US011647101B2

a2 United States Patent (10) Patent No.: US 11,647,101 B2

Chen et al. 45) Date of Patent: *May 9, 2023
(54) DEPLOYING AN APPLICATION IN USPC .., 709/223, 224, 226, 220
MULTIPLE CLOUD COMPUTING See application file for complete search history.
ENVIRONMENTS
(56) References Cited

(71) Applicant: VMware, Inc., Palo Alto, CA (US)
U.S. PATENT DOCUMENTS

(72) Inventors: Ping Chen, Shanghai (CN); Yuanzhi
Wang, Shanghai (CN); Wei Zhang, 9,984,428 B2 5/2018 Doyle et al.

Shanghai (CN) 20110313066 Al 122011 Sehumidt ot al
2013/0060838 Al 3/2013 Yafle
(73) Assignee: VMware, Inc., Palo Alto, CA (US) 2013/0232498 Al 9/2013 Mangtani et al.
2015/0261514 Al 9/2015 Fu et al.
(*) Notice: Subject to any disclaimer, the term of this 2015/0378716 Al 12/2015 Singh et al.
patent is extended or adjusted under 35 2016/0034315 Al 2/2016 Soejima
U.S.C. 154(b) by 0 days. (Continued)
This patent 1s subject to a terminal dis- Primary Examiner — Lan Da1 T Truong
claimer. (74) Attorney, Agent, or Firm — Barta, Jones & Foley,
PLLC
(21) Appl. No.: 17/358,630
(57) ABSTRACT
(22) Filed: Jun. 25, 2021 An example method 1s provided to deploy an application in
(65) Prior Publication Data multiple cloud computing environments. The method may

comprise a computing system generating a first request to
deploy an application 1 a first cloud computing environ-
ment according to a first deployment plan and a second
request to deploy the application 1n a second cloud comput-

US 2022/0053067 Al Feb. 17, 2022

Related U.S. Application Data

(63) Continuation of application No. 16/511,109, filed on ing environment according to a second deployment plan.
Jul. 15, 2019, now Pat. No. 11,050,842, which 1s a The method may comprise selecting, from multiple com-
continuation of application No. 14/935,434, filed on munication components configured on the computing sys-
Nov. 8, 2015, now Pat. No. 10,356,206. tem, a first communication component to communicate with

a first orchestration node in the first cloud computing

(51) Int. CL environment and a second communication component to

GO6F 15/173 (2006'O;~) communicate with a second orchestration node 1n the second
HO4L 67760 (2022'0:‘) cloud computing environment. The method may further
HO4L 67710 (2022.01) comprise sending the first request to the first orchestration
(52) U.S. CL node via the first communication component, and the second
CPC s, HO4L 67/60 (2022.05); HO4L 67/10 request to the second orchestration node via the second
(2013.01) communication component.
(58) Field of Classification Search
CPC i, HO4L 67/32; HO4L 67/10 20 Claims, 9 Drawing Sheets
100
i Hrivate Cloud Computing Environment h ! Pubiie Cloud Computing Environment !
102 104
Network
- — [Application Services) 12 L Qrchestration Node) ! vivi1 130
Server 179 160 ot
126 —» | Application
\?““ — , i g A~ [Gnm;}ﬂnem 132] |
Deployment | Depioyment Flan . , " - /
iF::'Ia}:rna i Generator Exermhqn Flow . .E
. 12'?“ J > 114 s E;g—;]e VMZ 140 ;
" Dep 1] > [Deployment | | , . Appilcatior
S;{Z;{?g gj?a [iI'E{‘.tD!’ j (Task Execution) [Cﬂmiﬁﬂﬂem 142 J
124 % 114) Engine
r - : ~) "y \, lg'é ,J ™
Orchestration Orchestration | Cloud Provider | |
Node Data Naode Manager Sorver
126 y e m S mﬂ
S N o . s \. W, /

US 11,647,101 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2016/0094483 Al1* 3/2016 Johnston HO4L 47/827
709/226

2017/0041189 Al* 2/2017 Aswathanarayana ... HO4L 67/34

2017/0048314 Al 2/2017 Aerdts

2017/0134301 Al 5/2017 Chen et al.

2018/0048314 Al 2/2018 Zhang

2019/0065165 Al 2/2019 Troutman et al.

* cited by examiner

US 11,647,101 B2

Sheet 1 of 9

May 9, 2023

U.S. Patent

oSl

JETNELS
JADINOS PNOID

Z¥T luauodwon
uonesddy

0T ZINA

Zol lusuodwon

uonedsyddy

V0L

vl

aubug
UOINJaX HSE |

a9l

auIbu3

MO|- UOIIN2aXT

091
SPON UOIIBASBUDI0

Juswiuoiaug Bunndwon pnojy 211gnd

T NN
01

oIt
Jabeuepy apoN

LUOLLSaydl(0)

71

101081i(]
JuswAiolda(]

Zil
10]8.J8Ua1)

| uejd JuawAoldaq

JOAIBS
saolAeg uoneslddy

Ble(] 9poN

UOIIBIISBYDI0)

Z01

7R
e1e(] ShiBlS

JuswAo(ds

44}
SUB|A

JuswAioidaq

JuswuasAug bunndwon pnojo) s1eAlld

‘B14

001

U.S. Patent May 9, 2023 Sheet 2 of 9 US 11,647,101 B2

200

a

Application Services Server Orchestration Node
110 160

| |

|

|

Generate request to deploy |
application according to :
|

|

|

|

|

deployment plan
210

Send request to deploy application
to orchestration node

220

Receive request to deploy
application

230

Provision virtual computing
resource to execute task({s) to
deploy application
240

Obtain status data relating to
execution of task(s)
250

Receive status data from
orchestration node

270

Send status data

260

Determine whether application is
successfully deployed
280

Fig. 2

US 11,647,101 B2

Sheet 3 of 9

May 9, 2023

U.S. Patent

Ze¢ Juauodwon
uoneonddy

051

IEYNE]S
13PIACI PO

[— LY

271 Juauodwon

uonednddy
| R

0vi CIAIA

| BPON UOIIBIISaYI0D

0L¢

¢Q
SPON UOIIBIISAUID

(o
81 uauodwon

uoneonddy
Merrrirrrerserinamamrooreraerst?

0Et LA

““Hu“muﬂiﬂumuu_——

Y

v9l
auibu3

LOIINDBXT Mse |

291

auibu
MO UOIINDIBX3]

iy

091

| (]
SPON UOIIBIISBYIO

00€ 1004

JuswuosAug Bupndwon pnold a1gnd

Aoijod esney

v | fs | eda | ea
SOA s|qejieny 2a-dl A€
Asng La-dl Ld

(1 8PON

]9

labeuey apoN
uoiRHS8YIO

1713

101084103

uswAgdse(y

cll
J0JBIBUBE)

of1

JoAIeS

SNjejS spoN

uejd uawAojda(

SBOIAI9S Uoledijddy

SSOUPPY dl

971 ele(] 9poN UOIBNSaUDIO

¢ol

214"
ele(] ©PON
UONBAISBYDIO

74"
e1eq sneis

JuswAoldan

L
sue|d

Juauifolda(]

1uswiuoiAUg Bupndwion pnoln sleald

001

US 11,647,101 B2

Sheet 4 of 9

May 9, 2023

U.S. Patent

(1747

uoleanuayIne Joj

158nbal pue Jusbe s1nosx

17
uabe peojumop

0] 1du0s dedisiooq 81noexy

ii!iih‘i;;

é

(OFT ZINA OET LWA “E'9)
BUIYOB [BNIIA

09Y
(s)o)idws) pnojo
0] BuIpJoooe (S)NA 818810

47

apoU UOIIRIISaUDIO
SZI|eniul pue 8jesld)

051

18AI9S JBPIACIH PNOID

Gl
WA flealiuayine
pue 1senbal sAieo8y
—

7

S
10 Buiuoisinold 1sanbayd

uonedjdde
Aojdep 0] 1senbal aAlR8)Y

19AI2S SBOIAISS
uonedlidde yim 1a1s108yy

091

SPON UOIIEISBUIO)

S Sy ey e ey Py Py Pl i

GhY
uoneoldde Aoidep 0)

158Nbas puss pUE 81BIBUSL)

(1177

UOHI8UUO0D
wejsistad ysigeisy

Gev
elep apou
uones1ssy.o aiepdn

1147

apoU UOIBAISaYDIO
SZI[elIUl pUB 8Bl

_

%7

azi[enua. pue jood wol)
apOU UOHEJISBUIIO BABIIY

qo¥

apPOU UOHENSBYDJO 8SNal JO
3)€810 0] JBUIBUM 8UIULIB)8(]

ort A

JOAIDS $801A188 uoneoddy 00%

US 11,647,101 B2

Sheet 5 of 9

May 9, 2023

U.S. Patent

L.

e

pu-]

0SS
$)ISe) Jse]

57
BlEp Sniels
JIISUEL] PUEB YSB) 8]1N98XT

0%
YSE] 91N08X8
0] UCIJBZLIOYINE 8AIB08Y

gt

iy

q1s

¥SB] 81N08X8 0}
1senbal uonezIoynNe puas

T o S S a SR

.

01s

uejd JuswAoidsp
IBOO] WCJ) YSEBl BABIIOYN
|

(OFT ZWA OET LIWA “D8)
QUILOBI [BNMIA

099

UOROBLILOD Jua)sisiad

BIA B]BD SNJels Jiodoy

555

A WU
R1EP SNIE]S DA

ges

YSB) SINIBXS
0] UOIIEZLIOYINE puss

it iy Mg gt iy t a

N

g

s8] a19jdwooul
Au

G7G spusdap
NSE] Pa1senbad UdIum uo

NSE) 8]8]dWwooul sUILBIB()

0c%

SE] 8)N09X8 0} }$8nba.

LIONEZLIOYINE BAI809Y
B

_

G0S
INA O] uejd JuswAoldap
|EDO] JILUSURL] PUE 81RIBUBL)
|

091

apPON UONRIISBaUDIO

iy iy iy

G6%

oPOU UOHEIISaalO 8lo|a(]

jood 0]
apOoU UOINBIISBYII0 uIney

SPOU UOIBISBLIO
10 A0110d asnal sABlIeY

\ﬁ. .

Jpars|dwon

0%

Blep smels
Upm aloiselep ajepdn

g9g

UOI1o8UU0D Jualsisiad
BIA BJED SNBSS OAI800Y

|
|
|
|

ott
JOAIDS SBJIAIDS uoleoIddYy

‘Bi

b\

00

US 11,647,101 B2

Sheet 6 of 9

May 9, 2023

U.S. Patent

4069
= BEIVELS

JBPINOI PNOID

9779 1usuodwon
uotjeolddy

¢ JUswiUoHAUT Bunndwion pnon

v0%9

\/ JaAIDg
IBPINOI PNOIYD

V770 1usuodwon
uoneslddy

€999 suibu3 (A yoeosddy) \
uonnoaxy yse| | | ggag jusuodwon

IOAB|-92IN0Sa Y LUONEUNWWOC)

dc99

aulbu
MO|4 UD[INDBX

av99

auibus ucinNooax3

ASE | 12AI]-PNOID

€099

APON UOIRJISBUDIO

gv09

V999 suibu3 (X %me%é/

uonnoax3y ¥se] | | Y890 jusuodwon
[9AB]-02INn0saY | | UOHEIIUNWILLON

V<299
auIbus

| Mol4 uonnosx3

Y199
auibug uonoexy
NSE L. [8A3]-PNOID)

V099

9PON Uol1B1IS8YDI0

V109

v JuswiuonAug bunndwon pnojn

.

(A Yoeosddy)

Z2$9 1UBuoguIon
LIONEIIUMWWON)

(¥ Yoroiddy)

0¢9 wasuodwon
UONEDILUNIWOY)

919

labeueiy 8poN
LONBIISAYIO

719

10108410
wawAo|dan

4%)

Jjojessus)
ue swAiojdeq

019

JEETNE T
S80IAI8S Uoleolddy

929 Oju| opoN
UONRASBYID

$29 smels
Juswioldaq

229 sueld

JuawAolda

209

Juswuoaiaug bunndwon pnopn aleAlld

‘B4

N

009

U.S. Patent

700

R

Orchestration Node
660A

i
i
|
l
l
l
|
|
i
l
|
i
|
|
i
|
|
i
:
i
|
|
|
:
|
]
I
l
l
|
|
|
i
|
|
!
I
i
!
|

Receive first request and
deploy appilication
760

May 9, 2023

Deploy application in first
cioud compuling

environment
770

Sheet 7 of 9

Application Services Server
610

Configure communication
componenis and
grchesiration nodes

{seneraie first requesi for
first cloud computing
environment

110

{senerale second request for
second cloud computing
environment
£20

Select first and second
communication components

130

Send first request to first
orchestration node via first
communication component

40

Y

Send second request io
second orchestiration node

via second communication
componhent

30

Determine whether the
applicalion is successfully

deployved based on status
data

195

Fig. 7

US 11,647,101 B2

Orchesiration Node
6608

iyt iy wipiel gt Spiply iy winiel e e Swpinfe ey W il el

it il g Spiely bpbply it Wil dipieE Aefee e i Al plmlely et et

!
;
F
i
¥
E
;
E
i
:
i
I
i
i
E

Receive second request and
deploy apphcation
780

Send status data

190

US 11,647,101 B2

Sheet 8 of 9

May 9, 2023

U.S. Patent

L —— Y

gz58 Wwauodwon
uoneoddy

A

G058 a-IA

4059
g 18AJ8S

I3PIAOIH pnoin

g EIN
G770 1Usuodwon

uoleanddy
U

g0%9 g-NA

g uswuoaug bundwon pnojn

a099
9PON UOIENS8U2I0

028 100d

A

VZ68 wauodwon
uoneddy

Neeeeeeereeereemeenee?
V068 CY-INA

V059

Yy JaAIS
18PIACIH PNoID

W e iy ol gt Wi

V79 Jauodwon

uoneoijddy
A

VOP3 Lv-INA

il gl

Y JUaWiuoIAUg Buiindwosn pnojo

9PON UOHRIISBYJIO

i e Py Sy Py

V099

APON UONBJISBUDIO

018 100d

(A yoeouddy)
259 Jusuodwon
LOITEDIUNWILIOY)

(X yoeoiddy)

09 1uauodwon
LOIBIIUNWWOND

919
Jabeuei\ SpPON
UOIIEISaYI0

7%)

10198117
JuswAcida(y

F4X:)
10}2J8UB9)

ueld JuswAioida

019

JoAIBg

sa0IAeS uoljedljddy

c09

9249 oju| apoN
UOHEISBYIO

229 sue|d
JuswAolda

JuswuonAug Buindwon pnojn aleAld

‘B1.4

008

U.S. Patent May 9, 2023 Sheet 9 of 9 US 11,647,101 B2

900

Computer-readable

storage medium
920

Data 922

(e.g., relaling to deployment

plans, orchestration nodes,
deployment status, eic.)

instructions 924

Processor
910

Network interface
940

I

To/From
Network

Fig. 9

US 11,647,101 B2

1

DEPLOYING AN APPLICATION IN
MULTIPLE CLOUD COMPUTING
ENVIRONMENTS

CROSS-REFERENCING OF RELATED
APPLICATIONS

This application 1s a continuation of U.S. patent applica-
tion Ser. No. 16/511,109, filed Jul. 15, 2019, which 1s a
continuation of U.S. patent application Ser. No. 14/935,434,
filed Nov. 8, 2015, now U.S. Pat. No. 10,356,206 entitled
“Deploying an Application in Multiple Cloud Computing
Environments”, the entirety of which 1s incorporated herein
by reference. Further, this application 1s related to U.S.

patent application Ser. No. 14/935,433, filed Nov. 8, 2015,
entitled “Deploying an Application in Multiple Cloud Com-
puting Environments,” the entirety of which 1s incorporated
herein by reference.

BACKGROUND

Unless otherwise 1indicated herein, the approaches
described 1n this section are not admitted to be prior art by
inclusion 1n this section.

The wvirtualization of computing resources provides
opportunities for cloud service providers to sell wvirtual
computing resources to enterprises. For example, using an
Infrastructure-as-a-Service (IaaS) model, an enterprise (e.g.,
organization, business) may build, deploy and manage appli-
cations using virtual computing resources such as compute,
storage and networking resources 1n a cloud computing
environment. In practice, however, there are many chal-
lenges associated with application deployment 1n a cloud
computing environment, and 1t 1s therefore desirable to
provide improved solutions to better meet the needs of the
enterprises.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 1s a schematic diagram illustrating an example
hybrid cloud computing environment 1n which an applica-
tion may be deployed;

FIG. 2 1s a flowchart of an example process to deploy an
application 1n hybnd cloud computing environment;

FIG. 3 1s a schematic diagram illustrating an example pool
ol orchestration nodes 1 a public cloud computing envi-
ronment;

FIG. 4 1s a flowchart of an example detailed process to
provision virtual machines using an orchestration node in
hybrid cloud computing environment;

FIG. 5 1s a flowchart of an example detailed process to
coordinate task execution using an orchestration node 1 a
hybrid cloud computing environment;

FIG. 6 1s a schematic diagram 1llustrating example net-
work environment in which an application 1s deployed in
multiple cloud computing environments;

FIG. 7 1s a flowchart of an example process to deploy an
application 1n multiple cloud computing environments;

FIG. 8 1s a schematic diagram illustrating example pools
of orchestration nodes in the example 1n FIG. 6; and

FIG. 9 1s a schematic diagram illustrating an example
computing system capable of acting as an application ser-
VICES SErver.

DETAILED DESCRIPTION

In the following detailed description, reference 1s made to
the accompanying drawings, which form a part hereof. In

10

15

20

25

30

35

40

45

50

55

60

65

2

the drawings, similar symbols typically identify similar
components, unless context dictates otherwise. The 1llustra-
tive embodiments described in the detailled description,
drawings, and claims are not meant to be limiting. Other
embodiments may be utilized, and other changes may be
made, without departing from the spirit or scope of the
subject matter presented here. It will be readily understood
that the aspects of the present disclosure, as generally
described herein, and 1illustrated in the drawings, can be
arranged, substituted, combined, and designed in a wide
variety of different configurations, all of which are explicitly
contemplated herein.

In the present disclosure, various challenges associated
with application deployment 1n a cloud computing environ-
ment will be explained. In particular, a first example to

deploy an application 1n a hybrid cloud computing environ-
ment will be explained with reference to FIG. 1 to FIG. 6.

A second example to deploy an application 1n multiple cloud

computing environments will be explained with reference to
FIG. 7 and FIG. 8.

According to examples of the present disclosure, appli-
cation deployment may be performed using one or more
“orchestration nodes” in both of the above examples.
Throughout the present disclosure, the term “‘orchestration
node” may generally refer to any suitable entity that 1s
configured 1n a cloud computing environment to deploy an
application 1n that cloud computing environment under the
instruction of another entity (e.g., application services
server). For example, during application deployment, the
orchestration node may be instructed to execute one or more
tasks and/or cause a virtual computing resource to execute
one or more tasks. In practice, an orchestration node may be
implemented using one or more physical devices, virtual
machines, a combination of thereof, etc.

In more detail, FIG. 1 1s a schematic diagram illustrating
example hybrid cloud computing environment 100 in which
an application may be deployed. Although an example 1s
shown, 1t should be understood that example cloud comput-
ing environment 100 may include additional or alternative
components, and each component may have a difierent
configuration. In the example in FIG. 1, hybrid cloud
computing environment 100 includes private cloud comput-
ing environment 102 and public cloud computing environ-
ment 104.

The term “private cloud computing environment” may
generally represent a computing environment (e.g., data
center) operated solely for an enterprise, organization, busi-
ness, etc. Private cloud computing environment 102 (also
known as a “private cloud”, “private enterprise environ-
ment”, etc.) may be managed internally by the enterprise, or
externally by a third party. On the other hand, the term
“public cloud computing environment” may generally rep-
resent a virtualized computing environment operated by a
cloud provider.

Virtual computing resources 1n public cloud computing
environment 104 may be purchased to extend the capabili-
ties of private cloud computing environment 102. For
example, an enterprise may purchase compute, storage and
networking resources from a cloud provider to execute
applications. This helps the enterprise reduce the costs of
building, running and maintaining physical resources within
private cloud computing environment 102. In practice, pub-
lic cloud computing environment 104 may be operated by

any suitable cloud provider, such as Amazon Elastic Com-
pute Cloud (EC2), VMware vCloud Hybrid Service (vVCHS),

VMware vCloud Air, etc.

US 11,647,101 B2

3

In the example 1 FIG. 1, application services server 110
(also referred to as “computing system™) 1s configured to
tacilitate deployment of applications 1n public cloud com-
puting environment 104 from private cloud computing envi-
ronment 102. For example, application services server 110
(also known as “application director”, etc.) may provide a
suite of tools for enterprises to create, deploy, manage and
update applications. An enterprise user (e.g., application
developer, system administrator, etc.) may access applica-
tion services server 110 using any suitable interface on a
computing device, such as via a web browser, command line
interface (CLI), eftc.

Application services server 110 may be used to deploy a
wide range of applications from simple web applications to
complex custom applications. Throughout the present dis-
closure, the term “application” may generally refer to a
logical deployment unit that includes one or more applica-
tion components. Each “application component” may
include any suitable software code, such as software ser-
vices, scripts, code components, application-specific pack-
ages, custom script packages, etc. The application may be a
single-tier, or multi-tier in which case functions of the
application are distributed over logically separate applica-
tion components.

Conventionally, 1t 1s necessary for application services
server 110 1n private cloud computing environment 102 to
interact directly with cloud provider server 150 in public
cloud computing environment 104. For example, during
application deployment, it may be necessary to provision
virtual computing resources 1n the form of virtual machines
VM1 130 and VM2 140 from cloud provider server 150 to
deploy respective application components 132 and 142 of an
application. Each virtual machine may represent a logical
node of the application. In practice, application services
server 110 may have to manage the deployment of a large
number of applications (e.g., hundreds, thousands), which in
turn creates a lot of processing burden on application
services server 110 and degrades performance.

Further, in some cases, 1t can be challenging for applica-
tion services server 110 to manage the deployment of an
application 1n public cloud computing environment 104
from private cloud computing environment 102. For
example, due to security reasons (e.g., firewall settings),
private cloud computing environment 102 may block exter-
nal traflic originating from public cloud computing environ-
ment 104. Consequentially, communication between private
cloud computing environment 102 and public cloud com-
puting environment 104 may become unidirectional. In this
case, application services server 110 will not be able to
monitor the progress of an application deployment because
any information origiating from VM1 130, VM2 140 and
cloud provider server 150 will be blocked.

According to examples of the present disclosure, the
deployment of an application 1n a hybrid cloud computing
environment 100 may be improved using orchestration node
160 in public cloud computing environment 104. In practice,
orchestration node 160 may be implemented using one or
more physical or virtual machines capable of communicat-
ing with application services server 110 in private cloud
computing environment 102, as well as with cloud provider
server 150 and virtual computing resources (e.g., VM1 130
and VM2 140) 1n public cloud computing environment 104.

In more detail, FIG. 2 1s a flowchart of example process
200 to deploy an application 1 hybrid cloud computing
environment 100. Example process 200 may include one or
more operations, functions, or actions 1llustrated by one or

more blocks, such as blocks 210 to 280. The various blocks

10

15

20

25

30

35

40

45

50

55

60

65

4

may be combined into fewer blocks, divided into additional
blocks, and/or eliminated based upon the desired implemen-
tation.

At 210 1n FIG. 2, application services server 110 1n private
cloud computing environment 102 generates a request to
deploy an application according to a deployment plan. In
particular, the request includes the deployment plan speci-
tying one or more tasks to be executed by a virtual com-

puting resource (e.g., VM1 130, VM2 140) to deploy the

application 1n public cloud computing environment 104.

In practice, generating the request may also include
generating the deployment plan, or retrieving the deploy-
ment plan (see 122 1n FIG. 1) from data store 120 accessible
by application services server 110. Further, the request may
be generated 1n response to an enterprise user (e.g., network
administrator) imtiating the deployment via application ser-
vices server 110. In another example, the initiation may
occur programmatically (e.g., using a script, based on a
trigger, etc.).

At 220 1n FIG. 2, application services server 110 sends the
request to orchestration node 160. The request 1s to mstruct
orchestration node 160 to provision the virtual computing
resource (e.g., VM1 130, VM2 140) from a cloud provider
(e.g., by mnteracting with cloud provider server 150), and to
cause the virtual computing resource to execute one or more
tasks specified by the deployment plan.

At 230 and 240 1n FIG. 2, orchestration node 160 receives
the request from application services server 110, and
deploys the application according to the deployment plan.
As mentioned above, orchestration node 160 1s to provision
the virtual computing resource (e.g., VM1 130, VM2 140)
from cloud provider server 150, and to cause the virtual
computing resource to execute one or more tasks specified
by the deployment plan.

In practice, multiple virtual computing resources may be
provisioned, and orchestration node 160 1s to coordinate task
execution among them. For example 1n FIG. 1, orchestration
node 160 may provision VM1 130 and VM2 140 from cloud
provider server 150 according to the deployment plan.
Orchestration node 160 may also cause VM1 130 and VM2
140 to execute tasks (e.g., scripts), such as to 1install,
configure, start, stop, migrate or upgrade, respective appli-
cation components 132, 142. Orchestration node 160 may
also coordinate task execution by VM1 130 and VM2 140
according to an order specified by the deployment plan, such
as to satisly dependencies between them. Orchestration node
160 may also cause VM1 130 and VM2 140 to retrieve a
particular software packages from a software repository to
perform any suitable 1nstallation.

At 250 and 260 1n FIG. 2, orchestration node 160 obtains
status data from the virtual computing resources, and reports
the status data to application services server 110. At 270 and
280 1n FIG. 2, application services server 110 receives status
data from orchestration node 160 and determines whether
the application 1s successtully deployed in public cloud
computing environment 104.

Using example process 200 in FIG. 2, application services
server 110 may delegate control to orchestration node 160 to
deploy applications in public cloud computing environment
104. Since orchestration node 160 1s located within the same

environment 104 as cloud provider server 150 and virtual
computing resources (€.g., VM1 130 and VM2 140), orches-

tration node 160 1s able to coordinate task execution more
cllectively, obtain status data relating to task execution and
report the same to application services server 110. In prac-
tice, the status data may include a task status (e.g., 1ncom-

US 11,647,101 B2

S

plete, complete, 1n progress), a task start time and a task end
time relating to each task specified by the deployment plan.

Further, according to examples of the present disclosure,
application services server 110 may establish a persistent
connection (see 170 1n FIG. 1) with orchestration node 160
to recerve the status data. For example, persistent connection
170 may be used to circumvent firewall settings at private
cloud computing environment 102 that block any traflic
originating from public cloud computing environment 104.
This allows application services server 110 and orchestration
node 160 to communicate with each other, without having to
modily settings of the firewall. Such modification may not
always be possible for various reasons, such as when the
enterprise does not have the authority to modify the firewall
settings, eftc.

Using persistent connection 170 from application services
server 110 to orchestration node 160, orchestration node 160
may send status data during the application deployment
process, such as periodically or whenever the status data 1s
available. Further, since application services server 110
interacts directly with orchestration node 160, one persistent
connection between them 1s generally sutlicient. This should
be contrasted with the need to manage separate connections
with cloud provider server 150, VM1 130 and VM2 140 in
the example 1n FIG. 1 according to the conventional
approach.

In practice, any suitable persistent connection 170 may be
established over any suitable network 172, such as Hyper-
text Transier Protocol (HTTP) Keep-Alive over an Internet
Protocol (IP) network, etc. Persistent connection 170 may
also be established over a tunnel between application ser-
vices server 110 and orchestration node 160, such as secure
cloud tunnel. Application services server 110 may maintain
persistent connection 170 while the application 1s being
deployed (e.g., by sending keep-alive messages to orches-
tration node 160 periodically), and close persistent connec-
tion 170 when the application 1s successtully deployed.

Application services server 110 and orchestration node
160 may implement any suitable modules to perform
example process 200. For example, application services
server 110 may 1nclude deployment plan generator 112 to
generate a deployment plan based on which an application
1s deployed; deployment director 114 to request orchestra-
tion node 160 to deploy an application; and orchestration
node manager 116 to configure and manage orchestration
node 160.

Orchestration node 160 may include execution flow
engine 162 to coordinate the provisioning of virtual com-
puting resources and task execution, and task execution
engine 164 to cause orchestration node 160 and virtual
computing resources to execute tasks specified i the
deployment plan. As will be described further below, task
execution engine 162 1s to cause orchestration node 160 to
execute tasks to provision new virtual machines, configure
settings of public cloud computing environment 104, take a
snapshot of virtual machines, etc. Task execution engine 162
1s also to cause VM1 130 and VM2 140 to execute tasks to
deploy respective application components 132 and 142. Any
additional and/or alternative modules may be used 1n prac-
tice.

Pool of Orchestration Nodes

According to examples of the present disclosure, appli-
cation services server 110 may configure a pool of orches-
tration nodes to deploy applications 1n public cloud com-
puting environment 104. In more detaill, FIG. 3 1s a

10

15

20

25

30

35

40

45

50

55

60

65

6

schematic diagram illustrating example pool 300 of orches-
tration nodes 1n public cloud computing environment 104.

Although an example 1s shown, i1t should be understood that
pool 300 may include any suitable number of orchestration
nodes, and additional and/or alternative nodes may be con-
figured.

For example i FIG. 3, example pool 300 includes three
orchestration nodes. In addition to orchestration node 160
(labelled “D1”) mntroduced in FIG. 1, there are two addi-
tional orchestration nodes 310 (labelled “D2”) and 320
(labelled “D3”). By creating orchestration node pool 300 1n
public cloud computing environment 104, processing load
associated with application deployment may be distributed
across multiple orchestration nodes. This distributed
approach improves deployment efliciency and fault toler-
ance, especially when a large number of applications are
deployed. Further, this distributed approach eliminates, or at
least reduces the impact of, application services server 110
as a single point of faillure when multiple applications are
deployed concurrently.

Orchestration nodes D1 160, D2 310 and D3 320 are
connected to cloud provider server 150, and able to deploy
an application using virtual computing resources 1 public
cloud computing environment 104. For example in FIG. 1,
D1 160 1s to coordinate task execution by VM1 130 and
VM2 140 to deploy respective application components 132
and 134. On the other hand, D3 310 1s to coordinate task
execution by VM3 330 to deploy application component
332. In practice, any suitable number of orchestration nodes
may be configured, and the size of pool 300 over time
depending upon the desired implementation.

As a new orchestration node 1s configured and registered,
application services server 110 (e.g., orchestration node
manager 116) updates orchestration node data 126 1n data
store 120. For example, each orchestration node 160/310/
320 1s associated with node identifier (ID) 340, Internet
Protocol (IP) address 342, node status (e.g., busy, available,
ctc.) 344 and reuse policy 346 associated with the new
orchestration node. As will be explained further using FIG.
4 and FIG. 5, the reuse policy may be configured to govern
whether a orchestration node 1s returned to pool 300 (..,
reuse=yes) or deleted (1.e., reuse=no) after an application 1s
deployed.

Throughout the present disclosure, the term “delete” may
refer generally to an operation to remove an orchestration
node from public cloud computing environment 104, such as
by releasing the resources to operate the orchestration node
and deregistering it from application services server 110. In
practice, the term “delete” may be used interchangeably with
“destroy,” “remove,” “terminate,” “deallocate,” “deregis-
ter”’, etc.

The reuse policy allows application services server 110 to
manage the size ol pool 300 as nodes are configured or
deleted. For example, D1 160 and D2 310 are configured as
multi-use nodes (1.e., reuse=yes), while D3 320 as a single-
use node (1.e., reuse=no). Although not shown i FIG. 3, a
particular number of reuse may also be configured (e.g., 10
times for D1 160, and 5 times for D2 310), after which the
orchestration node 1s deleted.

Deploying an Application in a Hybrid Cloud
Computing Environment

FIG. 4 15 a flowchart of example detailed process 400 to
provision virtual machines using orchestration node 160 in
hybrid cloud computing environment 100. Example process
400 may include one or more operations, functions, or

US 11,647,101 B2

7

actions 1llustrated by one or more blocks, such as blocks 405
to 475. The various blocks may be combined into fewer
blocks, divided into additional blocks, and/or eliminated
based upon the desired implementation. In the following
orchestration node 160 (also labelled “D1” 1n FIG. 3) will be
used as an example node configured or retrieved from pool
300 to deploy an application.

Referring first to 405 1n FIG. 4, application services server
110 determines whether to create a new orchestration node
or reuse an existing one. The determination may involve
retrieving orchestration node data 126 from data store 120
(¢.g., using orchestration node manager 116). For example,
application services server 110 may decide to create a new
orchestration node 160 1f none has been created (1.e., empty
pool 300), or none of the existing ones 1s available (e.g.,
status=busy 1n pool 300).

At 410 and 415 1n FIG. 4, application services server 110
decides to retrieve an existing orchestration node 160 from
pool 300. For example, this may occur when existing
orchestration node 160 from pool 300 1s available. In
another example, although none in pool 300 1s currently
available (e.g., status=busy for D1 160, D2 310 and D3 320),
application services server 110 may determine whether there
1s any reusable orchestration node (1.e., reuse=yes for D1
160) that 1s currently busy, but will become available at a
later time. I yes, application services server 110 may decide
to wait, such as when the deployment 1s not time-sensitive,
etc.

Otherwise, at 410 and 420 1n FIG. 4, application services
server 110 decides to create new orchestration node 160 by
sending a request to cloud provider server 150 1n public
cloud computing environment 104. At 425 1n FIG. 4, cloud
provider server 150 proceeds to create and 1nitialize orches-
tration node 160, such as by provisioning one or more virtual
machines in public cloud computing environment 104 to
implement orchestration node 160. Cloud provider server
150 may perform (or cause orchestration node 160 to
perform) any necessary installation according to the request
from application services server 110.

At 430 and 435 1n FIG. 4, newly created orchestration
node 160 registers with application services server 110,
which then updates orchestration node data 126. Referring
to FIG. 3 again, orchestration node 160 may be configured
with reuse policy 346 to specily whether to delete or reuse
it after an application 1s performed. Orchestration node 160
may also publish a series of services application program-
ming interfaces (APIs) accessible by application services
server 110 for subsequent operations. Although an example
i1s shown in FIG. 4, orchestration node 160 may also be
created by a user (e.g., network administrator) by interacting
directly with cloud provider server 150, rather than having
to access application services server 110.

At 440 1n FIG. 4, application services server 110 estab-
lishes connection 170 with orchestration node 160, such as
persistent connection to circumvent firewall settings at pri-
vate cloud computing environment 102. The persistent con-
nection 1s maintained throughout the deployment process.
For example, a keep-alive message may be transmitted
periodically by application services server 110 to orchestra-
tion node 160, such as empty Transport Control Protocol
(TCP) segments, etc. Since the persistent connection 1s
established from private cloud computing environment 102,
this allows orchestration node 160 to send status data
relating to task execution to application services server 110.

At 445 1 FIG. 4, application services server 110 gener-
ates and sends a request to orchestration node 160 to deploy
an application according to deployment plan 122. The

10

15

20

25

30

35

40

45

50

55

60

65

8

request may be sent 1n response to an enterprise user
initiating the application deployment by accessing applica-
tion services server 110. The application may be a new
application, or an existing application 1n which case a newer
version of the application 1s deployed.

Generating the request may include retrieving deploy-
ment plan 122 from data store 120, or generating deploy-

ment plan 122 from an application blueprint (e.g., using
deployment plan generator 112). In the latter case, United
States Patent Application No. 20130232498, which 1s
assigned to the assignee of this application and entitled
“System to Generate a Deployment Plan for a Cloud Infra-
structure According to Logical, Multi-Tier Application
Blueprint”, 1s fully incorporated herein by reference to
explain possible approaches to generate a deployment plan.

In practice, an application blueprint may specily a topol-
ogy of virtual computing resources, application components
to be executed on the virtual computing resources, one or
more dependencies between the application components,
ctc. While an application blueprint provides a component-
oriented view of the topology of an application, deployment
plan 122 provides a step-oriented view of the topology that
includes time dependencies between tasks to deploy the
application components in a particular order.

Deployment plan 122 may include deployment settings
(e.g., virtual computing resources such as CPU, memory,
networks) and an execution plan of tasks having a specified
order 1n which virtual machines are provisioned and appli-
cation components are 1installed, configured, started,
stopped, etc. Different deployment plans may be generated
from a single application blueprint for various stages of an
application, such as development, testing, staging and pro-
duction, etc.

At 450 1n FIG. 4, orchestration node 160 receives the
request from application services server 110 and determines
the tasks to be executed according to the deployment plan.
For example, at 455 and 460 1n FIG. 4, the request causes
orchestration node 160 provision virtual computing
resources from cloud provider server 150. In the example in
FIG. 1, virtual machines VM1 130 and VM2 140 may be
provisioned according to cloud templates published by a
cloud provider.

The term “cloud template” may refer generally to a virtual
machine template that describes the configuration of a
virtual machine, including central processing umt (CPU),
memory, network, storage, guest operating systems and
other supporting libraries that are necessary to create the
virtual machine. In practice, any suitable cloud template
may be used, such as Amazon Machine Image for Amazon
Region, application services template for vCloud Director,
vRealize automation blueprint for vRealize Automation, etc.

At 465 1n FIG. 4, virtual machine 130/140 boots and
executes a bootstrap script included in the virtual machine to
establish communication with orchestration node 160. For
example, the bootstrap script provides a location (e.g.,
uniform resource locator (URL)) to download an agent from
application services server 110, orchestration node 160, or
any suitable repository. In practice, the agent may be down-
loaded in the form of a soiftware package, such as Java
Archive (JAR) that runs 1n a Java virtual machine, etc.

At 470 1n FIG. 4, the agent 1s executed on virtual machine
130/140 by installing the downloaded software package.
The agent then proceeds to send an authentication request to
orchestration node 160, which then authenticates the agent.
Any suitable approach may be used for the authentication.
For example, the software package downloaded at 470 1n
FIG. 5 may include authentication iformation (e.g., pass-

US 11,647,101 B2

9

word) that may be used by the agent. In response, at 475 in
FIG. 4, orchestration node 160 authenticates the agent by
generating and transmitting cryptographic information (e.g.,
digital certificate) for use 1n future communication.

In the above examples, communication between orches-
tration node 160, cloud provider server 150 and wvirtual
machines 130 and 140 (via respective agents; see 465 and
470 m FIG. 4) may be implemented using any suitable
approach. In one example, an address and discovery layer
that leverages message queue technology may be used. In
another example, each virtual machine 130/140 (e.g., 1ts
agent 1n particular) may provide a Representational State
Transter (REST1ul) application programming interface
(API) to accept 1nstructions or requests from orchestration
node 160. In this case, during the deployment process,
orchestration node 160 may send a task execution request to
an agent executing on virtual machine 130/140, and wait for
a response Irom the agent.

Example process 400 in FI1G. 4 continues to FIG. 5, which
1s a flowchart of example detailed process 500 to coordinate
task execution using orchestration node 160 1n hybrid cloud
computing environment 100. Example process 500 may
include one or more operations, functions, or actions 1llus-
trated by one or more blocks, such as blocks 5035 to 595. The
various blocks may be combined 1nto fewer blocks, divided
into additional blocks, and/or eliminated based upon the
desired 1implementation.

At 505 1n FIG. 5, orchestration node 160 generates a
“local deployment plan” for virtual machine 130/140 from
(global) deployment plan 122 1n the request from application
services server 110. Each local deployment plan specifies a
series of tasks to be executed by particular virtual machine
130/140 and an order in which the tasks are executed to
implement an application component 132/142. The tasks 1n
the local deployment plan may be in the form of scripts that,
when executed by virtual machine 130/140, cause virtual
machine 130/140 to, for example, install, configure, start,
stop, upgrade or migrate at least one application component.

For example 1n FIG. 1, a first local deployment plan may
be generated for and transmitted to VM1 130 to 1install,
configure and start first application component 132. Simi-
larly, a second local deployment plan may be generated for
and transmitted to VM2 140 to install, configure and start
second application component 142. For example, i an
online store application, first application component 132
may 1mplement a web server that executes a web applica-
tion. Second application component 142 may implement a
data store accessible by the web server. Although not shown
in FI1G. 1 for simplicity, a cluster of virtual machines may be
used.

At 510 1n FIG. 5, each virtual machine 130/140 receives
the local deployment plan and determines a task to be
executed according to an order specified by the local deploy-
ment plan. At 515 1 FIG. 5, prior to executing each task,
virtual machine 130/140 sends an authorization request to
orchestration node 160.

Orchestration node 160 coordinates task execution by
controlling the order 1n which tasks are executed by virtual
machine 130/140. At 520 and 525 1n FIG. 5, orchestration
node 160 receives the authorization request from virtual
machine 130/140 and determines whether the requested task
depends on any mcomplete task according to deployment
plan 122. The dependencies between tasks may be within the
same virtual machine and/or between different virtual
machines. The determination 1s based on status data of tasks
in deployment plan 122 and dependencies among the tasks.

10

15

20

25

30

35

40

45

50

55

60

65

10

All tasks are marked as “incomplete” at the beginning of the
deployment, and transition to “in progress” and finally

“complete” upon completion.

At 530 in FIG. 5, if the requested task depends on an
incomplete task, orchestration node 160 may return to 525
to check for completion of the incomplete task periodically.
Otherwise (1.e., no incomplete task), at 535 i FIG. 5,
orchestration node 160 authorizes virtual machine 130/140
to proceed with the task execution. In this case, orchestration
node 160 may also update status data relating to the task,
such as from “incomplete” to “in progress.”

At 540 and 545 1in FIG. 5, virtual machine 130/140
receives the authorization and proceeds to execute the task.
The task execution may be performed based on additional
information (e.g., parameter values) provided by orchestra-
tion node 160. Once completed, virtual machine 130/140
transmits status data to orchestration node 160. At 550 in
FIG. 5, the virtual machine determines whether there 1s any
additional task 1n its local deployment plan. If yes, blocks
510, 515, 540, 545 and 550 are repeated until all tasks are
executed.

At 555 1n FIG. 5, orchestration node 160 receives status
data relating to a task, such as when the task 1s completed.
In this case, orchestration node 160 may update the status of
the task from “in progress” to “complete.” Orchestration
node 160 may also record task start times (e.g., when
authorization 1s provided at 535), and task end times (e.g.,
when status data 1s recerved at 533), efc.

At 560 1n FIG. 5, orchestration node 160 reports the status
data of each task to application services server 110 wvia
connection 170 (e.g., persistent connection). At 565 and 570
in FIG. §, application services server 110 recerves the status
data and proceeds to update deployment status data 124 1n
data store 120 accordingly. For example, tasks may be
marked as “incomplete”, “complete” or “in progress”, and
associated task start times and end times recorded.

At 375 i FIG. 5, application services server 110 deter-
mines whether the application 1s successiully deployed,
which means execution of tasks specified by deployment
plan 122 has been completed. If not completed, application
services server 110 waits for additional status data and
repeats blocks 565, 570 and 575 until all task are completed.
Otherwise, 1 completed, application services server 110
proceeds to block 580.

At 580 1n FIG. §, application services server 110 retrieves
reuse policy 346 (see FIG. 3) configured for orchestration
node 160. At 585 and 590 in FIG. 5, if orchestration node
160 1s reusable (e.g., reuse=yes), application services server
110 returns orchestration node 160 to pool 300. In this case,
node status 344 (see F1G. 3) of orchestration node 160 1s also
updated from “busy” to “available.”

Otherwise, at 595 1n FIG. 5 (1.e., reuse=no), orchestration
node 160 1s deleted. For example, application services server
110 may send a request to cloud provider server 150 to
delete orchestration node 160. In another example, applica-
tion services server 110 may cause orchestration node 160 to
send a request to cloud provider server 150 to perform the
deletion.

Deploying an Application in Multiple Cloud
Environments

In the examples 1n FIG. 1 to FIG. 5, an application 1s
deployed 1n public cloud computing environment 104 from
private cloud computing environment 102. In practice, 1t
may also be desirable to deploy the same application (e.g.,
based on the same application blueprint) 1n different cloud

US 11,647,101 B2

11

computing environments, such as during the development,
testing and staging and production stages of an application.
This may be desirable for various other reasons, such as
elliciency, performance, regulation, redundancy, risk miti-
gation, etc. Since different cloud computing environments
generally have different requirements due to different inter-
taces (e.g., APIs), protocols, virtual computing resource
formats, this complicates application deployment.

According to examples of the present disclosure, multiple
orchestration nodes may be deployed in respective cloud
computing environments to facilitate application deploy-
ment. In more detail, FIG. 6 1s a schematic diagram 1illus-
trating example network environment 600 in which an
application 1s deployed in multiple cloud computing envi-
ronments. Although an example 1s shown, i1t should be
understood that example network environment 600 may
include additional or alternative components, and each com-
ponent may have a diflerent configuration.

In the example 1n FIG. 6, 1t 1s desirable to deploy an
application to multiple cloud computing environments, such
as first cloud computing environment 604A and second
cloud computing environment 604B. In the following, ret-
erence numerals with a suili

1X “A” relates to elements 1n first
cloud computing environment 604 A, and suflix “B” to that
in second cloud computing environment 604B. Although
two examples are illustrated 1n FIG. 6 for simplicity, appli-
cation services server 610 may be configured to support
application deployment in any suitable number of environ-
ments.

In one example, first cloud computing environment 604 A
may be a public cloud computing environment, and second
cloud computing environment 6048 a private cloud com-
puting environment. In another example, both 604A and
6048 may be public cloud computing environments, but
operated by different cloud providers (e.g., Amazon Elastic

Compute Cloud, VMware vCloud Hybnd Service, VMware
vCloud Air, etc.). In a third example, both 604A and 6048
may be private cloud computing environments.

To support application deployment, first orchestration
node 660A 1s deployed 1n first cloud computing environment
604A and second orchestration node 660B 1n second cloud
computing environment 604B. Each orchestration node
660A/660B implements execution tlow engine 662A/6628
(stmilar to 162 1n FIG. 1) to control execution of a deploy-
ment plan. To customize for a specific cloud computing
environment 604A/604B, each orchestration node 660A/
6608 may implement cloud-level task execution engine
662A/662B to coordinate the execution of cloud-level tasks.

Here, the term “cloud-level tasks” may refer generally
operations that are performed on a cloud level and specific
to a particular cloud computing environment 604A/604B.
For example, cloud task execution engine 662A/662B may
be configured to access services of cloud provider server
650A/650B (e.g., via provider-specific API) to provision
virtual computing resources (e.g., virtual machines); take a
snapshot of virtual machines; add, update or remove devices
on virtual machine; configure network or storage resources
in, or settings of, cloud computing environment 604A/604B,
ctc. Cloud-level task execution engine 662A/6628 may be
configured to provision virtual machines (e.g., see 640A/
640B) according to a cloud template specific to cloud
computing environment 604A/604B8, such as vSphere tem-
plate, vSphere VM, Amazon Machine Image, efc.

Other tasks, referred to as “resource-level tasks™, may be
coordinated using resource-level task execution engine
666A/666B. Here, the term “resource-level tasks” may refer
generally to operations that are performed at a wvirtual

10

15

20

25

30

35

40

45

50

55

60

65

12

computing resource level (e.g., virtual machine level), such
as to coordinate execution of one or more tasks (e.g., scripts)
to install, configure, start, stop, update or migrate an appli-
cation component on virtual machine 640A/640B. In gen-
cral, the implementation of resource-level task execution
engine 666A/6668 may be the same or similar 1in different
cloud computing environments 604A, 604B8.

Similar to the example 1 FIG. 1, application services
server 610 1n private cloud computing environment 602 may
implement deployment plan generator 612 to generate
deployment plans 122; deployment director 614 to deploy an
application using orchestration node 660A/660B; and
orchestration node manager 616 to configure and manage
orchestration node 660A/660B. To support different com-
munication approaches, application services server 610 fur-
ther implements first communication component 630 to
communicate with first orchestration node 660A, and second
communication component 632 to communicate with sec-
ond orchestration node 660B.

Each communication component 630/632 may support
any suitable “communication approach,” such as {irst
approach “X” and second approach “Y” illustrated in FIG.
6. Here, the term “communication approach” may refer
generally to a type or mode of communication, such as
persistent connection (e.g., using HI'TP keep-alive), non-
persistent connection (e.g., bidirectional communication
using polling, message queue), etc. For example, commu-
nication component 630/632 may be configured to be a
“communication plugin” to establish connection 670A/6708
with orchestration node 660A/660B over any suitable net-
work 672A/672B. The term “plugin”, as used in this dis-
closure may refer to a separate computer program (e.g.,
soltware component, executable instructions) that runs or
executes 1n its own (1independent) process to provide addi-
tional features and functionality to application services
server 610. In practice, the same plugin or diflerent plugins
may be used to support the same communication approach.

Depending on the corresponding communication
approach, connection 670A/6708B may be persistent or non-
persistent, etc. For example, first cloud computing environ-
ment 604A may be a public cloud, and second cloud
computing environment 6048 a private cloud. In this case,
communication component 630 1s configured to establish
first connection 670A as a persistent connection similar to
FIG. 1, and communication component 632 to establish
second connection 670A as a non-persistent connection.

It should be understood that communication component
630/632 1s not tied to a particular cloud computing envi-
ronment, but rather to a particular communication approach
(represented as X and Y in FIG. 6). As such, each commu-
nication component 630/632 may be used for multiple cloud
computing environments that support the same communi-
cation approach. As shown in FIG. 6, each orchestration
node 660A/660B may further implement communication
component 668A/668B to communicate with corresponding
component 630/632 at application services server 110.

Although not shown 1n FIG. 6, it should be understood
that network environment 600 may include any further cloud
computing environment, say C. In this case, communication
component 630 may be used communication approach X 1s
supported by cloud computing environment C or commu-
nication component 632 1f communication approach Y 1s
supported. Otherwise, application services server 610 may
implement an additional communication component to sup-
port a new communication approach (say 7).

FIG. 7 1s a flowchart of example process 700 to deploy an
application in multiple cloud computing environments

US 11,647,101 B2

13

604A, 604B. Example process 700 may include one or more
operations, functions, or actions 1illustrated by one or more
blocks, such as blocks 705 to 790. The various blocks may
be combined i1nto fewer blocks, divided into additional
blocks, and/or eliminated based upon the desired implemen-
tation.

At 705 1 FIG. 7, application services server 610 config-
ures communication component 630/632 and orchestration
node 660A/660B for each cloud computing environment
604A/6048B 1n which application deployment 1s required.
Although an example 1s shown (1n dotted line), communi-
cation components 630, 632, and/or orchestration nodes
660A, 6608 may be configured independently or separately,
such as a new type of cloud computing environment 1s
supported. The configuration at 705 may be mnitiated by a
user (e.g., network administrator using a web interface, CLI,
etc.) via application services server 610, or initiated pro-
grammatically (e.g. based on a trigger, etc.).

Orchestration node 660A may be configured to coordinate
execution ol cloud-level tasks specific to first cloud com-
puting environment 604A (e.g., using 664A 1 FIG. 6), as
well as resource-level tasks (e.g., using engine 666 A in FIG.
6) during the application deployment. First communication
component 630 1s configured to establish connection 670A
with orchestration node 660A to {facilitate application
deployment 1n first cloud computing environment 604A.
Using an example discussed above, first communication
component 630 may establish a persistent connection 670A
with corresponding component 668 A that supports the same
communication approach.

Similarly, orchestration node 660B may be configured to
coordinate execution of cloud-level tasks specific to second
cloud computing environment 604B (e.g., using 6648 1n
FIG. 6), as well as resource-level tasks (e.g., using 666B 1n
FIG. 6). Second communication component 632 1s config-
ured to establish connection 670B with orchestration node
6608 facilitate application deployment in second cloud
computing environment 604B. Using an example discussed
above, second communication component 632 may establish
a non-persistent connection 670B (e.g., bidirectional polling
connection) with corresponding component 668B that sup-
ports the same communication approach.

At 710 i FIG. 7, application services server 610 gener-
ates a first request to deploy an application 1n first computing
environment 604 A according to a first deployment plan. For
example, the first deployment plan specifies one or more
tasks to be executed by a virtual computing resource, such
as VM-A 640A to deploy application component 642A.

Similarly, at 720 1n FIG. 7, application services server 610
generates a second request to deploy an application 1n
second computing environment 604B according to a second
deployment plan. For example, the second deployment plan
specifies one or more tasks to be executed by a virtual
computing resource, such as VM-B 640B to deploy appli-
cation component 642B.

Similar to the examples 1n FIG. 1 to FIG. §, the deploy-
ment plans may be generated using deployment plan gen-
erator 612. In practice, the same application blueprint may
be used to generate different deployment plans for respective
cloud computing environments 604A, 604B. Each deploy-
ment plan may be retrieved from data store 620 (see also
622), or generated at 720 and 730 i FIG. 7.

At 730 1 FIG. 7, a communication component 1s selected
based on the type of cloud computing environment 1n which
the application 1s to be deployed. For example, application
services server 610 selects first communication component
630 to communicate with first orchestration node 660A (e.g.,

10

15

20

25

30

35

40

45

50

55

60

65

14

via corresponding 668A) in first cloud computing environ-
ment 604A and second communication component 632 to
communicate with second orchestration node 660B (e.g., via
corresponding 668B) in second cloud computing environ-
ment 604B.

At 740 and 750 in FIG. 7, application services server 610
sends the first request to first orchestration node 660A via
first communication component 630, and the second request
to second orchestration node 660B via second communica-
tion component 632. Each request 1s to instruct orchestration
node 660A/660B to provision virtual computing resource
640A/640B and to cause virtual computing resource 640A/
640B to one or more tasks to deploy the application. As
discussed above, connection 670A/670B with orchestration
node 660A/660B may be established using communication
component 630/632.

At 760 and 780 in FIG. 7, orchestration node 660A/660B
receives, via connection 670A/670B, the request from appli-
cation services server 610 and proceeds to deploy the
application accordingly. For example, orchestration node
660A/660B coordinates execution of cloud-level tasks using
cloud-level task execution engine 664A/664B, such as to
provision virtual machine 640A/640B 1n cloud computing
environment 604A/604B. Orchestration node 660A/660B
also coordinates execution of resource-level tasks using
resource-level task execution engine 666A/666B8, such as to
cause virtual machine 640A/640B to run one or more tasks
(e.g., scripts) to implement application component 642A/
642B.

At 770 and 790 1in FIG. 7, orchestration node 660A/660B
reports status data relating to task execution by virtual
machine 640A/640B to application services server 610. For
example, the status data may include a status (e.g., “incom-

plete”, “complete”, “in progress”), a start time and an end

time associated with each task to be executed. The status
data may be sent to application services server 610 via
connection 670A/670B.

At 795 1 FIG. 7, application services server 610 receives
the status data via connection 670A/670B and associated
communication component 630/632 and determines whether
the application 1s successiully deployed. If not, application
services server 610 may repeat block 795 to wait for more
status data. Otherwise (1.e., successiully deployed), appli-
cation services server 610 updates deployment status data
624 1n data store 620 accordingly to indicate the completion.
In this case, connection 670A/670B with orchestration node
660A/6608B may be stopped.

Detailed implementations of example process 700 may be
based on the examples 1n FIG. 4 and FIG. 5. Although
discussed with respect to application deployment in hybnd
cloud computing environment 100 in FIG. 1 and FIG. 3,
application services server 610 may similarly configure a
pool of orchestration nodes 1n each cloud computing envi-
ronment 604A/604B. For example, FIG. 8 1s a schematic
diagram 1illustrating example pools 810, 820 of orchestration
nodes 1n the example in FIG. 6. Each pool 810/820 1n cloud
computing environment 604A/6048B may include any suit-
able number of orchestration nodes, such as two as shown
(see 660A/660B and 820A/820B).

When generating and sending requests to deploy an
application at 710 and 720 in FIG. 7, application services
server 610 may determine whether to create a new orches-
tration node, or retrieve an existing one ifrom pool 810/820
in FIG. 8 according to the examples at 405 to 445 1n FI1G. 4.
Communication component 630/632 may be used to estab-
lish any suitable connection (e.g., persistent, non-persistent,
etc.) with a node 1n pool 810/820. After it 1s determined that

US 11,647,101 B2

15

an application 1s successiully deployed 1n cloud computing
environment 604A/604B, application services server 610

may decide to delete or return orchestration node 660A/
6608 to pool 810/820 based on its reuse policy (see also
FIG. 3).

When deploying the application at 740 and 750 1n FIG. 7,
orchestration node 660A/660B may coordinate execution of
cloud-level tasks such as virtual computing resource provi-
sioning according to the examples at 455 to 475 1n FIG. 4.
Further, orchestration node 660A/660B may coordinate
execution of resource-level tasks according to the examples
at 505 to 550 i FIG. 5, such as to generate and transmit a
local deployment plan to virtual machine 640A/640B.

Orchestration node 660A/660B may obtain and report
status data at 760 and 770 in FIG. 7 according to the
examples at 555 and 560 1n FIG. 5. Application services
server 610 may process the status data at 780 and 790 1n
FIG. 7 according to the examples at 565 to 595 1n FIG. 5.
Similarly, after the application 1s deployed, application
services server 610 may decide to delete orchestration node
660A/660B or return 1t to the pool based on 1ts reuse policy.

Using the examples 1n FIG. 6 to FIG. 8, application
services server 110 adapt to application deployment 1n a new
cloud computing environment more easily and efliciently.
For example, by configuring communication component
630/632 that 1s compatible with the communication
approach supported by cloud computing environment 604 A/
6048, 1t 1s not necessary to update other operations of
application services server 110 (e.g., moditying deployment
plan generator 612, deployment director 614, orchestration
node manage 616, or other server logic) every time it 1s
necessary to support a new cloud computing environment.

Although an example 1s shown 1n FIG. 8, it should be
understood that orchestration nodes, say 660A and 820A
within the same cloud computing environment 604, may use
the same communication approach or different approaches.
In this case, depending on the communication approach
supported by each orchestration node, application services
server 610 may select a compatible communication compo-
nent 630/632 to establish a connection accordingly. Similar
to the example in FIG. 6, each orchestration node 660A/
820A/660B/820B implements a corresponding communica-
tion component (not shown for simplicity) to communicate
with application services server 110.

Example Computing System

The above examples can be implemented by hardware,
soltware or firmware or a combination thereof. FIG. 9 1s a
schematic diagram 1illustrating an example computing sys-
tem 900 acting as application services server 110/610.
Example computing system 900 may include processor 910,
computer-readable storage medium 920, network interface
940, and bus 930 that facilitates communication among
these illustrated components and other components.

Processor 910 1s to perform processes described herein
with reference to the drawings. Computer-readable storage
medium 920 may store any suitable data 922, such as
orchestration node data, deployment plans, deployment sta-
tus data, etc. Computer-readable storage medium 920 may
turther store computer-readable instructions 924 which, 1n
response to execution by processor 910, cause processor 910
to perform processes described herein with reference to the
drawings.

Although examples of the present disclosure refer to
“virtual machines, it should be understood that wvirtual
machines running within a virtualization environment are

10

15

20

25

30

35

40

45

50

55

60

65

16

merely one example of workloads. In general, a workload
may represent an addressable data compute node or 1solated
user space instance. In practice, any suitable technologies
aside from hardware virtualization may be used to provide
1solated user space instances. For example, other workloads
may include physical hosts, client computers, containers
(e.g., running on top of a host operating system without the
need for a hypervisor or separate operating system), virtual
private servers, etc. The virtual machines may also be
complete computation environments, containing virtual
equivalents of the hardware and system software compo-
nents of a physical computing system.

The techmiques introduced above can be implemented 1n

special-purpose hardwired circuitry, 1in software and/or firm-
ware 1n conjunction with programmable circuitry, or 1n a
combination thereof. Special-purpose hardwired circuitry
may be 1n the form of, for example, one or more application-
specific integrated circuits (ASICs), programmable logic
devices (PLDs), field-programmable gate arrays (FPGAs),
and others. The term ‘processor’ 1s to be interpreted broadly
to include a processing unit, ASIC, logic umit, or program-
mable gate array etc.
The foregoing detailed description has set forth various
embodiments of the devices and/or processes via the use of
block diagrams, tflowcharts, and/or examples. Insofar as
such block diagrams, flowcharts, and/or examples contain
one or more functions and/or operations, 1t will be under-
stood by those within the art that each function and/or
operation within such block diagrams, flowcharts, or
examples can be implemented, individually and/or collec-
tively, by a wide range of hardware, soiftware, firmware, or
any combination thereof.

Those skilled 1n the art will recognize that some aspects
of the embodiments disclosed herein, 1n whole or 1n part, can
be equivalently implemented 1n integrated circuits, as one or
more computer programs running on one or more computers
(e.2., as one or more programs running on one Oor more
computing systems), as one or more programs running on
one or more processors (€.g., as one or more programs
running on one or More MICroprocessors), as firmware, or as
virtually any combination thereof, and that designing the
circuitry and/or writing the code for the software and or
firmware would be well within the skill of one of skill 1n the
art 1n light of this disclosure.

Software and/or firmware to implement the techniques
introduced here may be stored on a non-transitory computer-
readable storage medium and may be executed by one or
more general-purpose or special-purpose programmable
microprocessors. A “computer-readable storage medium”™,
as the term 1s used herein, includes any mechanism that
provides (1.e., stores and/or transmits) information in a form
accessible by a machine (e.g., a computer, network device,
personal digital assistant (PDA), mobile device, manufac-
turing tool, any device with a set of one or more processors,
etc.). A computer-readable storage medium may include
recordable/non recordable media (e.g., read-only memory
(ROM), random access memory (RAM), magnetic disk or
optical storage media, flash memory devices, etc.).

The drawings are only illustrations of an example,
wherein the units or procedure shown in the drawings are not
necessarily essential for implementing the present disclo-
sure. Those skilled in the art will understand that the units 1n
the device 1n the examples can be arranged 1n the device in
the examples as described, or can be alternatively located in
one or more devices diflerent from that 1n the examples. The
units in the examples described can be combined into one
module or further divided into a plurality of sub-units.

US 11,647,101 B2

17

We claim:
1. A method for a computing system to deploy an appli-
cation 1n multiple cloud computing environments, the
method comprising:
generating a request to deploy an application in a cloud
computing environment according to a deployment
plan that includes one or more first tasks to be executed
by a virtual computing resource from a cloud provider;

sending, to an orchestration node, the request to instruct
the orchestration node to provision the virtual comput-
ing resource from the cloud provider and to cause the
virtual computing resource to execute the one or more
first tasks;

receiving, from the orchestration node, a status of the one

or more first tasks;

when the status of the one or more first tasks 1s a

completed status, determining, based at least one a
reuse policy, whether the orchestration node can be
reused; and

based on the determining:

when the orchestration node can be reused, place the
orchestration node 1n a pool of orchestration nodes;
and

when the orchestration node cannot be reused, delete
the orchestration node.

2. The method of claim 1, turther comprising establishing,
a persistent connection with the orchestration node.

3. The method of claim 1, wherein the method further
comprises: 1 response to recerving the status of the one or
more first tasks, determining whether the application 1s
successiully deployed 1n a public cloud computing environ-
ment.

4. The method of claim 1, wherein the method further
COmMprises:

retrieving the orchestration node from the pool of orches-

tration nodes configured to execute cloud-level tasks
associated with one or more cloud computing environ-
ments.

5. The method of claim 1, wherein the method further
COmMprises:

enabling a first communication component in the cloud

computing environment to communicate with a second
orchestration node 1n a second cloud computing envi-
ronment,

establishing a persistent connection between the first

communication component and the second orchestra-
tion node; and

sending, to the second orchestration node from the first

communication component, a second request to mstruct
the second orchestration node to provision the appli-
cation 1n the second cloud computing environment.

6. The method of claim 5, wherein the method further
COmMprises:

retrieving the second orchestration node from a second

pool of orchestration nodes configured to execute
cloud-level tasks associated with the second cloud
computing environment; and

in response to determination that the application 1s

deployed 1n the second cloud computing environment,
determining whether to delete the second orchestration
node or to return the second orchestration node to the
second pool.

7. The method of claim 1, further comprising generating,
for the request, a deployment plan application blueprint
associated with the application.

8. A non-transitory computer-readable storage medium
that includes a set of instructions which, 1n response to

5

10

15

20

25

30

35

40

45

50

55

60

65

18

execution by a processor of a computing system, causes the
processor to perform the following operations:
generating a request to deploy an application 1n a cloud
computing environment according to a deployment
plan that includes one or more first tasks to be executed
by a virtual computing resource from a cloud provider;
sending, to an orchestration node, the request to struct
the orchestration node to provision the virtual comput-
ing resource from the cloud provider and to cause the
virtual computing resource to execute the one or more
first tasks;
receiving, from the orchestration node, a status of the one

or more first tasks:

when the status of the one or more first tasks 1s a
completed status, determining, based at least one a
reuse policy, whether the orchestration node can be
reused; and

based on the determining:

when the orchestration node can be reused, place the
orchestration node in a pool of orchestration nodes;
and

when the orchestration node cannot be reused, delete
the orchestration node.

9. The non-transitory computer-readable storage medium
of claim 8, wherein the instructions further cause the pro-
cessor to perform the following operations: establishing a
persistent connection with the orchestration node.

10. The non-transitory computer-readable storage
medium of claim 8, wherein the instructions further cause
the processor to perform the following operations: in
response to recerving the status of the one or more first tasks,
determining whether the application 1s successiully
deployed 1n a public cloud computing environment.

11. The non-transitory computer-readable storage
medium of claim 8, wherein the instructions further cause
the processor to perform the following operations:

retrieving the orchestration node from the pool of orches-

tration nodes configured to execute cloud-level tasks
associated with one or more cloud computing environ-
ments.

12. The non-transitory computer-readable storage
medium of claim 8, wherein the instructions further cause
the processor to perform the following operations:

enabling a first communication component in the cloud

computing environment to communicate with a second
orchestration node 1n a second cloud computing envi-
ronment;

establishing a persistent connection between the first

communication component and the second orchestra-
tion node; and

sending, to the second orchestration node from the first

communication component, a second request to mstruct
the second orchestration node to provision the appli-
cation 1n the second cloud computing environment.

13. The non-transitory computer-readable storage
medium of claim 12, wherein the instructions further cause
the processor to perform the following operations:

retrieving the second orchestration node from a second

pool of orchestration nodes configured to execute
cloud-level tasks associated with the second cloud
computing environment; and

in response to determination that the application 1s

deployed 1n the second cloud computing environment,
determining whether to delete the second orchestration
node or to return the second orchestration node to the
second pool.

US 11,647,101 B2

19

14. the non-transitory computer-readable storage medium
of claim 8, wherein the instructions further cause the pro-
cessor to perform the following operations:

generating, for the request, a first deployment plan appli-

cation blueprint associated with the application.

15. A computing system comprising:

a Processor;

a communication component configured for a cloud com-

puting environment;

and a non-transitory computer-readable storage medium

storing 1nstructions that, when executed by the proces-
sor, cause the processor to:
generating a request to deploy an application 1n a cloud
computing environment according to a deployment
plan that includes one or more first tasks to be executed
by a virtual computing resource from a cloud provider;

sending, to an orchestration node, the request to struct
the orchestration node to provision the virtual comput-
ing resource from the cloud provider and to cause the
virtual computing resource to execute the one or more
first tasks:

receiving, irom the orchestration node, a status of the one

or more first tasks;

when the status of the one or more first tasks 1s a

completed status, determining, based at least one a
reuse policy, whether the orchestration node can be
reused; and

based on the determiming:

when the orchestration node can be reused, place the
orchestration node 1n a pool of orchestration nodes;
and

when the orchestration node cannot be reused, delete the

orchestration node.

16. The computing system of claim 15, wherein the
instructions further cause the processor to: establish a per-
sistent connection with the orchestration node.

20

17. The computing system of claim 15, wherein the

instructions further cause the processor to: i response to
receiving the status of the one or more first tasks, determine
whether the application 1s successiully deployed 1n a public

> cloud computing environment.

10

15

20

25

30

18. The computing system of claim 15, wherein the

instructions further cause the processor to:

retrieve the orchestration node from the pool of orches-
tration nodes configured to execute cloud-level tasks
associated with one or more cloud computing environ-
ments.

19. The computing system of claim 15, wherein the

istructions further cause the processor to:

enable the communication component to communicate
with a second orchestration node 1 a second cloud
computing environment;

establish a persistent connection between the communi-
cation component and the second orchestration node;
and

send, to the second orchestration node from the commu-
nication component, a second request to instruct the
second orchestration node to provision the application
in the second cloud computing environment.

20. The computing system ol claim 19, wheremn the

istructions further cause the processor to:

retrieving the second orchestration node from a second
pool of orchestration nodes configured to execute
cloud-level tasks associated with the second cloud
computing environment; and
in response to determination that the application 1s
deployed 1n the second cloud computing environ-
ment, determining whether to delete the second
orchestration node or to return the second orchestra-
tion node to the second pool.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

