12 United States Patent

Felix et al.

US011644884B2

US 11,644,884 B2
*May 9, 2023

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)

(73)

(%)

(21)
(22)

(65)

(63)

(30)

Dec. 21, 2018

(51)

(52)

CONTROLLING A PROCESSOR CLOCK
Applicant: Graphcore Limited, Bristol (GB)

Inventors: Stephen Felix, Bristol (GB); Mrudula
Gore, Bath (GB)

GRAPHCORE LIMITED, Bristol
(GB)

Assignee:

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

Notice:

This patent 1s subject to a terminal dis-
claimer.

Appl. No.: 17/445,219

Filed: Aug. 17, 2021

Prior Publication Data

US 2021/0373637 Al Dec. 2, 2021

Related U.S. Application Data

Continuation of application No. 16/428,797, filed on
May 31, 2019, now Pat. No. 11,119,559.

Foreign Application Priority Data

(GB) 1821064

Int. CI.
GO6F 1/324
GO6F 1/06
GO6F 1/08
GO6F 1/3206

U.S. CL
CPC

(2019.01
(2006.01
(2006.01
(2019.01

L N L

Go6F 1/324 (2013.01); GO6F 1/06
(2013.01); GO6F 1/08 (2013.01); GO6F 1/3206

(38) Field of Classification Search

CPC GO6F 1/324; GO6F 1/3206; GO6F 1/08;
GO6F 1/06
USPC 713/322, 501, 600

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,211,740 B1* 4/2001 Da1rccooeevrinnnnennn HO3L 7/081
331/25
11,119,559 B2 * 9/2021 Felixccooeeviriinnnnin. GO6F 1/06
2005/0182983 Al 8/2005 Gaskins
2010/0185878 Al 7/2010 Rozen
(Continued)

FOREIGN PATENT DOCUMENTS

CN 1054285898 A 11/2015

OTHER PUBLICATTONS

Combined Search and Examination Report for United Kingdom
Patent Application No. GB1821064.1 dated Sep. 30, 2019.

Primary Examiner — 1 H Bae
(74) Attorney, Agent, or Firm — Haynes and Boone, LLP

(57) ABSTRACT

There 1s disclosed a method of controlling the frequency of
a clock signal 1n a processor. The method selects a first clock
generator to provide a processor clock signal for executing
an application. If a threshold event 1s detected, a second
clock generator 1s selected. The method reduces the fre-
quency of a clock signal generated by the first clock gen-
erator while a processor clock signal 1s being provided for
execution ol an application from the second clock generator.
The second clock generator generates a clock at a lower
speed than the first clock generator. After a predetermined
time, the first clock generator is reselected to provide the
processor clock signal. The threshold detection is repeated
until an optimum clock frequency 1s discovered.

(2013.01) 18 Claims, 5 Drawing Sheets
8
o
HOST
U’ulﬂ
2
3---~.~L |/
[] -~
i
b
4 &
ref_;}!k EXCHANGE |"“"’5
_)
CLK Q 12 |
E
2 rea] [][] -—----]
b
Ry = 2
MCU Jﬁ_ﬁkgs
. i i II"frl.'ﬂ:?l
ﬂj"ﬂ " G 32

PREEC

US 11,644,884 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2015/0091620 A1* 4/2015 Pollock HO3K 23/667
327/117
2015/0370303 Al1* 12/2015 Krishnaswamy GOG6F 1/3243
713/322

* cited by examiner

’ ’

(T

U.S. Patent May 9, 2023 Sheet 2 of 5 US 11,644,884 B2

143

ef k| L. ast | &

N
™ 162

% IPUCKSEL =~ [

-lgure /2

US 11,644,884 B2
®;

1
&
1y
Y
%
78 rey
-~
&
o
~—
P
e
i
7 P,
7
/]
fo
B : “
— ;
g | ;
R m
¢ :
/i M
7 M
/o M
. g ¢
= T o
m “ “
& & m “ “
a ¥ .““mmw“. “ w
= e A
s & & B B

, ()

) m

s’
o
iiiiiiiiiiiiiiiii T
5
EEEEEEEEEEEEEEEEE Tl..
HHHHHHHHHHHHHHHH £
TE

<
iiiiiiiiiiiiiiii =
Tt_
T__”-w

US 11,644,884 B2

Sheet 4 of 5

May 9, 2023

U.S. Patent

ALERT

U.S. Patent May 9, 2023 Sheet 5 of 5 US 11.644.884 B2

START APPLICATION

ST SLOW CLOCK

s 351

DETECT
THRESHOLD EVENT {PMIC]
: 558
S56 .
__ MONITOR | DE-ASSERT
ASSERY TIME | | IPUCKSEL
i P | femicl
{Siow
CaCi)
SE0 362
HANDLE INTERUPT : WRITE TO
MU REGISTER
S64
ALTER FAST
CLOCK

S68

CANCEL
REGISTER

US 11,644,384 B2

1
CONTROLLING A PROCESSOR CLOCK

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application 1s a continuation of U.S. patent

application Ser. No. 16/428,797, filed May 31, 2019, which
claims priority to United Kingdom Patent Application No.
1821064.1, filed Dec. 21, 2018, the disclosures of which are
hereby incorporated herein by reference in their entireties.

TECHNICAL FIELD

The present disclosure relates to controlling a processor
clock. Particularly but not exclusively, the present disclosure
relates to controlling a processor clock by selecting an
optimum Irequency for a processor clock signal which 1s
controlling the timing of applications executed on a proces-
SOT.

BACKGROUND

When executing an application on a processor there are
many different variables which may aflect the performance
of the processor when executing that application. These
variables may include the voltage at which the processor 1s
running, the current drawn by the processor, the temperature
of the processor and the execution frequency of one or more
applications controlled by a processor clock signal. There
are many contexts in which these variables become inter-
dependent. This makes selecting an optimum frequency of a
processor clock signal at which any particular application 1s
to be executed very challenging. For any given processor,
different applications may perform differently and therefore
it may not be straightforward to set a processor clock signal
frequency which 1s intended to govern all applications run
on a particular processor. Some processors might be
intended to run a very wide variety of different applications
with widely differing power demands. Furthermore, there
are two potentially opposing challenges. On the one hand,
there 1s a general desire not to “waste power”. The faster a
processor clock runs (the greater the frequency of the clock
signal), the more power will be consumed by the applica-
tion. On the other hand, processors are increasingly being
built with a capacity to run “hot”, that 1s, with high-power
budgets. The faster the processor clock runs, the more
elliciently a particular application can be executed and
deliver 1ts output. This 1s particularly the case for processers
which act as accelerators for processing the demanding
workloads 1n artificial intelligence/machine learning appli-
cations. Thus, elliciency would dictate as fast a processor
clock as possible. However, remaining within a set power
budget which might be allocated for some or all of the
applications to be executed on the processor could dictate a
lower frequency.

SUMMARY

The present disclosure effectively addresses the trade-oil
between the need for efliciency in executing demanding
workloads 1n processors acting as accelerators for example,
and not exceeding power budgets.

A first aspect of the present invention 1s directed towards
a method of controlling the frequency of a clock signal 1n a
processor comprising: selecting a {first clock generator to
provide a processor clock signal for executing an applica-
tion; detecting a threshold event indicating that the applica-

10

15

20

25

30

35

40

45

50

55

60

65

2

tion has exceeded a power budget allocated for 1ts execution;
selecting a second clock generator to provide the processor
clock signal for executing the application, wherein the
frequency of the processor clock signal provided by the
second clock generator 1s less than the frequency of the
processor clock signal provided by the first clock generator;
reducing the frequency of a clock signal generated by the
first clock generator while the processor clock signal 1s
being provided from the second clock generator; and after a
predetermined time from selecting the second clock genera-
tor, reselecting the first clock generator to provide the
processor clock signal.

Factors which determine the performance of a processor
executing a particular application may comprise four main
factors. The processor frequency ol a processor’s clock
signal 1s one of these four main factors. The other three may
include: the voltage at which the processor 1s running, the
current drawn by the processor, and the temperature of the
processor. These four main factors can, 1n various combi-
nations and in various contexts, become interdependent to
various extents. Therefore, selecting an optimum processor
clock signal frequency i1s paramount to optimising the efli-
ciency ol a processor executing a particular application. The
present disclosure concerns the trade-ofl between increased
frequency corresponding to increased speed of execution of
an application and the limits of each application’s power
budgets.

In embodiments, the aforementioned step of reducing the
frequency of the clock signal generated by the first clock
generator may reduce the frequency by a predetermined
amount during the predetermined time. This predetermined
amount may be between 1% and 5% of a starting value of
the frequency of the clock signal generated by the first clock
generator. The start value of the frequency of the processor
clock signal generated by the first clock generator may be
between 1 GHz and 1.6 GHz.

In embodiments, the frequency of the clock signal gen-
erated by the second clock generator may be constant during
execution of the application and this frequency may be a
fraction, optionally 50%, of the frequency of the clock signal
generated by the first clock generator. This value of the
frequency of the clock signal generated by the second clock
generator may be in the range of substantially 500 MHz to
substantially 800 MHz. Other ranges and values are pos-
sible.

In embodiments, the aforementioned step of detecting the
threshold event may detect that a current drawn by the
processor 1n executing the application has exceeded a cur-
rent threshold set based on the power budget.

In embodiments, the aforementioned step of selecting the
second clock generator may comprise detecting that a selec-
tion value has been written into a register of the processor.
Selecting the second clock generator may be carried out
responsive to detection that an alert signal has been asserted
at a detection mnput of the processor and responsive to that
detection the second clock generator 1s selected but the
frequency of the clock signal generated by the first clock
generator 1s not vet reduced at that point, such that when the
first clock generator 1s reselected the processor clock signal
1s at the same clock frequency as 1t was before the second
clock generator was selected. When the frequency of the
clock signal generated by the first clock generator 1is
reduced, the step may comprise adjusting configuration
settings of the first clock generator via an adjustment input.
Alternatively, or 1n addition, the step of reducing the fre-
quency ol the clock signal generated by the first clock
generator may comprise waiting for the predetermined time

US 11,644,384 B2

3

for the reduced clock frequency to stabilise. In embodi-
ments, the alert responsive to detecting the threshold event
may be asserted while the application exceeds 1ts power
budget and for a fixed delay thereafter, after which 1t 1s
de-asserted.

In embodiments, after a time period at least an order of
magnitude greater than the predetermined time, the 1fre-
quency of the clock signal generated by the first clock
generator may be increased to a value above a start value to
determine whether the application can be executed at a
processor clock frequency higher than the start value.

A second aspect of the present mmvention 1s directed
towards a computer system comprising: a first clock gen-
erator configured to generate a first clock signal; a second
clock generator configured to generate a second clock signal
which has a frequency lower than that of the first clock
signal; switching circuitry configured to select one of the
first and second clock signals to serve as a processor clock
signal for the execution of at least one application on a
processor; monitoring circuitry configured to detect a thresh-
old event indicating that the application has exceeded a
power budget allocated for its execution; and a controller
responsive to detection of the threshold event to reduce the
frequency of the first clock signal and to control the switch
to select the second clock signal to serve as the processor
clock while the frequency of the first clock signal 1s reduced.

In embodiments, the first and/or the second clock gen-
crator of the computer system may each be implemented as
a phase locked loop. The first clock generator may have an
adjustment mput selectable by the controller to adjust the
frequency of the clock signal generated by the first clock
generator. The frequency of the clock signal output by the
second clock generator may be maintaimned at a constant
value for the period of execution of the application.

In embodiments, the computer system may comprise a
logic gate having a first input configured to receive from the
monitoring circuitry an alert which 1s asserted to indicate
detection of the threshold event, and a second input config-
ured to receive a value determined or generated by the
controller, the logic circuitry being such that the second
clock generator 1s selected if either of the first or second
input 1s asserted. The value determined or generated by the
controller may be written 1nto a register.

In embodiments, the monitor of the computer system may
comprise a power management integrated circuit. The moni-
tor of the computer system may additionally or alternatively
comprise an ammeter. The aforementioned threshold event
may comprise an over current event indicating that the
processor 1s drawing a current in excess of a current thresh-
old when executing the application.

In embodiments, the switching circuitry comprises a
multiplexor, preferably a glitch free multiplexor, having first
and second inputs connected respectively to outputs of the
first and second clock generators, and an output which
provides the processor clock signal.

A further aspect of the present invention 1s directed
towards a clock controller for controlling the frequency of a
clock signal 1n a processor, the clock controller comprising:
a clock adjustment output configured to provide a clock
adjustment signal for adjusting the frequency of a first clock
generator of a processor; a throttling output configured to
select a second clock generator to provide a processor clock
while the frequency of the first clock generator 1s adjusted;
wherein the throttle output 1s asserted for a predetermined
time to select the second clock generator and wherein the
output frequency of the first clock generator 1s adjusted by
a predetermined amount; an input to receive an alert respon-

10

15

20

25

30

35

40

45

50

55

60

65

4

sive to detection of a threshold event indicating that the
application has exceeded a power budget allocated for 1ts
execution; and a processor configured to detect the alert, to
assert the signal for selecting the second clock generator and
to generate an adjustment signal on the adjustment output
for adjusting the first clock generator.

In embodiments, the controller may comprise a two-way
connection configured to connect the controller to a power
management chip, wherein the controller 1s configured to
supply a power budget to the power management chip and
to recerve the alert from a monitor on the power manage-
ment chip.

For a better understanding of the present invention and to
show how the same may be carried nto eflect reference will
now be made by way of example to the accompanying
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a schematic block diagram of a processor with
a clock control system;

FIG. 2 1s a schematic block diagram of a clock generator
module;

FIG. 3 1s a timing diagram illustrating adjustment of a
‘fast’ clock;

FIG. 4 1s a schematic diagram 1llustrating assertion of an
alert on detection of a threshold event; and

FIG. 5 1s a flowchart illustrating a method of clock
control.

DETAILED DESCRIPTION

FIG. 1 1s a schematic block diagram of a computer system
which comprises a processor 2 which may be for example a
single chip processor comprising multiple processing units
sometimes referred to herein as tiles 3. The processor 2 1s
clocked by a clock 4 which provides a reference clock
reif_clk at a base clock frequency to the processor 2. Note
that the term “clocked” may be alternatively termed as
“controlled”. The word clock used herein 1s used to denote
a clock signal at a certain frequency. The terms “clock
frequency” and “clock signal frequency” may be inter-
changed. The processor 2 1s connected to a management
control unit (MCU) module 6, which could be implemented
on or ofl the same chip as the processor. The MCU 6
manages multiple services of the processor 2 and in the
present context controls the frequency of a clock signal
which governs operation of the tiles 3 on the processor 2.
Operation of the tiles 1s understood to mean any operation of
any active tiles, including, not exclusively, executing local
programs forming part of an application executed on the
processor. A power management integrated circuit (PMIC) 7
provides power to the processor 2 through a supply voltage
rall labelled VDD, and 1s connected to the MCU wvia a
two-way serial bus 30 and an interrupt pin 32. The interrupt
pin may take the form of one or more physical wire. The
processor 2 may be an accelerator which 1s used to process
workloads allocated to i1t by a host 8. Note that the terms
application and workload are used interchangeably herein.
In some cases an application may be preloaded onto a chip
and workload data supplied from the host. The host 8 can
supply workload data for being executed to the processor 2
via an interface 10. The accelerator may be a single proces-
sor 2, or multiple processors connected on a card. There may
be multiple cards connected in a rack, for example a server
rack. The processors may be of the type, known as an
intelligence processor unit (IPU), which are designed to deal

US 11,644,384 B2

S

with workloads 1n the field of artificial intelligence or
machine learning. The clock 4 may serve one processor or
multiple processors. The clock 4 may supply the reference
clock ref_clk to an on-chip clock generator module 12 via a
card connector (not shown) or similar. The on-chip clock
generator module 12 generates a processor clock signal @
which 1s supplied to the processing units 3 on the processor
2. The physical clock lines supplying each processing unit
are not shown mn FIG. 1 to avoid overcomplicating the
diagram. Note that other parts of the processor for example
an exchange 5 which enables controls inter-tile communi-
cation on the chip may be clocked by the clock signal @ or
by the reference clock ref_clk or by some other clock (not
shown).

As an alternative to the clock being supplied via a card
connector or similar, there may be an “on-board” clock
source. That 1s, the clock 4 may be implemented within the
processor 2. The clock signal from the clock source 4 1s the
reference clock ref_clk from which the clock signal & for
the operation of the processing units 1s derived. A system
clock for some aspects on the chip logic (not shown) could
also be derived tfrom the reference clock ref clk.

In accordance with embodiments of the invention the
clock generator module 12 receives the reference clock
rei_clk signal and generates the processor clock signal @ as
described herein. The processor clock signal 1s alternatively
referred to herein as the IPU clock signal ®.

The on-chip clock generator module 12 receives an input
from an IPU clock selection pad 22 which 1s connected to
the interrupt pin 32 of the PMIC 7. It also receives a value
from an on chip register 23, which can be written to via an
interface 38 by the MCU 6. The interface may be JTAG
interface. The clock generator module 12 comprises two

phase locked loops (PLLS) 14, 16 which are shown 1n FIG.
2. Each PLL 12, 14 receives the reference clock ret_clk. A
first one of the PLLs 14 (*fast” PLL) generates a so-called
fast clock from the reference clock ret clk, and a second one
of the PLLs 16 (*slow” PLL) generates a so-called slow
clock from ref_clk. A glitch free multiplexer 18 receives the
outputs from the PLLs 14, 16 and can switch between the
tast clock and the slow clock to provide the IPU clock signal
®. The multiplexer 18 1s controlled by a multiplexer control
signal 34 which 1s the output of an OR gate 36 which 1s also
shown as forming part of the clock generator module 12. The
multiplexer may be a glitch free multiplexor. It will be
appreciated that while the clock generator module 12 1is
described as comprising the various above circuits, these
circuits (PLLs, OR gate, multiplexor, register) need not be
located 1n the same particular block but could be distributed
in the chip. The clock generator module 12 1s described
therefore as a convenient way of explaining how embodi-
ments of the invention operate to control generation of the
IPU clock ®. The clock generator module i1s alternatively
referred to herein as a controller. One 1nput of the OR gate
36 1s connected to the IPU clock selection pad 22 which 1s
connected to the interrupt pin 32 of the PMIC 7 via a
physical wire or wires which permit the PMIC 7 to control
the state of the clock selection pad 22. A signal which can
be asserted on the line connecting the interrupt pin to the
clock selection pad 22 1s labelled IPUCKSEL (as a short-
hand for IPU clock selection). As will be described in more
detail later, when this signal is asserted at a predetermined
logic value, the output of the slow PLL 16 i1s selected to
provide the IPU clock ®, and when 1t 1s not asserted, IPU
clock @ depends on the state of the other input to the OR
gate 36. The other mput to the OR gate 36 1s derived from

the register 23 which can store an indication written nto 1t

10

15

20

25

30

35

40

45

50

55

60

65

6

by the MCU 6. When a predetermined logic value (“1” in the
embodiment) 1s stored 1n the register 23, this causes the state
of the multiplexor control signal 34 to be asserted and thus,
to select the output of the slow PLL 16 as the IPU clock ®.
When the opposite logic value (“0” 1n the embodiment) 1s
stored 1n the register 23, the state of the multiplexor control
signal 34 depends on the IPUCKSEL signal. As a conse-
quence, by operation of the OR gate, when either the
IPUCKSEL signal on the clock selection pad 22 1s asserted,
or the value 1n the register 23 achieves the predetermined
logic state, the multiplexer 18 selects the output of the slow
PLL 16 as the IPU clock ®. Conversely, the output of the fast
PLL 14 1s selected if the clock selection pad 1s not asserted
and the register has the opposite logic value (not the pre-
determined logic state).

As described 1n one embodiment, the clock selection pad
22 15 asserted high to control the multiplexer 18 to select the
output of the slow PLL 16, and 1s not asserted (low) 1n the
opposite condition. Of course, 1t 1s possible to use an
opposite protocol, where the clock selection pad 22 would
be asserted low to select the output of the slow PLL, and
would be high 1n the opposite condition. Similarly, the logic
values 1n the register 23 could be reversed—*0” to assert the
slow clock and “1” to de-assert the slow clock. Other logic
values (one or more bits) could be used to denote an assert
or deassert condition.

The fast PLL 14 1s intended to supply, for most of normal
workload processing operations of the processor 2, the IPU
clock ® which clocks (controls) the processing operations of
the processing units 3 on the processor 2. The slow PLL 16
may be considered as a system PLL because 1t can be used
for various start-up and system tasks.

The slow PLL 16 also performs an additional function
herein, which 1s to supply the IPU clock ® while an
optimum frequency for the fast clock from the fast PLL 14
1s being discovered. As an example, the output of the slow
PLL 16, the slow clock, could be 1n the range of 25 MHz to
1 GHz, and the output of the fast PLL 14, the fast clock could
be 1n the range of 25 MHz to 1.6 GHz. Based on the
foregoing, clock frequency ranges, it 1s evident that these
ranges encompass scenarios when the fast and slow clocks
may produce outputs at the same speed. That 1s not the
intended operation in the embodiment described herein. In
particular, non limiting embodiments, the slow clock could
be 1n the range 500 MHz to 800 MHz. The fast clock could
be 1n the range 1 GHz to 1.6 GHz. The intended operation
1s that the output from the fast PLL 14 1s “faster” (i.e. runs
at a higher clock frequency) than the output of the slow PLL
16. In some embodiments, the frequency of the output of the
tast PLL 14 might be twice the frequency of the output of the

slow PLL 16. For example, the frequency of the output of the

fast PLL 14 could be 1.6 GHz, and the frequency of the
output of the slow PLL 16 could be 800 MHz. Many
different specific frequencies and frequency ratios can be
utilised within the concepts of the present invention. The
output of the fast PLL 14 could run at a different multiple of
the output of the slow PLL for example, and the frequency
of the output of the slow PLL may be set differently for
different purposes. What 1s important, however, 1s the man-
ner by which the slow PLL and the fast PLL have their clock
frequencies set, as will be described further herein.

As 1s known 1n the art, the frequency of clock signals
generated by PLLs can be adapted by adapting the configu-
ration settings of the PLL. There are many diflerent types of
PLL and the adaption may be performed 1n many different
ways, which are known 1n the art. In one example, a divider

setting may be altered which affects the manner 1n which a

US 11,644,384 B2

7

supply voltage to the PLL 1s divided and which therefore
causes the PLL to “lock™ onto a different clock frequency.
When adjusting a PLL, different kinds of PLL have different
“lock’ times. The “lock™ time 1s the time taken by the PLL
to change from one stable output frequency to a diflerent
stable output frequency in response to an adaption signal
that 1s being applied. In FIG. 2, reference numeral 14a
denotes the adaptation signal for the fast PLL, and reference
numeral 16a denotes the adaption signal for the slow PLL.
The fast and slow PLLs may be of the same or different
types.

The frequency of the output (or output frequency) opera-
tion of the processor encompasses operation of the tiles as
well as on-chip logic and other system functions. of the slow
PLL 16 1s set according to a power budget allocated for
operation of the processor in a particular context as deter-
mined by the host 8. This 1s described 1n more detail later.
Once the output frequency of the slow PLL 16 has been set
for the particular context, its output frequency remains
constant for that particular context. For example, 1t may
remain constant to process certain workloads, or for a certain
extended period of time or until the allocation of a new
power budget. Generally, 1t 1s the intention to set the output
frequency of the from the slow PLL 16 during start-up or
booting of the chip and only change it when there 1s a change
in the context of operation of the chip. The frequency of the
slow clock 1s selected by operation of the MCU through the
interface 38. It 1s set up at the beginning of operation of the
chip and i1s thereafter not changed on the fly in normal
circumstances.

By contrast, the discovery of the frequency of the output
of the fast PLL 14 can be carried out dynamically while the
processor 1s running a particular application 1n the manner to
be described. The purpose of altering the frequency of the
output of the fast PLL 14 1s to try and ascertain (discover)
relatively quickly the maximum {frequency at which an
application can operate without exceeding an allocated
power budget to the chip. This 1s achieved as described in
the following.

A power budget 1s set for a particular application or
workload which 1s to be executed by the processor 2. In
some embodiments the power budget 1s set by the host and
conveyed to the MCU (via the processor 2 or directly via
another means, not shown), although other possibilities
exist. For example, the MCU 6 may be aware of previous
similar applications run for that particular chip embodying
the processor and may be able to set the power budget based
on power budget historical data which has been stored. In
any event, the MCU 6 has an understanding of the power
budget. Where there are multiple chips on a card, the MCU
may determine for each chip what the power budget for that
chip 1s to be. When running applications in the field of
machine learning and artificial intelligence, the demands
which are placed on processing requirements for the chip
imply that a power budget should be reached but not
exceeded. That 1s, the aim 1s to run the chip as “hot” as 1s
possible within the constraints of the power budget. The
MCU 6 determines, based on the power budget, a current
threshold to be managed by the PMIC 7. In some embodi-
ments, the PMIC 7 supplies a constant supply voltage VDD
(for example, 0.8 Volts) to the supply voltage rail of the
processor 2, such that the current threshold can be derived
by dividing the power budget by the supply voltage VDD. In
other situation, there may be complex calculations required
to determine the current threshold which is to be used by the
PMIC 7. The PMIC 7 comprises an ammeter 11 or other kind

of sensor which 1s capable of detecting when the current

10

15

20

25

30

35

40

45

50

55

60

65

8

threshold has been exceeded by current drawn by the
processor 2. The PMIC 7 1s approprately connected to the
processor 2 to measure the current, although these connec-
tions are not shown in FIG. 1. The current 1s the current
which 1s bemng drawn by the processor 2 to execute the

application or workload. The current threshold determined
by the MCU 6 1s communicated to the PMIC 7 over a serial
bus 30 which connects the MCU 6 to the PMIC 7, and 1s
stored 1n a memory (not shown) of the PMIC 7. As described
in the following, a threshold event 1s a detected by the PMIC
if the current drawn by the processor 2 exceeds a threshold
value representing the current threshold. On the occurrence
ol such a threshold event, an alert 1s asserted on the interrupt
pin 32 to indicate to the MCU 6 that a threshold event has
occurred. The MCU 6 manages the interrupt pin 32 with an
interrupt protocol. One consequence of this 1s discussed
later, but before doing so the principles of discovery of the
fast clock speed (output frequency of the fast PLL 14) will
now be laid out.

FIG. 3 illustrates the manner 1n which the first PLL 14 1s
dynamically controlled to deliver the IPU clock @ based on
the power budget. At time T0 when the application 1s started,
the output of the fast PLL 14 1s supplied at a first (start) clock
frequency @, to the processing units 3 on the processor as
shown by the full line between T0 and T1 1n FIG. 3. If the
clock frequency 1s too high, the current drawn by the
processor 2 will exceed the current threshold. Time T1
denotes such an over-current event which 1s indicated by the
PMIC 7 and which indicates that the clock at the start clock
frequency 1s too high to run that application within the
allocated power budget. The multiplexer 18 1s controlled (as
described later), to select the output @ of the slow PLL 16
as the clock signal to be supplied to the processing units 1n
place of @, for a time period A. During that time period A,
settings 1n the fast PLL 14 may be adjusted by the adjust-
ment iput 14a under the control of the MCU 6 to reduce the
speed of the output of the fast PLL 14 to a lower value @,
as indicated by the dotted line commencing at time 11 1n
FIG. 3. The multiplexer 18 1s controlled (as described later)
to reselect the output of the fast PLL 14 at time 12 to run the
application at frequency @®,. At time T3, again, an over-
current event 1s detected and the steps are repeated. Even-
tually, the application runs without the detection of over-
current events at a frequency labelled @ 1n FIG. 3. @ 1s the
discovered application clock frequency. That frequency @,
may be stored 1n association with the application so that the
next time that the application 1s executed the optimum clock
frequency can be set on commencement of the application.
The next time workloads for that application are provided to
the processor 2, an appropriate setting for the fast PLL 14
can be looked up which delivers the clock at the optimum
frequency (as adjusted at the adjustment 1nput 14a) for that
application. However, the discovery process should be rela-
tively quick, such that storage of the discovered frequencies
may not be needed. Note that by this process the optimum
frequency 1s the fastest frequency at which the IPU clock @
can run without over-current events. Note that the terms
“speed” and “frequency” may be used interchangeably when
referring to clock signals.

Note that 1n the period 1n which the application 1s running
on the slower clock @, 1t 1s of course running slowly, but 1t
1s not failing completely. Moreover, 1t 1s sure to remain
within the power budget i1 the speed of the slow PLL has
been properly set at the outset.

Moreover, the time periods A for which the application 1s
running on the slow clock may be very short. The time
periods A are set based on the time which it takes for the fast

US 11,644,384 B2

9

PLL 14 to stabilise at the new clock frequency. This can be
related to the “lock” time of the PLL. In some embodiments
this 1s of the order of tens of microseconds, for example in
the range of 10-100 Ms. One example may be 20 microsec-
onds.

The process by which the multiplexer 18 1s controlled to
switch the output delivered as IPU clock @ from the fast
PLL 14 to the slow PLL 16 at an overcurrent event will now
be described. There are two mechamsms. The first mecha-
nism involves the handling of the interrupt on the nterrupt
pin 32 by the MCU 6. In handling of the interrupt, the MCU
writes a “1” into the register 23 such that (even 1t the
IPUCKSEL signal at the clock selection pad 22 becomes
deasserted), the multiplexer 18 1s still controlled to have the
application controlled by the slow PLL 16. The MCU 6 (via
the JTAG interface 38) controls the fast PLL 14 through the
adaption signal 14a to adjust the PLL settings to reduce the
frequency of the output clock from the fast PLL, as shown
in FIG. 3.

Although FIG. 3 shows relatively large decreases of the
clock frequency (for clarity of illustration), in fact these
decreases can be very small (of the order of 1 to 2% of the
maximum clock frequency), which might be typically orders
of magnitude between 12 and 25 Hertz. These are relatively
small steps compared with the absolute frequency (which
might be of the order of 1 GHz as discussed earlier). After
a period of time allowing for the fast PLL to stabilise (A 1n
FIG. 3) the MCU 6 changes the status of the “1” in the
register 23 and (assuming the alert on the interrupt pin 32 1s
not asserted), the output IPU clock ® of the multiplexer 18
1s selected to be the output of the fast PLL 14. It will be
appreciated that the first mechanism involving the MCU
writing to the register 23 1s adequate by itself and adjusting,
the clock frequency enables the clock discovery process to
be implementable. However, the interrupt attention time of
the MCU 6 cannot be guaranteed. There are circumstances
in which it can be important to quickly “throttle back™ to the
slow clock to avoid exceeding the power budget. Throttling
back within 10 microseconds can be needed 1n some cir-
cumstances. To achieve this, a second mechanism 1s pro-
vided 1n some embodiments.

According to the second mechanism the alert which 1s
asserted on the interrupt pin 32 to the MCU 6 1s also supplied
to the clock selection pad 22 which feeds one input of the
OR gate 36. This provides an immediate “throttling back™ 1n
the event of detection that the current has exceeded a current
threshold. This has been referred to as an over current event
or threshold event, such terms being interchangeable. By
using an alert hard wired directly to the clock selection pad
22, 1t can be guaranteed that the application moves to
operate on a slower clock as soon as the threshold event i1s
seen. Thus, if 1t takes the MCU 6 some time to respond (due
for example to interrupt handling latency), the power budget
1s nevertheless respected. FIG. 4 shows the relationship
between the current and the alert raised by PMIC 7. Figure
shows the graph of current I versus time T. The current 1s the
current drawn by the processor 2 as measured by the
ammeter 11 1n the PMIC 7. A threshold value for the current
Ith has been set by the MCU 6 as described earlier. At time
11, the overcurrent event 1s detected as the current exceeds
the threshold. At this time the alert 1s set on the iterrupt pin
32. In reality this alert may be set a very short time after the
over-current event to allow for logic processing in the PMIC
7. Note, however that the alert does not de-assert immedi-
ately when the current falls below the threshold. Instead, the
interrupt pin 32 remains asserted to select the output of the
slow PLL 16 for a short period after the current has dropped

10

15

20

25

30

35

40

45

50

55

60

65

10

below the threshold. This period may be programmable, and
can avoid the level of the pin repeatedly changing due to the
interrupt handling time of the MCU 6. After that short period
of time, 1t 1s de-asserted. Note that alternatives are possible,
for example a sticky flag could retain the alert until it 1s
cleared.

If at that stage, the MCU 6 has not set a “1” into the

register 23, the output of the fast PLL 14 will be reasserted
as at time 12 1n FIG. 3. Note that with this mechanism 1n
place 1t does not necessarily matter 11 the MCU 6 takes some
time to respond to the over-current event. However, what
will happen 1s that the fast PLL 1s reasserted at its original
fast speed @, presumably an over-current event will again
be detected (because the clock 1s too fast for the current
power budget), and the alert mechanism will respond again
to select the output of the slow PLL 16. So there might be
some 1terations between outputs of the fast and slow PLLs,
while the fast PLL 1s not adjusted to slow down its speed.
Nevertheless, the power budget 1s maintained and the appli-
cation continues to operate. Once the MCU 6 gets round to
processing the interrupt, 1t will adapt the speed of the fast
PLL as described earlier.
There may be a change in circumstances such that the
discovered (current) frequency @ _ which 1s discovered for
the application may not represent the fastest possible fre-
quency at which that application could be run. Therefore, 1n
some embodiments the MCU 6 can periodically attempt to
discover a higher frequency. FIG. 3 shows a time point T4
which 1s after a time period at least an order of magnitude
greater than the time delay A which 1s used to adjust the first
clock. If those time periods are of the order of tens of
microseconds, time T4 may be at a point around 100
milliseconds. At thus point, the controller operates to select
the output of the slow PLL 16 and to increase the frequency
of the output of the fast PLL to a value ®,which 1s higher
than the current frequency ®. For example, ®,could be the
preceding step value @,. In some cases, the value @, could
be above the start frequency @, Then, the discovery process
which has been described above and which occurred at times
T0 to T3 et cetera will begin again to see whether or not that
higher frequency can be maintained, or to discover a 1ire-
quency between @, and @

Retference will now be made to FIG. § which 1s a
flowchart illustrating a clock control process described
herein. At step S50 an application 1s started at a certain start
fast clock frequency @, . Prior to that or at the same time the
frequency of the output of the slow PLL 16 1s set, which 1s
intended to be constant while the application 1s executed.
Step S51 does not represent a method step 1n the flow, but
schematically illustrates the state of the multiplexer 18 1n
that the output of the fast PLL 14 1s selected as the processor
clock @ if the IPU clock selection signal IPUCKSEL 1s
deasserted and the value 1n the register 23 i1s (according to
the logic described above) at logic value “0”. Assuming that
the processor 1s running on the output of the fast PLL 14 the
following steps take place. At step S52, the PMIC 7 detects
a threshold event and asserts an alert on the IPU clock

selection pad 22 (step S54). This causes the output of the
slow PLL 16 to be selected. The PMI

(C 7 monitors the time
for which the alert should be asserted at step S56, and
deasserts the alert after that time period at step S58. This
de-asserts the IPU clock selection pad 22 which acts as input
to the OR gate 36 and the multiplexer 18 selects the output
of the fast PLL as the IPU clock @ unless the register value
in register 23 1s written to a “1”. The loop of S51, S52, S54,
S56 and S58 might occur more than once until the MCU 6

gets round to handling the mterrupt on pin 32. Step S60

US 11,644,384 B2

11

denotes the step point at which the MCU 6 handles the
interrupt. According to the interrupt handling sequence, at
step S62 the value of “1” 1s written to the register 23. This
will ensure that the output of the slow PLL 16 1s selected
while the MCU alters the frequency of the output of the fast
PLL 14 at step S 64. Once that has been done (time period
A FIG. 3), the value 1n the register 23 1s cancelled (written
to a “0”) and this deasserts the second 1mnput to the OR gate
36. The two mechanisms 1n this flow ensure that even 11 the
MCU exhibits latency 1n handling the interrupt, nevertheless
the processor clock will switch between the fast and slow
clocks 1n such a way as not to exceed the power budget.
However, in some embodiments the interrupt handling
sequence by itsell 1s eflective to discover the fastest IPU
clock frequency within a particular power budget.

While particular embodiments have been described, other
applications and variants of the disclosed techniques may
become apparent to a person skilled in the art once given the
disclosure herein.

The invention claimed 1s:

1. A clock controller for controlling a processor clock
signal 1n a processor, the clock controller comprising:

a clock adjustment output configured to provide a clock
adjustment signal for adjusting a frequency of a first
clock generator of the processor;

a throttling output configured to select a second clock
generator to provide the processor clock signal while
the frequency of the first clock generator 1s adjusted;
wherein the throttling output i1s configured to be
asserted for a time to select the second clock generator
and wherein the frequency of the first clock generator
1s adjusted by an amount; and

an mput configured to receive an alert responsive to
detection of a threshold event indicating that an appli-
cation, running on the processor, has exceeded a power
budget allocated for execution;

a clock control processor configured to detect the alert, to
select the second clock generator and to generate the
clock adjustment signal on the clock adjustment output
for adjusting the first clock generator; and

a two-way connection configured to connect the clock
controller to a power management chip, wherein the
clock controller 1s configured to supply the power
budget to the power management chip and to receive
the alert from a monitor on the power management
chip.

2. The clock controller of claim 1, wherein the amount 1s
between 1% and 3% of a starting value of the frequency of
the first clock generator.

3. The clock controller of claim 1, wherein a start value
of a frequency of the processor clock signal generated by the
first clock generator 1s between 1 GHz and 1.6 GHz.

4. The clock controller of claim 1, wherein a frequency of
the second clock generator 1s a fraction of the frequency of
the first clock generator.

5. The clock controller of claim 1 wherein a frequency of
the second clock generator 1s 50% of the frequency of the
first clock generator.

6. The clock controller of claim 1, wherein a frequency of
the second clock generator 1s 1n a range of 500 MHz to 800
MHz.

7. The clock controller of claim 1, wherein the clock
controller 1s configured to reduce the frequency of the first
clock generator by adjusting configuration settings of the
first clock generator via an adjustment mput.

8. The clock controller of claim 1, wherein the clock
controller 1s configured to reduce the frequency of the first

5

10

15

20

25

30

35

40

45

50

55

60

65

12

clock generator after waiting for the time for the frequency
of the first clock generator to stabilise.

9. A clock controller for controlling a processor clock
signal 1n a processor, the clock controller comprising:

a clock adjustment output configured to provide a clock
adjustment signal for adjusting a frequency of a first
clock generator of the processor;

a throttling output configured to select a second clock
generator to provide the processor clock signal while
the frequency of the first clock generator 1s adjusted;
wherein the throttling output i1s configured to be
asserted for a time to select the second clock generator
and wherein the frequency of the first clock generator
1s adjusted by an amount;

an mmput configured to receive an alert responsive to
detection of a threshold event indicating that an appli-
cation, running on the processor, has exceeded a power
budget allocated for execution; and

a clock control processor configured to detect the alert, to
select the second clock generator and to generate the
clock adjustment signal on the clock adjustment output
for adjusting the first clock generator, wherein the clock
controller 1s configured to, after a time period at least
an order of magnitude greater than the time, increase
the frequency of the first clock generator to a higher
value.

10. A non-transitory computer readable media comprising
computer readable instructions which, when executed by a
processor perform the steps of controlling a processor clock
signal by:

detecting an alert responsive to detection of a threshold
cvent indicating that an application has exceeded a
power budget allocated for execution;

generating a clock adjustment signal for adjusting a
frequency of a first clock generator of the processor;

asserting a throttling output for a time to select a second
clock generator to provide the processor clock signal
while the frequency of the first clock generator i1s
adjusted; wherein the frequency of the first clock
generator 1s adjusted by an amount; and

alter a time period at least an order of magnitude greater
than the time, increase the frequency of the first clock
generator to a higher value.

11. The non-transitory computer readable media of claim
10, wherein the amount 1s between 1% and 5% of a starting
value of the frequency of the first clock generator.

12. The non-transitory computer readable media of claim
10, wherein a start value of a frequency of the processor
clock signal generated by the first clock generator 1s between
1 GHz and 1.6 GHz.

13. The non-transitory computer readable media of claim
10, wherein a frequency of the second clock generator 1s a
fraction of the frequency of the first clock generator.

14. The non-transitory computer readable media of claim
10, wherein a frequency of the second clock generator 1s
50% of the frequency of the first clock generator.

15. The non-transitory computer readable media of claim
10, wherein a frequency of the second clock generator 1s 1n
a range ol 500 MHz to 800 MHz.

16. The non-transitory computer readable media of claim
10, wherein adjusting the frequency of the first clock gen-
erator includes reducing the frequency of the first clock
generator by adjusting configuration settings of the first
clock generator.

17. The non-transitory computer readable media of claim
10, wherein adjusting the frequency of the first clock gen-
erator includes reducing the frequency of the first clock

US 11,644,384 B2
13

generator after waiting for the time for the frequency of the
first clock generator to stabilise.
18. A method of controlling a processor clock signal, the
method comprising:
detecting an alert responsive to detection of a threshold 5
cvent indicating that an application has exceeded a
power budget allocated for execution;
generating a clock adjustment signal for adjusting a
frequency of a first clock generator of a processor
running the application; 10
asserting a throttling output for a time to select a second
clock generator to provide the processor clock signal
while the frequency of the first clock generator is
adjusted; wherein the frequency of the first clock
generator 1s adjusted by an amount; and 15
after a time period at least an order of magnitude greater
than the time, 1increase the frequency of the first clock
generator to a higher value.

G e x Gx ex

	Front Page
	Drawings
	Specification
	Claims

