12 United States Patent

US011636306B2

(10) Patent No.: US 11,636,306 B2

Brasnett et al. 45) Date of Patent: Apr. 25,2023
(54) IMPLEMENTING TRADITIONAL (58) Field of Classification Search
COMPUTER VISION ALGORITHMS AS CPC GO6N 3/063; GO6N 3/08; GO6N 3/0454;
NEURAL NETWORKS GO6N 3/0481; GO6N 3/02; GO6N 3/105;
(Continued)
(71) Applicant: Imagination Technologies Limited,
Kings Langley (GB) (56) References Cited

(72) Inventors: Paul Brasnett, West Molesey (GB);
Daniel Valdez Balderas,
Staines-upon-Thames (GB); Cagatay
Dikici, London (GB); Szabolcs
Cséfalvay, Hemel Hempstead (GB);

David Hough, Watiord (GB); Timothy
Smith, London (GB); James Imber,
Hemel Hempstead (GB)

(73) Assignee: Imagination Technologies Limited,
Kings Langley (GB)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 909 days.

(21) Appl. No.: 16/418,322

(22) Filed: May 21, 2019

(65) Prior Publication Data
US 2019/0354844 Al Nov. 21, 2019

(30) Foreign Application Priority Data

May 21, 2018 (GB) sooeeeoeeoeeeeeeeeeeeeeeeeeerenn 1808323

(51) Int. CL
GO6N 3/00
GO6N 3/02

(2006.01)
(2006.01)

(Continued)

(52) U.S. CL
CPC oo GO6N 3/02 (2013.01); GO6F 17/15
(2013.01); GO6F 17/16 (2013.01); GO6N
3/063 (2013.01); GO6N 3/08 (2013.01)

U.S. PATENT DOCUMENTS

6,983,065 B1* 1/2006 Akgul GO6V 10/449

356/73.1

9,576,217 B2* 2/2017 Melikian GO6V 10/462
(Continued)

FOREIGN PATENT DOCUMENTS

CN 105447493 A * 3/2016 ... G06K 9/4609
CN 106446930 A * 2/2017 ... GO6K 9/4671
(Continued)

OTHER PUBLICATTONS

Wang et al; “Learnable Histogram: Statistical Context Features For
Deep Neural Networks”; International Conference on Computer

Analysis of Images and Patterns; Sep. 17, 2016; pp. 246-262.
(Continued)

Primary Examiner — Naum Levin

(74) Attorney, Agent, or Firm — Potomac Law Group,
PLLC; Vincent M Del.uca

(57) ABSTRACT

Methods and systems for implementing a traditional com-
puter vision algorithm as a neural network. The method
includes: receiving a definition of the traditional computer
vision algorithm that identifies a sequence of one or more
traditional computer vision algorithm operations; mapping
cach of the one or more traditional computer vision algo-
rithm operations to a set of one or more neural network
primitives that 1s mathematically equivalent to that tradi-
tional computer vision algorithm operation; linking the one
or more network primitives mapped to each traditional
computer vision algorithm operation according to the
sequence to form a neural network representing the tradi-

(Continued)

300

’__,f’

RECENE DEFINITION OF TRADHTIONAL 202
COMPUTER VISION ALGORITHM P
COMPRISING A SEQUENCE OF

TRADITIONAL COMPUTER VISION

Al GORITEM OPERATIONS

OF ONE OR MORE NEURAL NETWORK

Pdar EACH TRADTIONAL COMPUTER 304
VISION ALGORITHM OPERATION TG A SET =

PRIMIVIVES

|

NEURAL NETWORK

Link NEURAL METWORK PRIMITIVES jﬁﬁ
ACCORDING TO SEQUENCE TC FORmM A

TraIN NEurRAL METWORK LISING NELIRAY |
NETWORK TRAINING TECHNIQUE(S) I/J

—_————

308

uuuuu

310
CONFIGURE HARDWARE LOGIC CAPABLE L
OF IMPLEMENTING A NEURAL NETWORK TO
IMPLEMENT THE NEURAL NETWORK

US 11,636,306 B2

Page 2

tional computer vision algorithm; and configuring hardware

logic capable of implementing a neural network to 1mple-
ment the neural network that represents the traditional

computer vision algorithm.

17 Claims, 23 Drawing Sheets

(51) Int. CL
GOGF 17/15
GO6F 17/16
GO6N 3/063
GO6N 3/08

(2006.0
(2006.0°
(2023.0
(2023.0

)
)
)
)

(58) Field of Classification Search
CPC GO6N 3/082; GO6F 17/15; GO6F 17/16;

GO6F 8/40; GO6V 20/40

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

9,922,432 B1* 3/2018
10,387,774 B1* 82019
10,482,337 B2* 11/2019
10,600,184 B2* 3/2020
10,650,222 B2* 5/2020
11,150,777 B2* 10/2021

2004/0122785 Al 6/2004

2018/0018451 Al* 1/2018
2018/0053056 Al1* 2/2018
2019/0380278 Al* 12/2019

Risserccocevvnevenn, G06T 11/001
Ca0 oo, GO6N 3/08
Balasubramanian G06N 3/04
Goldenocoevvvenenn, GO6T 7/11
Olsencooevvvvvvvnnnn, A63F 13/42
Kaehler GO6F 3/04815
Brown et al.

Spizhevoy HO4L 63/0861
Rabinovich A63F 13/211
Burden B25J 19/0054

CN
CN
CN

CN
CN
CN
CN
CN
CN
JP

TW
WO

FOREIGN PATENT DOCUM.
106557759 A * 4/2017 ...
107908646 A * 4/2018 ...
108052977 A * 5/2018 ...
108154183 A * 6/2018
108197538 A * 6/2018 ...
106780448 B * 7/2018 ...
104933420 B * 11/2018 ...
109069929 A * 12/2018 ...
110221681 A * 9/2019 ..

2019028700 A * 2/2019
202123166 A * 6/2021
2017/206156 A1 12/2017

NS

***** GO6K 9/00818
******* GO6F 16/583

ttttttttt

GO6K 9/342

....... GO6F 16/583
....... GOO6K 9/4685
***** GO6K 9/00664
....... A63F 13/213

iiiiiiiii

ttttttttttttttt

OTHER PUBLICATTONS

GOO6F 3/015

GO6F 3/14

Handa et al., “gvnn: Neural Network Library for Geometric Com-

puter Vision,” European Conference on Computer Vision 2016
Workshops, Amsterdam, Netherlands, Oct. 2016, Proceedings Part

11, pp. 1-16.

Ma et al., “ALAMO: FPGA Acceleration of Deep Learning Algo-
rithms with a Modularized RTL Compiler,” Integration, the VLSI
Journal 62 (2018), pp. 14-23.
Peemen et al., “Memory-Centric Accelerator Design for Convolu-
tional Neural Networks,” Proceedings of the 2013 IEEE 31st
International Conference on Computer Design (ICCD), Oct. 2013.
Yu et al., “Instruction Driven Cross-Layer CNN Accelerator with
Wimograd Transformation on FPGA,” IEEE 2017 International
Conference on Field Programmable Technology (ICFPT), 2017, pp.

227-230.

* cited by examiner

US 11,636,306 B2

Sheet 1 of 23

Apr. 25,2023

U.S. Patent

U.S. Patent Apr. 25,2023 Sheet 2 of 23 US 11,636,306 B2

200

r—

FIG. 2

U.S. Patent Apr. 25,2023 Sheet 3 of 23 US 11,636,306 B2

300

'

ECEIVE DEFINITION OF {RADITIONAL
COMPUTER VISION ALGORITHM
COMPRISING A SEQUENCE OF

TRADITIONAL COMPUTER VISION

ALGORITHM OPERATIONS

302

MAP EACH TRADITIONAL COMPUTER 304
VISION ALGORITHM OPERATION TO A SET

OF ONE OR MORE NEURAL NETWORK
PRIMITIVES

LINK NEURAL NETWORK PRIMITIVES 306

ACCORDING TO SEQUENCE TO FORM A

NEURAL NETWORK

TRAIN NEURAL NETWORK USING NEURAL :/jOB

|
: NETWORK TRAINING TECHNIQUE(S)

310
CONFIGURE HARDWARE LOGIC CAPABLE

OF IMPLEMENTING A NEURAL NETWORK TO
IMPLEMENT THE NEURAL NETWORK

FIG. 3

U.S. Patent Apr. 25,2023

Sheet 4 of 23

US 11,636,306 B2

TRADITIONAL
COMPUTER
VISION
ALGORITHM
OPERATIONS

NEURAL
NETWORK
PRIMITIVES

DEFINITION OF

DEFINITION OF | NEURAL
TRADITIONAL | NETWORK TO
COMPUTER IMPLEMENT

VISION TRADITIONAL

ALGORITHM COMPUTER
ViISION

ALGORITHM

; DNN
| ACCELERATOR

410

FIG. 4

US 11,636,306 B2

Sheet 5 of 23

Apr. 25,2023

U.S. Patent

AOVING} LNdLnoO
A4LVH

G Old

NIDINO

INDNT T
ONIANLONELS

NOLLVII{

FOVIN] LNdN}

U.S. Patent Apr. 25,2023 Sheet 6 of 23 US 11,636,306 B2

ERODED
QUTPUT IMAGE

606

-)) oy y .)
) . L.) L A . n D . .

: : : R | : :
' : : .r,h‘x v, : :
- : : - -«" ponta : :

ORIGIN

EROSION
STRUCTURING
FLEMENT

FIG. 6

INPUT IMAGE
602

U.S. Patent Apr. 25,2023 Sheet 7 of 23 US 11,636,306 B2

N
-
P

IIEHHHHE ?
ElElEEEERE

__________ o
HH*HHHIE

ERODED
QUTPUT IMAGE

ACTIVATION
(Bias = 1 FOR DILATION)

PRIMITIVES

DILATION/EROSION VIA NEURAL NETWORK

HHEHIIII

FILTER

INPUT IMAGE

-
O
I_..
—d
-—
O
-
Z
.

o,

HH%%&@HE
pEE: s ae
[elelol=e [l

704

0

US 11,636,306 B2

Sheet 8 of 23

Apr. 25,2023

U.S. Patent

Ol

L

LE

:
o
.
.
.
0¢

GE

8 Ol

Ao
NVHOOLSHH

INVHOO.LSIH

¢08

ﬂn—ﬂﬂﬂm—ﬂﬁ
ojefojojojojofo

AOVIN} LNdN]

U.S. Patent Apr. 25,2023 Sheet 9 of 23 US 11,636,306 B2

QO
O
G‘}.

918

10/64

920

o~
17/64

MEAN POOLING

37/64

HISTOGRAM

ACTIVATION
FIG. 9

910

908

INPUT IMAGE
CONVOLUTION

US 11,636,306 B2

Sheet 10 of 23

Apr. 25,2023

U.S. Patent

(900)
NYISSNVL) JO JONIHIA4AG

01 Ol

NVISSNYO)

- ol e S R AT - S S T ST

a‘ﬂ‘.\lﬂ.‘ﬂi ..I.rl__. AR A R A

(IAVLOO LSHIH)
=Rl

(IAVLO0O LX3N)
VIS

U.S. Patent Apr. 25,2023 Sheet 11 of 23 US 11,636,306 B2

SIFT — STAGE ONE NEURAL NETWORK
OPERATIONS _ PRIMITIVES

CONVOLUTION 1108

IMAGE (1) X GAUSSIAN
FILTER (G)

1102

UPSAMPLE

CONVOLUTION 112

| TO PERFORM UP-SAMPLING

CONVOLUTION 1114

WITH SEQUENCE OF
(GAUSSIAN FILTERS

DIFFERENGCE OF GAUSSIAN

ENTTITIN E OV A T 1116
Fi TERS | ELEMENT-WISE OPERATION __

_________ SUBTRACTION

1104

| STORE PYRAMID AS MULTI-
| CHANNEL TENSOR '

1118

1120
ACTIVATION

FIND EXTREMA

1122

1106 POOLING (MAX)

FIG. 11

U.S. Patent Apr. 25,2023 Sheet 12 of 23 US 11,636,306 B2

1202

IMAGE GRADIENTS

FIG. 12

U.S. Patent Apr. 25,2023 Sheet 13 of 23 US 11,636,306 B2

1302

DESCRIPTOR

FIG. 13

1304
IMAGE GRADIENTS

U.S. Patent Apr. 25,2023 Sheet 14 of 23 US 11,636,306 B2

1402

1406

1412

1420

SIFT — STAGE FOUR
OPERATIONS

GENERATE GAUSSIAN
SMOOTH IMAGE AT
KEYPOINT' S SCALE

DETERMINE GRADIENTS
NEAR KEYPOINT

DIVIDE PATCH INTO 4x4
SUB-PATCHES AND

| DETERMINE HISTOGRAM OF |

GRADIENT ANGLES

COUNT ANGLES IN BINS

FIG. 14 |

NEURAL NETWORK
PRIMITIVES

CONVOLUTION ' 1404

IMAGE (|} X GUASSIAN
FILTER (G)

CONVOLUTION | 1408

FPATCH (16X16) X
(GRADIENT FILTERS
(SX, SY)

1410

PLURALITY OF ELEMENT-

WISE OPERATIONS +
ACTIVATION FUNCTIONS

CONVOLUTION

FPOOCLING

ACTIVATION {ReLU)

CONVOLUTION (MATRIX
MULTIPLICATION)

FPOOLING

US 11,636,306 B2

Sheet 15 of 23

Apr. 25,2023

U.S. Patent

1500

+ F FFEEFEFEEFEEFEFFEFEEFEFESEFEFEFREEEEFEREEFEEFEEFESFEEFEEFEFYFEFEEFEEFEEFEEFEFEFEREEFEEFEFSFEEFEEFEEFEFYEFEEREEFEEFSEFEEFEEFEFEFEEFEEEFEFEFPEEFEEFERFEFEFEFEEFESEFEEFEEFRFSEEEFEREFEFEEFEEFEYFEEFEFEEEEFEEEFEREFEEFEEFEFESRSFEEEFEFEFEERFEFEFEFEFESEEFEEFSEEEFEFREFEFEEEFEREEFEFEEFESFEFEFEYEFEEFEEREEFEEFEFES®G FEEFEEFEEFEEFEFEFRFEEFEEFEEEFEEFEFF
a] a a a r & a r . . & . r a - a r . r - . b a
a B . a - N a - - a - N a - N a . a B - a - N . - - .] a . .
a] a a a . & a - . B & - - - b a - . . N . b a
. r b a r - . r - a r - . r - a b a r & a r - ' . & .] il . b
a] a a a B - a - . . - . - a N a - . . N . . a
a B b a - N a - = a - N a - N - a B & a - N . - & .] a . b
a] a a a . & a r . r & - - b a - . . - . b a
. B . a - N . - - a - N . - N a B - a - N ' . - . N Il . y
L I N I I N B R e I I I T I N I B R e e e e N T o 5 - o P I R R N I I I I I I I I I I I I A R N I I N R R e R e B N
a r b a r - a r - a r - a r - a b r & a r - . r & .] 1 . b
a] a a a . - a - . B - - - . a - . . N . . a
a B b a - N . - = a - N .. - a b B h . a - N ' . & .] 1 . b
a] a a a r & a r . . & . r - a r . . - . b a
a B . a - N a - - a - - a . B a a - N . - - .] a . .
a] a a a . & a - . - & - - a ' b a - . . N . b a
] r] a r -] r . a r . F r - a] a r Ll ' a r - '] & .] 4 .]
a] a s a a s B - a . - . N . . s - . a N a ... - s . N s . a s
- o - e oa - - - - -
LT N T TN T T TN T NN TN T N TN T TN N BN T P T T T T T M B T T TN T N B T LT N N NN T N T T L N N BT PN T T T T T TN T N T T T T T B T T AT TN NN TN N NN T T T T M TN T B TN T T T T TN T N NN T N T T ST N N T N
a B . a N a - a l N . - N a . a B - a N ' . - .] 1 . .
] a a B & - . & . - a b a - . N . b a
r b a - a - a - a r - a . a r & a - . r & .] a . b
] a a . - - B - - - - N a - . . N . . a
B b a N . = a N . r N a . .k a & a - N ' . & .] 1 . b
] a a r & r . & r a r . - . b a
B . a N a - a N N a N . - . a . .
s a2 a2 j a8 282 & a & a2 a2 & & & & a8 & aa a a & oaoa a4 a & oy a s a2l aaa aaaaa a4 a & & o a s aa 4 a a2 a2 & a 2 a qyaaaabaaaa a a . o 2 a2 m maoa a s & a a 2 & hf a a a s a aaa a4 a & a2 gy aaa 4 a a2 & w2 a2 adaaaabaasaaaaaa
f] r b 1 - f] - 1 r - ' - 1 r - a . r & '] ¥ . Xy
] a a B - a - . . - - - . - . N . . a
b a N a - = a - N a N a - N - & .] a . b
] a . & a r - . & - . - . b a
. a N . - - a - N N a - - & . - .] il . .
] B & - . & - . r N . b a
b a - a - r - - a r - r & .] a . b
] . - r . - - . N . . a
P T T L Y, T P e T e T oo . I A P T S P I L o T T P I T T TE. T T T T e S ‘TR
£ FFEFEEFEXEEFEF FFFEFEEFEEEREEFE F F FFFEFEEEFEEFERFEFEFEFEEFEFEFF P FFFFFEFE FFEFFEEFF FFRE F F X FFEFEEFEFEFEFFE ¥ F FFFXYFFEEFENREFEEFEPEFEr®PEF&EEF ¥ FFFRFEFEEFEEFENFEEFEFEEFESEFEEFEREFEEFFESFEEFEFEEFESEFEEFEEFEEFEEFEEFEEFF
a B . a - N a . - - - - - N a - . I .] a . .
] a a a . & - . N . b a
r b a - a r - r - - a r & .] il . b
] a a a - . - . - . N . . a
B b a N . - = - N LI r N a - - - - & .] a . b
] a & a . r & - - . b a
B . a N - - - N . [l N a - N . - .] il . .
] a = & a . . &] - N . b a
a & oaa A a2 a8 X a2 a2 aa aaaadaaaag 4 a2 &k aaaa 4 aa s s aaaxaaaayaaaa - S 2 a2 a &l aaaaaaaa a a a & a I 4 2 &8 & a s aald 4 & & a . 42w a s kaaaalaaaaaaaakaa s ks a sy
a a - .
B b a N - = - N . N a - N] 1 . b
] a a & a r . & - r - b a
B . a N - - a N a - N a - N] a . .
] a a & a - B & - b - - N b a
r b a r - - a - . r - a - -] il . b
] a a a - - - . . N - N . a
. B b a - N a N a - N a - N] a . b
P N T T T e T N T T . .or e T P T - r . R P T T e
F P FFEFEFEEFEFFFEFFEFEFSEFEFEREFEFEEFEFEREFEFEEFERSFEFEEFF F R FFEFFF FEOFE R FF b [FEREEFEEFEFEM FREFFFF PR oK F ¥ b FFEF A FFEFF FEFFEF FFEEEEFEEFEFESFEFEEFEEEFEEREFEFEEFEFEXFEEFEFE
a] a a a I - . . . L a N a . b a
. r b a r - a r a r . a . -] a . b
a] a a a - - - . B - - - . . a
a - b a - I - - a - - - a b ! I] 1 . b
a] a a a r & r . r o & . r - . - b a
a B . a - N a - a - - a . - - N] a . .
a] a a a . & a - - * -] - a b . . N b a
. r b a r . . r - a ir r . a Xy a r . '] Il . Xy
ra a a2 a k& &8 a2 28 &8 &2 & &2 & &8 & @28 & ;& &8 2 & &2 & & 3 a w2 s &2 a ka2 a2 & & 2 &8 & >y &2 2 2 & >aa a4 2 & & o aa b a oa a L a2 a2 a moa s o s s m m a s s m s s s omoa aoa a &k oa a4 a & & & a & am adaaaad 4 a a2 a 2 & & sr a2 a2 2 a aaaahaaaa s aaa
a B b a - a \ - I a - & a - & a b a - . & .] 1 . b
a] a a P . & a r . . . r & - - r - b . . - b a
a B . a - Ll v . - - a - N . o N a . a - N ' . > 1] il . .
a] a a a B & a - . . & - a . . N - . . b a
. r b a . r - a r - a r - a - a r - . r & . a . b
a 3 a a a " i a - . . i - . " &] = - § a
B b a - r N . - = a - N . N a - N & .] 1 . b
] a N a a N r a . r . N . & p, N a . - - . . N b a N
- - - - e - - e - - - e - a - e e e A a - - e - - e - - - ke e . . - - T - - e - e e ek a omoa [- - - - T, - . P - - e - - - e
e N N R RN RN N I N e N R R T N b F = F F F Kk FF CETETE T R TR TR TR TR TR ' N R RN N N
r b - . .o a . a r - - a a r - & .] 1 . b
] a B - . - . - a - . i . . a
B b N a » a - N N a a - N & .] a . b .
] a . & r & - - . - . b a -
B . N . - a - N N a a N . - .] . .
] a B & a - & a - N . b a
r b - a r - a - - a a - . r & .] . b
] a . - . - a - - - - - . N .. . a
b wawxw koo - oo e I P R N N e Ny, P N woa e a wwa wwaww P R] R o ww waww o
a r a . f r a r - .o a
- . a - o » » - . w . - » . - - .
] a . & a - - - N : b a
r b . B r - a b a a . &] a . b
] a - B - a - ' - - . N . a
B b a - I a - N a . a - N - &] a . b
] a . & N r r - . . b a
B 5 a . - a - N a y a B - a r N " - N * . y
kb bk d bk d bd b dbdoedbdoedbkdbdkrdbka R i N b bk ko kbbb ki Fkoekbdkrdkbkbkrik > ax R R N I B R U R U Y N bk ke kbbb F F ek kb bkrk r e L I R R e L
r] a r T] . a r - a a r a r - r & L)] a .]
] a a . - - . - . - . . a
B b a N . = a - N & a - N 4 . & .] . b
] a a r & 4 r . r . . b a
B . N a - - a - - - N v - - .] . .
] a [- . . N . b a
r b - - r - a r . & r - & .] . b
] a a . N . . a
4 & & &4 & & = & 2 g & & 2 a kb a a & a - f a - a s m oo moaomoa) a4 a & a2 & a2 s xaaaa - a . a a2 a2y 2 a maaaaaldaaa a a2 a2 a & a 2 a g aaaald aaaa
-] I3 & a r ' - r - b ¥ -
a B . N - - a - ' . - .] a . .
a] a & - a - . - N . . b a
. r b r - r - r . r & . . b
a] a a - a . - . N a . . a
a B b - N - = - ' . . . b
a] a a ' - & a . r - . b a
a B . a - - — - - . - . _— .
. P T T T [P T - e e e e N e e e . P T T 4 e e e e e
AL FC N A ko k ke bbbk kb k LALAL A AL L N F kirk ki Fkd ki ki FEEEFEEFF Fdh ki P r LE R A RE R F kb d kFkFkir
a a a B a - - a
a b a - N a - = a a - &] a b b
a] a a . & a r - b a
a . a - N . - - a - -] il . .
a] a a B & a - N b a
. r b a r - a r - a & .] a . b
a] a a a - - - . . a
. B b a - N = a & .] 1 . §
ra a2 a a2l aaa 2 & & aa 4 a2 & & & & & yaaaa 4 & & X a2 8 8 X a2 a2 a2 a2 a2 &8ss xaaaakaaaad a4 a2 & & aa
N - 1 I '] . .
] . b a
. - A - .] . . - b
. a
N - .] P b
] & . . b a
& b - - .] . 1 .
] & . . . b a
T . . T - T N TR T
F R OFF N F FEFFRFF - FOF * ¥ [FF BB FOF F X F FFEFAEFREEFEEFREEF
& = - & .] . b
] & . . b a
N - - - .] . .
] . & a . . b a .
Y . r - r & .] il . b
] B - a . . - a
a = - &] a b
] a - b
I a2 & & & Jra & m a hoaaoaoa a - W 4 s s oaoaoaoa oa a s aa X a a & ah ajoa i a & & a ko = aa ko aaakoa s wa a a & b aa aa
- a B . -
b a a - T &] a b
] a . - . *
r [l b a N a - & =] 1 . b
] F a - . . . a
B . a N a - . - .] a . .
] a a & a N . y a
r a . ' r - a B . . . - .] . Il . Xy
P N N N I - oo PR R N B R R R R N R a xoa PR N R e e N N I A e e A N - . P N NNy
B . a & - I a . a a & B I . I . . b
] a a L] & a r ' - - & r - - . . a
B r a . - N - - a N N . - .] B .
] a r a a & a - . & N . . [.
r b ar r - r 5 fl a - a a . a - r .] a b
] a a a - a - B - N - . . .
a B b a N - a N - N a b a N - . . . 1 . b
a] a a & a r . . r a N - - . b a
- - - - - - P - - - P - - - - . . - - - - - - - - - . - - - - - - - - - - - e oa - - - -
.1-‘. -..-. -..-.-.-. ..-.-J-.—..-.. -..-.. I.'. -..-.. -.-.T.J-..-.. [Y Ll—. -..-.. I.'- -..-.. L 4 .-.I.-...J.r.-.. -..-.. -.J-.—. -..-...J | S -..-.. [-..-.I.' Il—. -..-...J-.—..-.- -..-.. -..'. -..-.- -..-.T.-.-..-.. -..-.-.J-_.-.. -..-.. T.J. -..-.. = - ..'. -..-. 1 -..-.-.J.r.-.. -..-.. ..J- -..-.. ..-.- -..-.. f.-.. -..-.-.-. I.-.. -..-.'.JI.-.. -..-.. - -..-.. -..J-.—. L m ..-...'-.-.. -..-.-
a - . a - N . - a N - N a . a N I . 1 . .
a] a a a B - . - a N . . a
a B b N a = a N - N a . . a N & . a . b
a] a . r . - - - . b a
a B . - N . - a i N - "o a N - . il . N -
a] a B I - . . - . [a i . N . b a
. r b - a . - a r ' a r - - - a r - . & . . a .
a . a . . - a - - . B - . - T . - N a - . - N . - . . N a -
koA R L ko e R - ok ok ke dde ke ke dede ke ek ke de de e b e o b bk ok ik kb k& de b de de b de o e de de e e de e b e o R L A R - A A i bk ok ko b h ok kkk ko
a a s a . r a a . r . . a
a B N a - = N ! - - N o - - . a .
a a - . & a & - - b N . a
. r - . r - a r - . & . il .
. . - » . » . . » » - - . Sy
a B » a - . N . - N - - & - . a . b
a a - - - . N a
B N = N . Il . .
4 a2 a2 2 4 a2 aa a2 aaaa P N N N a - a a I 4 2 &8y a2 a a2 4 a8 aaa - a A a2 2 a k2 = s a s aa
» e i ¥ LT . B » SRR e iy P
] B - - - . N . a
b N . - - N a . a N 1 & 1 .
] . n m . e a " - b a
. . - - - N a a N . - . a .
- - - - - N b a
b r - a b a - . & E il .
B . - a N . a
- . T T . T P T TR T ' . e e . . T T T R oooa .
Y DRI R) i O T T T T T T T T T T T T T T FRE] I F ko bk k ok Ak b Fk b B B ko b b B oAk kb E Kk kK
. a i N a . a N . I 1 . .
. . - N . . b a
. - T N a . N - - . r a a .
- N . . -
b N .k a b N . & .] b
- r - . . b
N [3 a . N - - .] a .
- - N b "
a2 a2 & h oa 2 a2 & aa a - 4 s aaaaa a a a N a2 oa Ao s aaaxaaaala a b oa 4 ma ks raaaakaaaa
' . .
b . N N - &] a . b
] - b a
. N . -] il . . .
] - . b a
b - &] a b
] . a
b N N &] 1 . b
L L F X FFFFEAFFEFREFEFFK [FEFEFEFEFEFEEFPF FEEE PO R ERRSEERE R R R RE R
a a a a
a . a - & . * - .] il . . .
a] a a a - a . - . . a
a B b - i - = - . . & .] a . b
a] a a & a . . b a
a .ow . - N . - - - N . . - .] . 4 .
a] - a a B - & a . . b a
e = e mmos - mm - - - - am - - A - ma = - - m - . - - - a - - ok mmm - P . - - - a
s F FFF A F PR PR TR FF K FF ETETETR TR TR TR e T S TR TR TR T RN
a - w b - N a - = - N . & .] . b
a] a a r & r . . b a
a B . - N a - a - N - - - .] . .
a] a a . & - . . b a
. C o b r - . - a r - . - . & .] . b
a] a a . - - . . . a
a r b o - N - - a " N r & .] . b
a] a a a - . - - . . . a .
A T e e A - oxd A O i - b ox o A I B e o ko woxox
r a r " . . a
b a r a . r LI a r - r & -] a . b
] a a . . - a - . - .
b a . - = a -] N . &] 1 b
] a r & a r b
. a a - - a r N - -] a .
] a . & a - b
b a - . r - a - &] Il . b
- - - - - = . . e = e A e = e am - - [- e R e e — e m e B e e e == e
r.....:..-. [P T T T .:......rf....-....r b » L:..... ™ rrr.—_rrrrb—.—_rrfrrrrrrrrr
] a b a
N - - N - » b il . .
] a - . a
- - N - - . a . .
] a r - . . a
Pl - .k N . a " N & . 1 - . b
] - r . - b a
N - - N N a - a - N - . N a . a y
o s ok ra xra ha xra owa oxa x o ks xoa s - L oo om x o oxaoxak P N N N Y. a4 o s ok xra o xrah moxa o xa - b o a xoa L a aw x arm o awra ks raora =k o s wmdrmoxraamh araoxaaoaoaxa
r § - ' - & . A . . § F . - & - & . f] - ¥
] a - a . - - . N (] . . a
. b - i " a Y a . a & a - " [3 & . 3 a - b
] a & a r r - . - . - . b a
B . - - N a . - a N . - .] 1. . .
] a & a - - - N . . b a
r § - X & o . - . & . & » r & . 3 . §
] a & - a - [- . a N - . a
* a a “ s a . a - P “ m s - . e A L m & E L oE L m L oaoa - P P - . i - a2 s & s a . a P P | - . aoa “ m oa o
i ..-..—. P A - " - ..a.h T A .a.h T A LN .-..;.. . P LT A PR - .b LT h . ..a._ P |b . .:. P R e e ..1.—. - .:.. P
a B . - N - N - a - - ar N . . - -] a . .
a] a & a & - ' r b - N b a
a - . - - N - N a B - a N - . . -] a ' . .
a] a . - a - . a N - i N . a
a B b - = a N - N a B & a - N . - &] a . b
a] a & a r . & - - - b - . . - b a
a . § - - a - & - & f] § a . i a - & ' =k " i 3 f] - §
a & a - a B & a - . - & - - a N a - . - N . . b a
LI N R L I L e i I A A A I i e I R A R A I I A
a a a a . . a - . . - - a - a
a - . M - N a M - N - N K N A . 4 A - P ' . u
a] a a a r & - . & . r a r . r . . - b a
a B . - - N a - - N N a - . a a - . - - .] . .
a] a a . X - . . & " r - . . . b a
a - . - - N . - . - N . N a . a a - v - .] . .
a] a a B [. - - a - . o N . . a
a r b - N a . - - " N N a . a a " . - & .] . b
s ma s & a j & &2 & & a2 a2 a2 2 a2 a2a.a 4 a & & & & & & & & 2 g &&= 4 & 4 a s m a s aoama a a a a2 a s oay a2 a2 j & oa . a s & am aoaoa s & a oa o x . s . a4 & a & gy m s mamh oaa a4 a2 s & a s xaaa a & aoa a4 2 a & & & 2 & s a a & a2 a8 a2 aa
a1t . . . " . P . » r . e . 1 . Fiat e . " . i, » . . ' . 1 P . - 1 - . - . - . Pl e . » . e
a] a a a r a r - & " a - . N . b a
] r] a - r - r . v LI r - a] a ' & a L ¥] . r - & .] a .]
a] a a a - a . . - - - B - . - . . N . . a
a B b a - N - = - N . - N a b a & a - N ' . . . 1 . b
a] a a a . & a . . & . r a - r . . - - . .] b a
B . a - N . - - - N a - N a . a - a - N . - . a . .
a a a & a . - - - b - . N . - b a
A a2 a8 Xy a2 a2 & a aaa sk aa s * s & oa 482 a raaaaxaaaakaaa a - R e N I] b aaaadaaawn a4 ka2 a s aaaaakaaaaidaaaa 42w aaaakaaa ar aa s a b a2 s aa 482 xaaaaraaaakaaaa
a - B a . . - . .
B b a N a - = N a - - & a - N - & .] a . b
a a . - a . - - - - . N . . a
B . a N - a N . - - a N . * .] il . .
a a & " e N . - N . b a
- . a N a 5 - a N - .] a . .
a a - - - - . . a
r b a N a a . N . - .] 1 . b
FFEF R EFEEFEEFEFEFEEEFEFEFEREFEF FE R A FEFF R E R FEOFOFFF FEF AR FFEEYEFRF 3 FFEF A FFEFF NN R A N A
a a - B - . a
r b a - . . a - . a ' - . & .] il . b
] a a - - . - - v N . . a
B b a N = a N a a . N - & .] a . b
] a a & r r & - [l - . b a
B . a N - a N . a - N . - .] il . .
] a a & - . & - . N - . b a
- N a N - - a N a a - . N - - . 1 a . .
2 a & 2 a &2 a2 ha &2 s o a a8 & ormoaa a4 & & & >y &2 a2 a2 a2 xa a b a a &2 & a8 & a2 a8 & a2 a2 a2 xa a4 & & & or 2 & am adaaaadb 4 & & x a2 a2 & & a s aaoa - a4 a2 & ka2 a s aoaoa o 2 m a a ka2 & a2 a &2 & & &# a2 a2 a2 a2 aa b aaaaaaaa
r b a . a I a . ' r a . r . * . b
] a a - - - - - - - . N . . . a
B . a N a - a N N a . a a - N - - .] a . .
] a a . & " & " r - . N . . b a
- . a N . - a . N N a . a a - N . - .] il . .
] a a B I a - . - - a - . N . . a
B b a - N a - = . a - N N a . a - a - N - & .] a . b
] a N a a N . & a . r . N & N r » - - . N - - . . N N b a N
- e = e e = a = O T . e e ek a = m == N . - - = - = - - = m ka = . e [e = - - - = . e T, - - = - e T, - - -
A F FFFFFEEEFEFFFEEFEREFEFEEPEEYFEEEEFEFEEFEREFEFEEFEFES P ® FF kB Fk FFEFFEFFF & FEEFEERKREFEEFEEEFEEFEEFEFEEFEREEF FFFFEEFEFEFEEEFEF i F F FEFEFEEFEFEEFERFEEFEEFEEEFEEFEEFEEFEEFEEFERFEEFEEFEEFEEEEFEEFEEFEEFEEFEFE
r b a r - a f a r - - a . a a r - r & .] a . b
] a a a . - - . - - - - . N . . a
a B b a - N . = a r - N N " a a - N . & .] 1 . b
a . a a a - N a - . N a - . N - . a Sy
a B . a - N a - - a - N N a a - N . - - .] a . .
a] a a a . & a " . & r - . . . N . b a
a - . a - N . - - a - N . N a - a - N ' . - .] il . .
a] a a a B - a - . . - a N a - . N . . . a
L e R A i I I I I I A P R R P R R N N N N N N N N N R R N N N N R A I R I e I I
a a a a . a - . - - . - a
a B . a N . - - a - - N . N a - N ' . - .] il . .
a] a a r & a " . . & " - . N . b a
. r b a - a r - a - a E - a . a r - . r & .] a . b
a] a a . - a - B - [y - - . N . . a
a B b a N . - = a N . - N a b a - N ' . & .] 1 . b
a] a a r & a r . & . . r r . . - . b a
. B . a N a - - a N a - N a . a . - N . - - .] a . .
T | [T T e T S S TN T PR - T T T T [N T T e T T T T T T S
U U I e N L I i e L SR I A i T e L i i e R i AU I LI I L e L LR R LRI A N L N L LT U T SRt Al T A A e Y L U T I A U L A
] a a B - a - . . . - . N . . a
r b a N a - - a " a = " - N a . " N r & .] a . b
] a a . - a - . - I - - . N . . a
r b a & a - a a - ¥ .] - & a b - & N & . § 1 . b
] a a r & a " . ' . & . " . N . b a
- . a N a - - a - N a - N a . 1 - N - - .] a . .
] a a . - a - . B - - - - . N . . a
N a - N a - a " N a v N . f ' v N a " & .] 1 a Xy
A I I A I I I I I I I I I e i A A I A A T I A I A Faxxxwnx o A N A A R I A A A e A IO e A T I I I S A A I
B a a - a - a - a - . B . .
] a a . & a . B & - r ' - b . . b a
r b a - . r r - . r - 4 b a r - & .] il . b
] a a B - a . . - - a N . . . a
B b N a - - - N a N a - . a - N & .] . b
] a . & . r & - b . . b a
B . N . - N . N U . a - N - .] . .
B F R OF R OF R OF RFE R FF F FF R F B F B F R EF R BB F F R OFFF R FERERERFEBRFELREFES PR R OR B [R T R T R R . B F R F R F R OF B [F R F R FFEEFEREREFEREF .

.
4

10

FIG. 15

U.S. Patent Apr. 25,2023 Sheet 16 of 23 US 11,636,306 B2

NEURAL NETWORK REPRESENTATION OF BRISK
DESCRIPTOR ALGORITHM

1600

FULLY-CONNECTED

INPUT DATA
L AYER

FIG. 16

U.S. Patent

IC 1S U
ion of

Jfunct

%
=
%
S
o

1702

-

:Jr:Jr:Jr:Jr:Jr:Jr:Jr:Jr:JrJrJr:Jr:Jr:Jr:Jr:Jr:Jr:Jr:Jr:Jr:Jr:Jr:Jr:Jr:Jr:lr:k:lr:lr:lr:#:lr:#:lr:#*k

g e
i

i
X
X
i
¥
o
Xy
i

X
i
s
Xx

Lt 3l o X EE ¥
g e i e
X E)
i

S) RN

i
X x Xy N

) s &
) X N
.‘:*:*:*:*:*:*: :*:*:*: :*:‘
Lt ol o o kN o
L
L N Rl N e g e e
Lt e ke kst ak el N
Ll e e 3
K R X K Nk kN K kK N K Rk ko d kod ke d kd k d kN Nk
-
.‘Jr*Jr*Jr*Jr*Jr*Jr*Jr*Jr*Jr*Jr*Jr:Jr*Jr*Jr:Jr:JrJr#*#*#*#*#:#:#*Jr*#*#*#:#* vr:#:*:a-*a-*a-*a- .
EEaE aE k aE i ak aF ol F o ak ak ol N
-

e e e e e e Jr:Jr:Jr:Jr:Jr:Jr:Jr:Jr:k:lr:#:k:#:lr:lr:lr:#:lr:lr*lr:Jr:Jr‘I
*4:i:4-:#:a-:a-:i"i*fﬂi*&*&*f&* Tttt

L Jr:

LN ENEN)) X
X

e

¥

x EE N
- Y
»

"M
L))
P N Tttty
Ea) x
x x

e
o
PN

X ¥ % iy

E et f aF N NN A N |
oy *4:4-*4-:4-*4- X X X K ¥ kK& 4-:4-:a-:a-:#:k:a-:&:&:q-:h#ﬂ*-*
T M MM MM M
» X

X %
L

ENNN,)

Fo)
iy
NN NN

Al e
oy
J,

)
e e s e s R R R
A e e e e e e e e T e T
Ltk af) E S 0 3 0 0 E Ol al ol kg g
T L e e e
X X))
X X X X X X K X

o

Ly

o
e

I
L
a»
a»

AR R

I
a»
a»
a»

M L NN N N Jr:a- Jr:Jr:Jr:Jr:Jr:Jr:Jr:Jr:Jr)
AN JN Ja G N JaN N BN B B O B I N e JaN N Jan Ja JaN JaN G N N B B O B

dp g e e ey
J,
F

>

.y
W
i
a
.y
L

Apr. 25,2023

Loss
Metric

{D(P)-D(R))|

e
S
SRR
R
e e e e e e

Sheet 17 of 23

1

-

L]
a

L)
a
a
a

L) i'.l
]

L]
LN
L]

L]

- w w ow w ow w
'i'.t‘i'.i‘tﬁi
L] L)
il'.lil
L) ilil-llilill‘I
E R NN il‘l-ll'il‘-ll‘il'-ll‘il]

-
L)

L
il‘lilil'.ililil

LR N NN)
L

'l-:'ll:'l-"l-'l-l-'llllllllllll-l-ﬂ
. b
-
)
-
-
oY

-
L

1702

US 11,636,306 B2

FIG. 17

US 11,636,306 B2

Sheet 18 of 23

Apr. 25,2023

U.S. Patent

\/\

0081

4 . » . ¥ 3
o e i i, e, o, e i, e e, e e e, o, o, Ay e e, e, e e e o e, o, i, R P i, B, e e, e i, e, A e e, e, e e e, o, o, A i e e e, o, e e e e, e e e, o, e, e e e, e, o, B,

81 Ol

ddlS DNINIVE |

.'..'.'J‘{.J'.".J‘..‘..'{'.".."..'-.-.'J‘.'.....'..'..'-....J-...‘.{..‘..'ﬁ‘.'.{..'.{..'..'.J‘..'..'..'..'...'J.{.{.{.'.ﬁ'..!‘.'..{.'..'..

SNOILVZITVILINI ANFH34410 'd3LS ONINIVE] SA YN

1587
1980

LR

d VW

U.S. Patent

1906

Apr. 25,2023

?IIIIIIII
RERNXERE

Sheet 19 of 23

ERRERERER
EERREERER
IIIB\III

IIIII

11111

II!--
LLLLL

11111

1936

US 11,636,306 B2

''''''''''

lllllllll

EERENERER
EERERERERER
WI.IHSIII

..........

VIEW

ABSOLUTE

DIFFERENCE

DIFFERENCE
BETWEEN RIGHT
VIEW AND SHIFTED

VERSION OF LEFT

e,
Od
O

1930

1904

d
®,
o
-
O
o
=
O

&,

0100000-10
0010/0\900—1
1924

o
-
-
-
o
-
o
-
b o

FIG. 19

ERNSNEER
EENSNEEN
ERNNOEEN

RIGHT VIEW

SHIFTED VERSION
OF LEFT VIEW

1916 |
1918
1922

1914
111000O-OO/~/

111000000

HREXCOREN

111000000

LEFT VIEW

CONVOLUTION
000000111
000000111
000000111

000111000
0001110060
000111000

/\/
1910

U.S. Patent Apr. 25,2023 Sheet 20 of 23 US 11,636,306 B2

2000
— ’-\/
INPUT MODULE
2001 _____________________________________
2016 2002 INPUT DATA
- WEIGHTS
COEFFICIENT --------- CONVOLUTION ENGINE
BUFFER ;
2004 INPUT DATA
ACCUMULATION BUFFER
ACCUMULATED : 2008
DATA - ,
SECOND
SET OF ELEMENT-WISE OPERATIONS ACTIVATION
DATA MODULE MODULE
2020 2018

SHARED 5 o
POOLING MODULE XBAR
BUFFER |

-
2015

FIG. 20

US 11,636,306 B2

Sheet 21 of 23

2023

b/

Apr. 25

U.S. Patent

o

0|4 40 QOHLIN ONILNINI TN
300D F1GVLNOINT ¥ILNIWOD

G0ic

30A30 | | JOVIHILIN]

| S | L | I | HITIQHINOOI O/ 1
| 1nanjuasn | | avasig | | OO 1 | Nowwvonnnmwos

NTLSAS
ONLLYYIH0

AHOWIN

U.S. Patent Apr. 25,2023 Sheet 22 of 23 US 11,636,306 B2

22006

FIG. 22

U.S. Patent Apr. 25,2023 Sheet 23 of 23 US 11,636,306 B2

2302
2304 ' 2306
CIRCUIT
|C DEFINITION LAYOUT INTEGRATED
DATASET | AYOUT DEFINITION . INTEGRATED CIRCUIT

CIRCUIT
PROCESSING

GENERATION |

FIG. 23

US 11,636,306 B2

1

IMPLEMENTING TRADITIONAL
COMPUTER VISION ALGORITHMS AS
NEURAL NETWORKS

BACKGROUND

A Deep Neural Network (DNN) 1s a form of artificial
neural network comprising a plurality of interconnected
layers that enable the DNN to perform signal processing
tasks, including, but not limited to, computer vision tasks.
FIG. 1 illustrates an example DNN 100 that comprises a
plurality of layers 102-1, 102-2, 102-3. Each layer 102-1,

102-2, 102-3 receives input data, processes the mput data 1n
accordance with the layer to produce output data. The output
data 1s either provided to another layer as the input data or
1s output as the final output data of the DNN. For example,
in the DNN 100 FIG. 1 the first layer 102-1 receives the
original mput data 104 to the DNN 100 and processes the
input data in accordance with the first layer 102-1 to produce
output data. The output data of the first layer 102-1 becomes
the input data to the second layer 102-2 which processes the
input data i accordance with the second layer 102-2 to
produce output data. The output data of the second layer
102-2 becomes the mput data to the third layer 102-3 which
processes the mput data 1n accordance with the third layer
102-3 to produce output data. The output data of the third
layer 102-3 1s output as the output data 106 of the DNN.

The processing that 1s performed on the mput data to a
layer depends on the type of layer. For example, each layer
of a DNN may be one of a plurality of different types.
Example DNN layer types include, but are not limited to: a
convolution layer, an activation layer, a normalisation layer,
a pooling layer and a fully connected layer. It will be evident
to a person of skill in the art that these are example DNN
layer types and that this 1s not an exhaustive list and there
may be other DNN layer types.

For a convolution layer the input data 1s processed by
convolving the mput data using weights associated with that
layer. Specifically, each convolution layer 1s associated with
a plurality of weights w,, . . . w_, which may also be reterred
to as filter weights or coeflicients. The weights are grouped
to form or define one or more filters, which may also be
referred to as kernels. One or more of the filters may be
associated with an oflset bias b.

Reference 1s made to FIG. 2 which 1llustrates an example
overview of the format of data utilised 1n a DNN. As can be
seen 1n FI1G. 2, the data 200 used in a DNN may be formed
of a plurality of matrices. The input data may be arranged as
P matrices of data, where each matrix has a dimension xxy.
A DNN may comprise one or more convolution layers each
of which has associated therewith a plurality of filters
tormed by a plurality of weights. Each filter has a dimension
mxnxP and 1s applied to the input data according to a
convolution operation across several steps 1n direction s and
t, as illustrated 1n FIG. 2. The number of filters and the
number of weights per filter may vary between convolution
layers. A convolutional neural network (CNN), which 1s a
specific type of DNN that 1s effective for image recognition
and classification, generally comprises a plurality of convo-
lution layers.

An activation layer, which typically, but not necessarily
tollows a convolution layer, performs one or more activation
functions on the input data to the layer. An activation
function takes a single number and performs a non-linear
mathematical operation on 1t. In some examples, an activa-
tion layer may act as rectified linear unit (ReLU) by 1imple-

10

15

20

25

30

35

40

45

50

55

60

65

2

menting a ReLU function (i.e. f(x)=max (0,x)) or a Para-
metric Rectified Linear Unit (PReLU) by implementing a
PReLLU function.

A normalisation layer 1s configured to perform a normal-
1zing function, such as a Local Response Normalisation
(LRN) Function on the mput data. A pooling layer, which 1s
typically, but not necessarily inserted between successive
convolution layers, performs a pooling function, such as a
max or mean function, to summarise subsets of the input
data. The purpose of a pooling layer 1s thus to reduce the
spatial size of the representation to reduce the number of
parameters and computation in the network, and hence to
also control overfitting.

A Tully connected layer, which typically, but not neces-
sarily follows a plurality of convolution and pooling layers
takes a single or multi-dimensional set of mput data values
and outputs an N dimensional vector. Where the DNN 1s
used for classification N 1s the number of classes and each
value 1n the vector represents the score of a certain class. The
N dimensional vector 1s generated through a matrix multi-
plication of a set of weights against the mput data values,
optionally followed by a bias oflset. A fully connected layer
thus receives a set of weights and a bias.

DNNs are currently widely used for many artificial intel-
ligence (Al) applications including computer vision, speech
recognition, robotics etc. While DNNs produce superior
results for many Al tasks, DNNs are computationally com-
plex to implement. Accordingly, a significant amount of time
and energy has been spent developing DNN accelerators that
allow DNNs to be implemented in an eflicient manner (e.g.
in a manner that requires less silicon area or less processing
power when operating). DNN accelerators comprise hard-
ware logic that can be configured to process input data to a
DNN 1n accordance with the layers of that DNN. Specifi-
cally, DNN accelerators comprise hardware logic configured
to process the mput data to each layer 1n accordance with
that layer and generate output data for that layer which either
becomes the input data to another layer or becomes the
output of the DNN. For example, if a DNN comprises a
convolution layer followed by an activation layer the DNN
accelerator for that DNN may comprise hardware logic
configured to perform a convolution on the 1nput data to the
DNN using the weights and biases associated with that
convolution layer to produce output data for the convolution
layer, and hardware logic configured to apply an activation

function to the mput data to the activation layer (1.e. the
output data of the convolution layer) to generate output data
for the DNN.

To be able to implement a DNN 1n an eflicient manner a
DNN accelerator typically comprises hardware logic that 1s
cilicient at processing, or implementing, each layer type.
Specifically, a DNN accelerator typically comprises hard-
ware logic that 1s eflicient at performing convolution, acti-
vation, pooling, normalisation and full connection opera-
tions.

The embodiments described below are provided by way
of example only and are not limiting of implementations
which solve any or all of the disadvantages of known DNN
accelerators.

SUMMARY

This summary 1s provided to introduce a selection of
concepts that are further described below in the detailed
description. This summary 1s not intended to i1dentity key

US 11,636,306 B2

3

features or essential features of the claimed subject matter,
nor 1s 1t intended to be used to limit the scope of the claimed
subject matter.

Described herein are methods and systems for implement-
ing a traditional computer vision algorithm as a neural
network. The methods include: receiving a definition of the
traditional computer vision algorithm that identifies a
sequence of traditional computer vision algorithm opera-
tions; mapping each traditional computer vision algorithm
operation to one or more neural network primitives, from a
plurality of neural network primitives, that are mathemati-
cally equivalent to that traditional computer vision algorithm
operation; linking the one or more network primitives
mapped to each traditional computer vision algorithm opera-
tion according to the sequence to form a neural network
representing the traditional computer vision algorithm; and
configuring hardware logic capable of implementing a neu-
ral network to implement the neural network that represents
the traditional computer vision algorithm.

A first aspect provides a method of implementing a
traditional computer vision algorithm as a neural network,
the method comprising: receiving a definition of the tradi-
tional computer vision algorithm that 1dentifies a sequence
of one or more traditional computer vision algorithm opera-
tions; mapping each of the one or more traditional computer
vision algorithm operations to a set of one or more neural
network primitives, that 1s mathematically equivalent to that
traditional computer vision algorithm operation; linking the
one or more network primitives mapped to each traditional
computer vision algorithm operation according to the
sequence to form a neural network representing the tradi-
tional computer vision algorithm; and configuring hardware
logic capable of implementing a neural network to 1mple-
ment the neural network that represents the traditional
computer vision algorithm.

A second aspect provides a system for implementing a
traditional computer vision algorithm as a neural network,
the system comprising: hardware logic capable of 1mple-
menting a neural network; and a converter configured to:
receive a definition of the traditional computer vision algo-
rithm that i1dentifies a sequence of one or more traditional
computer vision algorithm operations; map each of the one
or more traditional computer vision algorithm operations to
a set of one or more neural network primitives that is
mathematically equivalent to that traditional computer
vision algorithm operation; link the one or more network
primitives mapped to each traditional computer vision algo-
rithm operation according to the sequence to form a neural
network representing the traditional computer vision algo-
rithm; and configure the hardware logic capable of 1mple-
menting a neural network to implement the neural network
that represents the traditional computer vision algorithm.

A third aspect provides a computer-implemented auto-
mated tool for forming a neural network, the automated tool
having access to a library of mappings from traditional
computer vision algorithm operations to mathematically
equivalent sets of one or more neural network primitives,
wherein the automated tool 1s configured to: receive a
definition of a traditional computer vision algorithm that
identifies a sequence of one or more traditional computer
vision algorithm operations; use the library to map each of
the one or more traditional computer vision algorithm opera-
tions to a set of one or more neural network primitives that
1s mathematically equivalent to that traditional computer
vision algorithm operation; link the one or more network
primitives mapped to each computer vision algorithm opera-
tion according to the sequence to form a neural network

10

15

20

25

30

35

40

45

50

55

60

65

4

representing the computer vision algorithm; and output a
definition of the neural network for use in configuring
hardware logic to implement the neural network.

A Tourth aspect provides a neural network accelerator
configured to implement a neural network that represents a
traditional computer vision algorithm, the neural network
having been generated by mapping each traditional com-
puter vision algorithm operation forming the traditional
computer vision algorithm to a mathematically equivalent
sequence ol one or more neural network primitives.

The DNN accelerators described herein may be embodied
in hardware on an integrated circuit. There may be provided
a method of manufacturing, at an integrated circuit manu-
facturing system, the DNN accelerator. There may be pro-
vided an integrated circuit definition dataset that, when
processed 1n an integrated circuit manufacturing system,
configures the system to manufacture the DNN accelerator.
There may be provided a non-transitory computer readable
storage medium having stored thereon a computer readable
description of a DNN accelerator that, when processed 1n an
integrated circuit manufacturing system, causes the inte-
grated circuit manufacturing system to manufacture an inte-
grated circuit embodying a DNN accelerator.

There may be provided an integrated circuit manufactur-
Ing system comprising: a non-transitory computer readable
storage medium having stored thereon a computer readable
description of the DNN accelerator; a layout processing
system configured to process the computer readable descrip-
tion so as to generate a circuit layout description of an
integrated circuit embodying the DNN accelerator; and an
integrated circuit generation system configured to manufac-
ture the DNN accelerator according to the circuit layout
description.

There may be provided computer program code for per-
forming a method as described herein. There may be pro-
vided non-transitory computer readable storage medium
having stored thereon computer readable instructions that,
when executed at a computer system, cause the computer
system to perform the methods as described herein.

The above features may be combined as appropriate, as

would be apparent to a skilled person, and may be combined
with any of the aspects of the examples described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

Examples will now be described 1n detail with reference
to the accompanying drawings in which:

FIG. 1 1s a schematic diagram of an example fully
connected deep neural network (DNN);

FIG. 2 1s a schematic diagram of example input data to a
DNN;

FIG. 3 1s a flow diagram of an example method for
generating a neural network representation of a traditional
computer vision algorithm;

FIG. 4 1s a block diagram of an example system for
generating a neural network representation of a traditional
computer vision algorithm;

FIG. 5§ 1s a schematic diagram 1illustrating a dilation
operation;

FIG. 6 1s a schematic diagram illustrating an erode
operation;

FIG. 7 1s a schematic diagram illustrating an example
implementation of an erode operation using neural network
primitives;

FIG. 8 1s a schematic diagram 1llustrating a histogram
operation;

US 11,636,306 B2

S

FIG. 9 1s a schematic diagram illustrating an example
implementation of a histogram operation using neural net-
work primitives;

FIG. 10 1s a schematic diagram 1llustrating the first stage
of a SIFT algorithm;

FIG. 11 1s a schematic diagram illustrating example
mappings between operations of the first stage of the SIFT
algorithm and neural network primitives;

FIG. 12 1s a schematic diagram illustrating example
gradients of the pixels surrounding a keypoint;

FIG. 13 1s a schematic diagram illustrating an example
SIFT keypoint descriptor;

FIG. 14 1s a schematic diagram illustrating example
mappings between operations of the fourth stage of the SIFT
algorithm and neural network primitives;

FIG. 15 1s a schematic diagram illustrating an example
BRISK sampling pattern;

FIG. 16 1s a schematic diagram of an example neural
network (NN) representation of the BRISK descriptor algo-
rithm;

FIG. 17 1s a schematic diagram illustrating an example
method of training a neural network (NN) representation of
the BRISK descriptor algorithm;

FIG. 18 1s a graph of the performance of a neural network
(NN) representation of the BRISK descriptor algorithm
versus the number of training iterations;

FIG. 19 1s a schematic diagram illustrating a neural
network (NN) representation of an example stereo disparity
estimation algorithm;

FIG. 20 1s a block diagram of an example DNN accel-
erator;

FIG. 21 1s a block diagram of an example computing-
based device:

FIG. 22 1s a block diagram of an example computer
system 1n which the DNN accelerator of FIG. 20 may be
implemented; and

FIG. 23 1s a block diagram of an example integrated
circuit manufacturing system for generating an integrated
circuit embodying the DNN accelerator of FIG. 20.

The accompanying drawings 1llustrate various examples.
The skilled person will appreciate that the illustrated ele-
ment boundaries (e.g., boxes, groups of boxes, or other
shapes) 1n the drawings represent one example of the
boundaries. It may be that in some examples, one element
may be designed as multiple elements or that multiple
clements may be designed as one element. Common refer-
ence numerals are used throughout the figures, where appro-
priate, to indicate similar features.

DETAILED DESCRIPTION

The following description 1s presented by way of example
to enable a person skilled 1n the art to make and use the
invention. The present invention 1s not limited to the
embodiments described herein and various modifications to
the disclosed embodiments will be apparent to those skilled
in the art. Embodiments are described by way of example
only.

While DNN accelerators are designed to implement or
process DNNs, their proficiency at performing certain tasks
(1.e. convolutions, pooling, activation, normalisation) means
that other algorithms or processes may also be efliciently
implemented using a DNN accelerator 1f they can be rep-
resented as a Neural Network—i.e. 1f the process or algo-
rithm can be represented as a combination of NN primitives
or layers. The inventors have identified that one set of
algorithms that 1s particularly suitable for implementation on

10

15

20

25

30

35

40

45

50

55

60

65

6

a DNN accelerator 1s traditional computer vision algorithms.
This 1s because traditional computer vision algorithms
involve making decisions based on an array of image values,
sO operations such as matrix multiplications/manipulations
and non-linear activation functions are useful and DNN
accelerators are very well suited to performing these types of
operations efliciently.

Computer vision algorithms are algorithms that allow a
computer to obtain mformation from images or multi-
dimensional data. Computer vision algorithms can be used,
for example, for object classification, object 1dentification
and/or object detection. Traditional computer vision algo-
rithms (which may also be referred to as classic or classical
computer vision algorithms) are a subset of computer vision
algorithms that are pre-programmed to respond to data in a
certain way. Traditional computer vision algorithms are used
to 1implement techniques, such as, but not limited to, edge
detection, corner detection, object detection, and the like.
Traditional computer vision algorithms are typically imple-
mented by executing soitware on a CPU, GPU or DSP which
have well-established instruction sets. In contrast, learming,
computer vision algorithms are computer vision algorithms
that learn from or make predictions from data. Such learning
algorithms operate by building a model from an example
training set of iput observations 1 order to make data-
driven predictions or decisions expressed as outputs, rather
than following strictly static program instructions. In other
words, each step or operation within a traditional algorithm
1s well-defined (e.g. defined by the creator of the algorithm
to perform a particular task within the overall algorithm with
cach step or operation having well-defined results; whereas
a learning algorithm (e.g. implemented as a neural network)
does not strictly define each step or operation of the algo-
rithm and instead can adjust internal parameters (e.g.
weilghts of neural network layers) with the aim of ensuring
that the final output of the whole algorithm provides a
suitable result for a given mput. In the context of this
description, traditional computer vision algorithms can be
considered to be any computer vision algorithms which are
not 1n the form of a trainable neural network, e.g. relying on
deep or shallow learning techniques. As described herein, a
neural network 1s an interconnected network of multiple
computational units that can be organised in layers, where
operations on the data involve parameters that the systems
can learn automatically through training. Examples of tra-
ditional computer vision algorithms include, but are not
limited to, Scale-Invariant Feature Transform (SIFT) and
Binary Robust Invariant Scalable Keypoints (BRISK) which
are feature point extraction and descriptor algorithms. Spe-
cifically, SIFT and BRISK identify points of interest in an
image and describe regions near the points of interest using
a descriptor.

Described herein are methods and systems for implement-
ing a traditional computer vision algorithm as a Neural
Network (NN). The methods comprise receiving a definition
of a traditional computer vision algorithm that identifies a
sequence of one or more traditional computer vision algo-
rithm operations, mapping each traditional computer vision
algorithm operation to a set of one or more neural network
primitives, and linking the neural network primitives
mapped to each operation according to the sequence so as to
form a NN representing the traditional computer vision
algorithm. Once a NN representing the traditional computer
vision algorithm has been generated a DNN accelerator, or
other hardware logic capable of implementing a NN, can be
configured to implement that NN. Testing has shown that
converting traditional computer vision algorithms to neural

US 11,636,306 B2

7

networks and implementing such neural networks on a DNN
accelerator may allow the algorithm to be implemented
more efliciently (e.g. in terms of area and/or processing
time) than implementing the algorithm on standard process-
ing units such as CPUs, GPUs and DSPs. Furthermore, 5
generating a neural network representation means that the
neural network may be trainable, e.g. using traditional
neural network training methods and techniques. In these
cases, the neural network representation of the traditional
computer vision algorithm may be trained prior to imple- 10
menting the neural network on a DNN accelerator or other
hardware logic capable of implementing a NN. This may
result in a representation of the traditional computer vision
algorithm that performs better than the original traditional
computer vision algorithm on which 1t 1s based. 15

Although the methods, systems and techniques described
below are described 1n reference to implementing traditional
computer vision algorithms as neural networks 1t will be
evident to a person of skill in the art that the methods,
systems and techniques described herein can be equally 20
applied to implement other algorithms as neural networks so
that they can be implemented on DNN accelerators. Other
types of algorithms which may be suitable for implementa-
tion as a neural network may be algorithms that include
matrix and vector (or matrix and vector-like) operations 25
which include, but are not limited to, scientific computing,
algorithms, computer game animation and/or modelling
algornithms, audio processing (e.g. for voice recognition),
signal processing (e.g. for retrieving data from a received
signal) and ray tracing algorithms, e.g. for producing images 30
of 3D scenes or for sound eflects.

Reference 1s now made to FIG. 3 which illustrates an
example method 300 for implementing a traditional com-
puter vision algorithm as a neural network. In some cases,
all, or a portion, of the method 300 may be implemented by 35
a computing-based device such as, but not limited to, the
exemplary computing-based device 2100 of FIG. 21. For
example, there may be computer program code stored on a
computer readable storage medium, which when executed at
a computing-based device, causes the computing-based 40

device to implement one or more steps of the method 300 of
FIG. 3.

The method 300 begins at block 302 where a definition of
the traditional computer vision algorithm 1s received. The
definition of the traditional computer vision algorithm 1den- 45
tifies a sequence of one or more traditional computer vision
algorithm operations that represent the traditional computer
vision algorithm. The term “traditional computer vision
algorithm operation™ 1s used herein to mean a mathematical
operation that 1s performed as a part of a traditional com- 50
puter vision algorithm. Common traditional computer vision
algorithm operations include, but are not limited to, an
erosion operation, a dilation operation, a histogram opera-
tion, a filtering operation and a convolution operation. For
example, the definition of the traditional computer vision 55
algorithm may 1dentily a sequence that comprises a convo-
lution operation followed by an erode operation and a dilate
operation. Once the defimtion of the traditional computer
vision algorithm has been received the method 300 proceeds
to block 304. 60

At block 304, each traditional computer vision algorithm
operation 1n the 1dentified sequence 1s mapped to a set ol one
or more neural network primitives, from a plurality of neural
network primitives, wherein the set of one or more neural
network primitives 1s mathematically equivalent to the cor- 65
responding traditional computer vision algorithm operation.

A neural network primitive 1s a building block of a neural

8

network and 1s generally akin to a neural network layer. As
described above, a neural network layer defines the iputs to
the layer and the mathematical operation(s) that 1s/are per-
formed on the inputs. Accordingly, a neural network primi-
tive specifies one or more mathematical operations that are
to be performed on a set of input data. Example neural
network layers include, but are not limited to, a convolution
layer, a fully-connected layer, a normalisation layer, a pool-
ing layer, an activation layer and an element-wise operation
layer. Accordingly, the set of neural network primitives that
the traditional computer vision algorithm operations may be
mapped to may comprise one or more ol a convolution
primitive, a 1fully-connected primitive, a normalisation
primitive, a pooling primitive, an activation primitive and an
clement-wise operation primitive. Where the neural network
representing the traditional computer vision algorithm 1s to
be executed by a DNN accelerator, or the like, that only
supports a limited number of neural network layers or
primitives the set of neural network primitives to which the
traditional computer vision algorithm operations may be
mapped may be limited to the neural network primitives that
are supported by that DNN accelerator. The number of
traditional computer vision algorithm operations 1s typically
significantly larger than the number of neural network
primitives therefore many traditional computer vision algo-
rithm operations are mapped to a sequence of neural net-
work primitives.

In some cases, one or more of the neural network primi-
tives may have alternative implementations. For example, an
activation primitive may be able to implement one of a
plurality of different non-linear functions. Specifically, an
activation primitive may be able to implement one or more
of a ReLU function, a PReLLU function and/or one or more
alternative non-linear functions. Some DNN accelerators
(such as the DNN accelerator described below with respect
to FIG. 20) may include a programmable activation module
that can be used to implement any function, even those not
traditionally used 1n a neural network. Similarly, a pooling
primitive may be able to implement one of a plurality of
different pooling functions. For example, a pooling primitive
may be able to implement one or more of a max pooling
function, a mean pooling function and/or one or more other
pooling functions. The alternative implementations of a
primitive are referred to herein as neural-network primitive
sub-features. Accordingly, mapping a traditional computer
vision algorithm operation to one or more neural network
primitives may comprise identifying not only the neural
network primitives, but the specific implementations of
those primitives (1.e. the sub-features of those primitives).

In some cases, there may be a library which maps
common traditional computer vision algorithm operations to
one or more mathematically equivalent sets (or sequences)
ol one or more neural network primitives. For example, as
described 1n more detail below with respect to FIGS. Sto 9,
the inventors have identified (1) that histogram operations
are mathematically equivalent to a sequence including a
convolution primitive, an activation primitive and a pooling
primitive; (11) that any erosion or dilation operation 1s
mathematically equivalent to a sequence including a con-
volution primitive followed by an activation primitive; and
(111) that an erosion operation with a square structuring
clement 1s mathematically equivalent to a pooling primitive
implementing a max pooling function. In these cases, the
traditional computer vision algorithm operations may be
automatically mapped, by for example a computing-based
device, to a set (or sequence) of one or more neural network
primitives according to the mappings in the library. Where

US 11,636,306 B2

9

the library has more than one mapping for a traditional
computer vision algorithm operation one of the mappings
may be selected based on, for example, the hardware (e.g.
DNN accelerator) that 1s to implement the neural network,
the other operations 1n the algorithm, and/or the NN primi-
tives already selected for other operations Once each tradi-
tional computer vision algorithm operation 1s mapped to a
set (or sequence) ol one or more neural network primitives
the method 300 proceeds to block 306.

At block 306, the neural network primitives to which the
traditional computer vision algorithm operations have been
mapped are linked 1n accordance with the sequence of the
traditional computer vision algorithm operations to form a
neural network. Specifically, the sets of neural network
primitives that represent the traditional computer vision
algorithm operations are linked 1n the sequence defined 1n
the traditional computer vision algorithm. In this way the
output of a set of neural network primitives representing a
traditional computer vision algorithm operation becomes the
input to the set of neural network primitives representing the
next traditional computer vision algorithm operation 1n the
sequence.

In some cases, once the neural network primitives have
been linked to form a neural network that represents the
traditional computer vision algorithm the method 300 may
proceed directly from block 306 to block 310. In other cases,
the method 300 may proceed from block 306 to block 308
prior to proceeding to block 310. Whether the method 300
proceeds to block 308 or block 310 after block 306 may
depend on whether the task performed by the neural network
may be improved by tramning; that 1s, whether the task
performed by the neural network 1s improved by adjusting
one or more parameters (e.g. weights) of the neural network
via automated processes typically performed 1in neural net-
work training.

At block 308, the neural network that represents the
traditional computer vision algorithm 1s trained using one or
more neural network training techniques or methods. Train-
ing a neural network typically involves iteratively running
representative inputs through the neural network and adjust-
ing parameters (e.g. weights) of the neural network to
maximize or minimize a performance metric of the neural
network. Training a neural network may improve the per-
formance of the neural network (e.g. the training may
improve the accuracy of the output of the neural network).
For example, by using specific traimng datasets 1t may be
possible to improve the neural network’s performance with
respect to that dataset. For example, 11 a traditional computer
vision algorithm will be used for images taken 1n the dark,
the neural network representing that algorithm can be
trained on such images to maximize 1ts performance under
those specific circumstances. By traiming the neural network
the trained neural network may no longer be mathematically
equivalent to the original traditional computer vision algo-
rithm, but 1t may achieve better performance than the
original traditional computer vision algorithm. An example
of how a BRISK feature descriptor algorithm can be mapped
to neural network primitives to form a neural network that
represents the BRISK feature descriptor algorithm and how
that neural network can be trained using neural network
training techniques 1s described below with respect to FIGS.
15-17. Once the neural network has been trained the method
300 proceeds to block 310.

At block 310, hardware logic capable of implementing a
neural network 1s configured to implement the neural net-
work representing the traditional computer vision algorithm.
Configuring hardware logic capable of implementing a

10

15

20

25

30

35

40

45

50

55

60

65

10

neural network to implement a neural network may com-
prise generating a set of commands that cause the hardware
logic to implement the neural network. The commands may
specily the number, order and type of layers/primitives efc.
In some cases, the hardware logic capable of implementing
the neural network 1s a DNN accelerator. An example DNN
accelerator which may be configured to implement a neural
network representing a traditional computer vision algo-
rithm 1s described below with respect to FIG. 20. Testing has
shown that some traditional computer vision algorithms can
be implemented more ethiciently on a DNN accelerator as a
neural network than in the traditional format on a CPU, GPU
or DSP.

As mentioned above, 1n some examples, an automated
tool 1s provided with a library of mappings from traditional
computer vision algorithm operations to mathematically
equivalent sets of one or more neural network primitives,
wherein the automated tool 1s configured to: receive a
definition of a traditional computer vision algorithm that
identifies a sequence of one or more traditional computer
vision algorithm operations; use the library to map each of
the one or more traditional computer vision algorithm opera-
tions to a set of one or more neural network primitives that
1s mathematically equivalent to that traditional computer
vision algorithm operation; link the sets of one or more
network primitives mapped to the traditional computer
vision algorithm operations according to the sequence to
form a neural network representing the traditional computer
vision algorithm; and output a definition of the neural
network for use in configuring hardware logic to implement
the neural network.

A user (or other application) can provide a definition of a
traditional computer vision algorithm to the automated tool,
and the automated tool can output a definition of a neural
network representing the traditional computer vision algo-
rithm. In this way, the user (or developer of the application)
providing the definition of the traditional computer vision
algorithm does not need a detailed understanding of the
operation of neural networks, but he or she can use the
automated tool to form a neural network which represents a
traditional computer vision algorithm. The neural networks
which are formed in this way (e.g. by the tool) have a
structure corresponding to operations of the traditional com-
puter vision algorithm, which allows the (untrained) neural
network to be mathematically equivalent to the traditional
computer vision algorithm, or which allows the neural
network to be trained to thereby improve upon the tradi-
tional computer vision algorithm. For example, the neural
network could be trained to optimise 1t for use with particu-
lar 1mages, e.g. 1images of roads and vehicles 1t the neural
network 1s to be implemented 1n a vehicle, e.g. for use 1n an
advanced driver-assistance system or an autonomous driving
system.

Reference 1s now made to FIG. 4 which illustrates an
example system 400 for implementing a traditional com-
puter vision algorithm as a neural network. The system 400
comprises a defimition of the traditional computer vision
algorithm 402, a converter 404, and a definition of a neural
network 406 that represents the traditional computer vision
algorithm. As described above, the definition of the tradi-
tional computer vision algorithm 402 identifies a sequence
of traditional computer vision algorithm operations which
form the traditional computer vision algorithm. In some
cases, the definition of the traditional computer vision algo-
rithm may be stored as data on a computer readable medium.

The converter 404 1s configured to map each of the
traditional computer vision algorithm operations 1dentified

US 11,636,306 B2

11

in the definition of the traditional computer vision algorithm
to a set (or sequence) of one or more neural network
primitives, from a plurality of available neural network
primitives 408, wherein the set of one or more neural
network primitives 1s mathematically equivalent to the tra-
ditional computer vision algorithm operation. As described
above, the plurality of available neural network primitives
408 may comprise, but 1s not limited to, one or more of a
convolution primitive, a fully-connected primitive, a pool-
ing primitive, an activation primitive and an element-wise
operation primitive. The converter 404 may determine that
a set (or sequence) of neural network primitives 1s math-
ematically equivalent to a traditional computer vision algo-
rithm operation based on a known predetermined relation-
ship between the traditional computer vision algorithm
operation and the neural network primitives. For example, 1in
some cases there may be a library 412 that indicates, for each
of a plurality of traditional computer vision algorithm opera-
tions, one or more sets (or sequences) of one or more neural
network primitives that has been 1dentified as being math-
ematically equivalent to that traditional computer vision
algorithm operation. In these cases, the converter 404 may
be configured to automatically map each of the traditional
computer vision algorithm operations to a set (or sequence)
of one or more neural network primitives using the known
neural network primitive equivalences listed in the library
412.

Once the traditional computer vision algorithm operations
have been mapped to respective sets (or sequences) of one
or more neural network primitives that are mathematically
equivalent to the corresponding traditional computer vision
algorithm operation the converter 404 may link the
sequences of neural network primitives 1n the same manner
as their corresponding traditional computer vision algorithm
operations so as to form a neural network 406 that repre-
sents, and 1s mathematically equivalent to, the traditional
computer vision algorithm.

In this form the neural network has a structure which
matches the traditional computer vision algorithm opera-
tions 1n the traditional computer vision algorithm. In other
words, the structure of the neural network (e.g. the number
of layers in the neural network, the types of layers in the
neural network, the sizes ol matrices and/or vectors to be
manipulated in a neural network layer, etc.) are determined
to match the traditional computer vision algorithm opera-
tions 1n the traditional computer vision algorithm. Therefore,
the neural network 1s not a general purpose neural network
which has been trained to perform a specific task, but instead
the neural network 1s optimised 1n terms of 1ts structure for
a specific function (1.e. for performing the traditional com-
puter vision algorithm). This means that the neural network
1s a very ellicient representation of the traditional computer
vision algorithm, in terms of the size of the neural network
(c.g. the number of layers and the sizes of the layers).

Once the neural network 406 representing the traditional
computer vision algorithm has been generated the converter
404 may be configured to configure a DNN accelerator 410
(such as, but not limited to, the DNN accelerator 2000
described below with reference to FIG. 20), or other hard-
ware logic that 1s able to implement a neural network, so as
to 1implement the neural network 406 representing the tra-
ditional computer vision algorithm. This enables the DNN
accelerator 410, or other hardware logic, to process 1mput
data to the traditional computer vision algorithm 1n accor-
dance with the neural network. In some cases, the converter
404 may be configured to train the neural network using one
or more known neural network training techniques prior to

10

15

20

25

30

35

40

45

50

55

60

65

12

configuring the DNN accelerator 410, or other hardware
logic, to implement the neural network.

In some cases, the converter 404 may be implemented by
a computing-based device, such as the computing-based
device 2100 described below with respect to FIG. 21.

Example Vision Algorithm Operations Implemented Using
NN Primitives

Reference 1s now made to FIGS. 5-9 which are used to
illustrate example mappings between traditional computer
vision algorithm operations and NN primitives. Specifically,
FIGS. 5 to 7 are used to 1llustrate how binary morphological
operations can be implemented using NN primitives and
FIGS. 8 to 9 are used to illustrate how a histogram operation
can be implemented using NN primitives.

Common operations 1n traditional computer vision algo-
rithms are binary morphological operations. As 1s known to
those of skill 1 the art, morphological 1mage processing 1s
a collection of non-linear operations related to the shape or
morphology of features in an 1mage. Morphological tech-
niques probe a binary image with a small binary image
called a structuring element. The structuring element 1is
positioned at all possible locations 1n the image and 1t 1s
compared with the corresponding neighbourhood of pixels.

The structuring element can be thought of as a shape
mask. The structuring element can be any shape and size that
1s representable by a matrix of 0’s and non-zeros (e.g. 1’s).
The matrix dimensions specily the size of the structuring
clement and the pattern of zeros and non-zeros (e.g. 1°s)
specifies the shape of the structuring element. The origin of
the structuring element 1s usually the location of one of the
values of the matrix, although the origin can be outside the
structuring element.

The basic binary morphology operations are dilation and
crosion. As shown in FIG. 5, the dilation of an image 502 by
a structuring element 504 produces a new binary image 506
with ones (1s) in all locations (x, y) of a structuring
clement’s origin at which that structuring element ‘hits” the
input 1mage and zero (0) otherwise and repeating for all
pixel coordinates. A structuring element 1s said to ‘hit” an
image 11, at least for one of 1ts locations set to one (1) the
corresponding 1image pixel 1s also set to one (1). A dilation
operation expands the connected sets of ones (1s) 1n the
binary 1mage. It can be used for growing features and/or
filling 1 holes and gaps.

As shown 1n FIG. 6 the erosion of an 1image 602 by a
structuring element 604 produces a new binary image 606
with ones (1s) in all locations (x, y) of a structuring
clement’s origin at which the structuring element “fits’ the
input 1mage, and zero (0) otherwise, and repeating for all
pixel coordinates (x, y). A structuring element 1s said to “fit’
the 1image 1f, for each of 1ts locations set to one (1), the
corresponding 1mage pixel 1s also set to one (1). An erosion
operation shrinks the connected sets of ones (1s) of a binary
image. It can be used for shrinking features and/or removing
bridges, branches and small protrusions (1.e. for removing
noise).

An 1mage may be iteratively eroded and dilated to pro-
duce a better 1mage (1.e. an 1mage with less noise).

The inventors have identified that a dilation operation
with a square structuring element may be implemented by a
pooling primitive, and in particular a pooling primitive that
implements a max pooling function. Specifically, a dilation
operation with a square structuring element may be 1mple-
mented by performing a max pooling operation on an axa
window (where a defines the size of the structuring element)
at a 1x1 stride (1.e. the pooling 1s performed on the window
at each pixel). Since a max pooling operation determines the

US 11,636,306 B2

13

maximum value 1n the window, performing a max pooling
function over the structuring element size will produce a 1
when at least one of the pixels in the window 1s set to 1, and
0 otherwise.

More generally, a dilation or erosion operation with any
shaped structuring element may be implemented by a con-
volution primitive 710 followed by an activation primitive
712 as shown 1n FIG. 7. Specifically, a convolution opera-
tion which 1s performed between the binary image 702 and
the structuring element 704 at a spacing of one pixel will
produce an output image 708 where the value of each pixel
represents the total number of pixels in the image that have
a value of one (1) and the corresponding pixel in the
structuring element 704 also has a value of one (1) when the
origin of the structuring element 1s placed at that pixel. The
output 1mage 708 produced by the convolution 1s then
converted mto an eroded binary image 706 or a dilated
binary 1mage by performing an activation operation on the
output 708 of the convolution operation wherein 11 the value
ol a pixel 1s greater than or equal to a threshold (e.g. bias)
then the value of that pixel 1s 1 and O otherwise. For a
dilation the threshold 1s set to 1 and for an erosion the
threshold 1s set to the number of ones (1s) 1n the structuring,
clement. For example, in the example of FIG. 7 there are five
ones (1s) 1n the structuring element/filter 704 thus the bias
1s set to S to perform an erosion operation.

It 1s common to perform a dilation after an erosion (this
1s referred to as a closing operation). Where an erosion 1s
performed via a convolution primitive and an activation
primitive, a pooling primitive implementing a max pooling
function could be used to perform a dilation. Thus, a closing
operation could be implemented using NN primitives as a
convolution primitive, an activation primitive and a pooling
primitive implementing a max pooling function. This imple-
mentation of a closing operation may be particularly usetul
in DNN accelerators, such as the DNN accelerator 2000 of
FIG. 20, which are able to perform a convolution operation,
activation operation and pooling operation 1n a single pass of
the DNN accelerator hardware as 1t would allow a closing,
operation to be performed 1n a single pass of the DNN
accelerator hardware.

Another common operation 1n traditional computer vision
algorithms 1s a histogram operation. As shown i FIG. 8 a
histogram operation involves dividing the range of values in
the 1nput 1mage 802 into intervals called bins and counting
how many values fall within each bin to generate a histo-
gram 804. In the example shown 1n FIG. 8 the input image
802 1s divided mto 3 bins that are 1 integer wide. A
histogram operation would typically be implemented on a
general-purpose computer by iterating through each pixel of
an 1mage and incrementing the counter of the bin that it falls
1n.

The 1nventors have i1dentified that a histogram operation
may be implemented by a convolution primitive 902, fol-
lowed by an activation primitive 904 and a pooling primitive
906. Specifically, as shown in FIG. 9 a convolution 1s
performed between the mnput 1image 908 and h 1x1x1 filters
where h 1s the number of histogram bins. In the example of
FIG. 9 there are three bins so there are three 1x1x1 filters.
This effectively produces h copies of the input image 910,
912, 914. An activation function 1s then applied to each
image 910, 912, 914 generated by the convolution step
wherein only pixels with values 1n a predetermined range are
set to 1, otherwise they are set to zero. A different prede-
termined range corresponding to one of the bins 1s used for
the activation function for each of the images generated by
the convolution step such that the output of the activation

10

15

20

25

30

35

40

45

50

55

60

65

14

stage 1s h 1images 915, 916, 918 wherein each 1mage has 1s
in the pixels of the original 1image that had a value falling
within a particular bin. A mean pooling function 1s then
performed on each of the h images 915, 916, 918 generated
in the activation step. The output 920 of the pooling function
1s then the total number of pixels of the original image that
had a value that fell within that bin divided by the total
number of pixels (1.e. F/N where F 1s the number of pixels
of the original 1image that had a value that fell within that bin
and N 1s the total number of pixels in the image).

It seems quite counter intuitive, from an energy efliciency
perspective, to generate h copies of the mmput image and
perform similar operations on each copy, but DNN accel-
crators are designed to do these types of operations 1in
parallel. Testing has shown that a histogram calculation can
be performed more efliciently 1n this manner using a DNN
accelerator than performing the same histogram calculation
on a CPU or GPU, particularly considering the silicon (e.g.
chip) areca of a DNN accelerator vs the silicon (e.g. chip)
area ol a CPU or GPU.

It will be evident to a person of skill in the art that these
are example traditional computer vision algorithm opera-
tions only and that there are other traditional computer
vision algorithm operations that can be mapped to a
sequence of one or more NN primitives. It will also be
evident to a person of skill in the art that these are example
mappings between traditional computer vision algorithm
operations and DNN primitives and that these traditional
computer vision algorithm operations may also be imple-
mented using another combination of NN primitives.
Example Implementation of SIFT Feature Detection and
Description Using NN Primitives

Reference 1s now made to FIGS. 10 to 14 which 1llustrate
how the Scale Invariant Feature Transform (SIFT) algorithm
can be implemented using NN primitives. SIFT 1s a popular
algorithm for both keypoint detection and description. It 1s
popular because 1t 1s 1nvariant to image scaling and rotation
and partially invariant to changes in 3D view point. SIFT
also has good localization of keypoints 1n spatial and 1n
frequency domains. SIFT also produces a large number of
features (e.g. roughly 2000 for a 500x500 pixel 1mage)
which are distinctive and stable.

SIFT can be divided into the following four stages: (1)
detection of scale-space extrema; (2) location and selection
of keypoints; (3) orientation assignment; and (4) keypoint

descriptor generation.
The first stage of the SIFT algorithm 1s described with

reference to FIGS. 10 and 11. Specifically, FIG. 10 illustrates
how the Differences of Gaussians (DOG) 1s generated and
FIG. 11 1llustrates an example flow of traditional computer
vision algorithm operations 1102, 1104, 1106 to generate a
set of candidate keypoints, and neural network primitives
1108, 1110, 1112, 1114, 1116, 1118, 1120, and 1122 to which
those operations can be mapped.

In the first stage of the SIFT algorithm candidate key-
points (1.e. points of interest) in the 1image are 1dentified. To
do this the oniginal image I 1s convolved with Gaussian
filters G at different scales (or o) (1102) and the difference
ol successive Gaussian-blurred images (which 1s referred to
as the Differences of Gaussians (DOG)) 1s determined
(1104) as shown in FIG. 10. The DOG 1mage D can thus be

calculated 1n accordance with equation (1):

D(x,y,0)=(G(x,3,k0)-G(x,y,0))" I(x,y) (1)

where G(Xx,y,ko) 1s the Gaussian blur at scale k.
The keypoints are then i1dentified as those pixels (x, y) of
the original 1mage 1 that maximize or minimize the DOG

US 11,636,306 B2

15

image D across scales and across spatial coordinates (1106).
This 1s done by comparing each pixel 1in the DOG 1mages to
its eight neighbours at the same scale and nine correspond-
ing neighbouring pixels in each of the neighbouring scales.
IT the pixel value 1s the maximum or mimmum among the
compared pixels, 1t 1s selected as a candidate keypoint.

As shown 1n FIG. 11 the mventors have identified that the
Gaussian filtered 1images at different scales can be mapped to
a convolution primitive 1108, a pooling primitive 1110 and
another convolution primitive 1112. Specifically, a convo-
lution 1s performed between the original image I and a
Gaussian filter G; the generated 1mage 1s then unpooled to
increase the 1mage size by a factor (e.g. 2) to create a sparse
image; and then the image 1s densified using a pre-trained
up-sampling convolution. The inventors have also 1dentified
DOG generation can be mapped to a convolution primitive
1114, an element wise operation primitive 1116 configured
to perform a subtraction and then storing the output as a
multi-channel tensor 1118. Specifically, the output of the
first convolution 1112 1s convolved with a sequence of
Gaussian filters and the difference of the convolved images
are generated and the DOGs are stored as a multi-channel
tensor. The inventors have also 1dentified that the calculation
of the extrema can be mapped to an activation primitive
1120 and a pooling primitive 1122. Specifically, on the DOG
pyramid generated at 1118 a per-pixel bias and activation 1s
applied to produce an 1mage map where the extrema are
non-zero elements. The bias and the activations are diflerent
for maxima and minima and the resulting maps are stored
separately. This will result 1n the minima and maxima
appearing as positive values 1 the map. Max pooling 1s then
applied to the maps recording the position of the extrema 1n
switch variables.

The first stage of the SIFT algorithm typically generates
too many candidate keypoints and not all of the candidate
keypoints are ‘good’ keypoints (e.g. mnvariant to noise) so in
the second stage of the SIFT algorithm the number of
candidate keypoints 1s filtered or paired down. The candidate
keypoints may be filtered by discarding those candidate
keypoints that have low contrast or are edge-like points.
Low contrast candidate keypoints and candidate keypoints
that are edge-like may be identified by calculating the
interpolated location of the extrema. This may be done by
interpolating nearby data to accurately determine the posi-
tion of the keypoint. The interpolation may be done using the
quadratic Taylor expansion of the DOG function D with the
candidate keypoint as the origin. The extrema 1s determined
as an oilset from the current position and if 1t 1s greater than
0.5 1n any dimension then this 1s an indication that the
extrema 1s closer to another candidate keypoint. To 1dentily
candidate keypoints with a low contrast the value of the
second order 1s computed at the oflset. If this 1s less than a
predetermined value the candidate keypoint 1s discarded.
Since the DOG tunction D will be sensitive to points along
an edge the DOG function will often 1dentify points along an
edge as keypoints, even if 1t they are not good keypoints. To
climinate poor edge-like candidate keypoints the principal
curvature across the edge and along the edge are determined
from a second order Hessian matrix. As 1s known to those of
skill in the art the principal curvatures measure the maxi-
mum and mimimum bending of a regular surface at each
point. Edge-like features are those where the principal
curvature of the edge 1s significantly larger than the principal
curvature along the edge.

Once the keypoints have been identified via stages one
and two, to ensure that the same keypoint will produce the
same descriptor regardless of the orientation of the keypoint,

10

15

20

25

30

35

40

45

50

55

60

65

16

in the third stage of the SIFT algorithm the dominant
orientation of the keypoints are determined and allocated to
the keypoints. To determine the most domination orientation
for a keypoint a Gaussian smoothed imaged at the key-
point’s scale 1s generated. This can be implemented 1n a NN
by performing a convolution between the original 1mage 1
and the Gaussian filter G at the keypoint’s scale. The next
step 15 to determine the gradients 1202 near the keypoint as
shown 1 FIG. 12. This can be implemented using NN
primitives by performing a convolution between the 16x16
pixels surrounding the keypoint and gradient filters, such as,
but not limited to Sobel filters. For example, the Sobel filter
S shown in equation (2) can be used to identily the x
derivative (dx) for each pixel and the Sobel filter S, shown
in equation (3) can be used to identily the y denivative (dy)
for each pixel. It will be evident to a person of skill in the
art that this 1s an example only and that other gradient filters

may be used.

"+l 0 -1 (2)
S,=|+2 0 =2

+1 0 -1

+1 +2 +1] (3)

s =0 0 o
-1 -2 -1

The magnitude and direction of the gradient can then be
determined from the x and y derivatives. For example, the
magnitude m can be determined from Pythagoras’ theorem
as the square root of the squares as shown 1n equation (4) and
the direction or angle 0 can be determined from equation (5)
where the function a tan takes into account the signs of the
x and y denivatives (dx and dy) so that the angle 0 1s 1n the
range |-, 7.

m:\/dx2+dy2 (4)

dy]
dax

Once the gradient magnitudes and directions have been
determined, a histogram of the gradient directions (i.e.
angles 0) for the 16x16 set of pixels 1s generated where there
are, for example, 36 bins in the histogram (1.e. each bin
covers 10 degrees). As described above, histograms can be
implemented 11 NN primitives by convolving the angle
gradients with h 1x1x1 filters (where h i1s the number of
bins—36 1n this case), performing an activation function,
and then performing a mean pooling function. The keypoint
1s then assigned the direction associated with the bin with the
highest histogram value.

Once the keypoints have been identified and scales and
orientations assigned to them, in stage four of the SIFT
algorithm a descriptor 1s assigned to each keypoint as
described with reference to FIGS. 13 and 14. Specifically,
FIG. 13 illustrates an example descriptor 1302 that is
generated from the gradients 1304 of the patch surrounding
the keypoint k and FIG. 14 illustrates an example flow of
traditional computer vision algorithm operations 1402,
1406, 1412, 1420 to generate the descriptor 1302 for a
keypoint, and neural network primitives 1404, 1408, 1410,
1414, 1416, 1418, 1422, 1424 and 1426 to which those

operations can be mapped.

6 = at)

US 11,636,306 B2

17

The first step 1402 in generating a descriptor for a
keypoint 1s to generate a Gaussian smoothed 1image at the
keypoint’s scale. This operation can be mapped to a con-
volution primitive 1404 that performs a convolution
between the original image I and the Gaussian filter G at the
keypoint’s scale.

The next step 1406 1s to determine the gradients near the
keypoint. This operation can be mapped to a convolution
primitive 1408 and a set of element-wise operation primi-
tives and activation primitives 1410. Specifically, the con-
volution primitive 1408 1s configured to perform a convo-
lution between the 16x16 pixels surrounding the keypoint
and gradient filters (e.g. Sobel filters S, and S, described
above) to generate the x and y denivatives (dx, dy) of the
images. The magnitude m and direction (1.e. angle) of the
gradients 1s then determined from the x and y derivatives via
a plurality of element-wise operation primitives and activa-
tion primitives 1410. For example, the magnitude may be
determined by (1) calculating the square of the x derivatives
(dx) using a first element-wise operation primitive that 1s
configured to perform a tensor-multiply (dx, dx) on the x
derivatives, (11) calculating the square of the y dernivatives
(dy) using a second element-wise operation primitive that 1s
configured to perform a tensor multiply (dy, dy) on the y
derivatives; (111) calculating the sum of the squares of the x
and vy derivatives (dx and dy) using an element-wise opera-
tion primitive that 1s configured to perform a tensor multiply
(dx*, dy?); and (iv) calculating the square root of the sum of
the squares using an activation primitive which 1s configured
to apply a square root function to the sum of the squares.

The angle or direction may be calculated by, for example,
(1) determining the ratio of the y denvative (dy) and the x
derivative (dx) using an clement-wise operation primitive
that 1s configured to perform a tensor divide (dy, dx) or 1s
configured to perform a tensor multiply (dy, 1/dx); and (11)
determining the angle or direction using an activation primi-
tive that is configured to apply a tan™' function on the ratio
calculated 1n (1).

The next step 1412 1s to divide the 16x16 patch into
sixteen 4x4 patches and to determine a histogram for each
4x4 patch wherein the gradient direction (i.e. angle) 1s
divided into a number of bins, e.g. 8 bins (1.e. each bin
covers 45 degrees). As described above, a histogram can be
mapped to a convolution primitive 1414, an activation
primitive 1416 and a pooling primitive 1418 configured to
perform a max pooling.

The final step 1420 1s to count the number of angles in
cach bin (1.e. 1n each angle range) weighted by the proximity
to the range limits. Specifically, each angle in a bin may be
weighted by the distance to the centre of the angle range.
This operation can be mapped to an activation primitive
1422 which 1s configured to apply a ReLLU function. Each
angle 1n the bin may also be weighted by the gradient
magnitude m, and by a Gaussian weighted kernel centred at
the patch centre. This operation can be mapped to a convo-
lution primitive 1424 that i1s configured to perform matrix
multiplication. The number of occurrences 1n each bin 1s
then computed for each 4x4 group of pixels. This operation
can be mapped to a pooling primitive 1426.

Accordingly, each SIFT keypoint descriptor 1302 has 128
values—S8 values for each 4x4 group of pixels. Each value
for a 4x4 pixel eflectively indicates the strength of the
gradient in that direction.

Example Implementation of BRISK Feature Descriptor
Using NN Primitives

Reference 1s now made to FIGS. 15 to 17 which illustrate

how the Binary Robust Invariant Scalable Keypoints

10

15

20

25

30

35

40

45

50

55

60

65

18

(BRISK) feature descriptor algorithm can be implemented
using NN primitives. As 1s known to those of skill in the art,
the BRISK feature descriptor algorithm takes N (e.g. 60)
samples around a feature point (or keypoint) in accordance
with a known sampling pattern. The pattern defines N
locations equally spaced on circles concentric with the
keypoint k. An example pattern 1500 for N=60 and the scale
t=1 1s shown in FIG. 15. The sampling pattern 1s then used
to obtain pairwise brightness or intensity comparison results
which are assembled into the binary BRISK descriptor.
Specifically, a subset of ‘short-distance pairings” S of sam-
pling points p 1s defined as shown 1n equation (6):

S:{(pf:pj)a | Hpj_pz'H{&mﬂx}gA (6)

wherein A 1s the set of all sampling point points, 6_ . =9.75t,
and t 1s the scale of the keypoint k. The bit vector descriptor
D 1s assembled by rotating the sampling pattern by o and
performing all the short-distance comparisons of the point
pairs (1.e. 1n the rotated pattern), such that each bit b
corresponds to a 1 when the intensity I of the first one of the
point pair 1s greater than the intensity of the second one of
the point pair and O otherwise as shown 1n equation (7)

8

where I(p,~,0,) 1s the intensity value at sampling point p,” (in
the rotated pattern) after applying a Gaussian smoothing
with standard deviation o; proportional to the distance
between the points on the respective circle. The application
of the Gaussian filter avoids aliasing effects when sampling
the mtensity ol a point p. Using a 60-bit sampling pattern
and the distance threshold 1dentified above where t=1 results
in a 512-bit patch descriptor.

The inventors have identified that equation (7) can be
expressed as a matrix-vector multiplication. Specifically, the
sampling point pairs can be expressed as a sparse axN
matrix where a the number of sampling point pairs (e.g. 512)
and N 1s the number of sampling points (e.g. 60). Each row
ol the sparse matrix corresponds to a specific sampling point
pair and has a one (1) 1n the column corresponding to the
first sampling point of the pair and a minus one (-1) 1n the
column corresponding to the second sampling point of the
pair and the remainder of the elements 1n that row are set to
zero (0). The descriptor (D) 1s then generated by taking the
sigmoid of the sparse matrix multiplied by an N element
vector wherein the i”” element of the vector comprises the
intensity I, (or smoothed intensity) of the i”” sampling point
p;, and then rounding to the nearest integer (rint) as shown
in equation (8). This will produce a descriptor vector (D)
wherein the elements of the vector will have a value of (1)
where the first intensity of the pair 1s larger than the second
intensity of the pair, and zero (0) otherwise.

L I(p§, o) > I(p{, o) (7)

0, otherewise

(1 0 -1 0 4L Y (3)
0 1 0 -1 0 ||hb
D = rintf| sigmoid| . : :
\ Jo ... 1 0 -1]| Iy |))

Expressing equation (7) as a matrix multiplication allows
equation (7) to be implemented as a single tully-connected
layer in a DNN accelerator. In other words, it allows feature
descriptors to be generated in accordance with the BRISK

US 11,636,306 B2

19

teature descriptor algorithm using a DNN accelerator 1n a
mathematically equivalent way to equation (7).

Furthermore, once 1n this NN format (i.e. expressed as a
tully connected NN layer) it 1s possible to train the NN to
potentially achieve better results (i.e. better feature descrip-
tors). Specifically, 11 equation (8) 1s written more generally
as shown 1n equation (9) such that the first matrix 1s a set of
weights w which are applied to the intensities I, 1t 1s possible
to train the NN (1.e. determine the weights) using traditional
NN tramning methods so that the NN will produce more
accurate results.

4 (- 1 Y

(2)

D = rintf| sigmoid|

X .

In this configuration instead of each element (b) of the
descriptor vector being the diflerence between the intensities
of two sampling points (as in equations (7) and (8)) as
expressed 1 equation (10):

b, =rint(sigmoid(/,—1;)) (10)

cach element (b,) of the descriptor 1s a weighted sum of the
intensities of all the sampling points as shown 1n equation

(11):

b _=rint(sigmoid(Z,_ " W, ;) (11)

FIG. 16 1llustrates an example NN implementation 1600
ol equation (9).

Specifically, the NN implementation 1600 of equation (9)
comprises a single fully-connected layer 1604 which
receives as inputs 1602 the N (e.g. 60) intensities I, and
outputs a descriptor D that comprises a (e.g. 512) values (b)
wherein each value b, is the sum of the u” weights W, ;
multiplied by the N (e.g. 60) intensities I, respectively as set
out in equation (11).

As shown 1n FIG. 17, the NN of equation (9) (1.e. the NN
comprising a fully connected layer defined by equation (9))
may be trained, for example, using triplets of patches—
wherein each triplet comprises two patches (P, and P,) that
are stmilar and should produce the same (or similar) feature
descriptor, and a third patch (R) which 1s different to the
other two patches (P, and P,) which should produce a
different feature descriptor—and adjusting the weights w to
maximize the difference between the patches that are dif-
ferent and to minimize the difference between the patches
that are similar. Specifically, for each triplet of patches the
three patches (P,, P,, R) are fed into the NN 1702 (1.e. the
NN comprising a fully connected layer defined by equation
(9)) which 1s configured with a set of weights w to generate
corresponding feature descriptors (D(P,), D(P,) and D(R)).
The distance between each pair of descriptors 1s computed
by for example, equations (12), (13) and (14):

\DP)-D(P5)|» (12)

\DP)-DR)|)5 (13)

\D(P3)-DR)|> (14)

During NN tramming, the values of the weights w are
iteratively modified via standard NN procedures of loss
mimmization so that distances between the descriptors of
corresponding patches (e.g. the output of equation (12)) are
small, and the distance between the descriptors of non-
corresponding patches (e.g. the output of equations (13) and

10

15

20

25

30

35

40

45

50

55

60

65

20

(14)) are large. The loss function 1s defined in terms of the
quantities 1n equations (12), (13), and (14).

The accuracy of such a NN may be determined by a
precision metric and/or a recall metric. The precision metric
may be a ratio of the number of true positives to the total
number of positives (i.e. the number of true positives and the
number of false positives) as shown 1n equation (15). A true
positive (IP) 1s when the NN produces descriptors for
similar patches (e.g. P, and P,) that are deemed to be
corresponding. Two descriptors may be deemed to be cor-
responding if the distance between the two descriptors 1s
below a predetermined threshold. A false positive (FP) 1s
when the NN produces descriptors for dissimilar patches
(e.g. P, and R, or P, and R) that are deemed to be corre-
sponding (1.e. the distance between the two descriptors 1s
below a predetermined threshold).

numiP
numil P+ numb'P

(15)

precision =

The recall metric may be a ratio of the true positives to the
sum of the number of true positives and the number of false
negatives as shown in equation (16). A false negative (FN)
1s when the NN produces descriptors for similar patches
(e.g. P, and P,) that are deemed to be not corresponding (1.e.
the distance between the two descriptors 1s equal to or above
the predetermined threshold). Typically, the precision metric
and the recall metric have an inverse relationship.

numiP
numit P+ numbEN

(16)

recall =

Reference 1s now made to FIG. 18 which shows a graph
1800 of the accuracy (i1.e. mean average precision (mAP)) of
the NN versus the number of training iterations. It can be
seen from FIG. 18 that the more training iterations that are
performed the more accurate the results of the NN are.

The structure of the neural network (e.g. the size of the
matrix and the vector, and the use of the sigmoid function as
shown 1n equation (9)) 1s set up to correspond with (1.e. be
mathematically equivalent to) the traditional algorithm for
calculating a BRISK descriptor. From this starting point, the
neural network can be trained, e.g. by varying the weights w
in the matrix of equation (9), to find a better feature
descriptor (e.g. for a particular training set) which i1s no
longer mathematically equivalent to the traditional BRISK
algorithm.

Example Implementation of Stereo Disparity Estimation
Algorithm Using NN Primitives

Reference 1s now made to FIG. 19 which illustrates an
example 1mplementation of a stereo disparity estimation
algorithm using NN primitives. As 1s known to those of skill
in the art stereoscopic vision uses the disparity of two
camera 1mages looking at the same scene to calculate depth
information, just as 1 human vision. In particular, there 1s
typically a first image that represents the left view of the
scene and a second 1mage that represents the right view of
the scene. In this manner objects 1n the camera’s field of
view will appear at slightly different locations within the two
images due to the camera’s different perspectives on the
scene. Depth information can be computed from a pair of
stereo 1mages (1.€. the 1mage representing the left view of the
scene and the image representing the right view of the scene)
by computing the distance in pixels between the location of

US 11,636,306 B2

21

a feature 1n one 1mage and its location 1n the other image.
This produces a disparity map. Generally, pixels with larger
disparities are closer to the camera and pictures with smaller
disparities are further from the camera.

A standard method for calculating the disparity map 1s to
use block matching. Block matching involves taking a small
region of pixels in one image (e.g. the right image) and
searching for the closest matching region of pixels in the
other image (e.g. the left image). In some cases, the simi-
larity between blocks may be determined according to the
sum of absolute differences (SAD). The SAD between a
template and a block 1s calculated by subtracting each pixel
in the template from the corresponding pixel in the block and
summing the absolute values of the differences. In other
cases, the similarity between blocks may be determined
according to the sum of squared differences (SSD).

As shown 1in FIG. 19, the inventors have i1dentified that
this block-based method of generating a disparity map may
be mapped to a set of NN primitives that comprises: a first
convolution primitive 1902, a second convolution primitive
1904 and an activation primitive 1906. Specifically, the first
convolution primitive 1902 1s configured to convolve an
image representing the left view of the scene 1908 with a
plurality of filters 1910, 1912, 1914 to generate a plurality of
shifted versions 1916, 1918, 1920 of the image representing
the left view of the scene. The plurality of shifted versions
1916, 1918, 1920 of the image representing the leit view of
the scene are concatenated, along with an 1mage represent-
ing the right view of the scene, to form a single tensor. The
second convolution primitive 1904 1s then configured to
convolve the single tensor with a set of filters 1924 that
generate block-based differences 1926, 1928, 1930 between
the 1mage representing the right view of the scene 1922 and
the shifted versions 1916, 1918, 1920 of the image repre-
senting the left view of the scene. The activation primitive
1906 1s then configured to determine the absolute difference
1932, 1934, 1936 of the block-based diflerences 1926, 1928,
1930. The absolute differences 1932, 1934, 1936 may then
be provided to a pooling primitive (not shown) that 1s
configured to sum the values of each absolute difference
1932, 1934, 1936 to genecrate the L1-norm (1.e. the sum of
the absolute difference (SAD)). The same process can then
be repeated with the left and right views the opposite way
around (1.e. the 1mage representing the right view of the
scene 1922 i1s the mput to the first convolution primitive
1902 and the 1mage representing the left view of the scene
1908 becomes part of the tensor). In other cases, mnstead of
using an activation primitive that is configured to apply an
absolute function to the block-based differences 1926, 1928,
1930 to generate the L-1 norm, a convolution primitive
could be used to multiple each difference by 1tself to produce
the L-2 norm (1.e. the sum of squared difference (SSD)).
Various known post-processing algorithms can be used to
merge the results and generate a final disparity map.

A similar set of NN primitives may be used to implement
motion estimation.

Example DNN Accelerator

Reference 1s now made to FIG. 20 which 1llustrates an
example DNN accelerator 2000 which may be configured to
implement a NN generated 1n accordance with the method of
FIG. 3 (1.e. a NN that represents a traditional computer
vision algorithm).

The DNN accelerator 2000 of FIG. 20 1s configured to
compute the output of a DNN through a series of hardware
passes (which also may be referred to as processing passes)
wherein during each pass the DNN accelerator 2000
receives at least a portion of the input data for a layer of the

10

15

20

25

30

35

40

45

50

55

60

65

22

DNN and processes the recerved input data 1n accordance
with that layer (and optionally 1n accordance with one or
more subsequent layers) to produce processed data. The
processed data 1s either output to memory for use as input
data for a subsequent hardware pass or output as the output
of the DNN. The number of layers that the DNN accelerator
2000 can process during a single hardware pass may be
based on the size of the data, the DNN accelerator 2000 and
the order of the layers. For example, where the DNN
accelerator 2000 comprises hardware to perform each of the
possible layer types the DNN accelerator 200 may be able to
process or implement a DNN comprising a first convolution
layer, a first activation layer, a second convolution layer, a
second activation layer, and a pooling layer by receiving the
initial DNN 1nput data and processing that input data accord-
ing to the first convolution layer and the first activation layer
in the first hardware pass and then outputting the output of
the activation layer into memory, then 1n a second hardware
pass recerving that data from memory as the input and
processing that data according to the second convolution
layer, the second activation layer, and the pooling layer to
produce the output data for the DNN.

The example DNN accelerator 2000 of FIG. 20 comprises
an input module 2001, a convolution engine 2002, an
accumulation builer 2004, an element-wise operations mod-
ule 2006, an activation module 2008, a normalisation mod-
ule 2010, a pooling module 2012, an output interleave
module 2014 and an output module 2015. Each module or
engine may be implemented by hardware logic and/or digital
logic circuitry. Each module or engine implements or pro-
cesses all or a portion of one or more types of layers.
Specifically, together the convolution engine 2002 and the
accumulation bufler 2004 implement or process a convolu-
tion layer or a fully connected layer. The activation module
2008 processes or implements an activation layer. The
normalisation module 2010 processes or implements a nor-
malisation layer. The pooling module 2012 implements a
pooling layer and the output interleave module 2014 pro-
cesses or implements an interleave layer.

The mput module 2001 1s configured to receive the input
data for the current hardware pass and provide i1t to a
downstream module for processing. The downstream mod-
ule that receives the input data depends on the layers that are
to be processed 1n the current hardware pass.

The convolution engine 2002 1s configured to perform a
convolution operation on the recerved put data using the
weilghts associated with a particular convolution layer. The
welghts for each convolution layer of the DNN may be
stored 1n a coethicient bufler 2016 as shown 1n FIG. 20 and
the weights for a particular convolution layer may be
provided to the convolution engine 2002 when that particu-
lar convolution layer 1s being processed by the convolution
engine 2002. Where the DNN accelerator 2000 supports
variable weight formats then the convolution engine 2002
may be configured to receive information indicating the
format or formats of the weights of the current convolution
layer being processed to allow the convolution engine 2002
to properly interpret and process the received weights.

The convolution engine 2002 may comprise a plurality of
multipliers (e.g. 128) and a plurality of adders which add the
result of the multipliers to produce a single sum. Although
a single convolution engine 2002 1s shown in FIG. 20, 1n
other examples there may be multiple (e.g. 8) convolution
engines so that multiple windows can be processed simul-
taneously. The output of the convolution engine 2002 1s fed
to the accumulation butler 2004.

US 11,636,306 B2

23

The accumulation butfer 2004 1s configured to receive the
output of the convolution engine and add 1t to the current
contents of the accumulation bufler 2004. In this manner, the
accumulation bufler 2004 accumulates the results of the
convolution engine 2002. Although a single accumulation
butler 2004 1s shown in FIG. 20, in other examples there
may be multiple (e.g. 8, one per convolution engine) accu-
mulation buflers. The accumulation bufler 2004 outputs the
accumulated result to the element-wise operations module
2006 which may or may not operate on the accumulated
result depending on whether an element-wise layer 1s to be
processed during the current hardware pass.

The element-wise operations module 2006 1s configured
to receive either the input data for the current hardware pass
(e.g. when a convolution layer 1s not processed 1n the current
hardware pass) or the accumulated result from the accumu-
lation bufler 2004 (e.g. when a convolution layer i1s pro-
cessed 1n the current hardware pass). The eclement-wise
operations module 2006 may either process the received
input data or pass the received input data to another module
(e.g. the activation module 2008 and/or or the normalisation
module 2010) depending on whether an element-wise layer
1s processed in the current hardware pass and/or depending
on whether an activation layer 1s to be processed prior to an
clement-wise layer. When the element-wise operations mod-
ule 2006 1s configured to process the received input data the
clement-wise operations module 2006 performs an element-
wise operation on the received data (optionally with another
data set (which may be obtained from external memory)).
The element-wise operations module 2006 may be config-
ured to perform any suitable element-wise operation such as,
but not limited to add, multiply, maximum, and minimum.
The result of the element-wise operation 1s then provided to
either the activation module 2008 or the normalisation
module 2010 depending on whether an activation layer 1s to
be processed subsequent the element-wise layer or not.

The activation module 2008 1s configured to receive one
of the following as mput data: the original mput to the
hardware pass (via the element-wise operations module
2006) (e.g. when a convolution layer 1s not processed in the
current hardware pass); the accumulated data (via the ele-
ment-wise operations module 2006) (e.g. when a convolu-
tion layer 1s not processed in the current hardware pass and
either an element-wise layer 1s not processed 1n the current
hardware pass or an element-wise layer 1s processed in the
current hardware pass but follows an activation layer). The
activation module 2008 1s configured to apply an activation
function to the mput data and provide the output data back
to the element-wise operations module 2006 where 1t 1s
torwarded to the normalisation module 2010 directly or after
the element-wise operations module 2006 processes 1t. In
some cases, the activation function that 1s applied to the data
received by the activation module 2008 may vary per
activation layer. In these cases, information speciiying one
or more properties of an activation function to be applied for
cach activation layer may be stored (e.g. 1n memory) and the
relevant information for the activation layer processed in a
particular hardware pass may be provided to the activation
module 2008 during that hardware pass.

In some cases, the activation module 2008 may be con-
figured to store, 1n entries of a lookup table, data represent-
ing the activation function. In these cases, the input data may
be used to lookup one or more entries 1n the lookup table and
output values representing the output of the activation
function. For example, the activation module 2008 may be
configured to calculate the output value by interpolating
between two or more entries read from the lookup table.

"y

10

15

20

25

30

35

40

45

50

55

60

65

24

In some examples, the activation module 2008 may be
configured to operate as a Rectified Linear Unit (ReLLU) by
implementing a ReLU function. In a ReLLU function, the
output element y, ., 1s calculated by 1dentifying a maximum
value as set out 1n equation (17) wherein for x values less
than 0, y=0:

g f;,k:j: (xfzf,k):max{orxf;ﬁ} (17)

In other examples, the activation module 2008 may be
configured to operate as a Parametric Rectified Linear Unait
(PReLU) by implementing a PReLLU function. The PRelLU
function performs a similar operation to the ReLLU function.
Specifically, where w,, w,, b,, b,ER are constants, the
PReL.U 1s configured to generate an output element y, ., as
set out 1 equation (18):

}’f;,;::f (xz'yr'.,.k; wy,w,b 1, by)=max{(w, $xf;,,;c+b 1),{w> $fo?
+b5)} (1%)

The normalisation module 2010 1s configured to receive
one of the following as input data: the original input data for
the hardware pass (via the element-wise operations module
2006) (e.g. when a convolution layer 1s not processed 1n the
current hardware pass and neither an element-wise layer nor
an activation layer 1s processed in the current hardware
pass); the accumulation output (via the element-wise opera-
tions module 2006) (e.g. when a convolution layer 1s pro-
cessed 1 the current hardware pass and neither an element-
wise layer nor an activation layer 1s processed 1n the current
hardware pass); and the output data of the element-wise
operations module and/or the activation module. The nor-
malisation module 2010 then performs a normalisation
function on the received mmput data to produce normalised
data. In some cases, the normalisation module 2010 may be
configured to perform a Local Response Normalisation
(LRN) Function and/or a Local Contrast Normalisation
(LCN) Function. However, 1t will be evident to a person of
skill 1n the art that these are examples only and that the
normalisation module 2010 may be configured to implement
any suitable normalisation function or functions. Diflerent
normalisation layers may be configured to apply different
normalisation functions.

The pooling module 2012 may receirve the normalised
data from the normalisation module 2010 or may receive the
input data to the normalisation module 2010 via the nor-
malisation module 2010. In some cases, data may be trans-
ferred between the normalisation module 2010 and the
pooling module 2012 via an XBar 2018. The term “XBar”
1s used herein to refer to a simple hardware module that
contains routing logic which connects multiple modules
together 1n a dynamic fashion. In this example, the XBar
may dynamically connect the normalisation module 2010,
the pooling module 2012 and/or the output interleave mod-
ule 2014 depending on which layers will be processed in the
current hardware pass. Accordingly, the XBar may receive
information each hardware pass indicating which modules
2010, 2012, 2014 are to be connected.

The pooling module 2012 is configured to perform a
pooling function, such as, but not limited to, a max or mean
function, on the received data to produce pooled data. The
purpose of a pooling layer 1s to reduce the spatial size of the
representation to reduce the number of parameters and
computation in the network, and hence to also control
overfitting. In some examples, the pooling operation 1is
performed over a sliding window that 1s defined per pooling
layer.

The output interleave module 2014 may receive the
normalised data from the normalisation module 2010, the

"y

US 11,636,306 B2

25

input data to the normalisation function (via the normalisa-
tion module 2010), or the pooled data from the pooling
module 2012. In some cases, the data may be transierred
between the normalisation module 2010, the pooling module
2012 and the output interleave module 2014 via an XBar
2018. The output interleave module 2014 1s configured to
perform a rearrangement operation to produce data that 1s in
a predetermined order. This may comprise sorting and/or
transposing the received data. The data generated by the last
of the layers 1s provided to the output module 20135 where 1t
1s converted to the desired output format for the current
hardware pass.

The normalisation module 2010, the pooling module
2012, and the output interleave module 2014 may each have
access to a shared builer 2020 which can be used by these
modules 2010, 2012 and 2014 to write data to and retrieve
data from. For example, the shared butler 2020 may be used
by these modules 2010, 2012, 2014 to rearrange the order of
the received data or the generated data. For example, one or

more of these modules 2010, 2012, 2014 may be configured
to write data to the shared builer 2020 and read the same data
out 1n a different order. In some cases, although each of the
normalisation module 2010, the pooling module 2012 and
the output interleave module 2014 have access to the shared
buffer 2020, each of the normalisation module 2010, the
pooling module 2012 and the output interleave module 2014
may be allotted a portion of the shared builer 2020 which
only they can access. In these cases, each of the normali-
sation module 2010, the pooling module 2012 and the output
interleave module 2014 may only be able to read data out of
the shared bufler 2020 that they have written in to the shared
butler 2020.

As described above the modules of the DNN accelerator
2000 that are used or active during any hardware pass are
based on the layers that are processed during that hardware
pass. In particular, only the modules or components related
to the layers processed during the current hardware pass are
used or active. As described above, the layers that are
processed during a particular hardware pass 1s determined
(typically 1n advance, by, for example, a soitware tool) based
on the order of the layers in the DNN and optionally one or
more other factors (such as the size of the data). For
example, 1n some cases the DNN accelerator 2000 may be
configured to perform the processing of a single layer per
hardware pass unless multiple layers can be processed
without writing data to memory between layers. For
example, 11 a first convolution layer 1s immediately followed
by a second convolution layer each of the convolution layers
would have to be performed in a separate hardware pass as
the output data from the first convolution layer needs to be
written out to memory before it can be used as an 1nput to
the second convolution layer. In each of these hardware
passes only the modules, components or engines relevant to
a convolution layer, such as the convolution engine 2002 and
the accumulation bufler 2004, may be used or active.

Although the DNN accelerator 2000 of FI1G. 20 illustrates
a particular order in which the modules, engines etc. are
arranged and thus how the processing of data flows through
the processing module, it will be appreciated that this 1s an
cxample only and that in other examples the modules,
engines etc. may be arranged 1n a different manner. Further-
more, other DNN hardware accelerators may support addi-
tional or alternative types of DNN layers and thus may
comprise diflerent modules, engines etc.

FIG. 21 illustrates various components of an exemplary
general-purpose computing-based device 2100 which may

be implemented as any form of a computing and/or elec-

10

15

20

25

30

35

40

45

50

55

60

65

26

tronic device, and in which all or a portion of the method 300
of FIG. 3 may be implemented.

Computing-based device 2100 comprises one or more
processors 2102 which may be microprocessors, controllers
or any other suitable type of processors for processing
computer executable instructions to implement a traditional
computer vision algorithm as a neural network. In some
examples, for example where a system on a chip architecture
1s used, the processors 2102 may include one or more fixed
function blocks (also referred to as accelerators) which
implement a part of the method of implementing a tradi-
tional computer vision algorithm as a neutral network (rather
than software or firmware). Platform software comprising an
operating system 2104 or any other suitable platform soft-
ware may be provided at the computing-based device to
ecnable application software, such as computer executable
code 21035 for implementing all or a portion of the method
300 of FIG. 3, to be executed on the device.

The computer executable mnstructions may be provided
using any computer-readable media that 1s accessible by
computing-based device 2100. Computer-readable media
may 1nclude, for example, computer storage media such as
memory 2106 and communications media. Computer stor-
age media (1.e. non-transitory machine readable media),
such as memory 2106, includes volatile and non-volatile,
removable and non-removable media implemented 1n any
method or technology for storage of information such as
computer readable instructions, data structures, program
modules or other data. Computer storage media includes, but
1s not limited to, RAM, ROM, FPROM, EEPROM, flash
memory or other memory technology, CD-ROM, digital
versatile disks (DVD) or other optical storage, magnetic
cassettes, magnetic tape, magnetic disk storage or other
magnetic storage devices, or any other non-transmission
medium that can be used to store information for access by
a computing device. In contrast, communication media may
embody computer readable instructions, data structures,
program modules, or other data 1n a modulated data signal,
such as a carrier wave, or other transport mechanism. As
defined herein, computer storage media does not include
communication media. Although the computer storage
media (1.e. non-transitory machine readable media, e.g.
memory 2106) 1s shown within the computing-based device
2100 1t will be appreciated that the storage may be distrib-
uted or located remotely and accessed via a network or other
communication link (e.g. using communication interface
2108).

The computing-based device 2100 also comprises an
input/output controller 2110 arranged to output display
information to a display device 2112 which may be separate
from or integral to the computing-based device 2100. The
display information may provide a graphical user interface.
The mput/output controller 2110 1s also arranged to receive
and process mput from one or more devices, such as a user
input device 2114 (e.g. a mouse or a keyboard). In an
embodiment the display device 2112 may also act as the user
input device 2114 11 it 1s a touch sensitive display device.
The nput/output controller 2110 may also output data to
devices other than the display device, e.g. a locally con-
nected printing device (not shown m FIG. 21).

FIG. 22 shows a computer system in which a DNN
hardware accelerator, such as the DNN accelerator 2000 of
FIG. 20, may be implemented. The computer system com-

prises a CPU 2202, a GPU 2204, a memory 2206 and other
devices 2214, such as a display 2216, speakers 2218 and a
camera 2220. A DNN accelerator 2210 (e.g. corresponding

to the DNN accelerator 2000 of FIG. 20) may be imple-

US 11,636,306 B2

27

mented on the GPU 2204, as shown in FIG. 22. In some
examples, there may not be a GPU and the CPU may provide
control information to the DNN accelerator 2210. The
components of the computer system can communicate with
cach other via a communications bus 2222. In other
examples, the DNN accelerator 2210 may be implemented
independent from the CPU or the GPU and may have a
separate connection to the communications bus 2222.

The system and DNN accelerator of FIGS. 4 and 20
respectively are shown as comprising a number of functional
blocks. This 1s schematic only and 1s not intended to define
a strict division between different logic elements of such
entities. Each functional block may be provided in any
suitable manner. It 1s to be understood that intermediate
values described herein as being formed by the system or
accelerator need not be physically generated by the system
or accelerator at any point and may merely represent logical
values which conveniently describe the processing per-
tformed by the system or accelerator between 1ts 1input and
output.

The DNN accelerator described herein may be embodied
in hardware on an integrated circuit. The computing-based
device described herein may be configured to perform any of
the methods described herein. Generally, any of the func-
tions, methods, techniques or components described above
can be implemented 1n software, firmware, hardware (e.g.,
fixed logic circuitry), or any combination thereof. The terms
“module,” “functionality,” “component™, “element”, “unit”,
“block” and “logic” may be used herein to generally repre-
sent software, firmware, hardware, or any combination
thereol. In the case of a solftware implementation, the
module, functionality, component, element, unit, block or
logic represents program code that performs the specified
tasks when executed on a processor. The algorithms and
methods described herein could be performed by one or
more processors executing code that causes the processor(s)
to perform the algorithms/methods. Examples of a com-
puter-readable storage medium include a random-access
memory (RAM), read-only memory (ROM), an optical disc,
flash memory, hard disk memory, and other memory devices
that may use magnetic, optical, and other techniques to store
instructions or other data and that can be accessed by a
machine.

The terms computer program code and computer readable
istructions as used herein refer to any kind of executable
code for processors, including code expressed in a machine
language, an interpreted language or a scripting language.
Executable code includes binary code, machine code, byte-
code, code defining an mtegrated circuit (such as a hardware
description language or netlist), and code expressed 1n a
programming language code such as C, Java or OpenCL.
Executable code may be, for example, any kind of software,
firmware, script, module or library which, when suitably
executed, processed, mterpreted, compiled, executed at a
virtual machine or other software environment, cause a
processor of the computer system at which the executable
code 1s supported to perform the tasks specified by the code.

A processor, computer, or computer system may be any
kind of device, machine or dedicated circuit, or collection or
portion thereof, with processing capability such that 1t can
execute mstructions. A processor may be any kind of general
purpose or dedicated processor, such as a CPU, GPU,
System-on-chip, state machine, media processor, an appli-
cation-specific integrated circuit (ASIC), a programmable
logic array, a field-programmable gate array (FPGA), or the
like. A computer or computer system may comprise one or
more processors.

10

15

20

25

30

35

40

45

50

55

60

65

28

It 1s also 1ntended to encompass software which defines a
configuration of hardware as described herein, such as HDL
(hardware description language) software, as 1s used for
designing integrated circuits, or for configuring program-
mable chips, to carry out desired functions. That 1s, there
may be provided a computer readable storage medium
having encoded thereon computer readable program code in
the form of an mtegrated circuit definition dataset that when
processed (1.e. run) 1 an integrated circuit manufacturing,
system configures the system to manufacture a DNN accel-
erator comprising any apparatus described herein. An inte-
grated circuit definition dataset may be, for example, an
integrated circuit description.

Therefore, there may be provided a method of manufac-
turing, at an integrated circuit manufacturing system, a DNN
accelerator as described herein. Furthermore, there may be
provided an integrated circuit definition dataset that, when
processed 1n an integrated circuit manufacturing system,
causes the method of manufacturing a DNN accelerator to
be performed.

An 1ntegrated circuit definition dataset may be 1n the form
of computer code, for example as a netlist, code for config-
uring a programmable chip, as a hardware description lan-
guage defining hardware suitable for manufacture i1n an
integrated circuit at any level, including as register transter
level (RTL) code, as high-level circuit representations such
as Verilog or VHDL, and as low-level circuit representations
such as OASIS® and GDSII. Higher level representations
which logically define hardware suitable for manufacture in
an integrated circuit (such as RTL) may be processed at a
computer system configured for generating a manufacturing
definition of an integrated circuit 1n the context of a software
environment comprising defimitions of circuit elements and
rules for combining those elements 1n order to generate the
manufacturing definition of an integrated circuit so defined
by the representation. As 1s typically the case with software
executing at a computer system so as to define a machine,
one or more intermediate user steps (e.g. providing com-
mands, variables etc.) may be required i order for a
computer system configured for generating a manufacturing
definition of an integrated circuit to execute code defining an
integrated circuit so as to generate the manufacturing defi-
nition of that integrated circuit.

An example of processing an integrated circuit definition
dataset at an integrated circuit manufacturing system so as to
configure the system to manufacture a DNN accelerator will
now be described with respect to FIG. 23.

FIG. 23 shows an example of an integrated circuit (I1C)
manufacturing system 2302 which 1s configured to manu-
facture a DNN accelerator as described in any of the
examples herein. In particular, the IC manufacturing system
2302 comprises a layout processing system 2304 and an
integrated circuit generation system 2306. The I1C manufac-
turing system 2302 1s configured to receive an I1C definition
dataset (e.g. defining a DNN accelerator as described in any
of the examples herein), process the IC definition dataset,
and generate an IC according to the IC defimition dataset
(e.g. which embodies a DNN accelerator as described in any
of the examples herein). The processing of the IC definition
dataset configures the IC manufacturing system 2302 to
manufacture an integrated circuit embodying a DNN accel-
erator as described 1n any of the examples herein.

The layout processing system 2304 1s configured to
receive and process the IC definition dataset to determine a
circuit layout. Methods of determining a circuit layout from
an IC definition dataset are known 1n the art, and for example
may mvolve synthesising RTL code to determine a gate level

US 11,636,306 B2

29

representation of a circuit to be generated, e.g. 1n terms of
logical components (e.g. NAND, NOR, AND, OR, MUX
and FLIP-FLOP components). A circuit layout can be deter-
mined from the gate level representation of the circuit by
determining positional mmformation for the logical compo-
nents. This may be done automatically or with user mnvolve-
ment in order to optimise the circuit layout. When the layout
processing system 2304 has determined the circuit layout it
may output a circuit layout definition to the IC generation
system 2306. A circuit layout definmition may be, for
example, a circuit layout description.

The IC generation system 2306 generates an 1C according,
to the circuit layout definition, as 1s known 1n the art. For
example, the IC generation system 2306 may implement a
semiconductor device fabrication process to generate the IC,
which may 1nvolve a multiple-step sequence of photo litho-
graphic and chemical processing steps during which elec-
tronic circuits are gradually created on a water made of
semiconducting material. The circuit layout definition may
be 1n the form of a mask which can be used 1n a lithographic
process for generating an IC according to the circuit defi-
nition. Alternatively, the circuit layout definition provided to
the IC generation system 2306 may be in the form of
computer-readable code which the IC generation system
2306 can use to form a suitable mask for use 1n generating
an IC.

The different processes performed by the IC manufactur-

ing system 2302 may be implemented all in one location,
¢.g. by one party. Alternatively, the IC manufacturing system
2302 may be a distributed system such that some of the
processes may be performed at different locations, and may
be performed by different parties. For example, some of the
stages of: (1) synthesising RTL code representing the IC
definition dataset to form a gate level representation of a
circuit to be generated, (1) generating a circuit layout based
on the gate level representation, (111) forming a mask 1n
accordance with the circuit layout, and (1v) fabricating an
integrated circuit using the mask, may be performed in
different locations and/or by different parties.
In other examples, processing of the integrated circuit
definition dataset at an integrated circuit manufacturing
system may configure the system to manufacture a DNN
accelerator without the IC definition dataset being processed
so as to determine a circuit layout. For instance, an inte-
grated circuit defimition dataset may define the configuration
of a reconfigurable processor, such as an FPGA, and the
processing ol that dataset may configure an IC manufactur-
ing system to generate a reconfigurable processor having
that defined configuration (e.g. by loading configuration data
to the FPGA).

In some embodiments, an integrated circuit manufactur-
ing defimtion dataset, when processed 1 an integrated
circuit manufacturing system, may cause an integrated cir-
cuit manufacturing system to generate a device as described
herein. For example, the configuration of an integrated
circuit manufacturing system in the manner described above
with respect to FIG. 23 by an integrated circuit manufac-
turing definition dataset may cause a device as described
herein to be manufactured.

In some examples, an itegrated circuit definition dataset
could imclude software which runs on hardware defined at
the dataset or in combination with hardware defined at the
dataset. In the example shown 1n FIG. 23, the IC generation
system may further be configured by an integrated circuit
definition dataset to, on manufacturing an integrated circuit,
load firmware onto that integrated circuit in accordance with
program code defined at the integrated circuit definition

10

15

20

25

30

35

40

45

50

55

60

65

30

dataset or otherwise provide program code with the inte-
grated circuit for use with the integrated circuat.
The implementation of concepts set forth in this applica-
tion 1n devices, apparatus, modules, and/or systems (as well
as 1n methods implemented herein) may give rise to perfor-
mance improvements when compared with known imple-
mentations. The performance improvements may include
one or more of increased computational performance,
reduced latency, increased throughput, and/or reduced
power consumption. During manufacture of such devices,
apparatus, modules, and systems (e.g. 1n integrated circuits)
performance improvements can be traded-ofl against the
physical implementation, thereby improving the method of
manufacture. For example, a performance improvement
may be traded against layout area, thereby matching the
performance of a known implementation but using less
silicon. This may be done, for example, by reusing func-
tional blocks 1n a serialised fashion or sharing functional
blocks between elements of the devices, apparatus, modules
and/or systems. Conversely, concepts set forth 1n this appli-
cation that give rise to improvements in the physical imple-
mentation of the devices, apparatus, modules, and systems
(such as reduced silicon area) may be traded for improved
performance. This may be done, for example, by manufac-
turing multiple instances of a module within a predefined
area budget.
The applicant hereby discloses in 1solation each indi-
vidual feature described herein and any combination of two
or more such features, to the extent that such features or
combinations are capable of being carried out based on the
present specification as a whole 1n the light of the common
general knowledge of a person skilled 1n the art, irrespective
of whether such features or combinations of features solve
any problems disclosed herein. In view of the foregoing
description i1t will be evident to a person skilled in the art that
various modifications may be made within the scope of the
invention.
What 1s claimed 1s:
1. A method of mmplementing a traditional computer
vision algorithm as a neural network, the method compris-
ng:
receiving a definition of the traditional computer vision
algorithm that identifies a sequence of one or more
traditional computer vision algorithm operations which
form the traditional computer vision algorithm;

mapping each of the one or more traditional computer
vision algorithm operations to a set of one or more
neural network primitives that i1s mathematically
equivalent to that traditional computer vision algorithm
operation;

linking the set of one or more neural network primitives

mapped to each traditional computer vision algorithm
operation according to the sequence to form a neural
network representing the traditional computer vision
algorithm; and

configuring hardware logic capable of implementing a

neural network to implement the neural network that
represents the traditional computer vision algorithm.

2. The method of claim 1, wherein at least one of the
traditional computer vision algorithm operations 1s a histo-
gram operation and the histogram operation 1s mapped to a
convolution primitive, an activation primitive and a pooling
primitive.

3. The method of claim 2, wherein the convolution
primitive 1s configured to convolve an input to the histogram
operation with h 1x1x1 filters wherein h 1s a number of bins
in the histogram.

US 11,636,306 B2

31

4. The method of claim 1, wherein at least one of the
traditional computer vision algorithm operations 1s a dilation
operation and the dilation operation 1s mapped to a convo-
lution primitive and an activation primitive.

5. The method of claim 1, wherein at least one of the
traditional computer vision algorithm operations 1s a dilation
operation with a square structuring element and the dilation
operation with a square structuring element 1s mapped to a
pooling primitive.

6. The method of claim 1, wherein at least one of the
traditional computer vision algorithm operations 1s an ero-
sion operation and the erosion operation 1s mapped to a
convolution primitive and an activation primitive.

7. The method of claim 1, further comprising training,
using one or more neural network training techniques, the
neural network representing the traditional computer vision
algorithm prior to configuring the hardware logic to 1imple-
ment the neural network.

8. The method of claam 1, wherein the mapping 1s
automatically performed based on a library that comprises a
mapping of traditional computer vision algorithm operations
to mathematically equivalent sets of one or more neural
network primitives.

9. The method of claim 1, wherein the traditional com-
puter vision algorithm 1s a BRISK descriptor algorithm and
the neural network comprises a single fully connected
primitive.

10. The method of claim 9, wherein the fully connected
primitive 1s configured to perform a matrix-vector multipli-
cation between a matrix of weights and a vector of intensity
values.

11. The method of claim 10, further comprising deter-
mimng the weights of the matrix using one or more neural
network training techniques.

12. The method of claim 1, wherein the hardware logic

capable of implementing a neural network comprises a
neural network accelerator.

13. The method of claim 12, wherein the neural network
accelerator 1s embodied 1n hardware on an 1integrated circuait.

14. A non-transitory computer readable storage medium
having stored thereon computer readable instructions that,
when executed at a computer system, cause the computer
system to perform the method at set forth 1n claim 1.

15. A system for implementing a traditional computer
vision algorithm as a neural network, the system compris-
ng:

hardware logic capable of implementing a neural net-

work; and

a converter configured to:

receive a definition of the traditional computer vision
algorithm that 1dentifies a sequence of one or more

10

15

20

25

30

35

40

45

50

32

traditional computer vision algorithm operations
which form the traditional computer vision algo-
rithm;

map each of the one or more traditional computer
vision algorithm operations to a set ol one or more
neural network primitives that 1s mathematically
equivalent to that traditional computer vision algo-
rithm operation;

link the set of one or more neural network primitives
mapped to each traditional computer vision algo-
rithm operation according to the sequence to form a
neural network representing the traditional computer
vision algorithm; and

configure the hardware logic capable of implementing
a neural network to implement the neural network
that represents the traditional computer vision algo-

rithm.
16. A neural network accelerator configured to implement
a neural network that represents a traditional computer
vision algorithm that 1s formed by a sequence of one or more
traditional computer vision algorithm operations, the neural
network having been generated by mapping each traditional
computer vision algorithm operation forming the traditional
computer vision algorithm to a mathematically equivalent
set of one or more neural network primitives and linking the
one or more neural network primitives mapped to each
traditional computer vision algorithm operation according to
the sequence to form the neural network that represents the
traditional computer vision algorithm.
17. A computer-implemented automated tool for forming
a neural network, the automated tool having access to a
library of mappings from traditional computer vision algo-
rithm operations to mathematically equivalent sets of one or
more neural network primitives, wherein the automated tool
1s configured to:
receive a definition of a traditional computer vision algo-
rithm that identifies a sequence of one or more tradi-
tional computer vision algorithm operations which
form the traditional computer vision algorithm;
use the library to map each of the one or more traditional
computer vision algorithm operations to a set of one or
more neural network primitives that 1s mathematically
equivalent to that traditional computer vision algorithm
operation;
link the set of one or more neural network primitives
mapped to each computer vision algorithm operation
according to the sequence to form a neural network
representing the traditional computer vision algorithm;
and
output a definition of the neural network for use 1n
configuring hardware logic to implement the neural
network.

	Front Page
	Drawings
	Specification
	Claims

