array updater module 526 can execute a
delta-mutator corresponding to the operation and calculate a
delta-mutation, aka delta. The updater module 526 can then
merge the delta internally to update a state of the first replica.
The delta transmitter module 528 can transmit the delta to
the other replicas of the distributed computing system.

It 1s to be understood that the block diagram of FIG. 5 1s
not itended to indicate that the computing device 500 1s to
include all of the components shown 1n FIG. 5. Rather, the
computing device 500 can include fewer or additional
components not 1illustrated mm FIG. 5 (e.g., additional
memory components, embedded controllers, modules, addi-
tional network interfaces, etc.). Furthermore, any of the
functionalities of the receiver 524, the array updater module
526, and the delta transmitter module 528 may be partially,
or entirely, implemented 1n hardware and/or 1n the processor
502. For example, the functionality may be implemented
with an application specific integrated circuit, logic 1mple-
mented 1n an embedded controller, or 1n logic implemented
in the processor 502, among others. In some embodiments,
the functionalities of the receiver module 324, array updater
module 326, and delta transmitter module 328 can be
implemented with logic, wherein the logic, as referred to
herein, can include any suitable hardware (e.g., a processor,
among others), software (e.g., an application, among others),
firmware, or any suitable combination of hardware, sofit-
ware, and firmware.

Retferring now to FIG. 6, illustrative cloud computing
environment 600 1s depicted. As shown, cloud computing
environment 600 comprises one or more cloud computing
nodes 602 with which local computing devices used by
cloud consumers, such as, for example, personal digital
assistant (PDA) or cellular telephone 604A, desktop com-
puter 6048, laptop computer 604C, and/or automobile com-
puter system 604N may communicate. Nodes 602 may
communicate with one another. They may be grouped (not
shown) physically or virtually, in one or more networks,
such as Private, Community, Public, or Hybrid clouds as
described hereinabove, or a combination thereof. This

US 11,651,030 B2

23

allows cloud computing environment 600 to oifer infrastruc-
ture, platforms and/or software as services for which a cloud
consumer does not need to maintain resources on a local
computing device. It 1s understood that the types of com-
puting devices 604A-N shown 1 FIG. 6 are intended to be
illustrative only and that computing nodes 602 and cloud
computing environment 600 can communicate with any type
of computerized device over any type ol network and/or
network addressable connection (e.g., using a web browser).

Referring now to FIG. 7, a set of functional abstraction
layers provided by cloud computing environment 600 (FIG.
6) 1s shown. It should be understood in advance that the
components, layers, and functions shown in FIG. 7 are
intended to be illustrative only and embodiments of the
invention are not limited thereto. As depicted, the following
layers and corresponding functions are provided.

Hardware and software layer 1000 1includes hardware and
soltware components. Examples of hardware components
include: mainframes; RISC (Reduced Instruction Set Com-
puter) architecture based servers; servers; blade servers;
storage devices; and networks and networking components.
In some embodiments, soltware components include net-
work application server software and database software.

Virtualization layer 702 provides an abstraction layer
from which the following examples of virtual entities may
be provided: virtual servers; virtual storage; virtual net-
works, icluding virtual private networks; virtual applica-
tions and operating systems; and virtual clients. In one
example, management layer 704 may provide the functions
described below. Resource provisioning provides dynamic
procurement of computing resources and other resources
that are utilized to perform tasks within the cloud computing
environment. Metering and Pricing provide cost tracking as
resources are utilized within the cloud computing environ-
ment, and billing or nvoicing for consumption of these
resources. In one example, these resources may comprise
application software licenses. Security provides identity
verification for cloud consumers and tasks, as well as
protection for data and other resources. User portal provides
access to the cloud computing environment for consumers
and system administrators. Service level management pro-
vides cloud computing resource allocation and management
such that required service levels are met. Service Level
Agreement (SLA) planning and fulfillment provide pre-
arrangement for, and procurement of, cloud computing
resources for which a future requirement 1s anticipated in
accordance with an SLA.

Workloads layer 706 provides examples of functionality
tor which the cloud computing environment may be utilized.
Examples of workloads and functions which may be pro-
vided from this layer include: mapping and navigation;
software development and lifecycle management; virtual
classroom education delivery; data analytics processing;
transaction processing; and delta-based CRDT array pro-
cessing.

The present invention may be a system, a method and/or
a computer program product at any possible technical detail
level of integration. The computer program product may
include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present
invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but 1s not limited to, an
clectronic storage device, a magnetic storage device, an

10

15

20

25

30

35

40

45

50

55

60

65

24

optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium 1ncludes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program 1nstructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface 1 each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
istructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present imvention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine 1nstructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either code or object code written 1n any combination of one
or more programming languages, including an object ori-
ented programming language such as Smalltalk, C++ or the
like, and conventional procedural programming languages,
such as the “C” programming language or similar program-
ming languages. The computer readable program instruc-
tions may execute entirely on the user’s computer, partly on
the user’s computer, as a stand-alone soiftware package,
partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service
Provider). In some embodiments, electronic circuitry includ-
ing, for example, programmable logic circuitry, field-pro-
grammable gate arrays (FPGA), or programmable logic
arrays (PLA) may execute the computer readable program
instructions by utilizing state information of the computer
readable program instructions to personalize the electronic
circuitry, 1n order to perform aspects of the present inven-
tion.

Aspects of the present invention are described herein with
reference to flowchart 1llustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the techniques. It will be
understood that each block of the flowchart illustrations

US 11,651,030 B2

25

and/or block diagrams, and combinations of blocks 1n the
flowchart 1llustrations and/or block diagrams, can be 1imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the tlowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
istructions which implement aspects of the function/act
specified 1n the flowchart and/or block diagram block or
blocks.

The computer readable program 1nstructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
mented process, such that the mstructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

Referring now to FIG. 8, a block diagram 1s depicted of
an example tangible, non-transitory computer-readable
medium 800 that can synchronize delta-based CRDT arrays.
The tangible, non-transitory, computer-readable medium
800 may be accessed by a processor 802 over a computer
interconnect 804. Furthermore, the tangible, non-transitory,
computer-readable medium 800 may include code to direct
the processor 802 to perform the operations of the methods
400A and 400B of FIGS. 4A and 4B.

The various software components discussed herein may
be stored on the tangible, non-transitory, computer-readable
medium 800, as indicated 1in FIG. 8. For example, a recetver
module 806 includes code to receive, at a first replica of a
distributed computing system, deltas corresponding to con-
currently executed operations of a number of other replicas
on an element of a delta-based contlict free data type
(CRDT) array of a replica. The receiver module 806 also
includes code to receive deltas corresponding to concur-
rently executed operations including an insert operation, a
delete operation, a move operation, or an update operation.
In some examples, the recerver module 806 1includes code to
receive an operation on the delta-based conflict free data
type (CRDT) array via a processor at the first replica of the
distributed computing system. For example, the operation
may be received from a user of the first replica. An array
updater module 808 includes code to modity the element of
the delta-based CRDT array on the replica based on the
deltas using a dot store that maps dots to a dot store. For
example, the dot store may be the CompDotFun dot store
described heremn. In some examples, the array updater
module 808 includes code to update a value of the element
in an observed-remove array in response to detecting that the
concurrent mutations include an update operation and a
delete operation on the element. In some examples, the array
updater module 808 1ncludes code to update a value of the
clement 1n an observed-remove array 1in response to detect-
ing that the concurrent mutations include an update opera-
tion and a move operation on the element. In various

10

15

20

25

30

35

40

45

50

55

60

65

26

examples, the array updater module 808 includes code to
delete the element 1n an observed-remove array 1n response
to detecting that the concurrent mutations include a delete
operation and a move operation on the element. In some
examples, the array updater module 808 includes code to
both update and move the element in a remove-wins array in
response to detecting that the concurrent mutations include
an update operation and a move operation on the element. In
various examples, the array updater module 808 includes
code to delete the element from a remove-wins array 1n
response to detecting that the concurrent mutations include
a delete operation and a move operation on the element, and
in response to detecting that the concurrent mutations
include a delete operation and an update operation on the
clement. In some examples, the array updater module 808
includes code to execute a delta-mutator corresponding to
the operation and calculate a delta. The array updater
module 808 includes code to merge the delta internally to
update a state of the first replica. A delta transmitter module
810 includes code to transmit the delta to the other replicas
of the distributed computing system.

The flowchart and block diagrams 1n the Figures illustrate
the architecture, functionality, and operation ol possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block 1n the flowchart
or block diagrams may represent a module, segment, or
portion of mstructions, which includes one or more execut-
able istructions for implementing the specified logical
function(s). In some alternative implementations, the func-
tions noted in the block may occur out of the order noted in
the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart i1llustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions. It 1s to
be understood that any number of additional soitware com-
ponents not shown 1 FIG. 8 may be included withuin the
tangible, non-transitory, computer-readable medium 800,
depending on the specific application.

The descriptions of the various embodiments of the
present techniques have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found 1n the marketplace, or to enable others of

ordinary skill in the art to understand the embodiments
disclosed herein.

What 1s claimed 1is:

1. A system, comprising a processor 1o:

recerve, at a first replica of a distributed computing
system, deltas corresponding to concurrently executed
operations of a plurality of other replicas on an element
of a delta-based conflict free replicated data type
(CRDT) array, wherein the delta-based CRDT array

comprises a remove-wins array based on a set of

US 11,651,030 B2

27

remove-wins semantics or an observed-remove array
based on a set of update-delete-move (UDM) seman-
tics; and
modity, at the first replica, the element of the delta-based
CRDT array based on the deltas using a dot store that
maps dots to a dot store.
2. The system of claim 1, wherein a concurrent update to
a value of a key and a remove of the key results 1n the key
being deleted from the dot store.
3. The system of claam 1, wherein a position of the
clement 1s stored 1n a forest 1n the dot store and the element
1s modified using the forest, wherein an update or a delete

operation removes an entire tree from a root in the forest.
4. The system of claim 1, wherein the delta-based CRDT

array comprises a nested array.

5. The system of claim 1, wherein the processor 1s to:

receive an operation on the delta-based contlict free data

type (CRDT) array via a processor at the first replica of
the distributed computing system;

execute a delta-mutator corresponding to the operation

and calculate a delta;

merge the delta mternally to update a state of the first

replica; and

transmit the delta to the other replicas of the distributed

computing system.

6. The system of claim 1, wherein the concurrently
executed operations comprise an update operation, a delete
operation, a move operation, or an insert operation.

7. A computer-implemented method, comprising;:

receiving, via a processor at a replica of a distribution

computing system, deltas corresponding to concur-
rently executed operations of a plurality of other rep-
licas on an element of a delta-based contlict free data
type (CRDT) array, wherein the delta-based CRDT
array comprises a remove-wins array based on a set of
remove-wins semantics or an observed-remove array
based on a set of update-delete-move (UDM) seman-
tics; and

moditying, via the processor, the element of the delta-

based CRDT array on the replica based on the deltas
using a dot store that maps dots to a dot store.

8. The computer-implemented method of claim 7,
wherein the delta-based CRDT array comprises the
observed-remove array, and wherein modifying the element
comprises updating a value of the element in the observed-
remove array in response to detecting that the concurrent
mutations comprise an update operation and a delete opera-
tion on the element.

9. The computer-implemented method of claim 7,
wherein the delta-based CRDT array comprises the
observed-remove array, and wherein modifying the element
comprises updating a value of the element in the observed-
remove array in response to detecting that the concurrent
mutations comprise an update operation and a move opera-
tion on the element.

10. The computer-implemented method of claim 7,
wherein the delta-based CRDT array comprises the
observed-remove array, and wherein modifying the element
comprises deleting the element from the observed-remove
array 1n response to detecting that the concurrent mutations
comprise a delete operation and a move operation on the
clement.

11. The computer-implemented method of claim 7,
wherein the delta-based CRDT array comprises the remove-
wins array, and wherein modifying the element comprises
both updating and moving the element 1n the remove-wins

5

10

15

20

25

30

35

40

45

50

55

60

65

28

array in response to detecting that the concurrent mutations
comprise an update operation and a move operation on the
clement.

12. The computer-implemented method of claim 7,
wherein the delta-based CRD'T array comprises the remove-
wins array, and wherein modifying the element comprises
deleting the element from the remove-wins array 1n response
to detecting that the concurrent mutations comprise a delete
operation and a move operation on the element.

13. The computer-implemented method of claim 7,
wherein the delta-based CRDT array comprises the remove-
wins array, and wherein modifying the element comprises
deleting the element from the remove-wins array 1n response
to detecting that the concurrent mutations comprise a delete
operation and an update operation on the element.

14. The computer-implemented method of claim 7,
wherein the delta-based CRDT array comprises the
observed-remove array or a remove-wins array, and wherein
modifying the element comprises moving the element 1n the
observed-remove array or the remove-wins array to generate
a delta-based CRDT array comprising an unduplicated
moved array element in response to detecting that the
concurrent mutations comprise a plurality of move opera-
tions.

15. The computer-implemented method of claim 7, com-
prising;:

receiving, via the processor, an operation on the delta-

based conflict free data type (CRDT) array via a
processor at the replica of the distributed computing
system;

executing, via the processor, a delta-mutator correspond-

ing to the operation and calculate a delta;

merging, via the processor, the delta internally to update

a state of the replica; and

transmitting, via the processor, the delta to the other

replicas of the distributed computing system.

16. A computer program product for modifying elements
of delta-based contlict-free replicated data types (CRDT)
arrays, the computer program product comprising a com-
puter-readable storage medium having program code
embodied therewith, wherein the computer-readable storage
medium 1s not a transitory signal per se, the program code
executable by a processor to cause the processor to:

recerve, at a first replica of a distrnbuted computing

system, deltas corresponding to concurrently executed
operations of a plurality of other replicas on an element

of a delta-based contlict free data type (CRDT) array of
a replica, wherein the delta-based CRDT array com-
prises a remove-wins array based on a set of remove-
wins semantics or an observed-remove array based on
a set of update-delete-move (UDM) semantics; and

modity the element of the delta-based CRDT array on the
replica based on the deltas using a dot store that maps
dots to a dot store.

17. The computer program product of claim 16, further
comprising program code executable by the processor to
update a value of the element in the observed-remove array
in response to detecting that the concurrent mutations com-
prise an update operation and a delete operation on the
clement.

18. The computer program product of claim 16, further
comprising program code executable by the processor to
update a value of the element in the observed-remove array
in response to detecting that the concurrent mutations com-
prise an update operation and a move operation on the
clement.

US 11,651,030 B2
29

19. The computer program product of claim 16, further
comprising program code executable by the processor to
delete the element 1n the observed-remove array in response
to detecting that the concurrent mutations comprise a delete
operation and a move operation on the element. 5

G e x Gx ex

30

	Front Page
	Drawings
	Specification
	Claims

