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Obtain large data sets (e.q., from a variety of sensors) for training neural
network model(s) 201

Train neural network model at central trainer with additional introduced scale
and bias parameters (e.g., u and o) 204

|

Transmit model to deployment destination devices
207

Run model at deployment destinations with input from local environment,
collect statistics of hidden units 210

Adapt model to local environment by updating introduced variables based on
collected statistics 213

Use adapted model at deployment destination to make inferences, e.g.,

recognizing actions and entities, predicted actions of various entities, efc.
216

FIG. 2
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Obtain large data sets (e.q., from a variety of sensors) for training neural
network model(s), and organize the data set into classes 501

v

Train an embedding neural network model E at initial trainer that generates
a representation h of the environment from which sensor data was collected

904

Train a master neural network model M at central trainer, gated by the
output of E 507

Transmit M and E to deployment destination devices 510

Execute E, e.q., periodically, at deployment destinations with input from local

environment, obtain corresponding values of environment representation h;
913

Undate accumulated h, e.q., using a formula similar to
‘h €< 0.99h+0.01h:“ 516

Obtain inferences from M gated by new value of h 519

Use output of M to interpret and respond to local sensor data, e.q., by
recognizing objects/entities, predicting actions, etc. 522

FIG. 5
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Obtain collection of sensor data from numerous sensors deployed in
respective environments 1001

e = ;

\/

Perform fraining of at least a generative portion of a DNN model, e.q., at
centralized trainer 1004

'

Simulate adaptation process which may occur at model deployment
destinations (e.q., various sensor-equipped local devices); the simulation
may include partitioning training data into clusters corresponding to
respective environmental conditions 1007

\

Leam “cluster-dependent parameters, e.q., 5y training mod;smwith each
cluster separately 1010

||||||||||| - FAFAFAFAFARAFARE e - rarArararararaeAes rAn rARAEA T

parameters, which may comprise at least some cluster-independent
parameters 1013

v

Transmit model(s) and at least a subset of learned parameters to
deployment destinations 1016

FIG. 10
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Receive DNN model(s) and initial set of parameters at deployment

destination, which has access to locally-collected sensor data
1101

\/

Obtain next set of locally-collected sensor data at deployment destination
1104

M LA e REELFLY arrsrare, rarra ra rrore, roror

Leam local adaptive weights for at least some portions of the model, e.q.,
using generative unsupervised learning together with the set of locally-
collected input data, some initial parameters may remain unchanged, and at
least some of the local input data may not be shared with centralized
training resources where initial set of parameters were leamed 110/

\

Use model(s), modified with local adaptive weights, to perform one or more

inferences at the model deployment destination (e.g., to recognize entities/
objects, detect an instance of an action by an agent, or predict future
actions) 1110

rarara rararearea rarararara ELELETE] ELLLLT . el L] rAPARARARARA PP —

FIG. 11
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destinations and organize into K clusters representing respective
environments 1301

;
:
:
§
:
i
§
;
§
;
E
:
i
:
;
i
§
;
§
;
E
:
P pr—— S B —— S - o R
]
;
3

Train an NNM (neural network based ' Train an NNM with parameter set A, e.q.,
model) E that leams representations using unsupervised learning 1307

; (e.g., feature vectors) of local | .

y environments 1304 l

for each cluster K, train a respective NNM
—  with parameters A + B(k), e.g., using
| unsupervised leaming 1310

REPLETLET] " L RFTTEFITEr) [LEEFIEEEELe) RETETLELEIL] o L R L L R L R R

r R e —————

Train another NNM M, e.q., using supervised leaming, with parameters W + A + B(k), where
parameters W are modulated by the output of NNM E 1313

o 3 w1 wRm wm P e e NR R e e AR AR AR S e e e e VR PR AR SRE SRE SR meE AR SRE =i e e AR =i e e PR R e A A AR WP AR S ee e E AR e e WAL AL e SR RRC AL SAL SR See RS R e SR SRE Rt e e e e A A A e e B o me SR R e e AR e et PR AR A S e PR R R SR SR WL iR e N R AR e RE SRE St e SRR R R WL AR SR R R G PR R e R e T SAL RS St PR AR AL S SR AL R R e SR RS e e e e med UEL SR R e e e e me = e

Deploy NNMs E and M with parameters W +A to deployment destination devices
1316

ArarararAara nrArs rara Ay AR it rana FIFAFAFA A AR A A A A AR AR A AR A R A A R A AR AR A A AR A R

(verformed at deployment destination
local devices)

B B O L A T T L ¥ T LT T YT T U I TP 1Y B DT TP T TN LT TR I AN I SN S S A S PSS A S S I S S B | s | [T T T I T T T [ S S I S N I B I R TR T S S i A Qi W A N - R I S I S S S R S Wi M I N IR I I S S RIS NI S S A I R I A I I R S A R FT P Ty el LA R S R R IR AL S 0 R A S M S R ML BRI AR b b il b W WM L L AU W B L el S et it e b b et bt el dR R WA WA W A JR W g

Run E, e.g., periodically, to obtain Train local parameters B, e.q., penodically
environment representation h(t) using unsupervised learning, to obtain B(t)
corresponding to time t 1351 1 1354
Update accumulated h | e.qg., using Update accumulated B parameters, e.g.,
formula similar to using formula similar to
h €< 0.99% + ht) 1357 B < 0.99B+ B(t) 1360

Run M with updated/adapted parameters W+A+B, with parameters W being modulated using
g updated h; use output of M to make inferences regarding local environment and take
8 responsive actions if needed 1363

e __n4
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ADAPTIVE TRAINING OF NEURAL
NETWORK MODELS AT MODEL
DEPLOYMENT DESTINATIONS

This application is a continuation-in-part of U.S. patent >

application Ser. No. 15/606,889, filed May 26, 2017, entitled

ADAPTIVE TRAINING OF NEURAL NETWORK MOD-
ELS AT MODEL DEPLOYMENT DESTINATIONS,
which claims priority to: U.S. Provisional Patent Applica-
tion Ser. No. 62/343,096, filed May 30, 2016, entitled 1°
SYSTEMS AND METHODS FOR ADAPTIVE DEEP
NEURAL NETWORKS ON LOCAL DEVICES BY
REMOVING COVARIATE SHIFTING; U.S. Provisional
Patent Application Ser. No. 62/343,097, filed May 30, 2016,
entitled SYSTEMS AND METHODS FOR ADAPTIVE 1>
DEEP NEURAL NETWORKS ON LOCAL DEVICES
USING DYNAMIC GATING; U.S. Provisional Patent
Application Ser. No. 62/343,099, filed May 30, 2016,
entitled SYSTEMS AND METHODS FOR ADAPTIVE
DEEP NEURAL NETWORKS ON LOCAL DEVICES <Y
USING LOCAL RETRAINING; and U.S. Provisional Pat-
ent Application Ser. No. 62/343 101, filed May 30, 2016,
entitled SYSTEMS AND MJTHODS FOR ADAPTIVE
DEEP NEURAL NETWORKS ON LOCAL DEVICES
USING HYBRID MODULATION AND RETRAINING. <°
The disclosures of the foregoing Applications are imcorpo-
rated herein by reference 1n their entirety.

.LJ

TECHNICAL FIELD
30

This disclosure generally relates to computer systems for
training and executing deep neural network based machine
learning models.

DESCRIPTION OF THE RELATED ART 35

Machine learning models are being used for an increasing,
number of application domains, including for example
physical and network security, finance, medicine and the
like. In particular, 1n recent years, deep neural network- 40
based models (DNNs) have been developed for many such
applications. Machine learning models including DNNs may
typically be trained on data collected from a wide range of
scenar1os to maximize their generalization ability. For
example, a deep neural network for detecting and tracking 45
people 1n surveillance camera videos may be trained using,
videos collected from cameras 1n different positions, across
multiple lighting conditions and situated 1n diverse environ-
ments mcluding indoor spaces such as stairways, rooms,
lobbies or hallways as well as outdoor locations. Unfortu- 50
nately, once trained, a given model may have to be utilized
in an environment which may not necessarily share many of
the characteristics of at least some of the environments from
which training data was collected. As a result, depending on
the extent of such environmental differences, a given model 55
may not necessarilly perform very well 1 a particular

environment 1n which 1t 1s deployed.

SUMMARY OF EMBODIMENTS
60
According to some embodiments, a system may include a
model trainer and one or more model deployment destina-
tions. The model trainer may comprise a first set of one or
more computing devices, which may for example comprise
one or more servers located at a centralized training facility. 65
A given model deployment destination may comprise a
second set of one or more computing devices, and may

2

include a set of sensors such as image sensors, LI DAR (light
detection and ranging) devices, temperature sensors, inira-
red sensors and the like 1n various embodiments. Examples
of model deployment destinations may include smart camera
systems, autonomous vehicles, smart phones and the like 1n
different embodiments. The model trainer may comprise
instructions that when executed on one or more processors
cause the first set of one or more computing devices to train,
using a first mput data set, a first neural network based
model, e.g., at the centralized training facility. The first input
data set may comprise, among other elements, large collec-
tions of sensor data collected from a variety of operating
environments. For example, 1n an embodiment in which the
first input data set includes video data, 1t may include videos
captured in low-light, 1n bright sunshine, from 1ndoor loca-
tions, from outdoor locations, from stationary surveillance
cameras, from moving video cameras installed 1n vehicles,
and so on. A wide variety of neural network models may be
trained at the centralized training facility in different
embodiments for numerous applications such as object
recognition, classification, action prediction and the like,
including for example discriminative models, generative
models, or models which combine discriminative and gen-
erative components. After a first stage of training has been
performed by the model trainer, the model(s) and at least a
subset of the learned model parameters may be transmitted
to various deployment destinations. At a given deployment
destination, one or more adaptive parameters for the
model(s) may be learned locally, e.g., using a locally-
obtained second 1nput data set and an unsupervised learning
algorithm, in effect customizing the model(s) for the local
operating conditions of the deployment destination device.
In some embodiments at least a subset of parameters learned
at the centralized training facility may remain unchanged
during the adaptive learning procedures of the deployment
destination device. The models may be adapted in an itera-
tive manner 1n some embodiments, with parameters being
updated as new sensor data 1s collected. After one or more
iterations of the adaptive learning, versions of the models
with the adaptive parameters may be used for inference at
the model deployment destination in various embodiments.
Any of a number of model adaptation approaches may be
employed singly or 1n combination at the model deployment
destinations 1n various embodiments to customize models
for the operating environments of the deployment destina-
tions. In one embodiment, for example, a technique which
involves removal of covariate shifting may be employed. In
another embodiment, at least two models may be used: an
auxiliary embedding model which generates vector repre-
sentations of the environment, and a master model whose
operations are modulated based on the output generated by
the auxiliary model. In some embodiments, several different
categories of parameters of a joint or combined generative
and discriminative model may learn prior to deployment,
including some parameters learned using clusters of the
training data corresponding to respective sets ol environ-
mental conditions. At least the cluster-specific parameters
may be adapted at the deployment destinations in such
embodiments, while at least some cluster-independent
parameters may remain fixed. Combinations of these
approaches may be employed in various embodiments.
According to one embodiment, a method may comprise
training a {irst neural network based model by a model
trainer using a first input data set. At least a first set of
parameters of the model may be transmitted to a model
deployment destination. At the deployment destination, one
or more adaptive parameters for the model may be deter-
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mined with the help of a second input data set, e.g., using
some combination of the adaptive learning techniques men-
tioned above, and the adapted model may be used to
generate inferences.

According to another embodiment, a non-transitory com-
puter-readable storage medium may store instructions that
when executed on one or more processors cause the one or
more processors to determine, at a model deployment des-
tination, that at least a first set of parameters of one or more
neural network based models has been received from a
trainer resource. At least a portion of training of the one or
more neural network based models may have been per-
tformed at the trainer resource using a first input data set. The
instructions when executed may cause the one or more
processors to obtain, at the model deployment destination,
using a second 1nput data set, one or more adaptive param-
cters for at least one model of the one or more neural
network based models. Using at least one model of the one
or more neural network based models and the one or more
adaptive parameters, at least one inference may be generated
at the model deployment destination.

BRIEF DESCRIPTION OF TH.

(L]

DRAWINGS

FIG. 1A 1llustrates an example system environment com-
prising a central model traiming resource and one or more
model deployment destination devices, according to at least
some embodiments.

FIG. 1B 1s a block diagram illustrating an example
computing device that may be used 1n at least some embodi-
ments.

FIG. 1C illustrates an example system environment in
which a plurality of model deployment destinations may be
associated with respective distinct environments, according
to at least some embodiments.

FI1G. 2 1s a flow diagram illustrating aspects of operations
which may be performed to tramn and execute a neural
network model into which one or more scale or bias param-
cters may be introduced to enable environment-dependent
adaptations, according to at least some embodiments.

FIG. 3 illustrates an example of the flow of data through
an embedding neural network model for learning a repre-
sentation of the environment, according to at least some
embodiments.

FIG. 4 illustrates an example of a neural network model
whose elements may be gated using representations of an
environment obtained from an embedding neural network,
according to at least some embodiments.

FIG. 5 1s a flow diagram illustrating aspects of operations
which may be performed to train and utilize a pair of neural
network models, such that multiplicative gating based on
output from one of the neural network models may be used
to adapt at least some parameters of the second neural
network, according to at least some embodiments.

FIG. 6 illustrates an example discriminative deep neural
network model, according to at least some embodiments.

FIG. 7 illustrates an example generative deep neural
network model, according to at least some embodiments.

FIG. 8 illustrates an example combined discriminative
and generative deep neural network model, according to at
least some embodiments.

FI1G. 9 1s a schematic diagram 1llustrating the deployment
ol deep neural network models across a plurality of desti-
nation devices, according to at least some embodiments.

FIG. 10 1s a flow diagram 1illustrating aspects of opera-
tions which may be performed to train and deploy a com-
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bined discriminative and generative deep neural network
model, according to at least some embodiments.

FIG. 11 1s a flow diagram 1illustrating aspects of operations
which may be performed at a model deployment destination
device to adapt a combined discriminative and generative
deep neural network, according to at least some embodi-
ments.

FIG. 12 1s a schematic diagram illustrating the deploy-
ment of hybrid neural network models across a plurality of
destination devices, according to at least some embodi-
ments.

FIG. 13 1s a flow diagram 1llustrating aspects of opera-
tions which may be performed to training a hybrid deep
neural network model centrally and adapt or retrain the
hybrid deep neural network model at various deployment
destinations, according to at least some embodiments.

FIG. 14 illustrates the use of adaptive neural network
models for a fleet of deployment destination systems,
according to at least some embodiments.

FIG. 15 illustrates the use of adaptive neural network
models for smart phones, augmented reality and virtual
reality devices, according to at least some embodiments.

While embodiments are described herein by way of
example for several embodiments and illustrative drawings,
those skilled 1n the art will recognize that embodiments are
not limited to the embodiments or drawings described. It
should be understood, that the drawings and detailed
description thereto are not intended to limit embodiments to
the particular form disclosed, but on the contrary, the inten-
tion 1s to cover all modifications, equivalents and alterna-
tives falling within the spirit and scope as defined by the
appended claims. The headings used herein are for organi-
zational purposes only and are not meant to be used to limait
the scope of the description or the claims. As used through-
out this application, the word “may” 1s used 1n a permissive
sense (1.e., meaning having the potential to), rather than the
mandatory sense (1.¢., meaning must). Similarly, the words
“include,” “including,” and “includes™ mean including, but
not limited to. When used 1n the claims, the term “or” 1s used
as an inclusive or and not as an exclusive or. For example,
the phrase “at least one of X, y, or z” means any one of X, v,

and z, as well as any combination thereof.

DETAILED DESCRIPTION

It will be appreciated that for simplicity and clarity of
illustration, 1 some cases, relerence numerals may be
repeated among the figures to indicate corresponding or
analogous elements. In addition, some details or features are
set forth to provide a thorough understanding of the embodi-
ments described herein. However, 1t will be understood by
those of ordinary skill in the art that the embodiments
described herein are 1llustrative examples that may be prac-
ticed without these details or features. In other instances,
well-known methods, procedures and components have not
been described 1n detail so as not to obscure the concepts
illustrated 1n the examples described herein. Also, the
description 1s not to be considered as limiting the scope of
the example embodiments described herein or 1llustrated in
the drawings.

Machine learning models may typically be trained on data
collected from a wide range of scenarios to maximize their
generalization ability. For example, a deep neural network
based machine learning model for detecting and tracking
people 1n surveillance camera videos may be trained at a
central training environment on videos collected from cam-
eras 1n different positions, across multiple lighting condi-
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tions and pointed at diverse environments including imdoor
spaces (e.g. stairways, rooms, lobbies, hallways, airport
concourses, elevators, parking garages, etc.) as well as
outdoor scenes (e.g. sport venues, roads, parking lots,
amusement parks, parks, etc.). It 1s noted that the terms
“neural network based model”, “neural network model” and
“neural network”™ may be used synonymously with respect to
various embodiments to refer to a machine learning model
that includes or utilizes at least one network of artificial

neurons. The term “deep neural network™ (DNN) may be
used 1n various embodiments to refer to a neural network
which comprises a plurality of layers of artificial neurons.

In at least some embodiments, a tramned or partially
trained version of a model may be deployed for eventual
execution at a variety of devices which may be referred to
as deployment destination devices or deployment destina-
tions. Such deployment destinations may, for example,
include various types of cameras with computing capabili-
ties, autonomous vehicles, smart phones, augmented reality
devices, virtual reality devices, and the like, at least some of
which may be equipped with sutlicient computing compo-
nents such as processors, memory and the like to perform
various types of operations on or with machine learning
models. In some embodiments, the deployment destinations
may include or have access to various types of local sensors,
such as cameras, LIDAR devices, radar devices, infra-red
sensors, motion sensors, gyroscopes and the like, some of
which may be able to capture or generate the kinds of data
which may at least 1n principle be used to train the models.
Deployment destinations may be referred to as “local
devices” 1n some embodiments.

When a model 1s deployed for execution to a destination,
it may sometimes operate 1n a much more restricted envi-
ronment or setting than the collection of settings from which
the tramning data was collected. This may be especially
applicable, for example, for surveillance cameras that are
mounted at a fixed location, or for autonomous vehicles
which may operate 1n a variety of cities, states, regions or
countries and in a variety of weather conditions. As a
consequence, the assumption that the distribution over train-
ing examples matches the distribution over the data avail-
able as mput for the models 1n real (post-training) use cases
may not necessarily hold. Furthermore, 1n at least some
embodiments, for example due to privacy concerns, network
bandwidth limitations and the like, it may not even be
possible to transmit locally collected sensor data to a cen-
tralized traiming resource.

Embodiments of several methods and systems are
described herein for continuous or iterative local on-device
adaptation of the parameters of deep neural network models
to improve performances of models at deployment destina-
tions. For example, using the systems and methods
described herein, security camera models deployed at vari-
ous airports or other locations may be able to maintain
accuracy 1irrespective of the lighting or the layout of any
particular airport or location. In another example, smart
camera models that are deployed in parking lots 1n many
different locations (e.g. at different stores, diflerent build-
ings, different weather conditions, diflerent time zones, etc.)
may be able individually adapt to their specific location and
local environment, taking into account local variances 1n
parking lot layout, lighting, types of cars, etc. Autonomous
vehicles may be able to adapt or customize neural network
models to their operating environments to help make motion
control decisions 1n at least some embodiments using the
algorithms and techniques described herein.
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One example embodiment may include a computing
system designed to remove covariate shift specifically in the
context of on-device adaptations. Such an approach may, for
example, factor one or more weight matrices of a neural
network 1nto a dense and diagonal component such that the
diagonal component can be easily adapted to new environ-
ments.

Another example embodiment may include a computing
system designed to multiplicatively gate the global neural
network where the gating 1s conditioned on the statistics of
the input received locally at the deployment destination.
Such an approach may, for example, make a more compre-
hensive modification (e.g., not just a diagonal modification)
and 1n eflect produce a new set of neural network parameters
for any given environment.

In some embodiments, a computing system may be
designed to facilitate further training and adaptation of a
model on a local device after deployment from a central
server configured to perform an 1nitial level of training. The
training algorithm on the central server before deployment
may 1n eflect be designed to be aware that further traiming,
will take place locally on the deployment destination. Such
an approach may utilize backpropagation 1n some embodi-
ments.

In various embodiments, adaptive or customizable tech-
niques for training neural network models may be applicable
to a variety of types of deep neural networks (DNNs).
Non-limiting example types of deep neural networks may
include convolutional, deconvolutional, and fully connected
deep networks 1n various embodiments.

It 1s noted that although several of the examples described
herein include camera devices or video surveillance devices
as deployment destinations or local devices to which models
are transmitted after at least some level of training, the local
devices need not necessarily be camera or video related 1n at
least some embodiments. For example, local devices or
deployment destinations may comprise an Internet of Things
(IoT) device, smart cars (e.g. fully autonomous or semi-
autonomous cars), drone vehicles, mobile devices such as
smart phones, AR/MR/VR (augmented reality/mixed real-
ity/virtual reality) devices such as headsets and the like, or
another type of computing device 1n various embodiments.
Devices that have a processor device, memory and a com-
munication device for receirving data (e.g. observations and
models from a central server system) may be considered a
local device or deployment destination 1n various embodi-
ments. Non-limiting examples of observation data which
may be used to train the DNNs centrally and/or at deploy-
ment destinations in various embodiments may include
video data, still digital image data, LIDAR (light detection
and ranging) data, radar data, audio data, biometric data,
pressure sensor data, temperature data, infrared data, speed
data, tratlic data, communications data, and other sensor
data.

FIG. 1A illustrates an example system environment com-
prising a centralized or central model training resource and
one or more model deployment destination devices, accord-
ing to at least some embodiments. As shown, system 100
may include one or more model deployment destinations
(MDDs) or local devices 101, one or more MDD controller
devices 102, one or more user computing devices 103, and
one or more central model training resources 104. The
MDDs may, for example, comprise smart camera devices
(e.g., devices which comprise cameras as well as computing,
resources such as processors and memories), autonomous
vehicles, smart phones and the like 1n different embodi-
ments. The central model training resources, which may also
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be referred to as model training initiators or initial model
trainers 1n various embodiments, may for example comprise
one or more computer servers 1n at least some embodiments.
Devices 101, 102, 103 and 104 may be able to communicate
with each other over a data network 105 in the depicted
embodiment. The data network may include different types
of data connections, for example, including both wired and
wireless connections.

In the depicted embodiment, an MDD 101 may include
one or more sensors 106 (e.g., to capture video data or still
data), one or more processors 107aq, one or more graphics
processing units (GPUs) 108, and/or one or more actuators
109 associated with the sensors 106 (e.g., to control a
camera’s pan, zoom or tilt). In embodiments 1n which image
sensors are used, the image sensors, for example, may
include complementary metal-oxide-semiconductor
(CMOS) sensors or charge-coupled device (CCD) sensors.
In some embodiments 1n which cameras are used, electro-
mechanical actuators 109 may be used, while 1n other
embodiments functionality similar to that of electrome-
chanical actuators may be implemented via software. The
MDD 101 may include one or more memory devices 109a
and one or more network communication devices 114a to
communicate with the network 105 1n various embodiments.
A memory device 109a may store, for example, a local
covarniate shifting module 110q, a local dynamic gating
module 111a, a local adaptive/hybrid training or retraining,
module 1126, as well as sensor data 113a¢ which may
collected locally at the MDD 1n the depicted embodiment.
Individual ones of the modules 110q, 111a, and/or 112a may
be implemented using some combination of hardware and/or
software 1n different embodiments. In at least some embodi-
ments, a respective module may be implemented for adap-
tive training and/or traiming of hybrid modules. Modules
110a, 111a, 1124 may be used 1n 1solation from each other
in some embodiments, and at least some of these modules
may not need to be present on the same device in various
embodiments. For example, a module 110a may be present
on a given MDD; or 1n another example, module 111a may
be present on a given MDD or in another example, module
112¢ may be implemented on the MDD; or in another
example, combinations of one or more of these modules
110a, 111a, 112a may reside on a given MDD such as a
camera device. Sensor data 113q, such as video data, may
include a collection of digital images (or video frames)
comprising pixels in various embodiments. Some of the
examples herein refer to observation records, which may
include such video data 1n various embodiments.

In some embodiments, the sensors and/or the actuators
may exist on or be incorporated within a separate device
than the processors, GPUs and/or memory. In one example
embodiment, hundreds, or thousands, or millions of MDDs
may be in data communication with the central model
training resources 104 via the network 105. In some embodi-
ments, some subset or all of the MDDs 101 (and/or their
sensors) may be stationary, while in other embodiments, at
least some of the MDDs may be moving at one or more
points 1n time (e.g., an MDD may be mounted on a moving
vehicle, mounted on a moving platform, etc.) A combination
of moving and stationary MDDs 101 may be used 1n some
embodiments.

In embodiments 1n which camera sensors are used, any of
a variety of camera types may be employed, including for
example webcams, Internet Protocol security cameras, etc.
An MDD controller device 102 (e.g., a camera controller)
may 1include one or more processors 1075, one or more
GPUs 1085, one or more memory devices 1095, and one or
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more network communication devices 1145 1n the depicted
embodiment. A camera controller may, for example, adjust
the pan, t1lt, zoom, or combinations thereof of one or more
cameras or camera sensors of an MDD 1n some embodi-
ments. The memory devices 1095 may comprise sensor data
1135 as well as an MDD control module 119 1n some
embodiments.

A user computing device 103 may include one or more
processors 1074, one or more GPUs 1084, one or more
network commumnication devices 1144, one or more memory
devices 1094, and/or one or more peripheral devices not
shown 1n FIG. 1A. Amemory device 1094 may, for example,
include an operating system 120 and an Internet browser 121
to access a portal provided by the central model training
resources 104, or a user application 124 such as a video
application resident in memory 1094 may be used to view
and 1nteract with the data provided by the resources 104. In
an example embodiment, the user computing device may
include any one of a tablet, a laptop, a desktop computer, a
mobile device, a smart phone, a wearable computer, a
computer built into a car or other vehicle, etc. In various
embodiments one or more programmatic interfaces (such as
application programming interfaces, web-based consoles
graphical user interfaces or command line tools) 1mple-
mented by the central model training resources 104 may be
invoked from the user computing devices as needed, e.g., to
indicate various preferences, 1ssue requests associated with
sensor data processing and receive responses, and so on.

The central model training resources 104 may comprise
one or more cloud-based servers 1n some embodiments. The
central model training resources 104 may be referred to as
a server system in various embodiments. The central model
training resources 104 may include one or more processors
107¢, one or more GPUs 108¢, one or more network
communication devices 114¢, and one or more memory
devices 109¢ in the depicted embodiment. The memory
devices may store, for example, a sensor data repository 124
(such as a video database) and a sensor data application 123
(such as a video application) 1n the depicted embodiment.
The sensor data application 123 may comprise a graphic
user interface (GUI) which can be accessed from user
computing devices 103 in some embodiments. The memory
109¢ may also include a flexible-neural-network (flex-NN)
training module 133, a global gating module 130, and/or one
or more global/hybrd training modules 134 in the depicted
embodiment.

In some embodiments, the flex-NN traiming module 133
may be used to train a type of neural network using
unlabeled observation data (e.g. video data) from multiple
sensors. Such a flexible neural network may be transmitted
and loaded onto the local covanate shifting module 110 of
a MDD 101, which uses locally obtained observation data
(e.g. video data) to adjust various parameters (e.g., mean and
variance parameters) of the local version of the flexible
neural network 1n some embodiments as described below 1n
further detail.

In one embodiment, the global gating module 130 may
use observation data from many different sensors to develop
deep neural networks that can be transmitted and loaded
onto the local dynamic gating module 111a on an MDD 101.
The local dynamic gating module 111a may then use locally
obtained observation data (e.g. video data) from sensors 106
to determine local gating parameters as described below in
turther detail.

In some embodiments, separate global and hybrid training,
modules may be implemented at central model traiming
resources 104. In some such embodiments, a global traiming
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module 134 may use observation data from many different
sensors to develop a deep neural network that can be
transmitted and loaded onto a local adaptive retraiming
module 112a on an MDD 101. The local adaptive retraining
module 1124 may then use locally obtained observation data
(e.g. video data) from sensors 106 to locally retrain the deep
neural network.

In at least one embodiment, a hybrd training module 134
of the central model training resource 104 may use obser-
vation data from many different sensors to develop a deep
neural network that can be transmitted and loaded onto the
local hybrid retraining module 112a on an MDD 101. The
local hybrd retraining module 112 may use one or both of
local dynamic gating and adaptive retraiming to adapt the
transmitted model to the locally obtained observation data
(e.g. video data) 1n some embodiments.

The use of modules 110q, 111, 112a which reside and
operate locally on the MDD 101 may reduce bandwidth
requirements associated with sending sensor data to the
central training resources 104 or any other computing device
in various embodiments. Furthermore, by having the com-
putations executed locally, the time taken to process sensor
data may be reduced 1n some embodiments, relative to a
scenar1o in which the sensor data 1s transmitted to the central
model training resources for analysis. Data that may be
considered sensitive may not need to be transmitted back to
the centralized model training resources 104 1n various
embodiments. The individual modules residing on each
MDD may adapt to the characteristics of their particular
operating environments 1n various embodiments.

In various embodiments, one or more GPUs 108 (e.g.,
108a, 1085, 108¢ or 1084) may be used to perform machine
learning-related computations, such as computations
involved in training and/or executing deep neural network
models, mstead of or in addition to being used to perform
graphics-related operations.

In one example embodiment, an MDD may include a
camera, a chip to convert the image signal (e.g. CCD signal
or CMOS signal) to a frame bufler, followed by a bus
connecting 1t to a microprocessor. The microprocessor can
include one or more of Digital Signal Processors (DSPs),
Field Programmable Gate Arrays (FPGAs), Systems on
Chip (SOCs), and/or mobile GPUs cards.

A local adaptation of a neural network model by removing
covariate shift may be implemented by a module 110q at an
MDD 101, and initially facilitated by module 133, 1n at least
some embodiments. Details of an algorithm for model
adaptation by removing covariate shift are provided below
in the context of FIG. 2. Local adaptation by using dynamic
gating may be implemented by module 111a and mitially
facilitated by module 130 in at least some embodiments.
Details regarding dynamic gating are provided below, e.g.,
with respect to at least FI1G. 3-FIG. 5. Local adaptation using,
hybrid models and iterative local retraining may be imple-
mented with the help of modules 112a and 134 1n various
embodiments, and 1s discussed further below 1n the context
of at least FIG. 6-FIG. 13.

In some embodiments, customized versions of neural
network-based models may be generated at a deployment
destination such as an autonomous or partially-autonomous
vehicle. The term “‘autonomous vehicle” may be used
broadly herein to refer to vehicles for which at least some
motion-related decisions (e.g., whether to accelerate, slow
down, change lanes, etc.) may be made, at least at some
points 1n time, without direct input from the vehicle’s
occupants. In various embodiments, it may be possible for
an occupant to override the decisions made by the vehicle’s
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decision making components, or even disable the vehicle’s
decision making components at least temporarily. Further-
more, 1n some embodiments, a motion-related decision-
making component of the vehicle may request or require an
occupant to participate in making some decisions under
certain conditions. The vehicle may include one or more
sensors, one or more sensor controllers, and a set of on-
board computing devices. The vehicle may also include a
motion control subsystem, which controls a plurality of
wheels of the vehicle contacting a road surface.

In some embodiments, the motion control subsystem may
include components such as the braking system, acceleration
system, turn controllers and the like. The components may
collectively be responsible for causing various types of
movement changes (or maintaining the current trajectory) of
vehicle, e.g., 1 response to directives or commands 1ssued
by decision making components. In some embodiments, the
decision components may include a motion selector respon-
sible for 1ssuing relatively fine-grained motion control direc-
tives to various motion control subsystems, as well as a
planner responsible for making motion plans applicable for
longer time periods such as several seconds. The rate at
which directives are 1ssued to the motion control subsystem
may vary in different embodiments. Under some driving
conditions (e.g., when a cruise control feature of the vehicle
1s 1n use on a straight highway with minimal traflic) direc-
tives to change the trajectory may not have to be provided
to the motion control subsystems at some points 1n time. For
example, 11 a decision to maintain the current velocity of the
vehicle 1s reached by the decision-making components, and
no new directives are needed to maintain the current veloc-
ity, the motion selector may not 1ssue new directives even
though 1t may be capable of providing such directives at that
rate.

The motion selector may determine the content of the
directives to be provided to the motion control subsystem
based on several inputs processed by the on-board comput-
ing devices. In various embodiments, the on-vehicle com-
puting devices and/or the vehicle may represent one
example of a module deployment device (e.g. MDD 101) to
which one or more neural network-based models are
deployed from a central traiming resource 104. In some
embodiments, the computing devices computer 145 may
comprise a local covariate shifting module 110q, a local
dynamic gating module 111q, and/or a local adaptive/hybrid
training module 112a. The computing devices may include
an 1mage analyzer which 1n turn utilizes one or more neural
networks adapted using modules 110q, 111a or 112a to
analyze road images as the vehicle moves. A model trained
initially at a centralized training resource and associated
parameters may be received at the autonomous vehicle 1n the
depicted embodiment, and adapted to a local environment
within which the vehicle operates, using some combination
of components 110a, 111a and 112q, together with sensor
data 1135 collected from sensors. Network communication
devices 114a may be used to communicate with the cen-
tralized training resources in the depicted embodiment.

A wide vaniety of sensors may be employed in the
depicted embodiment, including wvideo cameras, radar
devices, LIDAR (light detection and ranging) devices and
the like. In addition to conventional video and/or still
cameras, 1n some embodiment near-infrared cameras and/or
depth cameras may be used. In some embodiments, the
Sensors may comprise one or more camera devices which
may themselves represent examples of MDDs. Diflerent
types of sensors may be used in different contexts. For
example, while certain i1mage sensors can capture good
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quality sensor data during high-light scenarios, they may
provide very little useful sensor data in low-light scenarios,
as the 1mage data may not be able to distinguish objects
within the environment. However, other sensors, such as a
LIDAR sensor may have good low light capabilities.
Because different sensors may capture redundant informa-
tion (e.g., like the image sensor and L1IDAR example above),
fusion technmiques may sometimes be implemented to lever-
age the strengths of diflerent sensors in different scenarios.
Several of these devices may be used to repeatedly generate
successive frames 1n a continuous video of the surroundings
of the vehicle and/or the interior of the vehicle over a period
of time. For example, a LIDAR device may be used to
produce a LIDAR video, and/or an infrared camera may be
used to produce an inirared video. In some embodiments,
additional sensors may be used to generate videos and/or
add information to the captured scene, which may be
included 1n at least some video frames captured by vehicle
cameras. Such additional sensors may include radars, ultra-
sonic sensors, light beam scanning devices, infrared devices,
location sensors (e.g., global positioning satellite (GPS) or
Differential GPS (DGPS)), or inertial measurement sensors
(e.g., accelerometers, speedometers, odometers, and angular
rate sensors, like gyroscopes). All of these sensors may
capture and provide raw sensor data to respective sensor
data processing pipelines implemented by the on-vehicle
computing devices to make perception decisions, such as
detecting, classifying, or tracking road objects. Such data
may be used for local adaptive training of neural network
models 1n at least some embodiments.

In some embodiments, the vehicle computing devices
may communicate with a sensor controller to control the
operation of the sensors. For example, 1n some embodi-
ments, the computing devices or the sensor controller may
implement a camera control module. The camera control
module may operate to control various aspects of the vehi-
cle’s sensors, such as for example the pan-tilt-zoom opera-
tions of the cameras installed in the vehicle. In some
embodiments, the sensors may include actuators such as the
actuators 109. Thus, in some embodiments the sensors may
allow some degree of movement.

In at least some embodiments, a system and/or server that
implements a portion or all of one or more of the methods
and/or techniques described herein, including the techniques
to capture and process sensor data, to train and/or execute
machine learning algorithms including neural network algo-
rithms, to control the operations of sensors, and the like, may
be executed on a general-purpose computer system that
includes or 1s configured to access one or more computer-
accessible media. FIG. 1B 1illustrates such a general-purpose
computing device 150. In the illustrated embodiment, com-
puting device 150 includes one or more processors 1352
coupled to a main memory 134 (which may comprise both
non-volatile and volatile memory modules, and may also be
referred to as system memory) via an input/output (I/O)
interface 156. Computing device 150 further includes a
network interface 160 coupled to I/O interface 156, as well
as additional I/0O devices 158 which may include sensors of
various types.

In various embodiments, computing device 150 may be a
uniprocessor system including one processor 152, or a
multiprocessor system including several processors 1352
(e.g., two, four, eight, or another suitable number). Proces-
sors 152 may be any suitable processors capable of execut-
ing instructions. For example, in various embodiments,
processors 152 may be general-purpose or embedded pro-
cessors 1implementing any of a variety of instruction set
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architectures (ISAs), such as the x86, PowerPC, SPARC, or
MIPS ISAs, or any other suitable ISA. In multiprocessor
systems, each of processors 152 may commonly, but not
necessarily, implement the same ISA. In some implemen-
tations, graphics processing umts (GPUs) may be used
instead of, or in addition to, conventional processors.

Memory 154 may be configured to store mstructions and
data accessible by processor(s) 152. In at least some embodi-
ments, the memory 154 may comprise both volatile and
non-volatile portions; 1 other embodiments, only volatile
memory may be used. In various embodiments, the volatile
portion of system memory 154 may be implemented using
any suitable memory technology, such as static random
access memory (SRAM), synchronous dynamic RAM or
any other type of memory. For the non-volatile portion of
system memory (which may comprise one or more
NVDIMMs, for example), in some embodiments flash-
based memory devices, including NAND-flash devices, may
be used. In at least some embodiments, the non-volatile
portion of the system memory may mclude a power source,
such as a supercapacitor or other power storage device (e.g.,
a battery). In various embodiments, memristor based resis-
tive random access memory (ReRAM), three-dimensional
NAND technologies, Ferroelectric RAM, magnetoresistive
RAM (MRAM), or any of various types of phase change
memory (PCM) may be used at least for the non-volatile
portion of system memory. In the illustrated embodiment,
executable program instructions 155a and data 15556 imple-
menting one or more desired functions, such as those
methods, techniques, and data described above, are shown
stored within main memory 154,

In one embodiment, I/O interface 156 may be configured
to coordinate I/O ftraflic between processor 152, main
memory 134, and various peripheral devices, including
network interface 160 or other peripheral interfaces such as
various types of persistent and/or volatile storage devices,
sensor devices, etc. In some embodiments, I/O interface 156
may perform any necessary protocol, timing or other data
transformations to convert data signals from one component
(c.g., main memory 154) into a format suitable for use by
another component (e.g., processor 152). In some embodi-
ments, I/O interface 156 may include support for devices
attached through various types of peripheral buses, such as
a variant of the Peripheral Component Interconnect (PCI)
bus standard or the Umversal Serial Bus (USB) standard, for
example. In some embodiments, the function of I/O 1nter-
face 156 may be split into two or more separate components.
Also, 1n some embodiments some or all of the functionality
of I/O mterface 156, such as an interface to memory 154,
may be incorporated directly ito processor 152.

Network interface 160 may be configured to allow data to
be exchanged between computing device 150 and other
devices 164 attached to a network or networks 162, such as
other computer systems or devices as illustrated in the
figures. In various embodiments, network interface 160 may
support communication via any suitable wired or wireless
general data networks, such as types of Ethernet network,
for example. Additionally, network interface 160 may sup-
port communication via telecommunications/telephony net-
works such as analog voice networks or digital fiber com-
munications networks, via storage areca networks such as
Fibre Channel SANs, or via any other suitable type of
network and/or protocol.

In some embodiments, main memory 154 may be one
embodiment of a computer-accessible medium configured to
store program instructions and data as described herein for
implementing embodiments of the corresponding methods
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and apparatus. However, in other embodiments, program
instructions and/or data may be received, sent or stored upon
different types ol computer-accessible media. Various
embodiments may further include receiving, sending or
storing instructions and/or data implemented 1n accordance
with the foregoing description upon a computer-accessible
medium. Generally speaking, a computer-accessible
medium may include non-transitory storage media or
memory media such as magnetic or optical media, e.g., disk
or DVD/CD coupled to computing device 150 via I/O
interface 156. A non-transitory computer-accessible storage
medium may also include any volatile or non-volatile media
such as RAM (e.g. SDRAM, DDR SDRAM, RDRAM,
SRAM, etc.), ROM, etc., that may be included in some
embodiments of computing device 150 as main memory 154
or another type of memory. Further, a computer-accessible
medium may include transmission media or signals such as
clectrical, electromagnetic, or digital signals, conveyed via
a communication medium such as a network and/or a
wireless link, such as may be implemented via network
interface 160. Portions or all of multiple computing devices
such as that illustrated in the figure may be used to imple-
ment the described functionality 1n various embodiments;
for example, software components running on a variety of
different devices and servers may collaborate to provide the
functionality. In some embodiments, portions of the
described functionality may be implemented using storage
devices, network devices, or special-purpose computer sys-
tems, 1n addition to or instead of being implemented using
general-purpose computer systems. The term “computing
device”, as used herein, refers to at least all these types of
devices, and 1s not limited to these types of devices.

FIG. 10 illustrates an example system environment in
which a plurality of model deployment destinations may be
associated with respective distinct environments, according
to at least some embodiments. As shown, system 198 may
comprise a set of centralized training resources 190 for
initial or global training of neural network (NN) models.
Centralized training resources 190, which may comprise one
or more computing devices, may also be referred to as
central trainers or initial trainers in various embodiments.
Partially-trained and/or customizable NN models 191 (e.g.,
191a, 1915, or 191¢) may be transmitted from the central-
1zed training resources to respective sets of deployment
destinations 193 at different types of operating environments
197. For example, deployment destinations 1934 may com-
prise respective sets of devices which are typically station-
ary and may comprise smart cameras used for surveillance
or the like, deployment destinations 19356 may comprise
personal mobile devices such as smart phones which are
carried by various persons, while deployment destinations
193¢ may comprise vehicle systems. A variety of model
types may be trained at the centralized training resources
190 in different embodiments, often using large training data
sets collected from a variety of sources (including numerous
sensor devices) over some time period. The model types
may, for example, include convolutional networks or layers,
deconvolutional networks or layers and/or fully-connected
networks or layers. In some embodiments, discriminative
NN models (e.g., models used for binary or multi-category
classification problems), generative NN models (e.g., mod-
cls which attempt to learn parameters to reproduce or
reconstruct input data sets) or combined discriminative-
generative models may be initially trained at the centralized
resources. various combinations of supervised and unsuper-
vised learning algorithms may be employed at the central-
1zed traiming resources in different embodiments.
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The operating environments 197 may difler from one
another along a variety of dimensions in the depicted

embodiment, such as geographical locations, computing
power/memory availability, whether the deployment desti-
nations are movable or stationary, the particular applications
for which the NN models are to be used (e.g., object
recognition, security management, autonomous driving, and
the like), and so on. In some embodiments, respective
versions of the partially-trained or customized models 191
(e.g., 191a-191¢) may be generated to cater to the different
characteristics of the operating environments 197.

In at least some embodiments, while the deployment
destination devices may differ from one another 1n various
ways, at least a subset of the deployment destination devices
may include respective resources 194 (e.g., 194a, 194bH or
194¢) for adaptive, environment-specific model training, as
well as model execution resources 195 (e.g., 195a, 1955 or
195¢) to run the models after they have been adapted or
customized to the operating environments 197. Any combi-
nation of the techniques described herein for customizing
models 191 may be employed at a given deployment device
in the depicted embodiment, including for example adapta-
tion by removing covariate shift, dynamic gating, continu-
ous training of hybrid models, and the like.

At least some model parameters learned using the large
data sets at the centralized resources, together with the
models themselves, may be transmitted to the model deploy-
ment destinations 193 in various embodiments. The deploy-
ment destinations may be equipped with, or have access to,
various sensors for collecting information, such as still or
video cameras, LIDAR devices, radar devices, temperature
sensors and the like. Local data pertaining to the specific
operating environments 197 may be obtained from the
sensors, and used as input to the algorithms for learning
adaptive weights at the deployment destinations 193 1n
various embodiments. In some embodiments, 1n which for
example the input data available at the deployment destina-
tions 1s largely or wholly unlabeled, unsupervised learning
algorithms may be used to learn at least some of the adaptive
welghts or parameters. Some of the parameters transmitted
from the centralized resources may remain unmodified or
fixed while the adaptive parameters are learned 1n at least
some embodiments. In some embodiments at least a subset
ol the parameters transmitted to the deployment destinations
may be referred to as global parameters of the models. After
the models have been adapted/customized with the locally-
learned parameter values or weights, 1n various embodi-
ments the models may be used to generate inferences based
on new observation data for various applications, such as to
make predictions about future events or actions, recognize
objects or entities, and so on. The process of local re-training
or adaptation may be continuous, with the models being
gradually improved over time 1n some embodiments. In at
least one embodiment, at least a portion of the local sensor
data collected at or by the model deployment destinations
may be transmitted back to the central training resources and
added to the repository of mput data used for nitial/global
training of the models.

Adaptation by Removing Covariate Shift

As mentioned earlier, a local adaptation of a neural
network model by removing covariate shiit may be imple-
mented by a module (e.g., module 110a of FIG. 1A) at an
MDD 101, and mitially facilitated by another module at a
central training resource (e.g., module 133 of FIG. 1A), 1n
at least some embodiments. In particular, in one such
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embodiment a source domain or environment S and a target
domain or environment T may be assumed. In an example
scenar1o 1n which the sensor devices being used include
cameras, S may be a brightly lit room while T 1s a dimply
l1t hallway. In another example scenario, S may comprise an
indoor airport scene and T may comprise an outdoor urban
street or surroundings of a train station. It will be appreciated
that other example domains of S and T may be encountered
in various embodiments. The system 100 may receive obser-
vations X (e.g. video data, and/or other sensor data) and be
configured to predict some output Y (e.g. recognizing abnor-
mal activities 1n the scene). The conditional distribution
P(Y1X) may be assumed to be the same 1n both domains.
However, the marginal distributions P(X) and P (X) may
be different. For example, P(X) may represent the distri-
bution over surveillance wvideos collected at airports,
whereas P{X) may represent the distribution over videos
collected at train stations. P(X) and P{X) may be different
due to the different scene types (e.g. the airport scenes
compared to train station scenes). This diflerence may be
termed covariate shift. Since the conditional distribution
P(Y|X) may be of primary interest 1n various embodiments,
covariate shift may not appear to be a problem. However, the
covariate shift may become a problem for P(Y1X, 0) where
0 are the model parameters. This 1s because the learning
process that produces the 0 may be affected by P(X), as it
may be trammed to reduce the loss where P(X) 1s high.
Theretore the optimal parameters 0 might be ditterent from
0 - for the two different domains.

One way to make 0. work for x~P_(X) 1n some embodi-
ments 1s to change the statistics of x such that 1t looks like
a sample from PJ(X) (e.g. adjusting the brightness level of
images, adjusting the contrast in the images, adjusting the
color scale of the pixels, etc.). In general, if the mean of P.
1s |t and that of P 1s p, then

X'=xX—pirtis

may appear similar to a sample from P.. However, 1n various
embodiments the distributions may in general be much more
complex, and simple adjustment of their means (and vari-
ances) may not be suflicient to make a sample from P look
like a sample from P. In at least some embodiments,
however, the modular structure of deep (multi-layer) neural
networks may make it possible to make these adjustments
locally at various layers. This 1s because each layer eflec-
tively provides “data” for the next layer in such embodi-
ments. Therefore, 1t may be possible 1n such embodiments to
control the overall distribution of the data by making small
adjustments at one or more layers, or at each layer. This
forms the basic ituition behind the proposed approach for
removing covariate shift which may be employed 1n some
embodiments.

In at least some embodiments, such a model may 1mple-
ment the following high-level logic. The neural network
model may be modified such that for at least some weight
layers W preceding a non-linearity the central training
resource 104 may add additional scale and bias parameters
such as u, o, a, and/or 3. A model modified 1n this manner
may be termed a flexible neural network (“flex-NN”) in
some embodiments. The standard operation of a baseline
neural network

y=Wx+b
may be replaced 1 a flex-NN by

z=(Wx-p)/a (1)

y=(z-a)/ (2)
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where || and o may be set such that the distribution of z
across the training set 1s a Gaussian distribution with zero
mean and 1dentity covariance N(O, 1), and a, 3 are learned
parameters. Since the operations involving the additional
parameters are linear, in various embodiments this may be
interpreted as a factorization of the overall weight matrix
into a dense and a diagonal component where elements of
the diagonal component can be set such that the distribution
of z can be easily controlled. Such a method may be applied
to accelerate the convergence of stochastic gradient descent
to enable faster training of neural networks 1n some embodi-
ments.

FIG. 2 1s a flow diagram illustrating aspects of operations
which may be performed to train and execute a neural
network model (e.g., a flex-NN model) into which one or
more scale or bias parameters may be introduced to enable
environment-dependent adaptations, according to at least
some embodiments. As indicated in element 201, large data
sets may be obtained from a variety of sensors (e.g., includ-
ing at least some sensors located at model deployment
destinations of the kind discussed above) for training neural
network models at a centralized training resource or trainer.
A flex-NN model may be trained with additional introduced
scale and bias parameters at various layers as discussed
above 1n the depicted embodiment (element 204) at the
central trainer. Initially parameters such as u and o may be
set to the values as determined on a diverse unlabeled
collection ot videos (u.and o). As indicated 1n element 207,
the flex-NN model may be transmitted to deployment des-
tination devices such as smart video cameras, smart phones,
autonomous vehicles and the like. The deployment destina-
tions may receive and store the models 1n their respective
memories.

In at least some embodiments, a deployment destination
may comprise a local covariate shifting module (such as
modules 110aq and 1105 discussed earlier 1n the context of
FIG. 1A). After the flex-NN model has stored and installed
at a deployment destination with a particular operating
environment, the model may be executed or run with inputs
obtained from the local environment, and statistics of the
hidden units associated with the introduced parameters may
be collected (element 210). The resulting distribution of Wx
may be tracked at the deployment destination, e.g., by
computing the mean and variance of the states of the hidden
units as sampled many times during a day over a period of
several days. This statistical information may, for example,
be used to estimate new values for u (the mean) and o (the
variance) so that the distribution of z on the data seen by that
deployment destination 1s a Gaussian distribution with zero
mean and 1dentity covariance N(0, 1) 1n some embodiments.
As such, the model may be adapted to the local environment
by updating the introduced variables based on the collected
statistics (element 213) in various embodiments. In an
example embodiment, the mean and variance may be
updated at one or more layers of the tlex-NN model. The
adapted model may be used at the deployment destination to
make inferences of various kinds, e.g., to recognize actions
or entities, predict actions of various entities, and so on
(element 216). The operations corresponding to elements
210-216 may be executed iteratively (e.g., periodically) on
a given deployment destination to keep the model updated
with the distribution of the local mput data 1n various
embodiments. It 1s noted that the computational require-
ments for keeping track of the mean and variance of the
hidden states may not be very high in some embodiments,
and locally collected sensor data may not need to be trans-
mitted to the central trainer 1n at least some embodiments.
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Adaptation by Dynamic Gating

As mentioned earlier, in some embodiments dynamic
gating may be used for local adaptation of models at
deployment destinations (e.g., using modules 111 and 1ni-
tially facilitated by modules 130 shown in FIG. 1A). In this
approach, a deployment destination device may change
model parameters depending on the statistics of the envi-
ronment. Such statistics may, for example in embodiments
in which input data comprises 1image or video data, corre-
spond to various environmental aspects such as brightness
level, entropy of the illumination histogram, or low-level
texture features of a camera 1mage of the environment. Let
heR* be a function of the statistics of the environment
computed by a neural network.

For every neural network layer of the form y=Wx, the

central trainer may replace the matrix WeR *”V by a tensor
WeR V", The feedforward operation

N

P N
i=1

(3)

=1 i=1

In this way, the connection between X and y, may be gated
by h 1 various embodiments. This 1s equivalent to changing
the weight w,, between them to be X h,w,. . Therefore, the
welghts of the network may change depending on the
environment 1 which the network 1s operating. Details of
how this 1dea 1s applied for on-device adaptation at deploy-
ment destinations such as camera-equipped devices are
provided below.

Let M represent a “Master’ network that the central
frainer trains 1n a way that 1t can be adapted locally at the
deployment destination in various embodiments. The master
network M may be trained, for example, using a video data
from many different cameras, or a “global” collection of
video data or other sensor data. In order to do so, the central
trainer may first train a different auxihiary “embedding”
network E that learns to represent the general environment
of a scene (e.g. a scene represented as pixels 1n video data)
but 1s 1nvariant to the details of the scene 1n various
embodiments. To generate E, the central trainer may cat-
egorize the collected surveillance camera videos mto K
groups based on the kinds of environments to which they
correspond 1n at least some embodiments. For example, K
different environment categories or clusters (e.g. K=100),
may span different lighting conditions, mounting locations
and scene types with respect to cameras. The central training
resource may then train an embedding neural network E that
maps each input image to a vector he R*, |h|,=1 where P
may be chosen to be a small number 1n some embodiments
(e.g.,. P=3).

FIG. 3 illustrates an example of the flow of data through
an embedding neural network model for learning a repre-
sentation of the environment, according to at least some
embodiments. Sensor observations of an mput layer 301
may be provided as mput into a convolution neural network
302, and then are passed into hidden layers 303 of a DNN
in the depicted embodiment. In FIG. 3, observations x_,___
may be obtained from an environment very similar to (or
identical to) the environment from which x 1s obtained,
while observations x. _may be obtained from a very differ-
ent environment. The objective function for training this
model may map i1mage pairs 1n the same (or similar)
environment category close together (so that <h, h_, > as

indicated below 1s high), but keep 1mage pairs across dif-
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ferent categories far away from each other (decrease <h,
h,,>). In the notation used in the embodiment depicted in
FIG. 3, <x, y> may define a dot-product operation between
two vectors X and y. Specifically, given a mini-batch of N
training triplets:

(%, h

" B Y, m=1,. .., N

close

the central trainer may optimize the following hinge-loss
objective with respect to the parameters e of the embedding
network 1 some embodiments, e.g., using a stochastic
gsradient descent algorithm:

e h(ﬁ} h(”)

» elose

>+ < B B >).

N
L(6) = ming ) max(0, 1 G
n=1

For example, 1n FIG. 3, the observation X may comprise
video data of an indoor environment, while the observation
X+, May comprise video data of an outdoor environment.
The observation x_,___ may also comprise video data of an
indoor environment, but may have different contrast and
brightness values 1n the video data, compared to the obser-
vation X. More generally, “far” or “close” may also be
determined by the central trainer using a variety of factors 1n
different embodiments such as sensor values, sensor types,
geographic location, and/or other aspects of the environment
of the deployment destinations. In the process of training the
embedding network 310, 1n the depicted embodiment the
central tramner may discover a latent feature space that
represents the environment because it 1s trained to ignore
differences 1n details and map input (such as 1images) 1n the
same category close together but separate from mput in
other categories.

1

T'he representation (e.g., the h vectors) obtained from the
embedding network model may then be used in various
embodiments to gate the connections of a master network M,
as 1ndicated in equation (3) above, while the model(s) are
frained on the central trainer using data from a wide variety
of scenarios. FIG. 4 illustrates an example of a neural
network model whose elements may be gated using repre-
sentations of an environment obtained from an embedding
neural network, according to at least some embodiments. In
the depicted embodiment, an embedding network 401 may
be used to modify the gating of the master network 402. The
gating interaction may be represented by the combination of
the arrows 403 1n the depicted embodiment, representing the
application of the conditioning variable h from the embed-
ding network into the master network. A number of different
layers 420 of the master network 402 may be affected by the
gating 1n different embodiments, including various hidden or
intermediate layers such as convolution, deconvolution or
fully-connected layers, and/or an output layer producing the
outputs v.

In some embodiments, at the central trainer, the condi-
tioning variable or vector h may be generated by feeding 1n
x' that 1s a randomly chosen member of the same category
(or cluster) as x. In this way, the network 1s trained to expect
a conditioning variable h and use 1t to maximize perfor-
mance. In some embodiments, the embedding and master
network models, 401 and 402 may be trained jointly. In
various embodiments M may be trained to suit a variety of
deployment destination devices, even though the deploy-
ment destinations may operate in different environments.
The embedding neural network model may be referred to as
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an auxiliary or secondary model 1n at least some embodi-
ments, as 1t may 1n at least some cases be used in conjunction
with a master model.

The network E 401 may then be locally adapted on each
deployment destination to suit the local environment in at
least some embodiments. To perform the adaptation on-
device, both M and E networks may first be transmitted to
the destination device (e.g., as part of the manufacture of a
smart camera, M and E may be incorporated into the
computing elements of the camera). After the device is
deployed, the E network may be run periodically (e.g. once
every minute) on the mput sensor data (e.g., image data)
being captured locally 1n some embodiments. The resulting,
h vectors may then be averaged over these runs to create a
representation of the environment. The M network may then
be then run by gating i1t with this averaged h. The environ-
ment representation may be updated periodically to keep the
model updated with changing environmental conditions. It 1s
noted that although multiplicative gating 1s illustrated by
way of example 1 FIG. 4, 1 at least some embodiments
other types of gating (such as additive gating) or other types
of modulation may be used to adapt M to local conditions.

FIG. 35 15 a flow diagram illustrating aspects of operations
which may be performed to train and utilize a pair of neural
network models, such that multiplicative gating based on
output from one of the neural network models may be used
to adapt at least some parameters of the second neural
network, according to at least some embodiments. As indi-
cated 1n element 501, large data sets may be obtained at a
central tramner from a variety of sensor-equipped devices
(which may include some instances of deployment destina-
tion devices) to train neural network models. The data may
be orgamized or categorized into classes corresponding to
respective operating environment conditions—e.g., 1images
or videos may be classified based on the ambient lighting
conditions, and so on. An embedding neural network model
E may be trained using the classified data (element 504) to
generate a representation (e.g., a feature vector) h of the
environment from which the sensor data of each category
was collected.

As 1indicated 1n element 507, a master network model M
may then be trained at the central trainer, with E’s output h
being used to gate operations at various layers of M. Both
models may then be transmitted to deployment destination
devices (element 510) 1n at least some embodiments. At the
deployment destinations, E may be executed iteratively or
periodically using mnput from the local environment (ele-
ment 513), and corresponding values h, of h may be obtained
at each iteration in the depicted embodiment. An accumu-
lated or running value for h may be updated, e.g., using a
weighted formula in which the newly-computed h, 1s
assigned some weight (e.g., 0.01) relative to the existing
carlier value h (element 516) 1n the depicted embodiment.
The accumulated value of parameter vector h may be
referred to as an aggregated value 1n at least some embodi-
ments. It 1s noted that different update formulas for h may be
used 1n respective implementations; the formula shown in
FIG. 5 1s not mntended to be limiting. Using the version of M
which has been adapted by the updated value of h, infer-
ences may be generated based on newly gathered sensor data
in the depicted embodiment (element 519). The iniferences
may be used to 1terpret and/or respond to the local sensor
data representing the deployment destination’s environment
(clement 522), e.g., by recognizing objects or entities, pre-
dicting future actions/behaviors, and so on in the depicted
embodiment. Operations corresponding to elements 513-
522 may be repeated over time, adapting M by gating 1t
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using update h values corresponding to changing local
conditions in the depicted embodiment.

Adaptation by Continued Local Device Training

Two major types of deep neural networks (DNNs) may be
used, sometimes 1n combination with one another, 1n various
embodiments in which additional adaptation techniques
discussed herein are implemented. The first type may be
referred to as discriminative DNNs—networks that are
trained using supervised learning algorithms which may
require at least some labeled examples. The second type may
be called generative deep networks—networks that are
trained using unsupervised learning, where labeled data may
not be needed.

FIG. 6 illustrates an example discriminative deep neural
network model, according to at least some embodiments. By
way of example, the discriminative DNN model 602 may be
used for classitying input sensor data such into a set of
output classes 615 1n the depicted embodiment—e.g., image
frames may be classified based on their subject matter such

as “anmimals”, “scenery”, “houses™, “boats™, “cars” and the

like. Model 602 may comprise an input layer in which a set
of filters 603 are applied to mput sensor data 604, followed
by several layers of alternating cross-correlation computa-
tions 616 (¢.g., 616a, 6165) and spatial reduction computa-
tions 618 (e.g., 618a, 618bH). At various stages, respective
sets of feature maps (e.g., FMS 606, 607, 608, 609) may be
obtained as a result of the transformations applied. In some
embodiments, the cross-correlation and spatial reduction
layers may be followed by one or more fully connected NN
layers betfore the output classification results 615 are gen-
erated.

FIG. 7 illustrates an example generative deep neural
network model, according to at least some embodiments.
The generative DNN model 702 may be used for learning
parameters which can be used to reconstruct or reproduce
input sensor data (such as video frames) in the depicted
embodiment, and may comprise two phases of computa-
tions. The first phase, which may be referred to as an
encoding phase 751, may be similar 1n some respects to
some of the layers shown 1n FIG. 6—=¢.g., filters 705 may be
applied to respective subsets of input data 704, followed by
several layers of cross-correlation 717 (e.g., 717a and 717b)
alternating with spatial reduction (e.g., 718a and 7185). The
second phase, which may be called a decoding phase, may
take the feature maps produced 1n the decoding phase, which
are assumed to capture various characteristics of the mput
data, and 1in eflect reverse the sets of transformations of the
encoding phase, resulting 1n output 725 which represents a
reconstruction 723 of the mnput data 1n the depicted embodi-
ment. At a high level, the transformations 720 may 1n some
sense thus collectively represent the reversal of the trans-
formations of the encoding phase in the depicted embodi-
ment. If, after training, the model 702 1s able to reconstruct
new 1nput data to a targeted level of accuracy, it may be
considered to have learned how to capture key characteris-
tics of the types of sensor data provided as mput 1n various
embodiments, and 1ts representations of input data may be
used for various purposes such as to help generate predic-
tions regarding future sensor data and so on. In each of
models 602 and 702 of FIG. 6 and FIG. 7, respective sets of
model parameters such as weights may be learned at each of
the layers during traiming (e.g., the cross-correlation layers,
the spatial reduction layers, the fully-connected layers, and
SO on).
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Under a semi-supervised learming framework, where only
a portion of the dataset 1s annotated with labels, a DNN may
be trained using both discriminative and generative objec-
tives 1n some embodiments. For example, the discriminative
DNN may be trained to predict a class label, or recognize
abnormal activities 1n the scene (supervised), while the
generative DNN can be trained to reconstruct 1ts own 1nput
(unsupervised). In this case, instead of training two separate
networks completely independently, model parameters or
welghts may be shared between the two training regimes,
resulting 1 a single model that can make use of both
unlabeled and labeled data. FIG. 8 illustrates an example
combined discriminative and generative deep neural net-
work model, according to at least some embodiments. The

top hall of FIG. 8 shows the discriminative portion of a
combined DNN model 802, while the bottom half shows the
generative portion. As shown, respective sets of parameters
844 may be shared at corresponding layers of the two
portions of the combined model 1n different embodiment. In
at least one embodiment, such joint or combined models
may be trained 1nmitially at central training resources, trans-
mitted to deployment destinations, and adapted at the
deployment destinations as discussed below in further detail.

An example process which may be used for training and
deploying combined deep neural networks using shared
model parameters similar to parameters 844 may comprise
steps similar to the following 1n some embodiments:

Train a single DNN 1n a generative mode with training,
data which are not annotated with labels (e.g., at a
central trainer the server side). This may be referred to
as pre-traimning.

Train the same DNN 1n a discriminative mode with
annotated/labeled training data (e.g., at the central
trainer). This may be referred to as fine-tuning.

Deploy the DNN (e.g., with the centrally-learned param-
eters) to destination devices such as cameras, autono-
mous cars and the like.

In some cases, the trained DNN, at least as initially
deployed, may not be adapted to a given deployment des-
tination device. Diflerent deployment destination devices
may have slightly different sensors, the placement of those
sensors even within the devices may vary and so on.
Consider, for example, the large number of different camera
types that currently exist from many diflerent manufactur-
ers. There are also many diflerent genres of cameras includ-
ing web cameras, closed-circuit video cameras, infrared
cameras, mobile cameras, etc. Moreover, the context (e.g.
background, indoor/outdoor location) and the distributions
of objects within a scene may be very different from one
camera-equipped device to another. While the difference
between sensor statistics might be handled to some extent
using some combination of the adaptation techniques
described earlier, 1n at least some embodiments the follow-
ing approach may be employed for additional adaptation.

After deployment, the deployment destination device may
adapt the DNN to 1ts specific environment by fine-
tuning the model, e.g., using unsupervised generative
learning. This may lead to the superior model perfor-
mance on the local device, without the need to com-
municate any locally-collected data to the central
trainer.

As primarily generative learning may be used locally on
the deployment destination device, the bulk of the
discriminative training may still be carried out on the
central trainer server system before deployment. This
framework may generalize to any DNN architecture,
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including convolutional, deconvolutional, and fully
connected deep neural networks.

FIG. 9 1s a schematic diagram 1llustrating the deployment
of deep neural network models across a plurality of desti-
nation devices, according to at least some embodiments. At
centralized training resources 920 such as a server at a data
center, a large accumulated input data set 926 may be used
to generate one or more DNN models 928. Some combina-
tion of unsupervised and supervised training algorithms 927
may be used 1n the depicted embodiment, and three types of
parameters may be learned in at least some embodiments:
parameters A and W which are considered global, and local
parameters B which may be re-learned, overridden or modi-
fied at the deployment destinations. In some embodiments A
may represent the contribution to the parameters/weights
coming from generative learning, B may represent the
contribution from local generative learning and W the con-
tribution from global discriminative learning.

The centrally-trained models and parameters 955 (e.g.,
955a — 955d) may be transmitted to various deployment
destinations 905 (e.g., local devices 905q-905d). There,
input obtained from local data collectors 906 (e.g., 906a-
906d) may be gathered, and unsupervised learning algo-
rithms 907 (e.g., 907a-907b) may be used to modily or adapt
the local (B) parameters of the model in accordance with the
local environment conditions. The modified/adapted models
908 (e.g., 9084a-9084) may be used to generate inferences,
make predictions, and so on in various embodiments.

FIG. 10 1s a flow diagram 1llustrating aspects of opera-
tions which may be performed to train and deploy a com-
bined discriminative and generative deep neural network
model, according to at least some embodiments. As indi-
cated 1n element 1001, a collection of sensor data may be
obtained from numerous sensors deployed in respective
environments. In one embodiment, some of the input data
may, for example, be received from examples of deployment
destinations themselves. Training of at least a generative
portion of a DNN model may be performed, e.g., at a central
trainer (element 1004) in the depicted embodiment using the
collected data and an unsupervised learning algorithm. A
vector of model parameters A may be obtained from the
generative training.

As 1ndicated in element 1007, an adaptation process
which may occur at model deployment destinations (such as
various sensor-equipped devices) may be simulated at the
central tramner. The simulation may, for example, include
partitioning the traiming data into K clusters corresponding,
to respective environmental categories in the depicted
embodiment. The environmental categories may {for
example, 1n an embodiment involving the use of cameras or
image sensors, span different lighting conditions, mounting
locations, geographical locations, scene types and so on. A
given cluster may emulate, at the central trainer, a different
local device environment in the sense that the data in that
cluster corresponds to the data that that local device would
be expected to encounter. Note that this emulation step may
take place on the central trainer 1n various embodiments.
The number of clusters may vary 1n different embodiments,
and may be considered a tunable meta-parameter 1n at least
some embodiments.

For each cluster keK, as indicated in element 1010, a
separate training phase may be mmplemented in some
embodiments by only using the data that 1s available to the

partition k. The parameters of the new model are defined as
C(k), where

Ck)=A+B (k)
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where the parameter vector A 1s obtained from operations
corresponding to element 1004 and 1s kept fixed, and B(k)
represents the cluster dependent adaptation 1n the weights
for k=1, . . . , K. B(k) may be learned using generative
learning 1 an encoding-decoding model similar to that
shown 1n FIG. 7. In some embodiments, the central trainer
may constrain the norm of B(k) to be small (e.g. less than or
equal to 0.1), which corresponds to a constrained optimiza-
tion problem. A small norm may restrict the complexity of
the cluster dependent adaptive weights B(k).

As indicated 1n element 1013, in at least some embodi-
ments, given C(Kk) for all K clusters, the central trainer may
train a joint discriminative-generative model similar to that
shown 1 FIG. 8. The overall model parameters for each
cluster k may be defined as:

U=+ C k)

where W 1s a shared parameter vector that 1s independent of
cluster k and 1s optimized using supervised learning. This
may help identify a single discriminative adjustment that
works for all K clusters 1s found 1n various embodiments.
This 1n turn may make it possible to expect good general-
ization on the deployment destination in various embodi-
ments, where a different B may be determined which 1s
unknown at the central trainer. The operations correspond-
ing to element 1013 may be considered useful in creating the
synergy between the two sets of parameters W and B 1n
various embodiments.

After training or convergence ol the DNN model at the
central trainer, the models and at least a subset of parameters
such as A and W may be sent from the server system to the
deployment destinations (element 1016). At least some local
devices ] may compute respective B parameters B(y) locally
in some embodiments. The final model parameters used for
inference on a given deployment destination in such an
embodiment may comprise, for example, U(K)=W++B(j).

FIG. 11 1s a flow diagram 1llustrating aspects of operations
which may be performed at a model deployment destination
device to adapt a combined discriminative and generative
deep neural network, according to at least some embodi-
ments. It will be appreciated that multiple deployment
destination devices may each implement the operations
illustrated 1n FIG. 11 1n parallel in some embodiments. As
shown 1n element 1101, one or more DNN models with an
initial set of parameters (e.g., similar to parameter vectors A
and W described above) may be received at a deployment
destination such as a smart phone, smart camera, autono-
mous vehicle or other local device 1n the depicted embodi-
ment, e.g., from a central training resource. The deployment
destination may be equipped with or have access to locally-
collected sensor data (e.g., videos, LIDAR data etc.) in at
least some embodiments.

The next set of locally-collected sensor data may be
obtained (element 1104). Local adaptive parameters or
weilghts (e.g., similar to weights BU) discussed above) may
be learned for at least some portions of the model at the
deployment destination (element 1107), while keeping at
least some of the mitially-provided parameters unchanged or
unmodified 1n the depicted embodiment. In various embodi-
ments, generative unsupervised learning algorithms may be
used to learn the adaptive weights. At least some of the
locally-collected input data used to learn the adaptive
welghts may not be shared with or transmitted to the central
trainer in the depicted embodiment.

In some embodiments, the parameters of the locally-
adapted model may be represented as U(y):

Uj)y=W+A+B5(j)
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where A and W are fixed parameters obtained from the
central trainer, while B(y) represents local adaptive weights.

Optimization may be performed at the deployment destina-
tion with respect to B(j), while the norm of B(3) may be
constramned to be small 1n at least some embodiments. In
some embodiments, 1 annotated or labeled data are avail-
able at the deployment destination, then 1n addition to B(y),
W can also be fine-tuned and adapted, leading to an even
more robust model.

After the adaptive weights or parameters have been
learned using the current iteration of locally-acquired sensor
data, the modified DNN model(s) may be used to perform
one or more inferences at the deployment destination—e.g.,
to recognize entities or objects, to detect an instance of a
particular type of action by an agent, to predict future actions
or states, and so on, depending on the particular application
for which the DNN was designed. Operations corresponding
to elements 1104, 1107 and 1110 may be iterated in some
embodiments, adapting the DNN model to changing condi-
tions of the deployment destinations.

Hybrid Models

In some embodiments, an approach which combines some
of the adaptation techniques discussed above may be
employed. FIG. 12 1s a schematic diagram illustrating the
deployment of hybrid neural network models across a plu-
rality of destination devices, according to at least some
embodiments. As shown, a large accumulated input data set
1226 comprising data from numerous sensor devices may be
obtained at a set of centralized traiming resources 1220 such
as one or more servers at a data center in the depicted
embodiment. A selected algorithm or algorithms 1227,
which may include aspects of supervised and unsupervised
learning 1n some cases, may be used to generate one or more
hybrid DNN model(s) 1228. The hybrid model 1228 may for
example, include an auxiliary embedding model as well as
a master model 1n some cases, enabling adaptation for
training by dynamic modulation as well as training with
local data, thus combining some or all of the techniques
discussed above. The centrally-trained model(s) and at least
a subset of their parameters 1235 (e.g., 1255a-1255b6) may
be transmitted to a plurality of deployment destinations 1205
(e.g., 12054a-12054d) 1n the depicted embodiment.

At the deployment destinations, input obtained from local
data collectors 1206 (e¢.g., 12064-1206) may be used 1n
combination with hybrid retraining algorithms 127 (e.g.,
1207a-1207d) to obtain parameters of respective modified/
adapted hybrid models 1207 (e.g., 1207a-1207d) 1n various
embodiments. The adapted models may then be used to
perform inferences of various kinds, to make predictions,
classily input data and so on, at the deployment destinations.
Any desired combination of the techniques described above,
including for example removal of covanate shifting, multi-
plicative gating using output from an embedding network,
the used of cluster-specific and cluster-independent param-
eters 1n the context of a combined discriminative-generative
model, and so on, may be used in the hybrid approach in
various embodiments.

FIG. 13 1s a flow diagram 1llustrating aspects of opera-
tions which may be performed to training a hybrid deep
neural network model centrally and adapt or retrain the
hybrid deep neural network model at various deployment
destinations, according to at least some embodiments. As
shown, operations corresponding to elements 1301, 1304,
1307, 1310, and 1313 may be performed at central training
resources such as servers at one or more data centers 1in some
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embodiments, while operations corresponding to elements
1351, 1354, 1357, 1369 and 1363 may be performed at
deployment destinations or local devices in such embodi-
ments. As shown 1n element 1301, data obtained at various
sensors (e.g., cameras, LIDAR devices, infra-red sensors
and the like) corresponding to a variety of possible or actual
deployment destinations may be obtained at the central
training resources and organized 1into K clusters representing,
respective sets ol environment conditions in the depicted
embodiment. A neural network model (NNM) E that learns
representations (e.g., feature vectors) of local environments
may be tramned (element 1304), e¢.g., using environment-
specific traiming data subsets or clusters. In addition, another
NNM with a parameter set A may be tramed, e.g., using
unsupervised learning (element 1307). Then, using the train-
ing data corresponding to each of the K clusters, a respective
NNM with parameters A+B(k) may be trained, e.g., using
unsupervised learning (element 1310).

A master NNM M may be trained 1n the depicted embodi-
ment, whose parameters comprise W+A+B(k), where the W
parameters are modulated using the output of E (element
1313), employing an adaptive gating approach similar to
that discussed 1n the context of FIG. 4. The master model
may thus comprise at least some cluster-specific parameters
B(k), global parameters A and parameters W (where the W
parameters are amenable to modulation) 1n the depicted
embodiment.

The NNM(s) E and M may be deployed, together with the
values of Wand A, to some number of deployment destina-
tion devices 1n the depicted embodiment. At a given deploy-
ment destination, at least two types of adaptations may be
implemented 1n some embodiments. In the first adaptation
technique, E may be run periodically, e.g., to obtain respec-
tive environment representation vectors h, corresponding to
respective times t (element 1351). An accumulated or run-
ning value of h may be updated in each iteration in the
depicted embodiment, e.g., using a weighted formula similar
to that shown 1n element 1357. In the second adaptation
approach, local versions of parameters B may be generated
periodically, e.g., using unsupervised tramning (element
1354) and locally-collected sensor data. In a manner analo-
gous to the way that the running or accumulated h param-
cters are updated, B parameters may also be updated 1itera-
tively (element 1360) using a weighted updated formula. It
1s noted that the formulas shown 1 FIG. 13 are examples
and are not meant to be restrictive; 1n various embodiments,
different formulas than those shown in FIG. 13 may be used,
and the weights attached to the most recent B or h param-
cters may not necessarily be identical as shown in the
examples.

After the adapted values of h and B are obtained for the
current iteration, the master DNN M may be run with the
updated parameters at the deployment destination (element
1363). The parameters W may be modulated with the
adapted h values, and the locally-generated B parameters
may be used in at least some embodiments. After the
iteration of adaptive training, the output of M produced
using new sensor data (e.g., sensor data that was not used for
the adaptive training) may be used to generate inferences
regarding local environment and take various responsive
actions 1f needed, depending on the application for which M
was designed. In some embodiments, for example, future
actions of various entities may be predicted, input may be
classified, individuals or entities may be recognized, and so
on. The operations corresponding to at least elements 1351 -
1363 may be repeated as more local mnput data 1s collected
at the deployment destination 1n the depicted embodiment,
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gradually improving M to adapt even more closely to the
specific environment 1n which 1t 1s deployed. Several of the
operation sequences shown in FIG. 13 may be performed 1n
parallel in various embodiments—e.g., the traiming of the
models indicated 1 element 1304 may be performed in
parallel with the training for parameters A and B(k) at the
central trainer, while the execution of E and the determina-
tion of local B parameters may be performed 1n parallel at
the deployment destinations. It 1s noted that in various
embodiments, at least some operations other than those
illustrated 1n the tlow diagrams of FIG. 2, FIG. 5, FIG. 10,
FIG. 11 and/or FIG. 13 may be used to implement the
modeling techniques described above. Some of the opera-
tions shown may not be implemented 1n some embodiments
or may be implemented in a different order, or 1n parallel
rather than sequentially.

FIG. 14 illustrates the use of adaptive neural network
models for a fleet of deployment destination systems (e.g.
autonomous vehicles), according to at least some embodi-
ments. As shown, as part ol a continuous or ongoing data
collection procedure 1401, data about driving environments
may be collected from a variety of sensors 1402A and 14028
(e.g. vehicle-based sensors) in numerous geographical
regions and environment types such as E'T1 and ET2. The set
of sensors at a given vehicle may comprise, among others,
externally-oriented cameras, occupant-oriented sensors
(which may, for example, include cameras pointed primarily
towards occupants’ faces, or physiological signal detectors
such as heart rate detectors and the like, and may be able to
provide evidence of the comiort level or stress level of the
occupants), Global Positioming System (GPS) devices, radar
devices, LIDAR devices, sensors associated with vehicle
motion-control subsystems such as brakes, accelerator ped-
als, steering wheels, and so on. In addition to conventional
video and/or still cameras, in some embodiment near-intra-
red cameras and/or depth cameras may be used. In addition
to the sensors 1402A and 1402B, data about the environ-
ments of the deployment destination systems (e.g. driving
environments) may also be collected from environment-
specific data sources 1405. In at least some embodiments.
Such data sources may include, for example, extra-vehicular
databases of traflic laws, accident reports, mapping services
and the like, at least some of which may themselves be
environment-specific.

The data may be aggregated at one or more primary model
training data centers 1420 in the depicted embodiment. The
data centers may comprise numerous computing platiorms,
storage platforms and the like, from which some number of
central training platforms 1422 may be selected to train and
evaluate DNN-based models using any of a variety of
machine learning algorithms of a library 1424. Partially
trained models 1450, which may for example comprise
implementations of various techniques illustrated earlier,
may be transmitted (together with at least some learned
parameters) to deployment destination systems 1472 (e.g.,
DDSs 1472A-1472C) of fleets 1470 1n the depicted embodi-
ment.

In some embodiments, each deployment destination sys-
tem 1472A-C may be an autonomous vehicle. The tramned
models may be adapted and executed using local computing
resources at the autonomous vehicles and data collected by
local sensors of the autonomous vehicles, e.g., to predict
states or actions of various entities and objects 1n a vehicle’s
surroundings at desired time horizons. In some embodi-
ments, the outputs of the adapted DNNs may be used to
generate motion control directives to achieve vehicle trajec-
tories which meet safety, efliciency and other desired crite-
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ria. At least a subset of the decisions made at the vehicle, as
well as the local sensor data collected, may be transmitted
back to the data centers as part of the ongoing data collection
approach, and used to improve and update the state predic-
tion models 1n various embodiments. In some embodiments,
updated versions of the models may be transmitted to the
autonomous vehicle fleet from the data centers periodically,
¢.g., as 1improvements in the model accuracy and/or etlh-
ciency are achieved, and further adaptations may be per-
formed at the vehicles as and when needed. In at least one
embodiment, respective versions of DNN models may be
generated for several sub-domains—e.g., one model may be
generated for large trucks, another for passenger cars, and so
on, and the appropriate models may be transmitted to
autonomous vehicles of different types for further local
customization. Any combination of the various techniques
discussed above for local adaptations may be employed at
respective autonomous vehicles in various embodiments,
¢.g., including removing covariate shifting, modulation
using embedding models, hybrid models, and so on.

FIG. 15 illustrates the use of adaptive neural network
models for smart phones, augmented reality and wvirtual
reality devices, according to at least some embodiments. In
the depicted embodiment, one or more DNNs similar to
those described earlier may be trained using central training,
platforms 1522 at one or more primary model training data
centers 1520 using any of a variety of algorithms of libraries
1524. Respective types of models, along with at least some
learned parameters, may be transmitted to at least two types
of deployment destination devices in the depicted embodi-
ment: smart phones such as 1501 A and 1501B, and AR/VR
(augmented/virtual reality) headsets 15351 A and 1551B.
Each of the deployment destinations may comprise a respec-
tive set of local sensors, such as sensors 1502A and 1502B
at the smart phones, and sensors 1552A and 1552B at the
AR/VR headsets.

In the example scenarios illustrated in FIG. 15, DNN
models may be used for facial recognition applications 1503
(e.g., 1503 A and 1503B0 at the smart phones 1501, and for
object recognition applications 1553A and 1553B at the
AR/VR headsets. A partially trained version of the model,
received at a smart phone 1501 or a headset 1551 from the
central training platforms, may be adapted or customized for
the local environment or the specific person using the
deployment destination using any combination of the vari-
ous techniques discussed above for local adaptations 1n
vartous embodiments, e.g., including removing covarnate
shifting, modulation using embedding models, hybrid mod-
els, and so on.

As discussed above, the techniques for adaptive training
of DNN models may be employed either singly or in
combination in a variety of scenarios 1n different embodi-
ments. In an example embodiment, a system 1s designed to
remove covariate shift by factoring each weight matrix of a
deep neural network into a dense and diagonal component
such that the diagonal component can be easily adapted to
data available on a new local device.

In another example embodiment, a system 1s designed to
multiplicatively gate parameters of the global neural net-
work, where the gating 1s a function of the statistics of the
local data received. This approach eflectively produces a
new set ol neural network parameters for any given envi-
ronment.

In another example embodiment, a system 1s designed for
continued traiming and adaptation of the DNN parameters on
the local device after deployment.

10

15

20

25

30

35

40

45

50

55

60

65

28

In another example embodiment, a system 1s designed for
both multiplicatively gating parameters and locally retrain-
ing the DNN on the local device after deployment.

In yet another example embodiment, different combina-
tions of one or more of the above features may be used to a
single joint system.

Other example embodiments are provided below.

In a general example embodiment, a computing system 1s
provided comprising: a server system comprising one or
more processors to train a flexible neural network, the
flexible neural network comprising a mean parameter, a
variance parameter, and multiple learned parameters, and
the flexible neural network trained using unlabeled obser-
vation data stored 1n memory on the server system, and the
server system further comprising a communication device to
transmit the flexible neural network to one or more devices;
and a given device of the one or more devices comprising
another communication device to receive the flexible neural
network, another memory to store the flexible neural net-
work and to store local observation data that i1s locally
obtained by the given device, and one or more processors.
The one or more processor on the given device are config-
ured to at least: process the local observation data using the
flexible neural network; repeatedly obtain samples of states
of hidden layers of the flexible neural network over a period
of time; and use the samples to compute new values for the
mean parameter and the variance parameter, which are used
to generate an adapted flexible neural network for the given
device.

In an example aspect, the given device further comprises
one or more sensor devices to capture the local observation
data. In another example aspect, the given device 1s 1n data
communication with one or more sensor devices, and
obtains the local observation data from the one or more
sensors. In another example aspect, the unlabeled observa-
tion data and the local observation data are video data, and
the given device 1s a camera device.

In a general example embodiment, a computing device 1s
provided comprising: a commumnication device configured to
receive an initially trained flexible neural network, which
comprises a mean parameter, a variance parameter, and
multiple learned parameters, and the inmitially trained flexible
neural network was 1nitially trained using unlabeled obser-
vation data; a memory device for storing the initially trained
flexible neural network and local observation data that is
locally obtained by the computing device; and one or more
processors. The one or more processors are configured to at
least: (a) process the local observation data using the ini-
tially trained flexible neural network; (b) repeatedly obtain
samples of states of hidden layers of the initially trained
flexible neural network over a period of time; (c¢) use the
samples to compute new values for the mean parameter and
the variance parameter, which are used to generate an
adapted flexible neural network for the computing device;
and (d) use the adapted flexible neural network to process
new local observation data.

In an example aspect, the operations (b), (¢) and (d) are
repeated. In an example aspect, the computing device further
comprises one or more sensor devices to capture the local
observation data and the new local observation data. In an
example aspect, the communication device 1s 1n data com-
munication with one or more sensor devices, and obtains the
local observation data from the one or more sensors devices.
In an example aspect, the unlabeled observation data and the
local observation data are video data, and the computing
device 1s a camera device which comprises one or more
1mage Sensors.
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In a general example embodiment, a computing system 1s
provided comprising: a server system comprising one or
more processors to train an embedding neural network and,
alterwards, a master neural network, where an output of the
embedding neural network gates the master neural network,
and the embedding and the master neural networks are
trained using observation data stored in memory on the
server system, and the server system further comprising a
communication device to transmit the embedding and the
master neural networks to one or more devices; and a given
device of the one or more devices comprising another
communication device to receive the embedding and the
master neural networks, another memory to store the embed-
ding and master neural networks and to store local obser-
vation data that 1s locally obtained by the given device, and
one or more processors. The one or more processors of the
given device are configured to at least: process the local
observation data at different times using the embedded
neural network to obtain multiple given outputs; compute a
representative output using the multiple given outputs that 1s
specific to the local observation data of the given device; use
the representative output to gate the master neural network,
to generated an adapted master neural network; and input
new locally obtained observation data into the adapted
master neural network.

In an example aspect, the given device further comprises
one or more sensor devices to capture the local observation
data. In an example aspect, the given device 1s 1n data
communication with one or more sensor devices, and
obtains the local observation data from the one or more
sensors. In an example aspect, the observation data stored 1n
the memory on the server system and the local observation
data are video data, and the given device 1s a camera device.

In a general example embodiment, a computing device 1s
provided comprising: a communication device configured to
receive an 1nitially trained embedded neural network and an
initially trained master neural network; a memory device for
storing the mitially tramned embedded and master neural
networks and local observation data that 1s locally obtained
by the computing device; and one or more processors. The
one or more processors are configured to at least: (a) process
the local observation data at different times using the embed-
ded neural network to obtain multiple given outputs; (b)
compute a representative output using the multiple given
outputs that 1s specific to the local observation data of the
given device; (¢) use the representative output to gate the
master neural network, to generated an adapted master
neural network; and (d) mput new locally obtained obser-
vation data into the adapted master neural network.

In an example aspect, operations (a), (b), (¢) and (d) are
repeated. In an example aspect, the computing device further
comprises one or more sensor devices to capture the local
observation data and the new local observation data. In an
example aspect, the communication device 1s 1n data com-
munication with one or more sensor devices, and obtains the
local observation data from the one or more sensors devices.
In an example aspect, the local observation data and the new
local observation data are video data, and the computing
device 1s a camera device which comprises one or more
1mage sensors.

In a general example embodiment, a computing system 1s
provided comprising: a server system comprising one or
more processors to train a joint deep neural network (DNN),
the joint DNN comprising a discriminative DNN, a genera-
tive DNN, a first global parameter obtained by the genera-
tive DNN, a second global parameter obtained by the
discriminative DNN, and a third local parameter obtained by
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the generative DNN, the jomnt DNN being trained using
observation data stored 1n memory on the server system, and
the server system Ifurther comprising a communication
device to transmit the joint DNN to one or more devices; and
a given device of the one or more devices comprising
another communication device to receive the joimnt DNN
embedding and the master neural networks, another memory
to store the jomnt DNN and to store local unlabeled obser-
vation data that 1s unlabeled and locally obtained by the
given device, and one or more processors. The one or more
processors of the given device configured to at least: process
the local observation data at different times using the gen-
erative DNN of the joint DNN to obtain one or more values
of the third local parameter, the one or more values specific
to the local observation data of the given device; generate an
adapted joint DNN using the one or more values of the third
local parameter, the adapted joint DNN specific to the given
device; and mput new locally obtained observation data into
the adapted joint DNN.

In an example aspect, the given device further comprises
one or more sensor devices to capture the local observation
data. In an example aspect, the given device 1s 1n data
communication with one or more sensor devices, and
obtains the local observation data from the one or more
sensors. In an example aspect, the observation data stored 1n
memory on the server system and the local observation data
are video data, and the given device 1s a camera device.

In a general example embodiment, a computing device 1s
provided comprising: a communication device configured to
receive an 1mitially trained joint deep neural network (DNN),
the joint DNN comprising a discriminative DNN, a genera-
tive DNN, a first global parameter obtained by the genera-
tive DNN, a second global parameter obtained by the
discriminative DNN, and a third local parameter obtained by
the generative DNN; a memory device for storing the
initially trained joint DNN and local observation data that 1s
locally obtained by the computing device; and one or more
processors. The one or more processors are configured to at
least: (a) process the local observation data at different times
using the generative DNN of the joint DNN to obtain one or
more values of the third local parameter, the one or more
values specific to the local observation data of the given
device; (b) generate an adapted joint DNN using the one or
more values of the third local parameter, the adapted joint
DNN specific to the given device; and (¢) mnput new locally
obtained observation data into the adapted joint DNN.

In an example aspect, operations (a), (b), and (c) are
repeated. In another example aspect, the computing device
turther comprises one or more sensor devices to capture the
local observation data and the new local observation data. In
an example embodiment, wherein the communication
device 1s 1 data communication with one or more sensor
devices, and obtains the local observation data from the one
or more sensors devices. In an example embodiment, the
local observation data 1s video data, and the computing
device 1s a camera device which comprises one or more
1mage sensors.

In a general example embodiment, a computing system 1s
provided comprising: a server system comprising one or

more processors to train a hybrid deep neural network
(DNN), the hybrid DNN comprising an unsupervised DNN,

an embedding DNN and a master DNN generative DNN,
wherein the embedding DNN and the unsupervised DNN are
trained before the master DNN, and the unsupervised DNN
1s trained with a first global parameter and a second local
parameter, and the master DNN 1s tramned with the first
global parameter, the second local parameter and a third
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global parameter that 1s modulated by an output of the
embedding DNN; the server system further comprising
memory storing observation data that 1s used to train the
hybrid DNN, and further comprising a communication
device to transmit at least the hybrid DNN to one or more
devices; and a given device of the one or more devices. The
given device comprising: another communication device to
receive the hybrid DNN, the first and the third global
parameters, and the second local parameter; another
memory to store the hybrid DNN, the first and the third
global parameters, and the second local parameter and to
turther store local observation data that 1s unlabeled and
locally obtained by the given device, and one or more
processors. The one or more processors on the given device
are configured to at least: process the local observation data
using the embedding DNN to generate a new representative
output from the embedding DNN; process the local obser-
vation data using the unsupervised DNN to obtain a value of
the second local parameter, the value specific to the local
observation data of the given device; generate an adapted
master DNN with the value of the second local parameter
that 1s specific to the local observation data, with the first
global parameter, and with the third global parameter which
1s modulated by the new representative output from the
embedding DNN, the adapted master DNN specific to the
given device; and input new locally obtained observation
data into the adapted master DNN.

In an example aspect, the given device further comprises
one or more sensor devices to capture the local observation
data. In another example aspect, the given device 1s 1n data
communication with one or more sensor devices, and
obtains the local observation data from the one or more
sensors. In another example aspect, the observation data
stored 1n memory on the server system and the local obser-
vation data are video data, and the given device 1s a camera
device.

In another general example embodiment, a computing
device 1s provided comprising: a communication device
configured to receive an 1itially traimned hybrid deep neural
network (DNN), the mitially trained hybrid DNN compris-
ing an unsupervised DNN, an embedding DNN and a master
DNN generative DNN, wherein the embedding DNN and
the unsupervised DNN were trained before the master DNN,
and the unsupervised DNN was trained with a first global
parameter and a second local parameter, and the master
DNN was trained with the first global parameter, the second
local parameter and a third global parameter that was
modulated by an output of the embedding DNN; a memory
device for storing the imitially trained hybrid DNN and local
observation data that i1s locally obtained by the computing
device; and one or more processors. The one or more
processors are configured to at least: (a) process the local
observation data using the embedding DNN to generate a
new representative output from the embedding DNN; (b)
process the local observation data using the unsupervised
DNN to obtain a value of the second local parameter, the
value specific to the local observation data of the given
device; (¢) generate an adapted master DNN with the value
of the second local parameter that 1s specific to the local
observation data, with the first global parameter, and with
the third global parameter which 1s modulated by the new
representative output from the embedding DNN, the adapted
master DNN specific to the given device; and (d) input new
locally obtained observation data into the adapted master
DNN.

In an example aspect, operations (a), (b), (¢) and (d) are
repeated. In another example aspect, operations (a) and (b)
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occur 1n parallel. In another example aspect, the computing
device further comprises one or more sensor devices to
capture the local observation data and the new local obser-
vation data. In another example aspect, the communication
device 1s 1n data communication with one or more sensor
devices, and obtains the local observation data from the one
or more sensors devices. In another example aspect, the
local observation data 1s video data, and the computing
device 1s a camera device which comprises one or more
1mage Sensors.

It will be appreciated that any module or component
exemplified herein that executes instructions or operations
may include or otherwise have access to computer readable
media such as storage media, computer storage media, or
data storage devices (removable and/or non-removable)
such as, Tor example, magnetic disks, optical disks, or tape.
Computer storage media may include volatile and non-
volatile, removable and non-removable media implemented
in any method or technology for storage of information, such
as computer readable nstructions, data structures, program
modules, or other data, except transitory propagating signals

per se. Examples of computer storage media include RAM,
ROM, EEPROM, flash memory or other memory technol-

ogy, CD-ROM, digital versatile disks (DVD) or other optical
storage, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices, or any other
medium which can be used to store the desired information
and which can be accessed by an application, module, or
both. Any such computer storage media may be part of the
systems, devices, and servers described herein, or accessible
or connectable thereto. Any application or module herein
described may be implemented using computer readable/
executable instructions or operations that may be stored or
otherwise held by such computer readable media.

It will also be appreciated that the examples and corre-
sponding diagrams used herein are for illustrative purposes
only. Different configurations and terminology can be used
without departing from the principles expressed herein. For
instance, components and modules can be added, deleted,
modified, or arranged with differing connections without
departing from these principles.

The steps or operations i1n the computer processes, the
flow charts and the diagrams described herein are just for
example. There may be many vanations to these steps or
operations without departing from the principles discussed
above. For instance, the steps may be performed in a
differing order, or steps may be added, deleted, or modified.

Although the above principles have been described with
reference to certain specific examples, various modifications
thereof will be apparent to those skilled in the art as outlined
in the appended claims.

What 1s claimed 1s:

1. A system, comprising;

a model trammer comprising a first set of one or more

computing devices; and

one or more model deployment destinations, including a

first model deployment destination comprising a sec-
ond set of one or more computing devices;

wherein the model traimner comprises instructions that

when executed on one or more processors cause the

first set of one or more computing devices to:

train, using a {first mput data set comprising data
collected from a plurality of sensors, a first neural
network based model;

transmit at least a first set ol parameters of the first
neural network-based model to the first model
deployment destination; and
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wherein the first model deployment destination comprises
instructions that when executed on one or more pro-
cessors cause the second set of one or more computing
devices to:
determine, using a second input data set and an unsu-
pervised learming algorithm, one or more adaptive
parameters for the first neural network based model,
wherein at least a subset of the first set of parameters
remains unmodified by unsupervised learning; and
generate, using a version of the first neural network
based model comprising the one or more adaptive
parameters, at least one inference.

2. The system as recited 1n claim 1, wherein to train the
first neural network based model, the model trainer com-
prises instructions that when executed cause the first set of
one or more computing devices to:

partition the first input data set into a plurality of clusters,

wherein a first cluster of the plurality of clusters
corresponds to a first set of environmental conditions
associated with one or more model deployment desti-
nations, and wherein a second cluster of the plurality of
clusters corresponds to a second set of environmental
conditions associated with one or more model deploy-
ment destinations; and

learn a respective cluster-dependent group of model

parameters corresponding to one or more clusters of the
plurality of clusters;

learn a cluster-independent parameter using the cluster-

dependent groups of model parameters, wherein the
cluster-independent parameter 1s included in the first
set of parameters transmitted to the first model deploy-
ment destination.

3. The system as recited 1n claim 2, wherein at least a first
cluster-dependent group of model parameters of the respec-
tive cluster-dependent groups of model parameters 1s
learned using unsupervised learning.

4. The system as recited 1n claim 2, wherein the cluster-
independent parameter 1s learned using supervised learning.

5. The system as recited in claim 1, wherein the first
neural network based model comprises one or more of: (a)
a convolutional neural network, (b) a deconvolutional neural
network, or (¢) a fully-connected neural network.

6. The system as recited in claim 1, wherein the first
neural network model comprises one or more of: a genera-
tive neural network or a discriminative neural network.

7. The system as recited in claim 1, wherein the first
deployment destination comprises a particular sensor of the
plurality of sensors.

8. The system as recited 1n claim 1, wherein the second
input data set comprises additional data collected from a
particular sensor of the first deployment destination.

9. The system as recited 1n claim 1, wherein the plurality
of sensors comprise a sensor for capturing one or more of:
video data, still image data, LIDAR (light detection and
ranging) data, radar data, audio data, biometric data, pres-
sure data, temperature data, infrared data, speed data, tratlic
data, or communications data.

10. The system as recited in claim 1, wherein the first
deployment destination comprises a device attached to a
vehicle.

11. A method, comprising:
performing, by one or more computing devices:
training, at a first model trainer, using a first input data
set, one or more neural network based models:
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transmitting at least a first set of parameters of a first
neural network-based model of the one or more
neural network based models to a first model deploy-
ment destination;

determining, at the first model deployment destination,
using a second imput data set and an unsupervised
learning algorithm, one or more adaptive parameters
for at least one model of the one or more neural
network based models, wherein at least a subset of
the first set of parameters remains unmodified by the
unsupervised learning; and

generating, at the first model deployment destination,
using at least one model of the one or more neural
network based models and the one or more adaptive
parameters, at least one inference.

12. The method as recited on claim 11, wherein the one or
more neural network-based models include a master model
and an auxiliary model, wherein the auxiliary model emu-
lates an environment associated with one or more deploy-
ment destinations, and wherein the master model 1s gated at
least 1n part by an output of the auxiliary model.

13. The method as recited 1in claim 12, wherein said
determining, at the first deployment destination, the one or
more adaptive parameters comprises executing one or more
iterations of the auxiliary model.

14. The method as recited in claim 11, further comprising
performing, at the one or more computing devices:

sampling, at the first deployment destination, a state of

one or more hidden units of the one or more neural
network based models, wherein the one or more adap-
tive parameters comprise a parameter whose value 1s
modified based at least 1n part on a statistical metric
obtained using a result of said sampling.

15. The method as recited 1n claim 11, wherein the second
input data set comprises a representation of a sensor output
obtained at the first model deployment device.

16. A non-transitory computer-readable storage medium
storing 1nstructions that when executed on one or more
processors cause the one or more processors to:

determine, at a model deployment destination, that at least

a first set of parameters of one or more neural network
based models has been received from a trainer resource,
wherein at least a portion of training of the one or more
neural network based models 1s performed at the trainer
resource using a first input data set;

obtain, at the model deployment destination, using a

second input data set and an unsupervised learning
algorithm, one or more adaptive parameters for at least
one model of the one or more neural network based
models, wherein at least a subset of the first set of
parameters remains unmodified by the unsupervised
learning; and

generate, at the model deployment destination, using at

least one model of the one or more neural network
based models and the one or more adaptive parameters,
at least one inierence.

17. The non-transitory computer-readable storage
medium as recited 1n claim 16, wherein the second input
data set comprises data collected from a sensor accessible
from the model deployment destination.

18. The non-transitory computer-readable storage
medium as recited 1in claim 16, wherein the second input
data set comprises data collected from a sensor for capturing
one or more of: video data, still image data, LIDAR (light
detection and ranging) data, radar data, audio data, biometric
data, pressure data, temperature data, infrared data, speed
data, traflic data, or communications data.




US 11,636,348 Bl

35

19. The non-transitory computer-readable storage
medium as recited 1in claim 16, wherein the one or more
neural network models comprise a combined discriminative
and generative neural network.

20. The non-transitory computer-readable storage
medium as recited 1n claim 16, wherein to obtain the one or
more adaptive parameters, the instructions when executed
on the one or more processors cause the one or more
processors to:

run one or more iterations of an embedding neural net-

work to obtain respective parameter vectors which
correspond to an operating environment of the model
deployment destination;

modily, using a weighted update formula, an aggregate

value of the parameter vector; and

utilize the aggregate value to modulate one or more

operations of a second neural network model.
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