12 United States Patent
Hussey

US011636006B2

US 11,636,006 B2
Apr. 25, 2023

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)

(73)

(%)

(21)
(22)

(65)

(60)

(51)

(52)

(58)

SYSTEM AND METHOD FOR MODULAR
CONSTRUCTION OF EXECUTABLLE
PROGRAMS HAVING SELF-CONTAINED
PROGRAM ELEMENTS

Applicant: Chewy, Inc., Dania Beach, FL (US)
Inventor:

Benjamin Hussey, Chicago, IL (US)

Assignee: Chewy, Inc., Dania Beach, FL (US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 17/583,942

Filed: Jan. 25, 2022

Prior Publication Data

US 2022/0283893 Al Sep. 8, 2022

Related U.S. Application Data

Provisional application No. 63/156,203, filed on Mar.
3, 2021.
Int. CL
Gool’ 11/00 (2006.01)
Gool’ 11/07 (2006.01)
(Continued)
U.S. CL
CPC ...... Go6l’ 11/0793 (2013.01); GO6F 11/1402
(2013.01); GO6V 30/414 (2022.01); GI16H
20710 (2018.01)
Field of Classification Search

CPC e, GO6F 11/0793; GO6F 11/1402
See application file for complete search history.

gl
\

-

Y

(56) References Cited

U.S. PATENT DOCUMENTS

9/2006 Crohn
10/2006 Andersh et al.

(Continued)

7,114,154 Bl
7,117,480 B2

FOREIGN PATENT DOCUMENTS

WO 97/447729 11/1997

OTHER PUBLICATTIONS

International Search Report and Written Opinion for International
Application No. PCT/US2022/018619 dated Jun. 29, 2022.

Primary Examiner — Joshua P Lottich

(74) Attorney, Agent, or Firm — Morgan, Lewis &
Bockius LLP

(57) ABSTRACT

A method for performing a fault tolerant automated
sequence ol computer implemented tasks including, present-
ing for selection by a user a plurality of pre-programmed

clements, each pre-programmed element being indepen-
dently executable relative each other pre-programmed ele-
ment, recerving from the user a selection of one or more of
the pre-programmed elements and a sequence for perform-
ing each pre-programmed element to form an exemplary
routine, creating an instance of the exemplary routine, the
instance of the exemplary routine including an instance of
cach of the selected pre-programmed elements arranged for
performance 1n accordance with the sequence and config-
ured to perform tasks defined by the pre-programmed ele-
ments and the sequence, mitiating implementation of the
instance of the exemplary routine by initiating performance
of the istances of the pre-programmed elements 1n accor-
dance with the sequence, and executing each instance of the
pre-programmed elements according to the sequence.

26 Claims, 22 Drawing Sheets

~ rresentng for seiection by 2 tser a plezality of pre-programmed elemants, each pre-
rogrammed element being ndepencently execuiavle relative aach other pra-programmed
glermens such that an ouinut of any of the pre-programmed siements is not a diract input 1o

any other of the pre-Drogrammed slemens

1407

i!}

receiing from iha user 4 seiection of ong or more of tha preprogrammed dlemanis asd |
saquence for performing each preprogrammed elaments it tha setection 1o form an

evgimiany fouling

‘\.'-\.-.\.'-\.'-\.'-'\.'-\.'-\.-.\.'-\.'-\.-'\.'-\.'-\.'-\.'-\.'-\.-.\.'-\.'-\.'-'\.'-\.'-\.-.\.'-\.'-\.-.\.'-\.'-\.ﬁiiﬁiiﬁi*ﬁiiﬁiiﬁ‘iﬁii

ﬁi*ﬁiiﬁiiﬁiiﬁiiﬁi*ﬁiiﬁiiﬁiiﬁiiﬁiiﬁiiﬁiiﬁd

creating an instanee of the exemrlary raxiting i response 10 & requast to implernent tha
exemplary routing, the nsfance of the exemplary foufing incueding an instance of each of
the selected pre-programaied elements aranges for aerformance it accordance with the

SeGuence and being configlred 1o periom fasks defined by the praprogrammec slements

ant the sequence

¥

inifiating impiementation of the instance of fha exemplary rouiing by intialing perarmance
of e instances ot the pre-programmed slements in accarcance with the sequence

¥

o . ‘ . . : T 44
detecting an aor that prevents e completion of ol least ane instancs of the aré- e 1410

Brogrammad lerments

e erGr witnout user intervention

—————————————————————————————————————————

'-'-'-'-'---'-'---'-'---'-'---'-'---'-'---""""""""""I

teminating the iniamerdalon of the Instance 0f the exempiany rodting tpcr detaction of




US 11,636,006 B2
Page 2

(51) Int. CL
GO6V 30/414
G16H 20/10
GOGF 11/14

(56)

(2022.01)
(2018.01)
(2006.01)

References Cited

U.S. PATENT DOCUMENTS

7,363,594
7,590,835

Bl
Bl *

7,630,965 Bl
8,448,136 B2
8,924,209 Bl
9,595,014 Bl
2003/0135842 Al*™

2004/0249695
2007/0236509

Al
Al*

2008/0141076 Al*

2009/0327942 Al*

2011/0060895 Al*
2012/0041570
2013/0036350
2014/0222181

> 22

2020/0097357 Al*

* cited by examiner

4/2008
9/2009

3/20

12/2009
5/201
12/201

3
4

7

7/2003

12/2004
10/2007

6/2008

12/2009

3/2011

2/201

2/20°

2
3
8/2014

3/2020

Wright et al.
Nallagatla ........... GO6F 9/44505
717/169
Erickson et al.
Mills et al.
Seubert et al.
Vohra et al.
Frey oo, GO6F 8/71
717/121
Clark et al.
Eldridge ............... GO6F 3/0486
345/619
Hu ..oovvnn, GO6F 11/0733
714/45
Eldridge .............. GO05B 19/056
715/771
Solomon ................... GO6F 8/36
713/1
Jones et al.
Arbo
Hemenway ......... GO6F 3/04817
700/97
Shwartz .................... GO6F 8/70



US 11,636,006 B2

Sheet 1 of 22

Apr. 25,2023

U.S. Patent

Slaseaee

J3NER JERI0AL

1308S BUHOILON

501

S0 Al

A
LA L
g




US 11,636,006 B2

Sheet 2 of 22

Apr. 25,2023

U.S. Patent




US 11,636,006 B2

Sheet 3 of 22

Apr. 25,2023

U.S. Patent

mg_g_mﬁ_mﬁ%‘m




US 11,636,006 B2

Sheet 4 of 22

Apr. 25,2023

U.S. Patent

BUBILIT QfIDR0S Lodn

uy

M 1163 0} Sajh
S89UISNY JuBLBIdw

31N08|0L JO
10181 JabbiA 0]

147 10 300 81881

90

YIOM S1N08Y5
018p00Bjeal |
oA} WOJe YoRe 104

008

¢ Ol

buuanbas Guidigusp

BINJBI0L 8L L
LOI 4089 101 198100

JOJOBB. Mal: | Bjeal)

s

Syl By
30A) SOBIOW L8 |e
304} Woje Mau ajeslr)

208

8



US 11,636,006 B2

Sheet 5 of 22

Apr. 25,2023

U.S. Patent

08 unoa Ajes Bumes

“Em% mw % 183)
a5 Aq pauiep)

5% DRAIN0! Yoes

DRISURY). 01188 348
30A) BNOBIOW SiL) UM
DRIEI0SSE PUB '3

A1RIALL0T U1 O PaYR0; B
10U Suwoje Bunsixs

gm_gcg 30 80 ™\
§. 10 swope bunuad .~

o

v Ol

S0
3Inbal salnusp!
AN 3|N0B|OJ

a

offiJe|oWl Mo 2t O]
SB ap0J UilJiM Daied

30 fe) o Spes
$$83010 $88UISAG

0

0y



US 11,636,006 B2

Sheet 6 of 22

Apr. 25, 2023

U.S. Patent

SUCJe $5000K0

0} STEJS JusUe

Wy |
ewoeyey | sseng N

pse

05—
75

(La1shs

BYION SPRIO O} || y0m 3n9ae pue

ues gl buews | | adf wioje Ayguep)
28_%& .

%Qm
mwagm 0) n
N cma_%m

w

ﬁm 206390 ._m_ oo Qw 55 xm ________________
qoisuoy g R

Toj0L: ——

34 0] DaLINB: gm - Uoaea Dupued .

fuissenoid iayered o 4088 Jo] Woje (8{6us) sisenbal Sy}
- XU 8L SauaD

, mm_mogégg
suoppdofay | [SROSIMNAL [ | AT

@% 7S 700

_ suoje b

e

0} pajeil o8
&mm%ﬂn %g

00S



U.S. Patent Apr. 25, 2023 Sheet 7 of 22 US 11,636,006 B2

() Customizable Menus

[ﬁ" £% System Menus
» % Custom Menus

 orderRelease

additionalRxNotihication

F1G. OA



U.S. Patent Apr. 25,2023 Sheet 8 of 22 US 11,636,006 B2

(<7) Customizable Menus

E’* £ System Menus
% Custom Menus

case ‘cancelpetscriptionsrelease”’;

require_once(DOUROOCT | /ocuston/utilites/petscriptions_mogel.php’);
return $this~->processCancelRxOrderinPetscriptions{®atom);
preak;




US 11,636,006 B2

Sheet 9 of 22

Apr. 25,2023

U.S. Patent

(9

Ol

(Y %000 § 103 NG 81160 0202/82/90

JOURT 19000 WNEBNY (B80S0 X u_ pa}

S0} UYOP (s2 U pahboT m

2840 20(] c:nﬁ Nd 6C-€0 omomhmm\m:

. m:..,&mo

se4 | Juepnuiinha

| Bipodnbe)

EoARINba;

2180l palinbay

-3

oguy | ST

&

AQUINN B0UNbBS |

ssesisssucidussiedieouan § Woly painbay

mwmm*miwzo_wa: ng_mugmg BINI3BI0IN

UOHIUYE0 9NODI0N

OpUf DUS SHUIT BULO0SY | SUOIDY SAEG T

NOBYD | L 95010 305U
TEeToin m orpc | Usaaanr A3 m ,w %mm ARy | 01 0O(




4 (<3 %00k § 103 Wd 8150 0202/92/90 | 50Q ugor 's2 b ﬂ_mmmo._

US 11,636,006 B2
O
&
Li.

EEO Eo,m:u mmomcog xu (ot wC qoe Lit E Wd mo €0 ouolw

& SLORGE) §

Sheet 10 of 22

ASQUINN aousnbag i

apiousinbal __ﬁFm?_mnmﬁ_zm_mMmzei_bmwma_mo%o QLY PRINDaY

- eje( painbay | | UCIHULS 8iN0S|oWN

Apr. 25,2023

_ 2 esuD L 980D L BI08L0N)
A RIS .v e L R OABS 9ABS | 0} %00Q)

S

L

SUIOH

U.S. Patent
%



636,006 B2

2

Sheet 11 of 22 US 11

Apr. 25,2023

U.S. Patent

0Z/9Z/90 |

10BN

o suond() §23

S

MBIA SILJ U MOYS O} LIBY CU 32 8Bt | |

& Q] M.M A UBssy @» & AGON ﬁu & JUL @ MAN DY mu & Usdl @

m&.,:_u“‘_{ SOURISU] WOy WALOLLOn

oseoisuchduosiodeaues | aA]

Nd ££:50 0Z0Z/9Z/90 | Palepdr ise] oled

| 80Q Wjor | Ag paiepdn

E&mmmoomommmﬁmo IR B¢

mon:a%w._.w AgQ psiesin

LOHOY 0P
S50 .

m _ | 9j0SLOD
YSo4eY MON | R 8MBQ Baeg | O1eog

@W w m_”__“,.._ iR -




US 11,636,006 B2

Sheet 12 of 22

Apr. 25,2023

U.S. Patent

- L03 Wd 2£-60 0202/92/90

Wl £0:70 0Z0Z/0Z/90 O GLL66e8r O SOEAON 0
| WNd €090 0202/02/90 0 susseey 0 SUEAON 1
l peepdnseeleq juoneziuebly  fjuepou] P0G

4 SUONAD &

BaCjpae

3C(] uyor (se W pebiioT

wwwa LI
“om;.m .m

m_nc.ﬁm:nmmmmmaaca_aromﬁmaEumno GEZD07

mmmﬁmtﬁ:aé:of@ammummu CB87007

&Em — .@ ux..w EB{ i

w E:od F.E.m

o spRpg Y e ubssy % 2 Koo E o wiid 5 mon pov Q & uadp @

Copypny | ssoueisul Woly Jusuodiuon

aseainisuondussiadisouss | odA

" Wid 2040 0202/02/9 o___ petepdn 1587 sieq

AQ pearepdn)
Ut lgRriicly

or | AR Daealn)

984551 § (G

DLHIO0SA ngo;uﬂ

33017 SekiHelg)
ﬁ @,_mnw DAE O} 20(]

" eCitie
sy | gedg

b | £, | 0
DAY Adoo bh

e e i e e e e i e e el e e e ol e o e e e




636,006 B2

2

Sheet 13 of 22 US 11

Apr. 25,2023

U.S. Patent

sjosigo ¢ Bumpa 80} UYOP S8 Wi pahboy |}

| $590044 WOISND e OHAN pojeal 80 uyof Nt 2000 0202/07/90 |
cbd I0SUL0TS gy 240 A O3 FZUIMY U0ID N SOP0 20810790

.wﬁﬁﬂm — e %w ﬁmﬁg

N €090 0202/92/90 | paepdn 1se 91eQ

- JOUUT UOID Ag pejepdn

S.EN@#@QNQN@Q@G 1EBin

- 8OQ WHOP § AQ paiBaIl

5o ppny

TEET | « @OUBISU] BIN0AI0W

210} POIBISOSSY _/O

fonep on) | vonBZiuebiQ

19800-010008 |

HBPIOU]

| S1R1g WOy

lonjea O)

| J0BIICD 1 adAy wory

Qi

opuj pue st | Buyoold SUOHY BAES i oup3

NOBUD 801N eitlely
o0 USOHUBH MEN | 9 8AES  BAES  § 010200
BB 57 IS B T

-
&



US 11,636,006 B2

Sheet 14 of 22

Apr. 25,2023

U.S. Patent

9

R R R S R R R R R R S R R R D R R R D R R R R S D M R S B R D D R R R D R S S D R R S R S S R R SR S R R S R R R D R S S D R S R R R B M R S S W R D R R R D N S R o

-91 OlEQ GG PISRIDIY

1702 o
6558 G i) 5668 040 LGN AT ERIENARED S
Q3AdIHE sSSPy wipepy

e (R e} Al s
ATRLUOIGNT 1eel] Bog ssung nuged

e

SHIBUALGD DN

L b b b L b L L L ]

CGRISHYLL SO

SHAQUHUOD) Q0

i) 1
w ]
]

R Y ~ 1o 1OV

hﬁﬂﬁ.ﬁﬂﬁ.ﬁtﬁ.ﬁlﬁ.ﬁ.ﬁ L 8 L8 L i 8§ 8 % % % 8 & L R & ¢ % % % % % & 8 &R I R B % ‘OO

L
[ ]

Ly o L W .U oL oo P . .1._.
m “ PEOOER] SOOI Uie o DEAOEEM o LHRGO0EIN

JLITIE S VR WNGRET A ) /U LI SERMRDY
| SrMEs L uchidureag
rrsCgny fFA0 L ) Y Rkt WS Sudoys

E:I_;:

. Lo ol . UOSEEY RO

win uje s s offe e i ofis ofe sfe sfe sje sfe sje sfe e i ofe e o sfe ofe sie sje ofe ofe sfe ofe s ofe sfe ofe sfe sje ofe e e e ofe ofe sie ofe sfe ofe sfe e i o e sfs ofe sje ofe sje sfe e e e o ofe s sie sie sje o e e ofie ofe ofe o ofe sfe ofe sfe sje e s e ofis ofe sje ofe sje sfe e s e i ofs sfe o sfe sje ofe sje sfe ofie sfs ofe s ofe sie ofe sfe sje ofe e s ofis ofe ofe sfe sfe sfe ofe sfe e i ofe e o ofe sje ofe sje sfe e e ofe o ofe sfe ofe s sje ofe e e ofis ofe ofe o ofe sfe ofe sfe e e afe e ofs ofe sje o o dfe o

polSHURE (SIS JUSIABY
(008 esueied

WY ZYE0 " LL20-1 308 (pRlepdan
Wd £2:20 '81-30-1.202 peutig
04°09%

gpEied ......mmu.mm.w

e Emw LA e

i

AR

WO fleLss isuiel 1sui0isn ) [0 uoboy
JSSFETL (G SSOIEng
L LHUOISNTY

*
_
mEn_u.E.,:am+¢uﬁ.ﬁ *
. ]

ﬂﬂumm ¥

VASHRTLL - B

D

DIOUT AVGLA SHEISQ LHU0YSNY |

LIy
ot
LI
Mg
LI
L
1 4
L
LI
1 4
1§
LI
L
1 4
LI
LI
i .
LI
L
1§
i .
1 4
i .
LI
1 4
1§
i .
LI
LI

T A
. . . . . . k. e, e k., i, ke, i, i sk ke k. e e

UL} GO

E-ﬁ‘““““““““‘ﬁ;

R S

ey

JSLUICIENTY e

VB RN ﬂ.._m.ﬂ“. 65 ST RIS NN SR FISHILEN AR BHTRN Spumifug ol Algdiung

D0 ERLUAEIDILRL JAUIDISNY) L]

L]

EERAMIR RIS e
1) & RIS 7 SLOISGIGES LG SN0 SIS0 0
Vef 0L G QL Z IRNE JouQisiy

& aearyies A3 2F a0 suaoy tumoy ¥

| pesateg-a 1 JOBLOGYECE ORIO @

AUWING « (B SSPEZ] HeD) < BRI = SuoenEsd)

SLTIIC R

e . ol . sk e sl . ol sl i ol ok s ol vk sk e, sl ol ol ol i, s e ol ok e sl ol el skl sl sl sl e sl el s sl sl sk e sl ol ol sl ol sl ol i ol i e sk e sl ol sk e sl sl sl sl i e s sl i e, sk e sk e, sl ol sl ol sl ol i e s ol sk sk el e, ol
k . 2. 2. 2. 2. o . 2. o . 2. o . 2. 2. 2. 2. o . 2. o . 2. o . 2. 2. . 2. o 2. 2. o . 2. o . 2. o . 2. o . 2. o . 2. o . 2. o . 2. o . 2. o . 2. o

w.h..mﬁ‘...:.mﬂmaw:m.ﬂ.cﬁju..:.__.”

W0 BI R BLNOL AMOUD WOOIIO MO SIUSWYSRHY  AMBPYG AOWEI DT OIS ISW0SeTy  puRaauseQ aaddiue SoRdaneoion  20IRouoRR  (PPNR NSO 6T anonden FLBY Jaeiung

e e e e

SO IO 0MOT LUSYPLBIEnIg Y musDoy OYPI0G. 00 [IIINEs] SWiLL

s
A e e e e B e e B B e S L

BOpipmy 219 ERdn (1 IDWOISNT)  Sjea(g 85ey

wewseog 4 9S00 R OURG £ m 5617 8 Zinodn m aeprey m :

x Doy B w oouriesiz B 1 oo

O Siorty o e [SaRaliey B8

Huopiow

swewnoog o0 G | « sddy 5%

™.

G s v e @O e (R e B D & 3

Wl i

Wl gl



US 11,636,006 B2

Sheet 15 of 22

2023

Apr. 25,

U.S. Patent

/sy sseo0id ayesed

SI0NS

U019 1un Aeisg

g%@%@%mm

SM08X8 SUIOJE 7 8oUsnDeg

SU0)E 5830040 piRIRg
AT

N\ g

- DI YOIOSUCAISIBles

saean dyd S

/S0l ssa201d oyeled
__ SAINBN
U01 13U ABBg

UBIBfBI N BIhIass
,wg%@%@_;%m
JeuBIgsyalusuondusiagies
leubigsiBie oyt
0] DBIRID0SSE SLoje
i 9t} {0 YJBa J0 QJUEISH: |

mu%%%_g_u_g@ owmm@

0jBuLY

auEbs,

oD 0D,

0) pabio0)

10810
JONZIBGI0

L

30Uelsy
31BN
MaN

)

W



US 11,636,006 B2

Sheet 16 of 22

Apr. 25,2023

U.S. Patent

JOjBULLa]

7 Suioje5s800i ojeled

SBIN8%3
01 _w 1in ABjaQ

RBigsi0
B)N08Ke
Sl
| 30UBRDAS

o m

| B OSYOMOSU0J0L0SIEg S

7 Sltioje 8530010

7/ Sluioje™ss80010 ayp e
SaN0SK “
U047 13un Ae)

A0URIBIBIIEN

o

P o; g
QUaIAIS0: x 1o 3jaidion o] sje-

A0URIBIRIASOLAYIBS

3170X3 SLICje 7 a0Uanhag

g%@m%gu_m @D %0
 'B0UBIBJRISOLAYeS |
eDISYOIUDSUOATISIEgles |
Jebigsicio et
0} PRIBIN03SE SLIOJE
18U} J0 4088 §0 B0URSU |
- $318al0 %%m Jin m_am_%

Bipie

“_

53108
10I _hg 8]

o

0B, Je1p,
m - 0) paibbo)

00P81)
30UE)SU!
MBIl

| 30UB) H_m%ocq%_%g\f
Hej0LBle-)
F}e4) Lo 7 20u8nDag

e} 124 U

7 suiole"ss300i jaypled
G
o) Jun Aepeg

199100
0 N_%@o




US 11,636,006 B2

Sheet 17 of 22

2023

Apr. 25,

U.S. Patent

/7 suoe”ssanoid apesed
4017 Jun AeiRg

- SOyl
SOURIRIRLASOUAYIRS

mm@
Aienuels
Higien
A1 Lol

Ui patnd
5080
YIOMION

S

ggm 78830010 _m__m.g
A .
104 un Azjs]

” mum@mv_a%g% 8
- eI}
| Sjnoaxe suwioje 7 aoUenbas

/S0 S0 e
S8IneX8
400 Jun Aegeg

LIOJE P} 0
ORI

Ji0d8N

diosiadies

B0UIBBI I BB IesRs
31983 SWOJE ¢ 8auanbag

Qdiisne
G lalj
30U

ol S
PoXigly Woly

DRSO
1Unoa Ajal
MQ_%S 0} Stied
m%%mw

B0UBIBJRIAIU B0 1S8s
FUBIAIBISOUAYIES

Jmumm_mm%_g_%mg (oSI98

‘ebigsibio ot

0} DANBIDOSSE Suioje

80 4028 J0 20URISul |

- S31BaI0 dudSenian anosiows

%_@m 1
DBjesL]
eIy
SISO

MIN

Ve

s

Site] Ju] Wope 7 8ousnbes

J0)RuLLE]

30URIBIRIASOLAY B
najdla)e-s

ik

/S0 sso0il el
SHIN0AKS

01 Jiun Aejag

JEEp,
0} Daibio)

paly
uoezIuedIn

(0



US 11,636,006 B2

Sheet 18 of 22

Apr. 25,2023

U.S. Patent

Sloe 580040

\ Lo un feeg

0L Ql3

QouRIBRIdIeNBIIese |
§1N09%8 SLIOJR ¢ B0uanbag |

SU0JE 8580010 Jajeied
Sl
J0I Jun Aejag

iz WEE._.

vell i

SNJeIS pavao),
011685 pue Juuny
o, Se payiew
| ausiaigsontyjes | 804~

| aRRRIdsOUARs
m_gmgamég_omg_ NSRRI

| e slloeg JoUsnhag

m—y ..___ "

SN

SRRl Tl
DUBBBIAS LA
JeYEIOSYoOSUORCLISIB RS
1eyDigsii0 dwoeidp |

0} PRJEII0SSE SUoe

R,

R

(SERN

_ _%5 il
ANI8K
SUOJP

RIS

stioje™ssa0id JoyeEe
SaIn98Ka
JOIY IR ABlR(

30UEISH
338100
M

b 8} 10 Y0R8 10 80ULISUl |
5818840 (d'sal] % m_@m_og

gul}
700}
0}

P TN
< BouaiojoIgs0ufyes >

JOI) N ABiaQ

JEOID,
0] p3I50)
Emﬁo
- Uofeziuebio

000



US 11,636,006 B2

Sheet 19 of 22

Apr. 25,2023

U.S. Patent

1275sa0010"pjERd
SOHARYE
J0IY U ABjag

SBAOWA)

Phil

- eybigsibie
- AeKe |
mEE@
30U8NDAS |

Sl
N\ U0 e feg

F
604

(30uBiRlBI4S0LAYAS

10148 B3BON
SoUlaDal J0JRSIILIDY

e nnnnd

" ORUD] e

)

B0UBIBIBIIANBIDIs8)
30USIBIRIS0AYIES
eyDigsyou0sUOjduS}ales
eyDigsiio aioRbIp
0} DB1BI0SSE Soje
L) 0 40 J0 BaURjSUl |
5318310 QC SenIIN 3INd8|0LLs

[

BRIy
[EUDIQSYIOSUOROOSIBIeS | _
Y1008 SWOJe 7 30uBN03S | 1| g1

J9

A%

u‘

00)8d sy
U0 Bunesado
DD,
D3JRaN
BOUEISH
BINRI0N
Mol

N

70M

7 Suwoje”sseo0d ayeed

BoUsIBiBIo )b I8s8)

B)N98X3 SWOE £ BaUAN0eS

Sa1108%8
101 faun Aeleg

B0,
0} pR1060)
199100 ,0%18¢

iIf¥



¢l 9l

US 11,636,006 B2

Sheet 20 of 22

Apr. 25,2023

U.S. Patent

¥eek-

SoINeKa
uoi Jun ARjag

| B0UBIBJRISOIAYaS
eiigsyonosuondsages

1108%8 SO 7 80usnbag

Y

/S0l mmgo%m__mg
S3n0exa _

047 1 AR

eubisiio
S

SRR R R R R EEEEEE R R

YA

G
N08K

Soe
, 3UanDag

L 7

mmﬁ% eiip $9i600,
- Joljuep 1o8igo

DIO3BS 00}8d By,

SOUIDOW Ol ASIDY

Suiole 583001 By e

SAN0aXe
01 un Aeia(

80C

S0UBIIRI OO RBIR%8:
SN0BXA SUICE ¢ 80UBNDeY

E%.W.

S1A

\, o ABjag

e

_S%ﬁ_e%mg_uwm -

‘BUBIA8IJS0UAYES
enbigsyoinsuondiosiades
,W_m_mﬁw_ma JeNDp
0) PBJEIN0SSE SlLi0je
b U} 10 4088 JO S0UBISU |
- S3]eal0 04 s3] :_..w.,,.mw%%

- LA,
1 o) suope Bupued

RO RO R R R R R

RO RO R R R R R R R

/" SU0E wmmga;mm_g

191180UR) 0] 188

NaIO

017

SUBRIRIJIIRIDI %!
R0URIRIBISANS
e mmﬁ@%@_m@mcg d10Sj94188
mmm%_@o et

0} DRIEIIOSSE SUoje
Z 104289 0 80UBJSUI |
318830 dyd sl ; BB

09194 Amsir uo Bueiade
enbin, najear
AOUBISU SINDBION MaN

_

8 18/ g&o

4o bu %8
iﬁm:_._o__m _ﬂpw
- Delesio

30UL)SL
m_ﬁamosm

w_%p
01 paibioy |
mm_,% SF_
el 3,
%m ipziuel) |

(UcH
e



/st sse00id e
._ SaINIRNa
101 [hUn AepRq]

30UBIBIRIAS OIS
EYDICSYoSu0jdsI8ies

(opui Y] PHBEOUORIORS

0080 SU0E ¢ mwmmmwmw
) (01

iy
-/ Suojessa00id ajeiee

mwwmm e oo
.

US 11,636,006 B2

Siflie SCE / @ucm:gm

Wi Uz €
08|} i1 [exbip Se|600)
- JOIUBD 198100 Picodl 00184

{iy, Selgpou JojensuLpy

L 8 1 % 3
=i L 8 1 X

- Ebigsbo |
- gn0sKg |

suiole |
 8oUenbeg |

01g) .
e

SHN0RKS
101 un Aeia

18550040 Joyesed
S38Xs m
401 fiun AeRg

Sheet 21 of 22

Ww‘m_\ . \A _ L |
- aouajeLoeDiiesa: 0djeg M2y m —
m S 10 Bugelsdo B

Q0UBIRAIGSOUNES | “ o ol
BSOSOl SRS PO | i o

w_ﬂwmw m_m_@ 0 U mww Pejeslo

0} DAIEI0SSE SUI0je ey
09U j0LOBB O BOUBJSU | | olIuBI0
| Sejean didsapyn"aosou il el

M

MY,
1012 ZIueb:

Apr. 25,2023

0

0081

0% el

1Y

U.S. Patent



U.S. Patent Apr. 25,2023 Sheet 22 of 22 US 11,636,006 B2

1400

nresenting for selection by a user a pluraiity of pre-programmed elements, each pre-
rogrammed element being independently executanie relative each otner pre-programmed. | 1409
: i

:

ament such that an oufput of any of the pre-programmed siements is not a direct input to
ny ofher of the pre-programmed elements

receiving from the user a selection of one or more of the preprogrammed elements and 2 i
sequence for performing each preprogrammed elements in the selection to form an
exempiary routine

creating an instance of the exemplary routine in response to a request to implement the |
exemplary routing, the Instance of the exemplary routing including an instance ofeachof |- 1406
the selected pre-programmed elements arranged for performance in accordance witn the
sequence and being configured to perform tasks defined by the preprogrammed elements

and he sequence

nitiating implementation of the instance of the exemplary routing by Initiating performance ~ 1408
0t the instances of the pre-programmed elements in accordance with the sequence

detecting an error that prevents the completion of at least one instance of the pre- 1410
nrogrammed elements

terminating the implementation of the instance of the exemplary routing upon detectionof |~ 1412
the emor without user infervention



US 11,636,006 B2

1

SYSTEM AND METHOD FOR MODULAR
CONSTRUCTION OF EXECUTABLLE
PROGRAMS HAVING SELF-CONTAINED
PROGRAM ELEMENTS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Patent Application No. 63/136,205 filed Mar. 3, 2021

entitled “System and Method for Modular Construction of
Executable Programs Having Self-Contained Program ele-
ments”, which 1s incorporated by reference herein in its
entirety.

BACKGROUND OF THE INVENTION

The present invention generally relates to a modular tool
for process synchronization programs and, more particu-
larly, to a module tool for construction of computer 1mple-
mented process synchronization programs, such as programs
used to automate customer service tasks.

BRIEF SUMMARY OF THE INVENTION

In one embodiment there 1s a method for performing a
fault tolerant automated sequence of computer implemented
tasks comprising presenting for selection by a user a plu-
rality of pre-programmed elements, each pre-programmed
clement being independently executable relative each other
pre-programmed element such that an output of any of the
pre-programmed elements 1s not a direct input to any other
of the pre-programmed elements. The method further
includes receiving from the user a selection of one or more
of the pre-programmed elements and a sequence for per-
forming each pre-programmed elements in the selection to
form an exemplary routine. The method further includes
creating an instance of the exemplary routine 1n response to
a request to implement the exemplary routine, the instance
of the exemplary routine including an instance of each of the
selected pre-programmed elements arranged for perfor-
mance 1 accordance with the sequence and being config-
ured to perform tasks defined by the pre-programmed ele-
ments and the sequence. The method further includes
iitiating 1implementation of the instance of the exemplary
routine by mmitiating performance of the instances of the
pre-programmed elements in accordance with the sequence
and executing each instance of the pre-programmed ele-
ments according to the sequence.

In some embodiments, each independently executable
pre-programmed element does not require data generated
from another pre-programmed element to complete. In some
embodiments, each independently executable pre-pro-
grammed element completes using data from data field that
1s at least one of: 1) populated in the data field before the
creating of the instance of the exemplary routine and 11)
updated after the imnitiating of the implementation of the
instance. In some embodiments, the method further includes
transmitting a noftification that at least one instance of a
pre-programmed eclement did not execute to completion
wherein the nofification includes at least one of: 1) all
instance of exemplary routines that are in a failed state at a
time the notification 1s transmitted; 1) the instances of a
pre-programmed elements associated with each instance of
exemplary routines that are in the failed state; 111) the
instance of the exemplary routine; 111) a number of retries

associated with each mstance of the exemplary routine in the

10

15

20

25

30

35

40

45

50

55

60

65

2

falled state; 1v) a database object associated with each
instance of the exemplary routine in the failed state.

In some embodiments, the method further includes updat-
ing one or more of the pre-programmed elements of the
exemplary routine after the initiating implementation step
and creating a subsequent instance of the exemplary routine
in response to a subsequent request to implement the exem-
plary routine after the updating step, the subsequent instance
of the exemplary routine including an nstance of the one or
more updated pre-programmed elements of the exemplary
routine. In some embodiments, the method further includes
simultaneously implementing a plurality of instances of the
same exemplary routine. In some embodiments, the method
further includes simultaneously implementing at least one
instance of the exemplary routine and at least one instance
ol the subsequent exemplary routine.

In some embodiments, at least some of the instances of
the exemplary routine are 1mitiated at a different time than
other instances of the same exemplary routine that are being
simultaneously implemented. In some embodiments, updat-
ing the one or more of the pre-programmed elements
includes receiving and storing revised code for performing
a task. In some embodiments, the method further includes
detecting an error that prevents completion of at least one
instance of the pre-programmed elements and terminating
the implementation of the instance of the exemplary routine
upon detection of the error without user intervention. In
some embodiments, the method further includes after the
detecting step and before the terminating step, attempting to
re-implement at least one instance of the pre-programmed
clements associated with the detected error.

In some embodiments, the method further includes detect-
ing a trigger event that triggers, without user intervention, a
re-initiation of the performance of the instance of at least one
of the pre-programmed elements and wherein an error state
that prevents the completion of the at least one instance
arises after a subsequent trigger event 1s detected following
a pre-selected number of re-initiations of the performance of
the at least one instance of the pre-programmed element. In
some embodiments, the method further includes defining a
retry threshold value for each of the pre-programmed ele-
ments and aiter the detecting step and before the terminating
step, attempting to re-implement the at least one istance of
the pre-programmed elements associated with the detected
error 1n accordance with the retry threshold value.

In some embodiments, the method further includes during
implementation of the instance of the exemplary routine,
detecting the absence of prescription authorization data
needed to complete the implementation of the instance of the
exemplary routine. The method may further include based
on the absence of the prescription authorization, automati-
cally transmitting an authorization form to an authorizing
entity, receiving an authorization facsimile of a completed
form 1n response to the automatic transmitting and auto-
matically populating a prescription authorization field based
upon the received facsimile. In some embodiments, the
method turther includes recerving a datafile containing opti-
cal character recognition data associated with the authori-
zation facsimile. In some embodiments, the method further
includes automatically storing the datafile containing optical
character recognition data 1n a secure database based upon
the automatically populating the prescription authorization
field.

In some embodiments, regular expression matching logic
1s applied to the datafile containing optical character recog-
nition data to 1dentify data associated with at least one of:
owner name, pet name, record identifier for a prescription,




US 11,636,006 B2

3

clinic name, authorization status, refill authorization data,
reason for requiring compound prescription and combina-
tions thereof. In some embodiments, the simultaneously
implemented plurality of instances of the exemplary routines
are complex operations as described 1n at least one of the
previous embodiments. In some embodiments, at least 100
complex routines are performed simultaneously per minute.

In some embodiments, the method further includes adding
or removing at least one selected pre-programmed element
from the exemplary routine after the mitiating implementa-
tion step and creating a subsequent 1nstance of the exem-
plary routine 1n response to a subsequent request to 1mple-
ment the exemplary routine after the adding or removing
step, the subsequent instance of the exemplary routine
reflecting the addition or removal of the at least one selected
pre-programmed element 1n accordance with the adding or
removing step. In some embodiments, one or more data
objects are not populated at the time of creating of an
instance of the exemplary routine but are populated 1n order
for the instance of the exemplary routine to complete. In
some embodiments, logging exists out-of-band.

In some embodiments, the method further includes
receiving from a user, trigger instructions defining at least
one trigger condition. The creating of an instance of the
exemplary routine 1s based upon a recognition that at least
one of the trigger conditions has been met. In some embodi-
ments, at least one of the trigger conditions 1s a change in
data state. In some embodiments, each pre-programmed
clement operates on one or more of: 1) a defined data set and
11) a variable data set. In some embodiments, the method
further includes after detecting an error that prevents
completion of at least one instance of the pre-programmed
clements, receiving an intervention to complete the at least
one instance of the pre-programmed element. In some
embodiments, the exemplary routine further comprises data
object mapping that defines for each exemplary routine the
location of data required by one or more pre-programmed
clements within the exemplary routine.

In some embodiments, the data object mapping is at least
in part defined within the pre-programmed eclements. In
some embodiments, the method further includes simultane-
ously implementing one or more instances of an exemplary
routine by implementing instances of pre-programmed ele-
ments 1n parallel. In some embodiments, the method further
includes sequencing the performance of pre-programmed
clements by delaying instructions to implement a pre-pro-
grammed element until at least one of another pre-pro-
grammed element achieves a predefined state. In some
embodiments, the predefined state includes at least one of:
1) a completion state; 1) a failure state. In some embodi-
ments, the completion state includes at least a partial
completion and the failure state includes failure after a
predetermined number of retries.

In some embodiments, at least one pre-programmed ele-
ment 1S a long-running pre-programmed element that 1s
programmed to cause other pre-programmed eclements
within an instance of the exemplary routine 1 which an
instance of the long-running element 1s 1ncluded to at least
one of: 1) pause execution until the long-running element
reaches a completion state; 11) delay completion until the
long-running element reaches the completion state. In some
embodiments, the completion state includes at least one of:
1) complete; 11) partial complete; 111) failed to complete; 1v)
not started and v) delayed. In some embodiments, the
method further includes one of completing the instance of
the exemplary routine using the state of the respective
instances ol pre-programmed elements after the instance of

10

15

20

25

30

35

40

45

50

55

60

65

4

the exemplary routine has been created wherein subsequent
to the time the instance of the exemplary routine has been
created, a change 1s made to the exemplary routine upon
which the instance of the exemplary routine 1s based; and
interrupting the instance of the exemplary routine after
receiving a call to interrupt the instance of the exemplary
routine based upon call to create a new instance of the
exemplary routine using a data site that 1s also used by the
instance of the exemplary routine and the dataset includes a
flag set to cause the interruption of the instance of the
exemplary routine.

In some embodiments, the method further includes inter-
rupting execution of the instance of the exemplary routine
upon receipt of a triggering event. In some embodiments, the
method further includes interrupting execution of the
instance of the exemplary routine upon receipt of a prede-
termined number of triggering events including at least one
of: 1) a network timeout; and 11) a system error. In some
embodiments, the triggering event includes one or more of:
1) a change to a data record; or 1) a change to pre-
programmed element. In some embodiments, each pre-
programmed element 1s fully executable without being
directly dependent upon the execution of any other pre-
programmed element. In some embodiments, a failure of
one instance of one of the pre-programmed elements does
not prevent the execution and completion of another
instance of the same pre-programmed element. In some
embodiments, the istance of the exemplary routine reaches
a successiul conclusion if all of the pre-programmed ele-
ments within the instance of the exemplary routine are
completed.

In some embodiments, the method further includes cre-
ating one or more additional instances of the exemplary
routine, and completing, without intervention, an execution
of all of the one or more additional 1nstances of the exem-
plary routine after detecting an error in the instance of the
exemplary routine that prevents the completion of the exem-
plary routine. In some embodiments, the method further
includes after receiving the intervention to complete the at
least one instance of the pre-programmed element, and
decrementing a retry field to complete execution of the
instance of the exemplary routine. In some embodiments,
the occurrence of an error that prevents the completion of the
instance of the exemplary routine without intervention does

not prevent the completion of the one or more additional
instances of the exemplary routine.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The following detailed description of embodiments of the
system and method for modular construction of executable
programs having selif-contained program elements, will be
better understood when read in conjunction with the
appended drawings of an exemplary embodiment. It should
be understood, however, that the invention 1s not limited to
the precise arrangements and nstrumentalities shown.

In the drawings:

FIG. 1 1s a block diagram illustrating an implementation
ol a process synchronization system, 1n accordance with an
exemplary embodiment of the present disclosure.

FIG. 2A 1s an entity relationship diagram illustrating an
implementation of the database of FIG. 1.

FIG. 2B 1s an example of a reaction table according to the
entity relationship diagram 1n FIG. 2A.



US 11,636,006 B2

S

FIG. 3 1llustrates an exemplary flow chart for a method of
creating an exemplary routine in accordance with an
embodiment of the present disclosure

FI1G. 4 1llustrates an exemplary flow chart for a method of
creating an instance of an exemplary routine in accordance °
with an embodiment of the present disclosure.

FI1G. 5 illustrates an exemplary flow chart for a method of
executing instances of pre-programmed elements 1n accor-
dance with an embodiment of the present disclosure.

FIGS. 6 A-6B 1llustrates an exemplary user interface for
the creation of a new exemplary routine, 1n accordance with
an exemplary embodiment of the present disclosure.

FIG. 6C 1illustrates an example of computer executable
code associated with a pre-programmed element.

FIGS. 6D-6H illustrate an example of an administrator
user interface for the creation of a new exemplary routine,
in accordance with an exemplary embodiment of the present
disclosure.

FIG. 61 illustrates an example of a customer service user
interface 1n accordance with an exemplary embodiment of
the present disclosure.

FI1G. 7 illustrates an exemplary flowchart for a method of
execution of an instance of an exemplary routine, 1 accor-
dance with an exemplary embodiment of the present disclo-
sure.

FI1G. 8 illustrates an exemplary flowchart for a method of
execution ol an instance of an instance of an exemplary
routine where a pre-programmed element fails to execute, in
accordance with an exemplary embodiment of the present
disclosure.

FIG. 9 illustrates an exemplary flowchart for a method of
execution of an instance of an instance of an exemplary
routine where a pre-programmed element permanently fails
to execute, 1n accordance with an exemplary embodiment of
the present disclosure.

FI1G. 10 1llustrates an exemplary flowchart for a method of
execution of an instance of an exemplary routine with a
long-running pre-programmed element, in accordance with
an exemplary embodiment of the present disclosure.

FI1G. 11 illustrates an exemplary flowchart for a method of
execution of an instance of an exemplary routine where the
exemplary routine 1s updated mid-execution, in accordance

with an exemplary embodiment of the present disclosure.

FI1G. 12 1llustrates an exemplary tlowchart for a method of
execution of an instance of an exemplary routine where
underlying records are modified mid-execution, 1 accor-
dance with an embodiment of the present disclosure.

FI1G. 13 illustrates an exemplary flowchart for a method of 50
execution of an instance of an exemplary routine when
underlying records are modified mid-execution, 1n accor-
dance with another embodiment of the present disclosure.

FI1G. 14 1llustrates an exemplary flowchart for a method of
performing a fault tolerant automated sequence of computer 35
implemented tasks, in accordance with an exemplary
embodiment of the present disclosure.

10

15

20

25

30

35

40

45

DETAILED DESCRIPTION

60

Numerous details are described herein in order to provide

a thorough understanding of the example embodiments
illustrated 1n the accompanying drawings. However, some
embodiments may be practiced without any of the specific
details, and the scope of the claims 1s only limited by those
teatures and aspects specifically recited in the claims. Fur-
thermore, well-known methods, components, and circuits

65

6

have not been described 1n exhaustive detail so as not to
unnecessarily obscure pertinent aspects of the embodiments
described herein.

Some embodiments of the present disclosure provide
improvements to generating automated tasks by providing a
modular process synchronization system configured to efli-
ciently develop and execute programs having self-contained
program elements. The system may be configured to execute
and monitor the automated process synchronization pro-
grams via two or more servers in communication over a
network. Referring to the drawings in detail, wherein like
reference numerals 1indicate like elements throughout, there
1s shown 1n FIGS. 1-2 a system for modular construction of
executable programs having self-contained program ele-
ments, 1n accordance with an exemplary embodiment of the
present disclosure.

In one embodiment, the system for modular construction
ol executable programs having self-contained program ele-
ments 100 includes one or more computers having one or
more processors and memory (e.g., one or more nonvolatile
storage devices). In some embodiments, memory or com-
puter readable storage medium of memory stores programs,
modules and data structures, or a subset thereof for a
processor to control and run the various systems and meth-
ods disclosed herein. In one embodiment, a non-transitory
computer readable storage medium having stored thereon
computer-executable instructions which, when executed by
a processor, performs one or more or any combination of the
methods or steps disclosed herein.

Referring to FIG. 1, there 1s shown a block diagram
illustrating an implementation of a system for modular
construction of executable programs having self-contained
program e¢lements, generally designated 100. While some
example features are illustrated, various other features have
not been 1llustrated for the sake of brevity and so as not to
obscure pertinent aspects of the example embodiments dis-
closed herein. To that end, as a non-limiting example, the
system for modular construction of process synchronization
programs 100, referred to herein as system 100, may include
one or more networked servers. The one or more networked
servers may share any number of logical units. In some
embodiments, the one or more networked servers are
assigned discrete tasks. For purposes of explaiming the
invention, reference may be made to a particular server with
a particular function. It should be understood that the
particular function may be unique to the server or the
functionality may be shared by multiple servers.

In one embodiment, system 100 comprises a processing,
server 102, a momitoring server 104, a worker system 106,
one or more client devices 108, and one or more databases
110. The system may further include an optical character
recognition (OCR) server 112, one or more veterinarian
servers 114, one or more storefront servers 107, and one or
more customer devices 116. In one embodiment, the func-
tionality of the processing server 102, monitoring server 104
and worker server 106 1s shared by one server or across one
or more networked severs. In one embodiment, the func-
tionality of each of the processing server 102, monitoring
server 104 and worker server 106 are performed by one
more servers that do not overlap i1n functionality. For
example, the one or more servers that provide functionality
for the processing server 102 may be diflerent from the one
or more servers that provide the functionality of monitoring
server 104.

The processing server 102 may be one or more computing,
servers that provide secure access to a plurality of pre-
programmed elements (sometimes referred to herein as




US 11,636,006 B2

7

“atoms”), one or more of which may be combined into an
exemplary routine (sometimes referred to herein as “reac-
tions”). The processing server 102 may be configured to
display an administrator facing user interface (“UI”), also
referred to as an admin Ul, which allows users (e.g.,
administrators 118, developers 120) to define exemplary
routines, and/or request/create new pre-programmed ele-
ments. Administrators 118 may be users with little to no
computer programming knowledge (e.g., customer service
representatives or users having little to no skill 1n the art of
computer programming). Developers 120 may be users with
computer programming knowledge necessary to write coms-
puter programs which become the pre-programmed ele-
ments (e.g., software engineers or users having at least
ordinary skill 1in the art of computer programming). Admin-
istrators 118 and developers 120 may access the processing
server 102 via client devices 108. Client devices 108 may be
operated on any suitable computer device, such as a com-
puter, a laptop computer, a tablet device, a netbook, an
internet kiosk, a personal digital assistant, a mobile phone,
a smart phone, a gaming device, a computer server, or any
other computing device. The processing server 102 may be
configured to generate the admin Ul such that 1t 1s accessible
via the internet and viewable by a developer 120 and/or
administrator 118 on a respective client device 108.

The processing server 102 may be configured to commu-
nicate with one or more servers (e.g., storefront server 107)
configured to generate a customer facing UI such that 1t 1s
accessible via the internet and viewable by a customer on a
respective customer device 116. The customer device 116
may be operated on any suitable computer device, such as a
computer, a laptop computer, a tablet device, a netbook, an
internet kiosk, a personal digital assistant, a mobile phone,
a smart phone, a gaming device, a computer server, or any
other computing device. The customer facing Ul may be
configured to allow one or more customers to view and
select products for purchase. The products for purchase may
have associated data stored 1n a database in communication
with the storefront server 107. In some embodiments, store-
front server 107 1s 1n communication with database 110 that
stores product data associated with the products for pur-
chase. One or more of the products displayed on the cus-
tomer facing Ul may require authorization in order for a
customer to purchase them. For example, a product may be
a prescription tick medication for a dog that requires autho-
rization ifrom a veterinarian. The database 110 may store a
record indicating whether there 1s an authorization for a user
to purchase a specific product displayed on the customer
facing Ul. The processing server 102 and/or storefront
server 107 may be configured to query database 110 to
determine 11 a prescription authorization for the requested
product exists. The database may store customer informa-
tion such as: customer name, address, phone number, pet
information, vetermnary clinics associated with the pets
owned by the customer, and prescription information.

The processing server 102 may be configured to commu-
nicate with one or more databases (e.g., database 110) to
receive and transmit data relating to pre-programmed ele-
ments, and/or exemplary routines. Database 110 may
include a relational database (see FIG. 2). In some embodi-
ments, database 110 may include a non-relational database.
Database 110 may store data related to a plurality of pre-
programmed elements. A pre-programmed element may be
an element of computer executable code written by a pro-
grammer (€.g., developer 120, software engineer, computer
scientist). A pre-programmed element may be an indepen-
dently executable selif-contamned unit of computer code

10

15

20

25

30

35

40

45

50

55

60

65

8

configured to perform a specific task (e.g., send email to
customer, process order refund, cancel order shipping).
Independently executable refers to the configuration of each
pre-programmed element to complete execution without
requiring an output from any other pre-programmed element
which has executed so long as any data objects required for
the pre-programmed element are known. The data related to
the pre-programmed elements may include a unique 1denti-
fier which identifies each pre-programmed element, and the
executable self-contained umit of computer code.

The database 110 may store data related to exemplary
routines associated with one or more pre-programmed ele-
ments that correspond to tasks required to accomplish a
certain objective. An exemplary routine may be a grouping
of pre-programmed elements having a sequence that defines
the order 1n which the pre-programmed elements execute.
For example, an objective may be to process the termination
of and cancel a pending order for a product that was placed
through a customer portal. To fully process the termination
of a pending order the system 100 may implement tasks for:
communication related to the customer account associated
with the order, rigorous financial processing steps, shipping
notices and inventory management. Specific automated
tasks may include: transmission of electronic notification
related to customer account that the order has been can-
celled, processing of refund request associated with the
customer account, termination of shipping order and, 1f
necessary, returning a product to mventory or indicating in
an 1nventory tracking system that the product 1s available for
sale 1n connection with a new order. In this example, the
exemplary routine would include pre-programmed elements
that have executable code capable of handling the above-
mentioned tasks and define the order in which the pre-
programmed elements are executed. Further to this example,
the sequence of execution may be to cancel shipping of the
product to the customer, process a refund to the customer,
and email the customer a notification that the order cancel-
lation has been processed. It will be understood though, that
exemplary routines may include different pre-programmed
clements and/or define different sequences of execution for
the pre-programmed elements.

The pre-programmed elements may be associated with
one or more exemplary routines. For example, the send
email pre-programmed element may be included 1n a plu-
rality of different exemplary routines (e.g., order cancella-
tion requests, requests for additional customer information,
notifications for a change in quantity of an ordered product).
Data stored in database 110 relating to an exemplary routine
may include a unique identifier for the exemplary routine,
the sequence 1n which pre-programmed elements are to be
executed, and a listing of the pre-programmed elements that
are mcluded 1n the exemplary routine. In some 1nstances, an
exemplary routine may include two or more of the same
pre-programmed elements. For example, an exemplary rou-
tine X may include pre-programmed elements A, B, and C
and include A, B, C, A as the order of execution. In some
instances, an exemplary routine may include two or more
pre-programmed elements having the same sequence value.
For example, an exemplary routine may include pre-pro-
grammed elements A, B, C, and D and a sequence that
defines the order of execution to be A, then BC, then D
where element A executes, then elements B and C execute
in parallel (e.g., nitiating at the same time or approximately
the same time or overlapping execution), then element D
executes.

The database 110 may also store data required for execu-
tion of one or more of the pre-programmed elements. The




US 11,636,006 B2

9

database 110 may store data associated with customer
records, customer interactions, and/or clinics (e.g., veteri-
nary clinics, veterinarians). Customer record data may
include data relating to the customer and/or an account
owned by the customer and stored in database 110 (e.g.,
unique customer ID, customer name, email address, phone
number, shipping address, and pet(s) owned by the cus-
tomer). Customer interaction data may include data relating
to one or more interactions of the customer with the store-
front server 107 (e.g., unique 1dentifiers associated with
orders for products placed by the customer, products ordered
by the customer, shipping address, payment method, order

quantity, order status, payment status, and shipping method).
Clinic data may include data relating to one or more clinics
associated with a customer, processing server 102, and/or
storefront server 103 (e.g., a veterinarian associated with a
customer’s pet, the veterinarians contact mformation, and
the veterinarian’s veterinary clinic). Depending on the pre-
programmed element, some of said data may be required to
execute said pre-programmed element. For example, a pre-
programmed element configured to email a customer with a
notification may require customer records to determine the
customer’s email address. Similarly, a pre-programmed ele-
ment configured to refund payment of a cancelled order may
require data associated with an order number and payment
method. It will be understood that the database 110, or
another database in communication with database 110 and/
or processing server 102 may store data required for execu-
tion of the pre-programmed elements.

The processing server 102 may be configured to receive
a request for execution of one or more pre-programmed
clements. The request for execution of one or more pre-
programmed clements may be 1n response to an event, or
occurrence, for which a resolution 1s sought. The event may
be referred to as a triggering event or an incident herein. For
example, an incident may be a customer requesting cancel-
lation of an order. In order to resolve the customer’s order
cancellation 1ncident, one or more tasks may be executed,
preferably 1n a certain order, in order to resolve the order
cancellation incident. The one or more tasks may correspond
to one or more of the pre-programmed elements which may
be 1included 1n an exemplary routine. The request for execu-
tion of the one or more pre-programmed elements may
include an indication as to the exemplary routine associated
with the one or more pre-programmed elements. The pro-
cessing server 102 may transmit the request for execution of
the one or more pre-programmed elements 1n response to an
input from an administrator 118 and/or a developer 120. The
input from the administrator 118 and/or developer 120 may
be received on an associated client device 108 displaying the
admin Ul. For example, an administrator 118 may receive
communication (e.g., email, phone call, a message through
an online communication platform) from a customer that
wishes to cancel an order. The administrator 118 may, via a
client device 108, access the processing server 102 which
transmits the admin Ul for display on client device 108. The
administrator 118 may then, after locating the order 1n which
the user wishes to cancel, provide an input, via the client
device 108, at a displayed 1con on the admin Ul to cancel the
order (e.g., a ‘cancel order’ button). Additional non-limiting
examples of incidents which trigger execution of one or
more pre-programmed elements may include a request by a
vetermary clinic to switch from paper (e.g., fax) notifications
to electronic notifications (e.g., email), a request to email all
veterinarians associated with a specific vetermnary clinic the
number of pending prescriptions for their review, and a

10

15

20

25

30

35

40

45

50

55

60

65

10

notification sent to a customer to verily a duplicate order to
ensure the duplicate order was not accidental.

The processing server 102 may be configured to commu-
nicate with database 110 to create and store 1nstances of one
or more exemplary routines and/or one or more 1nstances of
pre-programmed elements for which execution 1s requested.
An 1nstance of an exemplary routine (sometimes referred to
as a “molecule” herein) may refer to a version of the
exemplary routine stored in database 110. In one embodi-
ment, the version of the exemplary routine that makes up the
instance 1s based on the configuration of the exemplary
routine at the time the mstance was created. That version of
the exemplary routine may differ from a later created
instance of the exemplary routine. For example, an aspect of
one of the pre-programmed elements may be changed
between the creation of a first instance and a second instance
of the same exemplary routine, where the second instance 1s
created later than the first mstance. In one embodiment both
instances (e.g., the first and second 1nstance) of the exem-
plary routine are stored 1n the database and may be executed
according to their respective configurations at the time they
were created. In some embodiments, the aspect of the
exemplary routine that 1s changed includes one or more of:
1) the substitution of one pre-programmed element for
another pre-programmed element; 11) the addition of a
pre-programmed element; 111) the elimination of a pre-
programmed element; 1v) a change to the sequence of
performance of the pre-programmed eclement; v) a new
sequence for a new set of pre-programmed elements; or vi)
a combination of two or more of the foregoing.

In one embodiment, a first mstance of an exemplary
routine X 1s created at a time T1 and may correspond to the
configuration of the exemplary routine X at time T1. Exem-
plary routine X may be modified at a second time T2 after
T1 such that a pre-programmed element 1s added or removed
from the exemplary routine. A second 1nstance of exemplary
routine X 1s created on or after the second time T2 and may

include the configuration corresponding to the modification
made at T2. Both the first instance and second instance of
exemplary routine X may be stored in database 110 for
processing while the first instance represents the configura-
tion of exemplary routine X at time T1 and the second
instance represents the configuration of exemplary routine X
alter modification (e.g. on or after time 12). The configu-
ration of an exemplary routine at the time an instance 1s
created may 1include data such as an identifier for the
exemplary routine (e.g., a name for the exemplary routine,
a unique 1dentifier), a listing of pre-programmed elements
included in the exemplary routine, and the sequence of
execution for the pre-programmed elements.

In some embodiments, the instance of the exemplary
routine includes a version of the exemplary routine that
includes one or more pointers to executable code (e.g.,
executable code associated with pre-programmed elements
included 1n the exemplary routine). In some embodiments,
the instance of the exemplary routine contains no executable
code and includes, 1nstead, pointers to executable code. In
one embodiment, when the code associated with a pre-
programmed element 1s updated any instance of an exem-
plary routine that has not yet run, will execute from the
updated code when the instance 1s executed. In one alter-
native embodiment, the instance of the exemplary routine
includes executable code that does not execute via a pointer
and does not therefore run updated code i1t a relevant
pre-programmed element 1s updated after the instance 1s
created.




US 11,636,006 B2

11

In one embodiment, database 110 may store exemplary
routines and instances of exemplary routines. For example,
database 110 may store an exemplary routine X which 1s for
handling an order cancellation request. The database 110
may store a configuration of exemplary routine X (e.g., data
relating to the exemplary routine). The configuration may
include a unique identifier for the exemplary routine, pre-
programmed elements included in the exemplary routine as
they exist at the time the instance 1s created, and the
associated sequence of execution as that sequence 1s defined
at the time the 1nstance 1s created. In some embodiments, an
instance of the exemplary routine 1s a version of the exem-
plary routine which may be stored as a record 1n database
110 separate from the exemplary routine to which it corre-
sponds. For example, exemplary routine X 1s stored sepa-
rately from the instance of exemplary routine X 1n database
110. There may be a plurality of instances of exemplary
routines stored in database 110. For example, in some
instances there may be two or more 1nstances of exemplary
routine X stored in database 110 and one or more instances
of different exemplary routines stored in database 110. In
some embodiments, there may be ten or more, {ifty or more,
one hundred or more, or more than a hundred instances of
exemplary routines stored in database 110. Instances of
exemplary routines stored in database 110 may include
multiple 1instances of the same exemplary routine, instances
of different exemplary routines, or any combination thereof.

An instance of one or more pre-programmed elements
may refer to a copy of the data corresponding to the
pre-programmed element stored in database 110. For
example, database 110 may store a pre-programmed element
A that 1s for sending an email notification. The data asso-
ciated with pre-programmed element A includes the unique
identifier and a pointer to the computer code to be executed.
An 1nstance of pre-programmed element A 1s a copy of said
data including the umique identifier and a pointer to the
computer code to be executed corresponding to pre-pro-
grammed element A. The instance of the pre-programmed
clement may be stored as a record 1n database 110, separate
from the pre-programmed element 1t corresponds to. For
example, pre-programmed element A 1s stored separately
from the instance of pre-programmed element A 1n database
110. There may be a plurality of instances of a pre-pro-
grammed element stored 1n database 110. For example, 1n
some embodiments, there may be two or more instances of
pre-programmed element A stored 1n database 110. In some
embodiments, there may be ten or more, {ifty or more, one
hundred or more, or more than a hundred instances of the
same pre-programmed element stored 1n database 110. In
some embodiments, two or more databases are used to store
pre-programmed e¢lements and instances of the pre-pro-
grammed elements respectively. Database 110 may 1nclude
an elements database 122, routines database 124 and
instances database 126. The elements database 122 may be
configured to store the pre-programmed elements created as
described above. The routines database 126 may be config-
ured to store the exemplary routines created as described
above. The instances database 128 may be configured to
store 1istances of pre-programmed elements, and exemplary
routines created as described above. An instance ol an
exemplary routine and/or an instance of a pre-programmed
clement may be a version of the exemplary routine and/or
pre-programmed element that 1s applicable at the point in
time 1n which the instance was created.

The processing server 102 may be configured to create an
entry in database 110 for an instance of an exemplary routine
for which execution 1s requested. The processing server 102

10

15

20

25

30

35

40

45

50

55

60

65

12

may include executable code, that when executed, causes the
database 110 to create one or more rows ncluding data for
the 1nstance of the exemplary routine, and instances of the
pre-programmed elements included 1n the exemplary rou-
tine. The processing server 102 may be configured to cause
database 110 to create data entries for data related to the
incident which triggered the creation of the instance of the
exemplary routine and/or data entries required for execution
of instances of pre-programmed elements. For example,
database 110 may store, for each instance of an exemplary
routine, incident data which may correspond to data for a
customer interaction record, contact data corresponding to
customer and/or veterinarian contact records, and/or org
data corresponding to veterinarian clinic records, shelter
records, or the like.

Referring to FIG. 2A, there 1s shown an entity relationship
(ER) diagram for database 110 in accordance with an
exemplary embodiment of the invention. The ER diagram 1n
FIG. 2 may relate to how instances of exemplary routines are
associated with corresponding exemplary routines, instances
of pre-programmed elements, incident data, and other data
required for the execution of the instance of the exemplary
routine. Database 110 may store data associated with inci-
dents, contacts, orgs, pre-programmed elements, exemplary
routines, and istances of exemplary routines 1n one or more
tables. The database 110 may include an incident table,
contact table, and org table for storing data associated with
incidents, contacts, and organizations respectively. Database
110 may include an atom table, atom state menu table, and
atom type table for storing data related to pre-programmed
clements. Database 110 may include a molecule and mol-
ecule type menu tables for storing data related to instances
of exemplary routines. Database 110 may include a reactions
table for storing data related to exemplary routines.

Data associated with an instance of a pre-programmed
clement may include: a umique ID, incident, contact, org,
state, retry count, name, molecule, notes, and/or sequence
number data entries. The unique ID may be a unique
identifier which 1s specific to the instance of the pre-
programmed element. The incident entry may be an optional
foreign key that links the instance of the pre-programmed
clement and the incident which triggered creation of the
instance of the exemplary routine stored in a separate table
in database 110. The contact entry may be an optional
foreign key that links the instance of the pre-programmed
clement to customer and/or veterinarian information stored
in a separate table on database 110. The org entry may be an
optional foreign key that links the instance of the pre-
programmed element to veterinarian clinic, shelter informa-
tion stored in a separate table on database 110. The state
entry may include an indication of the status (e.g., the state)
of the pre-programmed element (e.g., pending, cancelled,
tailed, completed, locked). The state may be an integer value
indicating the status of the mstance of the pre-programmed
clement (e.g., O=pending, l1=cancelled, 2=failed, 3=com-
plete, 4=locked). The state may alternatively be a text value
corresponding to the status of the pre-programmed element.
The retry count entry may correspond to a number of times
execution of an istance of the pre-programmed element has
been attempted as discussed in more detail below. The name
entry may be a human readable name of the pre-pro-
grammed element and may be a foreign key that links the
instance of the pre-programmed element to the correspond-
ing pre-programmed element stored 1n a separate table 1n
database 110. The molecule entry may be a foreign key that
links the instance of the pre-programmed element to the
corresponding instance of the exemplary routine. The notes




US 11,636,006 B2

13

entry may be a free form field that may be used to store
structured data required for execution. For example, the
notes entry may include a JSON formatting array storing one
or more 1dentifiers required for execution of one or more
pre-programmed elements. The sequence number entry may
correspond to a sequence number for the instance of the
pre-programmed element that 1s copied from the exemplary
routine during creation of the instance of the exemplary
routine. Sequence numbers created 1n this manner and stored
as a data entry 1n the instance of the pre-programmed
clement may allow execution of the pre-programmed ele-
ment as defined by the exemplary routine at the time the
instance of the exemplary routine is created. Put another
way, by storing the sequence number during creation of an
instance ol the exemplary routine, the pre-programmed
clement will execute according to the sequence defined by
the exemplary routine even if the exemplary routine 1s
modified during execution of the mnstance of the exemplary
routine, as described 1n more detail below.

Database 110 may include one or more tables for storing
information related to instances of the exemplary routines.
Data associated with instances of exemplary routines may
include a unique identifier, a type, and notes data entries.
The unmique 1dentifier may be a private key that 1s unique to
the instance of the exemplary routine and may link the
instance ol the exemplary routine to instances of corre-
sponding pre-programmed elements (e.g., the unique 1den-
tifier data entry and molecule data entry). The type data entry
may be a foreign key that defines a many-to-many relation-
ship between the nstance of the exemplary routine and the
exemplary routine. The many-to-many relationship may be
established via a table (e.g., the MoleculeType Menu) that
links the table storing data for the instance of the exemplary
routine and the table storing data for the exemplary routine.
The notes data entry may be a free form field to store data.
In some embodiments, notes data in the molecule table
includes structured data that 1s required or useful for some
implementations.

Database 110 may include one or more tables (e.g., the
reaction table) for storing information related to exemplary
routines. Data associated with exemplary routines may
include a unmique identifier, required atom type, sequence
number, require incident, require contact, require org, and/or
molecule name data entries. The unique 1dentifier may be a
private key which 1s unique to the exemplary routine. The
required atom type data entry may be a foreign key corre-
sponding to one or more pre-programmed elements required
for execution. The sequence number data entry may include
the order of the execution for the pre-programmed elements
included in the exemplary routine. The require incident data
entry may 1include an indication as to whether incident
information must be present 1n database 110 for execution of
the instance of a pre-programmed element 1included 1n the
exemplary routine. In one exemplary embodiment, the
require incident data entry may be specific to an instance of
a pre-programmed element. For example, the require 1nci-
dent data entry may be “vyes” for an mstance ol pre-
programmed element A and “no” for an instance of pre-
programmed element B. In another exemplary embodiment,
the require incident data entry may not be specific to an
instance of a pre-programmed element. The require contact
data entry may include an indication as to whether contact
information must be present 1n database 110 for execution of
the instance of a pre-programmed element 1included 1n the
exemplary routine. In one exemplary embodiment, the
require contact data entry 1s specific to an instance of a
pre-programmed element. In another exemplary routine, the

10

15

20

25

30

35

40

45

50

55

60

65

14

require contact data entry 1s not specific to an instance of a
pre-programmed element. The require org data entry may
include an indication as to whether organization data (e.g.,
veterinary clinic data, shelter data) must be present in
database 110 for execution of the instance of a pre-pro-
grammed element included in the exemplary routine. In one
exemplary embodiment, the require org data entry may be
specific to an instance of a pre-programmed element. In
another exemplary embodiment, the require org data entry
may not be specific to an instance of a pre-programmed
clement. The molecule name data entry may be a foreign key
which defines the mnstance of the exemplary routine that a
pre-programmed element will be 1included 1n.

Retferring to FIG. 2B there 1s shown an example of a
reaction table storing information related to an exemplary
routine “cancelpetscriptionrelease”. Fach row 1n this
example reaction table corresponds to a pre-programmed
clement included 1n the exemplary routine and/or an
instance of the pre-programmed elements included in an
instance of the exemplary routine. The reaction table shown
here includes the pre-programmed elements and correspond-
ing sequences defined by the exemplary routine. In this
example, the exemplary routine includes four pre-pro-
grammed elements: “‘cancelpetscriptionrelease”, “cancel-
petscriptionreleasesendemail”, and two “orgisDigital” pre-
programmed elements. Each pre-programmed element may
include a umique ID associated with pre-programmed ele-
ment. In some embodiments the unique 1D 1s associated with
an instance of the pre-programmed element (e.g., ID values
16 and 17 correspond to diflerent instances of pre-pro-
grammed element “orgslsDigital”). Each pre-programmed
clement may include an indication of what information 1s
required 1 order for the pre-programmed element to
execute. For example, pre-programmed element “cancel-
petscriptionrelease” requires incident information but does
not require contact or organizational information 1n order to
execute. Each pre-programmed eclement may include a
sequence data associated with the sequence of execution as
defined by the exemplary routine. For example, “petscrip-
tionrelease” and one istance of “orgslsDigital” have a
sequence value of 1 indicating that instances of these two
pre-programmed elements should be executed 1n parallel. It
will be understood that the reaction table shown 1n FIG. 2B
1s an example and that in practice the reaction table may
store a plurality of entries associated with different instances
of exemplary routines each including one or more nstances
of pre-programmed elements.

The database 110 may store a table associated with the
type of pre-programmed element (e.g., the AtomType Menu
in FIG. 2) for relating an instance ol a pre-programmed
clement with the executable code for the corresponding
pre-programmed element. In some embodiments, storing the
executable code for a pre-programmed element separate
from the instance of said pre-programmed clement may
allow the system 102 to maintain referential integrity within
database 110. In some embodiments, storing the executable
code for the pre-programmed element separate from the
instance of said pre-programmed element may allow an
exemplary routine to be modified without affecting an
instance of said exemplary routine which 1s currently being
executed.

The database 110 may store a plurality of instances of
different pre-programmed elements. For example, the data-
base 110 may store a record of three instances of pre-
programmed element A, five records of pre-programmed
clement B, and 10 records of pre-programmed element C. It
will be understood that the database 110 may store any




US 11,636,006 B2

15

number or combination of instances ol pre-programmed
clements. The database 110 may include a record of all
pre-programmed elements with a pending status.

The processing server 102 may be configured to transmit
a request to database 110 to create and store an instance of
cach pre-programmed element 1n an exemplary routine 1n
database 110. The request from processing server 102 to
database 110 to store said instances may be 1 response to an
input and/or request recerved from a client device 108. The
input and/or request from client device 108 may correspond
to an mput from an administrator 118 or developer 120 who
wishes to cause system 100 to perform a series of tasks. For
example, an administrator 118 may provide an input on
client device 108 that 1s displaying an admin Ul to request
cancellation of an order for a product (e.g., a press of a
button displayed on admin Ul corresponding to cancelling
an order). The order cancellation 1nput may cause processing
server 102 to transmit a request to database 110 to create an
instance ol each pre-programmed element included 1n an
exemplary routine for order cancellation. As described
above, this exemplary routine may include pre-programmed
clements for email notifications, a refund of the currency to
a customer that placed the order, and a cancellation of any
pending shipment of the product to the customer. In this
example, an instance of each of these pre-programmed
clements 1s created and stored 1n database 110 for execution.
Each mstance of pre-programmed elements included 1n the
exemplary routine may initially be stored in database 110
with a pending status indicator.

The processing server 102 and monitoring server 104 may
be configured to determine the order in which instances of
pending pre-programmed elements should be executed and/
or to execute said mstances. The monitoring server 104 may
be configured to transmit a request for a list of all pending
instances ol pre-programmed elements to processing server
102. The processing server 102 may be configured to
determine, based on the data associated with instances of the
pre-programmed elements, the order in which the pre-
programmed elements should be executed. For example, the
processing server 102 may be configured to determine that
an instance of pre-programmed element B should not be
executed until an nstance of pre-programmed element A 1s
executed. The processing server 102 may be configured to
determine the order in which instances of pre-programmed
clements are to be executed as defined by an mstance of the
exemplary routine. For example, an instance of a {irst
exemplary routine may include instances of pre-pro-
grammed elements A-D having a defined sequence (e.g.,
clement A executes before element B that executes before
clement C that executes before element D). For example, an
instance of an exemplary routine may have three instances
of pre-programmed elements which have not executed and
the processing server 102 may determine which of those
instances needs to be executed next as defined by the
sequence.

The processing server 102 may be configured to deter-
mine a portion of instances of pre-programmed elements for
execution from the record of all pending pre-programmed
clements stored 1n database 110. For example, database 110
may have stored, at a point 1n time, one hundred instances
of pre-programmed elements having a pending status. The
processing server 102 may determine that twenty of the one
hundred 1nstances of pre-programmed elements need to be
executed. The processing server 102 may determine the
portion of pre-programmed elements for execution based on
corresponding 1instances of exemplary routines. For
example, 1I database 110 has stored therein one hundred

5

10

15

20

25

30

35

40

45

50

55

60

65

16

instances of pre-programmed elements, those instances may
correspond to twenty 1nstances of exemplary routines. Each
instance an of exemplary routine including the sequence of
execution for corresponding instances ol pre-programmed
clements which are stored 1n database 110. The processing
server 102 may determine where 1n the sequence of execu-
tion, each instance of an exemplary routine 1s currently at
(e.g., a first exemplary routine has not started, a second
exemplary routine has executed the second instance of a
pre-programmed element in its sequence). Based on the
current sequence of execution, the processing server 102
may determine which instances of pre-programmed ele-
ments need to be executed next. For example, 1f there are
twenty instances of exemplary routines, each including five
instances of pre-programmed elements, none of which have
been executed yet, the processing server 102 1s configured to
determine that the instance of a pre-programmed element
corresponding to the first pre-programmed element 1n the
sequence defined by the corresponding instance of the
exemplary routine needs to be executed.

In one embodiment, system 100 also includes logical
units (LUs) that includes one or more of a monitor LU, a
processor LU and a worker LU. In one embodiment, the
monitor LU 1s a logical unit that mitiates executions and
monitors progress of various activities on system 100. For
example, the monitor LU may include an AWS Step-Func-
tion, an AWS Lambda, and/or associated monitoring and
alerting. In one embodiment, the processor LU includes
several code-classes used to 1) collect data on pending
executions, 11) execute pending tasks, 111) communicate
information back to the monitor unit and 1v) combinations
thereof. The processor LU may include files (such as plain-
text files) that may be executed by one or more of the servers
for rendering on a browser. In some embodiments, the
monitor LU 1includes a cron_runner function configured to
request pending instances of pre-programmed elements and
receive requests for execution of instances of pre-pro-
grammed elements. In some embodiments, the monitor LU
includes a parallel_process_atoms function configured to
handle the execution of code corresponding to the pre-
programmed elements as well as retrieve a list of pending
instances of pre-programmed elements to be executed. In
some embodiments, the processing LU includes a mol-
ecule_utilities function configured to create entries 1n data-
base 110 for new pre-programmed elements and cancel
pending instances ol exemplary routines. In an exemplary
routine, the molecule utilities functions 1s configured to
handle all entries and deletions from database 110 relating to
exemplary routines, pre-programmed elements, and/or
instances thereof. In one embodiment, the worker LU
includes a body of code used to complete the actions defined
for a requested pre-programmed element. For example, the
worker LU may include code for completing actions defined
by pre-programmed elements such as: processsendorgstatu-
stokyrios, clinicprefupdateatom and processcancel RxOrder-
InPetcriptions. In one embodiment, the worker LU 1ncludes
one or more private methods within the one or more files of
the processor LU and can call out to other functions or
classes.

In some embodiments, each of the monitor LU, processor
LU and worker LU are associated with and executed by a
dedicated server. In some embodiments, one or more servers
are configured to execute one or more of the LUSs. In other
embodiments, the LUs are shared across two or more
servers. The monitoring server 104 may be one or more
computing servers that are configured to 1nitiate the execu-
tion of and monitor the status of instances of pre-pro-




US 11,636,006 B2

17

grammed elements. The monitoring server 104 may be
configured to communicate with database 110 to request and
receive a record of all pending pre-programmed elements for
which execution 1s requested. The monitoring server 104
may be configured to request the record of all pending
pre-programmed elements at a pre-defined interval. In some
embodiments, the pre-defined interval is one minute. In
some embodiments, the pre-defined interval i1s about 30
seconds, about 60 seconds, about 90 seconds, about 120
seconds, about 150 seconds or about 180 seconds.

The processing server 102 may create a list of all
instances of pre-programmed elements to be executed next
in sequences defined by the instances of exemplary routines
and transmit the list to the monitoring server 104. The
monitoring server 104 may be configured to assign, based on
the list recerved from the processing server 102, instances of
pre-programmed elements to one or more sets of instances
of pre-programmed elements for parallel execution. For
example, the momtoring server 104 may receive a list of a
thousand 1nstances of pre-programmed elements from pro-
cessing server 102. The monitoring server 104 may then
determine that one set for parallel execution may include ten
instances of the thousand instances received and another set
may include twenty instances and so on. The monitoring,
server 104 may be configured to mitiate execution of one or
more instances pre-programmed elements. The monitoring,
server 104 may be configured to initiate execution of one or
more 1nstances pre-programmed elements i1dentified for
execution by processing server 102, as described above. The
monitoring server 104 may be configured to iterate through
the determined sets for parallel execution and transmit said
sets to the processing server 102 to iitiate execution of the
instances ol pre-programmed elements included 1n said set.
For example, the monitoring server 104 may, after deter-
mimng the sets for parallel execution, transmit the sets to the
processing server 102 for execution. In this manner, the
monitoring server 104 may initiate execution of instances of
pre-programmed elements and the processing server 102
may perform the execution of the instances. In one exem-
plary embodiment, each iteration through the determined
sets may correspond to a predetermined 1nterval (e.g., inter-
val defined 1n step 502 of method 500 discussed below). In
other embodiments, the monitoring server 104 1s configured
to 1terate through the determined sets for parallel execution,
initiate execution of the instances ol pre-programmed ele-
ments and perform execution of the instances.

As mentioned above, the monitoring server 104 may be
configured to mitiate execution of 1nstances of two or more
pre-programmed eclements in parallel. The two or more
instances pre-programmed elements may be two or more
instances of the same pre-programmed element. For
example, the two or more instances of pre-programmed
clements may be two or more 1nstances of pre-programmed
element A. In some embodiments, the two or more 1nstances
of pre-programmed elements may be two or more 1nstances
of different pre-programmed elements. For example, the two
or more 1nstances of pre-programmed elements may be an
instance of pre-programmed element A and an instance of
pre-programmed element B. In some embodiments, the two
or more instances of pre-programmed elements may be a
combination of mnstances of the same pre-programmed ele-
ments and different pre-programmed elements. For example,
the two or more instances may be two instances of pre-
programmed element A, an instance of pre-programmed
clement B, and two instances of pre-programmed element C.
The istances of two or more pre-programmed elements
executed 1 parallel may be associated with different

10

15

20

25

30

35

40

45

50

55

60

65

18

instances of exemplary routines. For example, an instance of
clement A may be associated with an instance of a first
exemplary routine and an instance of element B may be
associated with an 1nstance of a second exemplary routine.

The processing server 102 may be configured to monitor
whether an instance of a pre-programmed element fails to
execute. For example, the processing server 102 may moni-
tor the execution of an 1nstance of pre-programmed element
A and determine that the nstance of pre-programmed ele-
ment A failed or succeeded to execute. In the event that an
instance of a pre-programmed element fails to execute, the
processing server 102 may be configured to retry execution
of the failed instance of the pre-programmed element. The
processing server 102 may be configured to retry execution
of an istance of a pre-programmed element a predeter-
mined number of times before ceasing to retry execution of
the mstance of the pre-programmed element. The processing
server 102 may be configured to retry execution one time,
two times, three times, four times, five times, six times,
seven times, or more than seven times before ceasing to
proceed to another retry.

The monitoring server 104 may be configured to validate
that execution of mstances of pre-programmed elements do
not proceed past a predetermined time threshold, that the
processing server 102 does not become unresponsive, and/or
that a predetermined number of instances of pre-pro-
grammed elements are executed 1n parallel. The monitoring
server 104 may be configured to transmit an alert notifica-
tion to an admimistrator 118 and/or developer 120 if the
processing server 102 becomes unresponsive. The monitor-
ing server 104 may be configured to monitor the amount of
time that an istance of a pre-programmed element 1s taking
to execute. For example, the monitoring server 104 may be
configured to determine that an mstance of pre-programmed
clement A has taken a minute to execute. The monitoring
server 104 may be configured to be 1n communication with
processing server 102 to transmait information corresponding,
to the status of mnstances of pre-programmed elements. The
monitoring server 104 may transmit to the processing server
102 a list of the instances of pre-programmed elements
which have failed to execute, have succeeded to execute,
and/or that are currently executing.

The processing server 102 may be configured to monitor
the monitoring server 104 to monitor instances ol pre-
programmed elements that are being executed and monitor
any buildup of pending instances of pre-programmed ele-
ments that need to be executed. In this manner, the func-
tionality of the system 100 described herein 1s split between
at least two servers (e.g., processing server 102 and moni-
toring server 104). In one embodiment, splitting function-
ality between processing server 102 and monitoring server
104 enables redundant monitoring functionality such that
processing server 102 may monitor monitoring server 104
and vise versa to 1dentify whether there 1s a server failure at
either the processing server 102 or monitoring server 104
(e.g., failure to execute pre-programmed elements, network
connection 1ssues). In the event instances ol pre-pro-
grammed elements are not fully executed, corrective action
may be taken to ensure errors 1 execution of pre-pro-
grammed elements does not cause a halt in execution of
other 1stances of pre-programmed elements.

The processing server 102 may include a worker system
106 which may be configured to execute instances of
pre-programmed elements. For example, worker system 106
may include a collection of computer executable code (e.g.,
PUP scripts) that performs the functions of sending requests



US 11,636,006 B2

19

to external system for order cancellation, emailing, updating,
database entries, and/or synchronizing prescription data
between different servers.

The processing server 102 may, during execution of an
instance of an exemplary routine, be configured to detect the
absence of data needed to complete the execution of the
instance of the exemplary routine. The data needed to
complete the execution of the instance of the exemplary
routine may be, for example, a prescription authorization for
a product which a customer has placed an order for. The
processing server 102 may, 1n response to the absence of the
data needed, be configured to automatically transmit a
request for the data to an entity. The entity may be an
authorizing entity. For example, the processing server 102
may transmit an authorization form for a prescription medi-
cine to a veterinarian, a clinic, or some other authorizing
entity. The entity may receive the request for data (e.g., a
prescription authorization form) and enter the requested
data. The entity may transmit back to the processing server
the requested data, where the data 1s 1n an electronic format
and/or where the data was handwritten. For example, the
authorizing entity may receive a prescription authorization
form that the entity may then fill out with handwritten
information, information typed into the form via a customer
device 116, or a combination of both. The prescription
authorization form containing the requested data may be
scanned 1nto an electronic format which i1s then sent to
processing server 102 or 1t may be sent via fax, or mail.

The processing server 102 may be configured to auto-
matically populate data corresponding to the data recerved
from the entity. The processing server 102 may be config-
ured to store the data received from the entity 1n a database
(e.g., database 110). In some 1nstances, the processing server
102 may receive documentation imncluding information to be
stored 1n a database (e.g., database 110) that requires addi-
tional processing before the information can be stored in
said database. For example, a fax of the prescription autho-
rization form 1s sent from a veterinarian, or veterinarian
climc, and recerved by processing server 102. For this
reason, the processing server 102 may be configured to
communicate with an optical character recognition (OCR)
server 112. The OCR server 112 may be configured to
receive one or more documents from processing server 102
for which optical character recognition i1s required. For
example, processing server 102 transmits the prescription
authorization form, or a copy thereof, to OCR server 112.
The OCR server 112 may be configured to receive the
documentation (e.g., the prescription authorization) and
perform optical character recognition to create a datafile
containing optical character recognition data associated with
the documentation. The OCR server 112 may transmit the
created datafile to processing server 102. The processing
server 102 may be configured to automatically store the
datafile received from OCR server 112 1n a database (e.g.,
database 110). The processing server 102 may be configured
to apply regular expression matching logic to the datafile
received from OCR server 112 to identify data associated
with at least one of: owner name, pet name, record 1dentifier
for a prescription, climic name, authorization status, refill
authorization data, and reason for requiring compound pre-
scriptions, or any combination thereof.

A user (e.g., admimstrator 118, developer 120) may desire
to create an exemplary routine in response to a business
process for which system 100 has no automated process in
place to accomplish. The business process may be related to
a customer service need such as the editing or cancelling of
an order. Referring to FIG. 3, there 1s illustrated an exem-

10

15

20

25

30

35

40

45

50

55

60

65

20

plary tflow chart for a method of creating an exemplary
pre-programmed routine 1n accordance with an embodiment
of the present disclosure. The method 300 may include the
step 302 of creating one or more new pre-programmed
clement types and/or a new instance of an exemplary
routine. A pre-programmed element type may refer to a
name given to a pre-programmed element (e.g., rxmTrans-
mission, cancelpetscriptionrelease). The method 300 may
include the step 304 of creating a new exemplary routine for
cach pre-programmed element included in the instance of
the exemplary routine. The new exemplary routine may
define the sequence of execution for the pre-programmed
clements imncluded 1n the nstance of the exemplary routine.
The method 300 may include the step 306 of creating
computer executable code for each pre-programmed ele-
ment type created 1n step 302. The creation of computer
executable code may be accomplished by a developer 120.

The method 300 may include the step 308 of creating
computer executable code or a custom process module
(CPM) that 1s configured to trigger creation of the instance
of the exemplary routine. The method 300 may include the
step 310 of implementing business rules to call the code or
CPM created 1n step 308 when pre-defined criteria are met.
For example, at step 310 an administrator may define events
that trigger the creation of an instance of an exemplary
routine for execution of the instance of the exemplary
routine to complete the relevant task (e.g., processing a
return to inventory after a product order has been canceled).

Reterring to FIG. 4, there 1s 1llustrated an exemplary flow
chart for a method of creating an instance of an exemplary
routine 1n accordance with an embodiment of the present
disclosure. The method 400 may include the step 402 of
initiating a new instance of an exemplary routine. The
initiation of a new instance of an exemplary routine may be
caused by an existing business process CPM and/or a trigger
within existing code operating within one or more servers of
system 100 (e.g., a trigger set within a pre-programmed
clement running 1n an instance of an exemplary routine).
Initiating an nstance of an exemplary routine may include
starting execution of code that creates a new instance of the
exemplary routine. The step 402 may be 1nitiated automati-
cally (e.g., by a trigger) or by a user (e.g., an administrator
118, a developer 120). For example, a disposition on an
incident being updated in database 110 and/or an inbound
email having a specific subject being added to database 110.
The method 400 may include the step 404 of automati-
cally identifying the pre-programmed elements that are
included in the instance of the exemplary routine mitiated 1n
step 402. A processing LU operating in connection with
processing server 102 may be configured to perform step
404. For example, the molecule utility function of the
processing LU may 1dentity the pre-programmed elements
included 1n the instance of the exemplary routine. The
method 400 may include the step 406 of determining
whether the pre-programmed elements 1dentified in step 404
should be cancelled. For example, in step 406 it may be
determined whether the type of pre-programmed element
and/or mstance of the exemplary routine allows duplicates.
An example of a pre-programmed element that allows
duplicates may be an element that 1s configured to write a
log file. An example of an 1nstance of an exemplary routine
that does not allow duplicates may be an instance of an
exemplary routine that sends an electronic message to a
customer. If the pre-programmed elements should be can-
celled, the method 400 may progress to step 408 in which
existing 1nstances of pre-programmed elements not 1 a
locked or complete state, that are included 1n the instance of




US 11,636,006 B2

21

the exemplary routine, are set to a cancelled state. If the
pre-programmed elements should not be cancelled, the
method 400 may progress to step 410 1n which an instance
of each required pre-programmed element, as defined by the
instance of the exemplary routine, 1s created 1n database 110.
The processing server 102 may be configured to perform
steps 406-410 of method 400.

Referring to FIG. 5, there 1s illustrated an exemplary flow
chart for a method of executing instances ol pre-pro-
grammed elements 1n accordance with an embodiment of the
present disclosure. The method 500 may include the step
502 of requesting pending pre-programmed elements at a
predetermined interval (in FIG. § the predetermined interval
1s one minute). The pre-determined interval may be 30
seconds, 60 seconds, 90 seconds, 120 seconds, 150 seconds,
or 180 seconds. The monitoring server 104 may be config-
ured to perform step 502 (e.g., by access a monitoring LU).
The method 500 may include the step 504 of 1dentiiying the
next pre-programmed element for each mstance of a pending,
exemplary routine. The processing server 102 may be con-
figured to perform step 504. The method 500 may include
the step 506 of submitting the pre-programmed elements
identified 1n step 504 for parallel processing. The step 506
may further include returning the pre-programmed elements
identified in step 504 to the monitoring server 104. For
example, a list of IDs of the instances of pre-programmed
clements that are pending are sent to monitoring server 104.
In some embodiments, the IDs included in the list are
specific to each istance of the pre-programmed elements.
For example, there may be two unique IDs i1dentifying
different 1nstances of the same pre-programmed eclement.
The processing server 102 may be configured to perform
step 506.

The method 500 may include the step 508 of initiating the
parallel requests to process the pre-programmed elements.
The method 500 may include the step 510 of determining
whether there are pre-programmed elements to be pro-
cessed. If there are pre-programmed elements to be pro-
cessed, the method proceeds to step 312 in which the next
ID corresponding to a pre-programmed element 1s selected.
In step 512, the system 100 may be configured to divide the
total number of pending instances of pre-programmed ele-
ments by the number of parallel requests, each request being
assigned a set of IDs corresponding to instances of pre-
programmed elements to iterate through. For example, pend-
ing instances of a pre-programmed element may be parsed
into groups for parallel processing. The number of pending
instances of pre-programmed elements that can be included
in a single group of istances for parallel processing may be
a configurable amount (e.g., 10, 20, 50, or 100 instances for
cach group for parallel processing). If there are no pre-
programmed elements to be processed, execution may be
terminated.

The method 500 may also proceed to step 514 following
step 512 to determine if there 1s suflicient time to process an
instance ol the pending pre-programmed element. For
example, the monitoring server 104 may determine, based
on the frequency established 1n step 502 (e.g., one minute),
if there 1s suflicient time remaining to process an istance of
the pending pre-programmed element. The method 500 may
include the step 516 of transmitting the pre-programmed
clement ID and the remaining time determined in step 514
to the worker server 106. The monitoring server 104 may be
configured to perform steps 508 through 516. The method
500 may include the step 518 of identifying the pre-pro-
grammed element type and executing the code associated
with the pre-programmed element type. The worker server

10

15

20

25

30

35

40

45

50

55

60

65

22

106 may be configured to perform step 518. The method 500
may include the step 520 of determining whether an execut-
ing pre-programmed element 1s defined as “long-runming”.
A long-running pre-programmed element may be a pre-
programmed element that takes an amount of time to finish
execution that 1s greater than a predefined timeout value. For
example, a predetermined timeout value may be five min-
utes and pre-programmed element A may take ten minutes to
execute, resulting i pre-programmed element A being
defined as long-running.

If the pre-programmed element 1s defined as long running,
the method may proceed to step 522 to set the pre-pro-
grammed element as having a locked state. A locked state of
an instance of a pre-programmed element may allow execu-
tion of that instance of the pre-programmed element to
continue across multiple execution runs without execution
of said mstance being restarted. A single execution run may
refer to the execution of instances of pre-programmed
clements executing within the predetermined interval (e.g.,
one minute) defined in step 502. If the pre-programmed
clement 1s not defined as long-running, the method 500 may
proceed to step 524 to determine the outcome of the
executed pre-programmed element. If the pre-programmed
clement successiully executed, the method 500 may proceed
to step 526 to mark the pre-programmed element as com-
plete. It the pre-programmed element fails to execute or runs
out of time, the method 500 may proceed to step 528 to
increase the retry count associated with the instance of that
pre-programmed element. The method 500 may include the
step 530 of transmitting the status of an instance of the
pre-programmed element to monitoring server 104. The
method 500 may return to step 512, following the transmis-
sion of the status in step 530, such that the next ID
corresponding to a pre-programmed element 1s selected and
steps 514-530 are repeated for each pre-programmed ele-
ment to be processed. The processing server 102 may be
configured to perform steps 520 through 530.

Referring to FIGS. 6 A-6H, there 1s shown an exemplary
user interface for the creation of a new exemplary routine
and/or pre-programmed elements 1n accordance with an
embodiment of the present invention. The exemplary user
interfaces shown 1n FIGS. 6 A-6H may be displayed on a
client device 108 1n communication with processing server
102. Processing server 102 may transmit the user-interfaces
shown 1 FIGS. 6 A-6H for display on client device 108 via
a network (e.g., wireless network, ethernet network). The
user interfaces illustrated 1n FIGS. 6A-6B and 6D-6H may
be a portion of an administrator Ul, as described above with
reference to FIG. 1. Referring to FIG. 6A, an administrator
118, via client device 108, may define a new 1nstance of an
exemplary routine (e.g., may iput a label for the new
instance of the exemplary routine). Referring to FIG. 6B, the
administrator 118, via client device, may provide mput to
create a new pre-programmed element type to be included 1n
the instance of the exemplary routine shown 1n FIG. 6A. In
this example, the administrator 118 creates a new pre-
programmed element labeled “cancelpetscriptionreleasesen-
demail”.

The administrator 118 may input a label that 1s represen-
tative of the task that the pre-programmed element 1s con-
figured to accomplish. In this example the pre-programmed
clement 1s configured to notily a customer via an electronic
message (e.g., email) that their prescription has been can-
celled, which may occur after the prescription cancellation
1s successful. In one embodiment, the successful execution
of an instance of an exemplary routine may be the trigger
event for creation of a new 1nstance of an exemplary routine.




US 11,636,006 B2

23

For example, an instance of exemplary routine A success-
fully executes which triggers creations of an instance of
exemplary routine B to be executed. Referring to FIG. 6C,
the administrator 118, following the creation of the new
pre-programmed element 1n FIG. 6B may coordinate with a
developer 120 to develop the computer executable code for
accomplishing the desired task. FIG. 6C displays an
example of computer executable code, written by a devel-
oper 120, to accomplish the task of the pre-programmed
clement created 1n FIG. 6B. The computer executable code,
written by the developer 120, may be self-contained and
may be used across a plurality of diflerent exemplary
routines.

Referring to FIG. 6D, the administrator 118, via client
device 108 may define an exemplary routine. The displayed
administrator UI shown here may be configured to allow the
administrator to input the exemplary routine, select a spe-
cific pre-programmed element included 1n the exemplary
routine, and define the sequence number associated with
said pre-programmed element. In the example shown here,
the pre-programmed element “cancelpetscriptionrelease™ 1s
assigned a sequence number of “1” indicating that*“cancel-
petscriptionrelease™ 1s to be the first pre-programmed ele-
ment executed 1n this exemplary routine. Referring to FIG.
6E, the administrator 118, via client device 108, may add
another pre-programmed element to the exemplary routine
created m FIG. 6D. In this example, the administrator 118,
adds the pre-programmed eclement “cancelpetscriptionre-
leasesendemail” to the exemplary routine and assigns a
sequence number of “2”” indicating that “cancelpetscription-
releasesendemail” 1s to be the second pre-programmed ele-
ment executed in this exemplary routine.

Referring to FIGS. 6F-6H, there 1s 1llustrated an exem-
plary user iterface for creating and executing a new
instance of an exemplary routine. Referring to FIG. 6F, an
incident may trigger creation of an instance of an exemplary
routine. In this example, the instance created i1s for the
exemplary routine created by the admimstrator 118 1n FIG.
6A.

The mcident that triggers creation of the instance of an
exemplary routine may be any one of: administrative work-
flow, custom code, or a new 1nstance of a pre-programmed
clement (of a specific type) being created. Referring to FIG.
6G, upon creation of a new 1nstance of an exemplary routine,
the processing server 102 1s configured to create mstances of
the pre-programmed elements included in the exemplary
routine. The stances of the pre-programmed elements may
be stored in database 110. In the example shown here, an
instance report for the instances of pre-programmed ele-
ments 1s displayed. The displayed instance report may
include information associated with each instance of pre-
programmed elements including: an ID, the label, a state
(e.g., the status), a retry count, associated data, contact data,
an 1ncident ID, an organization number, and the date last
updated. Referring to FIG. 6H, the computer executable
code for each instance of the pre-programmed elements 1s
executed 1n sequence. A display of a completed instance of
a pre-programmed element 1s displayed in FIG. 6H.

Referring to FIG. 61 there 1s shown a customer service
user interface displayed on a client device 108 1n accordance
with an exemplary embodiment of the present nvention.
The processing server 102 may be configured to transmit the
customer service user interface for display on the client
device 108. The customer service user interface may include
information specific to a customer and/or an order placed,
via storefront server 107, by said customer. In the customer
service Ul example displayed in FIG. 61, information relat-

10

15

20

25

30

35

40

45

50

55

60

65

24

ing to the customer and an order placed by the customer 1s
shown. The customer service Ul may display user-operable
buttons configured to allow an admin 118 to take actions
related to the displayed order and/or customer. For example,
the customer service Ul may display buttons that allow an
admin 118 to request a return of the ordered product, email
the customer, associate a pet with the customer, and/or edit
customer contact information. The processing server 102
may be configured to, 1n response to an input from an admin
118 on the customer service Ul, trigger creation of an
instance of an exemplary routine corresponding to the mput
from the admin 118. For example, an admin 118 may 1nput
on customer service Ul to request a return for a product
ordered by the customer. In response to the input from admin
118, the processing server 102 may execute code to create an
instance ol an exemplary routine configured to process a
request to return said product and store said instance of the
exemplary routine in database 110 for execution.
Referring to FIG. 7, there is illustrated an exemplary
flowchart for a method of execution of an instance of an
exemplary routine. The method 700 shown 1n FIG. 7 rep-
resents an exemplary method implemented by system 100
without any interruptions (e.g., failure to execute pre-pro-
grammed e¢lements, changes 1n underlying data). The
method 700 may start at step 702 1n response to a trigger
event (e.g., an mcident). The trigger event may be an
organization object being toggled to “digital”’. An organiza-
tion object being toggled to “digital” may refer to an
indication in database 110 that a veterinary clinic should use
a prescription authorization service oflered by a host of the
processing server 102 (e.g., Petscriptions by Chewy) or a fax
to authorize prescriptions. The method 700 may include step
704 where an instance of an exemplary routine 1s created.
The method 700 may 1nclude the step 706 where instances
of pre-programmed elements included 1n the mstance of the
exemplary routine are created. The method 700 may include
the step 708 where processing 1s delayed until Cron
executes, which may refer to a time-based scheduler that
defines a configurable set of time between execution of
different 1instances of pre-programmed elements. The
method 700 may include the step 710 where an instance of
a pre-programmed element that 1s listed as the first pre-
programmed element 1n a sequence defined by the instance
of the exemplary routine 1s executed. The method 700 may
include the step 712 where processing 1s delayed. The
method 700 may include the step 714 where one or more
instances ol pre-programmed elements are executed in par-
allel. In some embodiments, step 710 may also include
parallel execution of instances of pre-programmed elements.
In some embodiments, step 714 executes only one 1nstance
of a pre-programmed element. The instances ol pre-pro-
grammed elements executed 1n step 714 may correspond to
the next sequence of pre-programmed elements as defined
by one or more stances of exemplary routines. The method
700 may include step 716 where processing 1s delayed. The
method 700 may 1nclude step 718 where an instance of a
pre-programmed element next 1n the sequence 1s executed.
It will be understood that the method 700 1s an example, and
that 1n practice any number of instances of pre-programmed
clements may be executed according to a corresponding
sequence defined by an instance of an exemplary routine.
In some embodiments, mstances of exemplary routines
that have successtully executed and/or failed to execute are
stored as records 1n database 110 for auditing purposes. An
instance of an exemplary routine, once 1t has successiully
executed or failed to successtully execute, may have the
status 1ndicator updated respectively. For example, an




US 11,636,006 B2

25

instance of an exemplary routine may include a *“‘success”
indicator for each instance of pre-programmed elements
included in the instance of the exemplary routine that
successiully executed and a ““failed” status indicator for
instances ol pre-programmed elements that failled to
execute.

Referring to FIG. 8, there 1s illustrated an exemplary
flowchart for a method of execution of an instance of an
exemplary routine where a pre-programmed element fails to
execute. The method 800 may be similar to the method 700,
shown 1 FIG. 7, except that an instance of a pre-pro-
grammed element fails to execute. Specifically, the steps 802
to 814 of method 800 correspond to the steps 702 to 714 of
method 700 and will not be repeated for sake of brevity. In
the method 800, execution of the second sequence of an
instance ol a pre-programmed element fails. Following the
istance of the pre-programmed element failing to execute,
the method 800 includes the step 816 of setting the pre-
programmed element to a failed status. The method 800 may
include a delay 1n processing at step 818. The method 800
may include the step 820 of attempting execution of the
previously failed pre-programmed element one more time.
In the method 800, the attempt at executing the instance of
the pre-programmed element 1n step 820 1s successiul and
the 1nstance of the pre-programmed element executes. Fol-
lowing the successful execution of the mstance of the
pre-programmed element, method 800 proceeds to steps 822
to 824, which correspond to steps 716 and 718 of method
700 and will not be described again for sake of brevity.

Referring to FIG. 9, there 1s illustrated an exemplary
flowchart for a method of execution of an instance of an
exemplary routine where a pre-programmed element per-
manently fails to execute. The method 900 1s similar to the
method 800 except that the instance of the pre-programmed
clement that fails to execute does not successiully execute
alter a certain number of attempts. Specifically, the steps 802
to 818 of method 800 correspond to the steps 902 to 918 of
method 900 and will not be repeated for sake of brevity. In
this example, after the first reattempt fails, the method 900
returns to step 916 and increments a retry count associated
with the instance of the pre-programmed element by 1. The
method 900 then attempts, a certain number of times, to
successiully execute the instance of the pre-programmed
clement. In this example, the total number of attempted
retries 1s five (a first reattempt followed by four more). The
instance of the pre-programmed element fails to execute 1n
cach attempt and a retry threshold is reached. The retry
threshold may be a predetermined amount established by a
user (e.g., administrator 118, developer 120).

Following the reattempts to execute the instance of the
pre-programmed element, the method 900 may include step
922 1n which the mstance of the pre-programmed element 1s
marked as failed. The step 922 may also include adding the
instance of the pre-programmed element to a list of 1nstances
of pre-programmed elements that failed to execute after a
certain number of retries. The method 900 may include the
step 924 of automatically generating and sending a report
that notifies administrators 118 and/or developers 120 of all
instances of pre-programmed elements that failed to execute
alter a certain number of retries. The system 100 may be
configured to automatically perform step 924 at a predeter-
mined interval (e.g., every 6 hours, every 12 hours, every 24
hours, every 3 days, every week). The method 900 may
include the step 926 of resolving the error causing the failure
of the instance of the pre-programmed element. For
example, the error may be caused by a network cable not
being plugged 1n, which requires an adminmistrator to manu-

5

10

15

20

25

30

35

40

45

50

55

60

65

26

ally connect a network cable. In other embodiments the
system 100 may be configured to automatically resolve the
error. The method 900 may include the step 928 of manually
resetting the retry count for the instances of the failed
pre-programmed elements. Step 928 may be performed after
the error has been resolved. In some embodiments, resetting
the retry count for the failed instances of pre-programmed
clements may cause execution to be reattempted for said
instances. The method 900 may include the step 930 of
setting the istance of the failed pre-programmed element to
complete. Step 930 may be performed after an admin 118 or
developer 120 has manually fixed the error which caused the
instance of the pre-programed element from step 920 to fail.
Following step 930, method 900 proceeds to steps 932 to
934 which correspond to steps 822 and 824 of method 800
and will not be described again for sake of brevity.
Referring to FIG. 10, there 1s illustrated an exemplary
flowchart for a method of execution of an exemplary routine
with a long-running pre-programmed element. The method
1000 may be similar to the method 700 shown 1n FIG. 7,
except that there 1s an instance of a long-running pre-

programmed element to be executed. Specifically, the steps
1002 to 1014 of method 1000 correspond to the steps 702 to

714 of method 700 and will not be repeated for sake of
brevity. In the method 1000, there 1s an instance of a
long-running pre-programmed element that begins execut-
ing at step 1014. The method 1000 includes the step 1016 of
marking the instance of the long-runming pre-programmed
clement as “long-running” and setting it to a “locked” status.
The method 1000 includes the step 1018 of delaying pro-
cessing. The method 1000 includes the step of determining
whether the instance of the long-running pre-programmed
clement 1s complete. I the mstance long-running pre-pro-
grammed element has not finished executing, the method
1000 repeats step 1018 (e.g., continues to delay processing).
If the 1mnstance of the long-running pre-programmed element
has finished executing, the method 1000 continues to steps
1022 and 1024 which correspond to steps 716 and 718 of
method 700 and will not be described again for sake of
brevity.

Retferring to FIG. 11, there is illustrated an exemplary
flowchart for a method of execution of an instance of an
exemplary routine where the exemplary routine 1s updated
mid-execution. The method 1100 may be similar to the
method 700 shown in FIG. 7, except that there 1s the
exemplary routine 1s redefined while an instance of the
exemplary routine 1s being executed. Specifically, the steps
1102 to 1112 correspond to the steps 702 to 712 of method
700 and will not be repeated for the sake of brevity. In the
method 1100, following the delay 1n processing at step 1112,
an administrator 118, at step 1114, redefines the exemplary
routine that the instance currently being executed corre-
sponds to. In this example, an administrator 118 removes a
pre-programmed element from the exemplary routine. It will
be understood that a modification to the exemplary routine
may nclude any modification that would cause an instance
ol an exemplary routine, created subsequent to the instance
currently executing and the modification being performed,
to execute differently than a previously executed and/or
currently executing instance of said exemplary routine. For
example, a modification may include a modification to the
sequence defined by the exemplary routine, the addition of
a pre-programmed element to the exemplary routine, and/or
the removal of a pre-programmed element from the exem-
plary routine.

The method 1100 proceeds, at step 1116, to execute the
instances of pre-programmed elements that were included 1n




US 11,636,006 B2

27

the 1nstance of the exemplary routine prior to the adminis-
trator 118 removing the pre-programmed element at step

1114. Following step 1114, the method 1100 proceeds to
steps 1116 through 1120 that correspond to steps 714 to 718
of method 700 and will not be described again for sake of
brevity. In this example, the grouping was redefined while an
instance of it was executing, and therefore the instance may
be executed based on the grouping prior to the change made
by the administrator 118 at step 1114. However, future
instances of the same grouping may execute according to the
change made by the admimstrator 118 1n step 1114. It will
be understood that the redefining of the exemplary routine
instances may happen at any point after step 1104 and prior
to termination of the instance of the pre-programmed ele-
ment without affecting the outcome of the instance of the
pre-programmed element.

In some embodiments, some instances ol exemplary
routines are the same (e.g., contain the same or substantially
the same code and point to the same data or types of data).
In some embodiments, some of the plurality of instances of
exemplary routines differ from one another (e.g., the code
may have been changed or the data may have changed in an
intervening time period between the creation of mstances of
exemplary routines). For example, the code associated with
a particular pre-programmed element be may be changed
after a first instance of an exemplary routine 1s created. That
first mstance would persist in that the original pre-pro-
grammed element code would remain unchanged, but future
instances of such exemplary routine would reflect the new
code. For example, 1n some instances there may be instances
of exemplary routine X stored in database 110 and 1nstances
of different exemplary routines Y stored in database 110. For
example, a first mstance ol exemplary routine X may be
configured to cancel an order for customer A (e.g., the first
instance was created 1n response to an incident to cancel an
order from customer A) and a second instance of exemplary
routine X may be configured to cancel an order for customer
B (e.g., the second instance was created in response to an
incident to cancel an order from customer B). Both the first
and second 1nstance of exemplary routine X may be stored
in database 110. At a later point in time there may be a
modification to exemplary routine X, and subsequent to that
point 1n time there may be an 1nstance of exemplary routine
X created to cancel an order for customer C. In one
embodiment, the configuration of the istances of the exem-
plary routine for customer A and customer B would be the
same and would differ from the instance of the exemplary
routine for customer C.

Referring to FIG. 12, there is illustrated an exemplary
flowchart for a method of execution of an instance of an
exemplary routine where underlying records are modified
mid-execution. The method 1200 may be similar to the
method 700 shown 1n FIG. 7, except that underlying records
required for the instances of the pre-programmed elements
to execute are modified mid-execution. Specifically, the
steps 1202 to 1212 correspond to steps 702 to 712 of method
700. Following the delay in processing 1212, an adminis-
trator modifies a record required by one or more of the
instances of pre-programmed elements created 1n step 1206.
The method 1200 continues to step 1216 to cancel the
instance of the exemplary routine. The method continues to
step 1218 to create a new instance of the exemplary routine
which may correspond to the same exemplary routine for
which the instance cancelled 1n step 1216 was originally
created. To put 1t another way, 1n steps 1216 and 1218, the
currently executing instance of the exemplary routine 1is
cancelled and restarted. Following the restart at step 1218,

5

10

15

20

25

30

35

40

45

50

55

60

65

28

the method 1200 continues to steps 1220 through 1230,
which correspond to steps 706 to 718 of method 700 and will
not be described again for sake of brevity.

Retferring to FIG. 13, there 1s illustrated an exemplary
flowchart for a method of execution of an instance of an
exemplary routine where underlying records are modified
mid-execution. The method 1300 may be similar to the
method 1200, except that the instance of the exemplary
routine that i1s currently executing i1s not cancelled and
restarted. Steps 1302 to 1314 correspond to steps 1202 to
1214 of method 1200. However, 1n method 1300, following
the modification of records, the instance of the exemplary
routine created at step 1304 continues to execute through
steps 1316 to 1322. Put another way, regardless of the
modification of the underlying records, the currently execut-
ing instance 1s not cancelled and restarted. Steps 1316 to
1322 correspond to steps 712 to 718 of method 700 shown
in FI1G. 7, and will not be described again for sake of brevity.

Referring to FIG. 14, there 1s shown a flow diagram of an
exemplary method 1400 for performing a fault tolerant
automated sequence of computer implemented tasks. In an
embodiment, the method 1400 includes a step 1402 of
presenting, for selection by a user (e.g., administrator 118),
a plurality of pre-programmed elements, each pre-pro-
grammed element being independently executable relative
cach other pre-programmed element such that an output of
any of the pre-programmed elements 1s not a direct input to
any other of the pre-programmed elements. For example, an
administrator 118 via a client device 108 1n communication
with processing server 102 displays the admin Ul to allow
the administrator to create an instance of an exemplary
routine as shown in FIGS. 6A-6B. In an embodiment,
method 1400 also includes the step 1404 of receiving from
the user a selection of one or more of the pre-programmed
clements and a sequence for performing each pre-pro-
grammed elements 1n the selection to form an exemplary
routine. For example, an administrator 118, via client device
108, creates an exemplary routine as shown in FIGS. 6E-6F.

In some embodiments, the method 1400 also includes the
step 1406 of creating an instance of the exemplary routine 1n
response to a request to implement the exemplary routine. A
request to implement an exemplary routine may be a request
to perform a series of tasks 1n response to an incident, as
described above. In some embodiments, the 1instance of the
exemplary routine includes an instance of each of the
selected pre-programmed eclements arranged for perfor-
mance 1n accordance with the sequence and 1s configured to
perform tasks defined by the pre-programmed elements and
the sequence. For example, at steps 702 to 706 of method
700, an instance of an exemplary routine i1s created 1n
response to a trigger event and instances ol each pre-
programmed element included 1n the exemplary routine are
created. In an embodiment, the method 1400 also includes
the step 1408 of mitiating implementation of the instance of
the exemplary routine by mmitiating performance of the
instances of the pre-programmed elements 1n accordance
with the sequence. For example, at steps 710 to 718 of
method 700, the instances of the three pre-programmed
clements included 1n the exemplary routine are executed 1n
sequence. In an embodiment, the method 1400 also includes
the step 1410 of detecting an error that prevents the comple-
tion ol at least one istance of the pre-programmed ele-
ments. For example, 1n step 816 of method 800, an instance
of the second pre-programmed eclement 1 the sequence
defined by an instance of an exemplary routine 1s detected.
In an embodiment, the method 1400 also includes the step
1412 of terminating the implementation of the istance of




US 11,636,006 B2

29

the exemplary routine upon detection of the error without
user intervention. For example, in steps 916 to 922 of
method 900 an instance of a pre-programmed element fails
alter a certain number of retries and the instance of the
exemplary routine 1s automatically terminated.

In some embodiments, the independently executable pre-
programmed elements of method 1400 may not require data
generated from another pre-programmed element 1n order to
complete execution. In some embodiments, each 1ndepen-
dently executable pre-programmed element completes using
data from a data field, where the data 1s at least one of: 1)
populated 1n the data field before the creating of the instance
of the exemplary routine; and 11) updated after the initiating
of the implementation of the instance. For example, each
instance of a pre-programmed element may use data stored
in database 110 that was stored prior to the creation of the
instance of the pre-programmed element or data that was
updated in database 110 after the instance of the pre-
programmed element was created.

In some embodiments, the method 1400 may include
transmitting a notification that at least one instance of a
pre-programmed element did not execute to completion and
the notification includes at least one of: 1) all instance of
exemplary routines that are in a failed state at the time the
notification 1s transmitted; 1) the instances of a pre-pro-
grammed elements associated with each instance of exem-
plary routines that are in the failed state; 111) the instance of
the exemplary routine; 1v) a number of retries associated
with each instance of the exemplary routine in the failed
state; and v) a database object associated with each instance
of the exemplary routine 1n the failed state. For example, 1n
step 924 of method 900 a report 15 sent to administrators 118
including a listing of all instances of pre-programmed ele-
ments that failed to execute. Administrators 118 may then
review and/or analyze the instance of the pre-programmed

clement and/or the associated exemplary routine on the
system 100 to i1dentily error(s) that caused the instance to
tail.

In some embodiments, the method 1400 includes updat-
ing one or more of the pre-programmed elements of the
exemplary routine after the imtiating implementation step
and creating a subsequent instance of the exemplary routine
in response to a subsequent request to implement the exem-
plary routine after the updating step, the subsequent instance
of the exemplary routine including an 1nstance of the one or
more updated pre-programmed elements of the exemplary
routine. For example, in the method 1100 shown 1n FIG. 11,
an administrator 118 updates an exemplary routine corre-
sponding to a currently executing instance of said exemplary
routine. The instance of said grouping completes execution
based on the grouping prior to the update and subsequent
instances ol said grouping would execute based on the
update from the administrator at step 1114.

In some embodiments, the method 1400 may include
simultaneously implementing a plurality of instances of the
same exemplary routine. For example, the system 100 1s
configured to execute, in parallel, a plurality of instances of
the same exemplary routine (e.g., four istances of exem-
plary routine A being executed 1n parallel). In some embodi-
ments, the method 1400 may include simultaneously 1mple-
menting at least one instance of the exemplary routine and
at least one 1nstance of the subsequent exemplary routine.
For example, the system 100 may be configured to execute
an 1nstance of an exemplary routine according to method
1100 and simultaneously execute an 1nstance of the updated
exemplary routine based on the updates made at step 1114.

10

15

20

25

30

35

40

45

50

55

60

65

30

In some embodiments, at least some of the instances of
the exemplary routine are 1nmitiated at a different time than
other instances of the same exemplary routine that are being
simultaneously implemented. For example, three instances
ol exemplary routine A may be executed in parallel at a first
time, and at a second time different than the first time, a
fourth instance of exemplary routine A may be executed. In
some embodiments, updating the one or more of the pre-
programmed elements 1includes receiving and storing

revised code for performing a task. For example, 1n step
1114 of method 1100 the updates made to the exemplary
routine may include an update to the executable code of a
pre-programmed element included in the grouping.

In some embodiments, the method 1400 may include,
alter the detecting step and before the terminating step,
attempting to re-implement at least one instance of the
pre-programmed elements associated with the detected
error. For example, in steps 816-820 of method 800 an
instance of a pre-programmed element, which failed to
execute, 1s retried. In some embodiments an error 1s detected
based upon a pre-defined number attempts to execute an
instance of a pre-programmed element. In one embodiment,
the pre-defined number of attempts 1s stored 1n an attempts
field 1n the database. In some embodiments, each attempt to
execute corresponds to an incremented value of a retry count
in a retry field (e.g., up to the pre-defined number of retry
attempts 1s performed). In some embodiments, the method
1400 may include detecting a trigger event that triggers,
without user intervention, a re-1nitiation of the performance
of the instance of at least one of the pre-programmed
clements and wheremn an error state that prevents the
completion of the at least one 1nstance arises after a subse-
quent trigger event 1s detected following a pre-selected
number of re-mitiations of the performance of the at least
one instance of the pre-programmed element.

In some embodiments, the method 1400 may include the
steps of defining a retry threshold value for each of the
pre-programmed elements, and after the detecting step and
before the terminating step, attempting to re-implement the
at least one instance of the pre-programmed elements asso-
ciated with the detected error in accordance with the retry
threshold value. For example, in the method 900 shown 1n
FIG. 9, the system 100 1s configured to retry an instance of
a failed pre-programmed eclement i steps 916-920 five
times.

In some embodiments, the method 1400 may include the
steps of during implementation of the instance of the exem-
plary routine, detecting the absence of prescription autho-
rization data needed to complete the implementation of the
instance of the exemplary routine, based on the absence of
the prescription authorization, automatically transmitting an
authorization form to an authorizing entity, receiving an
authorization facsimile of a completed form 1n response to
the automatic transmitting and automatically populating a
prescription authorization field based upon the received
facsimile. For example, during execution of an instance of
an exemplary routine, the system 100 may be configured to
determine that there 1s no record of a prescription authori-
zation required for an instance of a pre-programmed element
to perform 1ts intended task. In response, the system 100
may transmit a prescription authorization form to an autho-
rizing enfity (e.g., a veterinarian) who then receives and
inputs the mformation required by the prescription authori-
zation form. The authorizing entity may transmit the com-
pleted prescription authorization form in the form of a
facsimile. The system 100 may be configured to receive the




US 11,636,006 B2

31

tacsimile and automatically update/populate records 1n data-
base 110 based on the information 1n the recerved facsimile.

In some embodiments, the method 1400 includes receiv-
ing a datafile containing optical character recognition data
associated with the authorization facsimile. For example, the
system 100 may be configured to perform optical character
recognition on the recerved facsimile 1n order to convert the
information on the received facsimile to computer readable
text which can then be updated/populated 1n database 110. In
some embodiments, the method 1400 may include automati-
cally storing the datafile containing optical character recog-
nition data in a secure database based upon the automatically
populating the prescription authorization field. In some
embodiments, regular expression matching logic 1s applied
to the datafile containing optical character recogmition data
to 1dentily data associated with at least one of: owner name,
pet name, record identifier for a prescription, clinic name,
authorization status, refill authorization data, reason {for
requiring compound prescription and combinations thereof.
In some embodiments, the simultancously implemented
plurality of instances of the exemplary routines are complex
operations related to prescription authorization implemen-
tations as described herein (e.g., by automatically processing,
fax prescriptions). In some embodiments, at least 100 com-
plex routines are performed simultaneously per minute.

In some embodiments, the method 1400 further includes
the steps of adding or removing at least one selected
pre-programmed element from the exemplary routine after
the initiating implementation step, and creating a subsequent
instance of the exemplary routine in response to a subse-
quent request to implement the exemplary routine after the
adding or removing step, the subsequent instance of the
exemplary routine reflecting the addition or removal of the
at least one selected pre-programmed element 1n accordance
with the adding or removing step. For example, 1n step 1114
of method 1100, the administrator 118 may update the
exemplary routine having a corresponding instance which 1s
currently executing to remove a pre-programmed element.
The 1nstance, which 1s currently executing, executes based
on the grouping and/or exemplary routine prior to the update
at step 1114. However, subsequent instances may execute
based on the update and would therefore not include an
instance of the pre-programmed element which was
removed 1n step 1114 (e.g., the method 700 of FIG. 7
terminating aiter step 714).

In some embodiments, one or more data objects are not
populated at the time of creating of an instance of the
exemplary routine but are populated later 1n order for the
instance of the exemplary routine to complete. For example,
when selecting a new pre-programmed element an admin-
istrator would preferably i1dentity the data that are required
for the particular prep-programmed element (e.g., incident
data, contact data, organization data shown in FIG. 2).
Alternatively, the particular data required by the pre-pro-
grammed element may be automatically i1dentified through
the execution of separate pre-programmed elements. In one
embodiment, when an instance of a pre-programmed ele-
ment 1s created at runtime, the system verifies that a record
associated with the required data 1s associated with the
request (e.g., the creation of the istance). For example, the
system 100 may be configured to use specific data such that
the system 100 may verily that a record associated with the
specific data 1s associated with the creation of the istance
of the exemplary routine. When an instance of a pre-
programmed eclement requiring the said specific data 1s
requested, the system 100 may be configured to verily that
a record associated with the required data elements, stored

10

15

20

25

30

35

40

45

50

55

60

65

32

in database 110, 1s associated with the request for the
instance of the pre-programmed element. In some embodi-
ments, logging exists out-of-band. For example, the system
100 may be configured to, in the event that an instance of a
pre-programmed element fails to execute, detect the failure
to execute, log the failure to execute, and transmit an

indication that the instance of the pre-programmed element
failed to execute (e.g., steps 916-924 of method 900).

In some embodiments, the method 1400 includes the steps
of receiving from a user, trigger instructions defining at least
one trigger condition, and wherein the creating of an
instance of the exemplary routine 1s based upon a recogni-
tion that at least one of the trigger conditions has been met.
For example, an administrator 118 may, via the admin UI,
define incidents that trigger the creation of an 1nstance of an
exemplary routine. In some embodiments, at least one
trigger condition 1s a change in data state (e.g., change in
underlying data). In some embodiments, each pre-pro-
grammed element operates on one or more of: 1) a defined
data set; and 11) a variable data set (e.g., data populated 1n a
particular data field may change over time). A defined data
set may be a row within a database table, stored in database
110, and the associated fields that a pre-programmed ele-
ment requires for execution. If one or more of the associated
fields 1s null, or has a value that 1s not expected by the
pre-programmed element, the system 100 may be configured
to prevent a crash by retrying execution of the instance of the
pre-programmed element as described 1n method 900.

In some embodiments, the method 1400 1ncludes the step
of, upon detecting the error that prevents the completion of
at least one instance ol the pre-programmed eclements,
receiving an intervention to complete the at least one
instance of the pre-programmed element. For example, 1n
steps 926-930 of method 900 a user (e.g., admin 118 or
developer 120) resolves the error (e.g., step 926) and resets
(e.g., decrements 1n step 928) the retry count and performs
execution of the exemplary routine. In some embodiments,
resetting of the retry count 1s automatically undertaken upon
the execution of an 1tervention. For example, upon resolv-
ing the error the system 100 may be configured to automati-
cally reset the retry count. In some embodiments, the
exemplary routine may include data object mapping that
defines for each exemplary routine the location of data
required by one or more pre-programmed elements within
the exemplary routine. For example, each exemplary routine
may 1nclude the 1D, and or name of the pre-programmed
clements required for the exemplary routine. In some
embodiments, the data object mapping 1s based upon at least
one of: 1) mapping data received in response to a prompt
presented to the user through a user interface; 11) a user
selection based upon a predefined menu of mapping options;
and 111) 1ndicia associated with a trigger condition induces
the creating of an instance of the exemplary routine. For
example, an email address required by an instance of a
pre-programmed element may be changed. In response to
that change, a new instance of the exemplary routine 1s
created (e.g., steps 1214 to 1230 of method 1200). In some
embodiments, the data object mapping 1s at least 1 part
defined within the pre-programmed elements.

In some embodiments, the method 1400 1ncludes the step
of simultaneously implementing one or more instances ol an
exemplary routine by implementing instances of pre-pro-
grammed elements 1n parallel. For example, 1n step 714 of
method 700 different instances of pre-programmed elements
are being executed in parallel. Those instances of pre-
programed elements may be instances of the same pre-




US 11,636,006 B2

33

programmed elements included in instances of the same
exemplary routine which 1s being executed by system 100 1n
parallel.

In some embodiments, the method 1400 mcludes the step
of simultaneously implementing one or more istances of an
exemplary routine by implementing instances of pre-pro-
grammed elements 1n series.

In some embodiments, the method 1400 1ncludes the step
of sequencing the performance of pre-programmed elements
by delaying instructions to implement a pre-programmed
clement until at least one of another pre-programmed ele-
ment achieves a predefined state. For example, the instances
ol pre-programmed elements executed in step 824 do not
happen until the mstance of the pre-programmed elements 1n
step 820 execute. In some embodiments, the predefined state
includes at least one of: 1) a completion state; 1) a failure
state. In some embodiments, the completion state includes at
least a partial completion and the failure state includes
fallure after a predetermined number of tries. In some
embodiments, the completion state includes at least one of:
1) complete; 11) partial complete; 111) failed to complete; 1v)
not started and v) delayed. The failed to complete state may
refer to an instance of a pre-programmed element that has
tailed, prior to a predetermined number of tries occurring, to
successiully execute. Put another way, in FIG. 9 steps
916-920, an 1nstance of a pre-programmed element may be
retried/attempted up to five times and failed attempts to
execute, up to the five times, may result 1n a “failed to
complete” status.

In some embodiments, at least one pre-programmed ¢le-
ment 1s a long-running pre-programmed element that 1s
programmed to cause other pre-programmed elements
within an instance of the exemplary routine, 1n which an
instance of the long-running element 1s included, to at least
one of: 1) pause execution until the long-running element
reaches a completion state; and 11) delay completion until the
long-running element reaches the completion state. For
example, 1n steps 1016 to 1020 1n method 1000 the method
1000 does not progress past step 1020 until the istance of
the pre-programmed element marked as having a locked
status 1n step 1016 1s complete.

In some embodiments, the method 1400 includes the steps
of: completing the instance of the exemplary routine using
the state of the respective instances ol pre-programmed
clements after the instance of the exemplary routine has
been created, wherein subsequent to the time the instance of
the exemplary routine has been created, a change 1s made to
the exemplary routine upon which the instance of the
exemplary routine 1s based, and interrupting the instance of
the exemplary routine after receiving a call to interrupt the
instance of the exemplary routine based upon call to create
a new 1nstance of the exemplary routine using a data site that
also used by the instance of the exemplary routine and the
dataset 1includes a flag set to cause the interruption of the
instance ol the exemplary routine.

In some embodiments, the method 1400 includes inter-
rupting execution of the instance of the exemplary routine
upon receipt of a triggering event. For example, the method
1200 at step 1216 cancels a pending instance of a pre-
programmed element and restarts execution of the instance
of the corresponding exemplary routine 1n response to a
change 1n underlying records at step 1214. In some embodi-
ments, the method 1400 includes interrupting execution of
the instance of the exemplary routine upon receipt of a
predetermined number of triggering events including at least
one of: 1) a network timeout; 11) a system error. In some
embodiments, the triggering event includes one or more of:

10

15

20

25

30

35

40

45

50

55

60

65

34

1) a change to a data record; or 1) a change to the pre-
programmed element. In some embodiments, each pre-
programmed element 1s fully executable without being
directly dependent upon data generated by of any other
pre-programmed element. In some embodiments, the
instance of the exemplary routine reaches a successiul
conclusion 11 all of the pre-programmed elements within the
instance of the exemplary routine are completed

It will be appreciated by those skilled 1in the art that
changes could be made to the exemplary embodiments
shown and described above without departing from the
broad inventive concepts thereof. It 1s understood, therefore,
that this invention 1s not limited to the exemplary embodi-
ments shown and described, but 1t 1s intended to cover
modifications within the spirit and scope of the present
invention as defined by the claims. For example, specific
features of the exemplary embodiments may or may not be
part of the claimed invention and various features of the
disclosed embodiments may be combined. Unless specifi-
cally set forth herein, the terms “a”, “an” and “the” are not
limited to one element but instead should be read as meaning
“at least one”.

It 1s to be understood that at least some of the figures and
descriptions of the invention have been simplified to focus
on elements that are relevant for a clear understanding of the
invention, while eliminating, for purposes of clarity, other
clements that those of ordinary skill in the art will appreciate
may also comprise a portion of the mnvention. However,
because such elements are well known in the art, and
because they do not necessarily facilitate a better under-
standing of the invention, a description of such elements 1s
not provided herein.

Further, to the extent that the methods of the present
invention do not rely on the particular order of steps set forth
herein, the particular order of the steps should not be
construed as limitation on the claims. Any claims directed to
the methods of the present invention should not be limited
to the performance of their steps 1n the order written, and one
skilled 1n the art can readily appreciate that the steps may be
varted and still remain within the spirit and scope of the
present mvention.

What 1s claimed 1s:

1. A method for performing a fault tolerant automated
sequence of computer implemented tasks comprising:

at a processing server coupled to a database and a store-

front server:

render an administrator facing Ul at a client device
coupled to the processing server;

presenting for selection by a user via the administrator
tacing Ul a plurality of pre-programmed elements,
cach pre-programmed element being independently
executable relative each other pre-programmed ele-
ment such that an output of any of the pre-pro-
grammed elements 1s not a direct input to any other
of the pre-programmed elements;

receiving via the administrator facing Ul a selection of
two or more of the pre-programmed elements and a
sequence for performing each pre-programmed ele-
ments 1n the selection to form an exemplary routine;

receiving irom the storefront server an indication of a
trigger event corresponding to an input at the cus-
tomer facing Ul, and in response to receiving the
indication of a trigger event, automatically creating
an 1nstance of the exemplary routine, the nstance of
the exemplary routine including an instance of each
of the selected pre-programmed elements arranged
for performance 1n accordance with the sequence and




US 11,636,006 B2

35

being configured to perform tasks defined by the
pre-programmed elements and the sequence, the
instance of the exemplary routine further including a
status indicator indicating an execution status of each
instance of each of the selected pre-programmed
elements, the execution status of each instance of
cach of the selected pre-programmed elements being
imtially set to a pending execution status;
at a monitoring server coupled to the processing server
and the database, and at a pre-defined interval:
querying the database to identily instances of pre-
programmed elements having a pending execution

status;
in response to the querying the database, receiving

from the database the identity of instances of pre-

programmed elements having a pending execution
status;
transmitting a request to the processing server to niti-
ate execution of the identified instances of pre-
programmed elements according to the sequence;
and
at the processing server, automatically executing the
identified instances of the pre-programmed elements
according to the sequence in response to the request
from the monitoring server.
2. The method of claim 1 further comprising:
detecting an error that prevents completion of at least one
instance of the pre-programmed elements; and
terminating the execution of the instance of the exemplary
routine upon detection of the error without user inter-
vention.
3. The method of claim 2 further comprising;:
after the detecting step and before the terminating step,
attempting to re-execute at least one instance of the
pre-programmed elements associated with the detected
SITor.
4. The method of claim 2 further comprising;:
detecting a trigger event that triggers, without user inter-
vention, a re-execution of the instance of at least one of
the pre-programmed elements and wherein an error
state that prevents the completion of the at least one
instance arises after a subsequent trigger event 1s
detected following a pre-selected number of re-execu-
tions of the at least one 1nstance of the pre-programmed
clement.
5. The method of claim 2 further comprising;:
defimng a retry threshold value for each of the pre-
programmed elements; and
after the detecting step and before the terminating step,
attempting to re-execute the at least one 1nstance of the
pre-programmed elements associated with the detected
error 1n accordance with the retry threshold value.
6. The method of claim 1 further comprising:
during execution of the instance of the pre-programmed
clement, detecting the absence of prescription authori-
zation data needed to complete the execution;
based on the absence of the prescription authorization,
automatically transmitting an authorization form to an
authorizing entity;
receiving an authorization facsimile of a completed form
in response to the automatic transmitting; and
automatically populating a prescription authorization field
based upon the received facsimile.
7. The method of claim 6 further comprising;:
receiving a datafile contaiming optical character recogni-
tion data associated with the authorization facsimile.

5

10

15

20

25

30

35

40

45

50

55

60

65

36

8. The method of claim 7 further comprising;:
automatically storing the datafile containing optical char-
acter recognition data 1n a secure database based upon
the automatically populating the prescription authori-
zation field.
9. The method of claim 7, wherein regular expression
matching logic 1s applied to the datafile containing optical
character recognition data to 1dentily data associated with at
least one of: owner name, pet name, record identifier for a
prescription, clinic name, authorization status, refill autho-
rization data, reason for requiring compound prescription
and combinations thereof.
10. The method of claim 1 further comprising;
simultancously executing one or more instances of
instances of pre-programmed elements 1n parallel.
11. The method claim 1, wherein at least one pre-pro-
grammed element 1s a long-running pre-programmed ele-
ment that 1s programmed to cause other pre-programmed
clements within an instance of the exemplary routine 1n
which an instance of the long-running element 1s included to
at least one of: 1) pause execution until the long-running
clement reaches a completion state; 1) delay completion
until the long-running element reaches the completion state.
12. The method of claim 1, wherein each pre-programmed
clement 1s fully executable without being directly dependent
upon the execution of any other pre-programmed element.
13. The method of claim 1, wherein a failure to execute
one instance of one of the pre-programmed elements does
not prevent the execution and completion of another
instance of the same pre-programmed element.
14. A system for implementing a fault tolerant automated
sequence ol computer implemented tasks comprising:
a storefront server configured to cause a customer facing
user interface (Ul) display to render at one or more
customer devices and to receive one or more mnputs via
the customer facing Ul
a database, coupled to the storefront server and configured
to store pre-programmed elements that each include an
independently executable self-contained unit of com-
puter code configured to perform a specific task; and
a processing server coupled to the database and the
storefront server, the processing server having a central
processing unit, memory, an input port, and an output
port, the processing server being further coupled to a
plurality of client devices, the processing server being
configured to:
cause the client device to render an administrator facing
UI at a client device of the plurality of client devices;

present for selection by a user via the administrator
facing Ul a plurality of the pre-programmed ele-
ments, each pre-programmed element being inde-
pendently executable relative each other pre-pro-
grammed element such that an output of any of the
pre-programmed elements 1s not a direct input to any
other of the pre-programmed elements;

receive via the administrator facing Ul a selection of
Two or more of the pre-programmed elements and a
sequence for performing each pre-programmed ele-
ment 1n the selection to form an exemplary routine;

receive from the storefront server an indication of a
trigger event corresponding to an input at the cus-
tomer facing Ul, and in response to receiving the
indication of a trigger event, automatically create an
instance of the exemplary routine, the instance of the
exemplary routine including an instance of each of
the selected pre-programmed elements arranged for
performance 1 accordance with the sequence and



US 11,636,006 B2

37

being configured to perform tasks defined by the
pre-programmed elements and the sequence, the
instance of the exemplary routine further including a
status indicator indicating an execution status of each
instance of each of the selected pre-programmed >
elements, the execution status of each instance of
cach of the selected pre-programmed elements being
imtially set to a pending execution status; and

a monitoring server coupled to the processing server and

database, the momtoring server configured to, at a 10

pre-defined interval:

query the database to identily instances ol pre-pro-
grammed elements having a pending execution sta-
tus; 5

in response to the query, receive from the database the
identity of instances of pre-programmed elements
having a pending execution status; and
transmit a request to the processing server to initiate
execution of the identified instances of pre-pro- 20
grammed elements according to the sequence,
wherein the processing server 1s further configured to
automatically execute the identified instances of the
pre-programmed elements according to the sequence 1n
response to the request from the monitoring server. 25
15. The system of claim 14, wherein the processing server
1s further configured to:
detect an error that prevents completion of at least one
instance of the pre-programmed elements; and
terminate the execution of the associated instance of the 3¢
exemplary routine upon detection of the error without
user intervention.
16. The system of claim 15, wherein the processing server
1s further configured to:
after detecting the error and prior to terminating imple- 33
mentation of the instance, attempt to re-implement at

least one instance of the pre-programmed eclements
associated with the detected error.
17. The system of claim 15, wherein the processing server
is further configured to: 40
detecting a trigger event that triggers, without user inter-
vention, a re-initiation of the instance of at least one of
the pre-programmed elements and wherein an error
state that prevents the completion of the at least one
instance arises after a subsequent trigger event is 4
detected following a pre-selected number of re-initia-
tions of the performance of the at least one 1nstance of
the pre-programmed element.
18. The system of claim 15, wherein the processing server
is further configured to: S0
define a retry threshold value for each of the pre-pro-
grammed elements; and
after detecting the error and prior to terminating execution
of the instance, attempt to re-execute the at least one

38

instance of the pre-programmed elements associated
with the detected error 1 accordance with the retry
threshold value.

19. The system of claim 14, wherein the processing server

1s Turther configured to:

during execution of the instance of the exemplary routine,
detect the absence of prescription authorization data
needed to complete the execution of the instance of the

exemplary routine;
based on the absence of the prescription authorization,

automatically transmit an authorization form to an
authorizing entity;

receive an authorization facsimile of a completed form 1n

response to the automatic transmitting; and
automatically populate a prescription authorization field
in the database based upon the received facsimile.

20. The system of claim 19, wherein the processing server
1s further configured to:

recerve a datafile containing optical character recognition

data associated with the authorization facsimile.

21. The system of claim 20, wherein the processing server
1s Turther configured to:

automatically store the datafile containing optical charac-

ter recognition data 1n a secure database based upon the
automatically populating the prescription authorization
field.

22. The system of claim 20, wherein regular expression
matching logic 1s applied to the datafile containing optical
character recognition data to 1dentily data associated with at
least one of: owner name, pet name, record identifier for a
prescription, clinic name, authorization status, refill autho-
rization data, reason for requiring compound prescription
and combinations thereof.

23. The system of claim 14, wherein the processing server
1s Turther configured to:

simultancously execute one or more instances ol pre-

programmed elements 1n parallel.

24. The system of claim 14, wherein at least one pre-
programmed element 1s a long-running pre-programmed
clement that 1s programmed to cause other pre-programmed
clements within an instance of the associated exemplary
routine 1n which an instance of the long-running element 1s
included to at least one of: 1) pause execution until the
long-running element reaches a completion state; 11) delay
completion until the long-running element reaches the
completion state.

25. The system of claim 14, wherein each pre-pro-
grammed element 1s fully executable without being directly
dependent upon the execution of any other pre-programmed
clement.

26. The system of claim 14, wherein a failure of an
execution ol one instance of one of the pre-programmed
clements does not prevent the execution and completion of
another instance of the same pre-programmed element.

% o *H % x



	Front Page
	Drawings
	Specification
	Claims

