US011630767B2

a2 United States Patent (10) Patent No.: US 11,630,767 B2

Pandurangan et al. 45) Date of Patent: “Apr. 18, 2023
(54) GARBAGE COLLECTION—AUTOMATIC (58) Field of Classification Search
DATA PLACEMENT CPC .. GO6F 12/0246; GO6F 3/0608; GO6F 3/0652;
GO6F 3/0679; GO6F 2212/1044;
(71) Applicant: Samsung Electronics Co., Ltd., (Continued)
Suwon-si (KR) (56) References Cited
(72) Inventors: Rajinikanth Pandurangan, Fremont, U.S. PATENT DOCUMENTS
CA (US); Changho Choi, San Jose, CA
(US) 8,429,658 B2 4/2013 Auerbach et al.
8,688,894 B2 4/2014 Kuchne
(73) Assignee: SAMSUNG ELECTRONICS CO., (Continued)
LTD. . .
FOREIGN PATENT DOCUMENTS
(*) Notice: Subject. to any disclaimer,,. the term of this CN 105279115 A 17016
patent 1s extended or adjusted under 35 TP 7006235960 A 0/2006
U.S.C. 154(b) by O days. (Continued)
This patent 1s subject to a terminal dis-
claimer. OTHER PUBLICATIONS
(21) Appl. No.: 17/543,710 Advisory Action for U.S. Appl. No. 15/620,814, dated Dec. 20,
T ’ 2019.
(22) Filed: Dec. 6, 2021 (Continued)
_ o Primary Examiner — David Y1
(65) Prior Publication Data Assistant Examiner — Zubair Ahmed
US 2022/0171701 A1l Jun. 2, 2022 (74) Attorney, Agent, or Firm — Renaissance IP Law
Group LLP
(37) ABSTRACT

Related U.S. Application Data A Solid State Drive (SSD) 1s disclosed. The SSD may

(63) Continuation of application No. 16/892,276, filed on include flash memory to store data. An SSD controller may
Jun. 3, 2020, now Pat. No. 11,194,710, which 1s a manage reading and writing data to the flash memory. The

(Continued) SSD may include an automatic stream detection logic to
select a stream 1dentifier responsive to attributes of data. A
(51) Int. CL. garbage collection logic may select an erase block and
GO6F 12/02 (2006.01) program valid data in the erase block nto a second block
GO6F 3/06 (2006.01) responsive to a stream ID determined the automatic stream
(52) U.S. CL. detection logic. The stream ID may be determined after the
CPC GO6F 12/0246 (2013.01); GOGF 3/0608 garbage collection logic has selected the erase block for
(2013.01); GO6F 3/0652 (2013.01); garbage collection.
(Continued) 20 Claims, 9 Drawing Sheets
41
410-1__ 5\’\ 4201,
LBA b iStream ID
405—1¥/\
Reguest
41% 4202
LBA b iStream ID
4052 Automatic
Rem%’i> Stream
410-3 , 420-
ASa Detection \S\f\
LBA ™ Logic iStream ID
4053
TReqLest>
4104 4204,
LBA) Stream ID
4054
Request>

US 11,630,767 B2
Page 2

FOREIGN PATENT DOCUMENTS

Related U.S. Application Data

continuation of application No. 15/620,814, filed on TP 5793812 B? 5/2015
Jun. 12, 2017, now Pat. No. 10,698,808. JP 2016095828 A 5/2016
JP 2016170583 A 9/2016
o o KR 20150028610 A 3/2015
(60) Provisional application No. 62/490,027, filed on Apr. KR 101544309 Bl /2015
25, 2017. W 201510722 A 3/2015
TW 201536038 A 9/2015
TW 201601062 A 1/2016
(52) US. Cl. WO 2012020544 Al 2/2012
CPC GO6F 3/0679 (2013.01); GO6F 2212/1044 WO 2015005634 Al 1/2015
(2013.01); GOoF 2212/2022 (2013.01); GO6F
2212/7201 (2013.01); GO6F 2212/7205 OTHER PUBIICATIONS
(2013.01)
(58) Field of Classification Search Advisory Action for U.S. Appl. No. 15/620,814, dated May 13,
CPC ... GO6F 2212/2022; GO6F 2212/7201; GO6F 2019_* |
2212/7205; GOGF 3/0607; GOGF 3/0616; Advisory Action for 5. APpL Bo. 15782 1,708, dated Sep, 0, 2013
GOGF 3/064; GO6F 12/0253; G11C 16/16 d;)tffchiay ooy P e AP V95
USPC 1--‘ ------ AR RERR R 7 11/1035 102 Corrected Notice Of Allowabilit for U‘S‘ A 1‘ NO‘ 16/892"2763
y pPp
See application file for complete search history. dated Nov. 10, 2021.
(56) Ref Cited Final Office Action for U.S. Appl. No. 15/458,968, dated Jul. 27,
eferences Cite 7018
_ Final Otflice Action for U.S. Appl. No. 15/620,814, dated Feb. 21,
U.S. PATENT DOCUMENTS 7019
| _ Final Office Action for U.S. Appl. No. 15/620,814, dated Sep. 18,
586550 B2 112014 Bamell ot a 2019,
0158627 By 10015 BEZH Zt s Final Office Action for U.S. Appl. No. 15/821,708, dated Jun. 20,
Py . - | 2019.
9,459,810 B2 10/2016 Benisty et al. . - .
0,594,513 Bl 3/2017 Delgado et al. Final Office Action for U.S. Appl. No. 15/821,708, dated May 20,
9,854,270 B2 12/2017 Ramasubramonian et al. 2020.

10,095,613 B2 10/2018 Jo et al. Kang, Jeong-Uk, et al., “The Multi-streamed Solid-State Drive,”
2009/0119352 Al 5/2009 Branda et al. HotStorage 14, 6th USENIX Workshop on Hot Topics in Storage
2012/0072798 Al 3/2012 Unesak et al. and File Systems, Jun. 2014.

2012/0110239 Al 5/2012 Goss et al. Notice of Allowance for U.S. Appl. No. 15/458,968, dated Oct. 12,
2012/0191900 Al 7/2012 Kunimatsu et al. 7018,
2Oj~3/0159626 Al 6/2073 Katz et al. Notice of Allowance for U.S. Appl. No. 15/620,814, dated Feb. 26,
0401270 AL 72014 Il
20:h5/0370630 Ai‘ N 12/2()?5 Y:rnlg oL al GOGE 11/1077 Notice of Allowance for U.S. Appl. No. 15/821,708, dated Jul. 29,

)) o TR 2020.

2016/0162203 A 6/2016 Grimsrud THVL03 Notice of Allowance for U.S. Appl. No. 16/219,936, dated Apr. 2,
2016/0179386 Al 6/2016 Zhang 2020.

2016/0253257 Al 9/2016 Kim et al. Notice of Allowance for U.S. Appl. No. 16/866,545, dated Feb. 19,
2016/0266792 Al 9/2016 Amaki et al. 2021.

2016/0283116 Al1* 9/2016 Ramalingam GO6F 3/0629 Notice of Allowance for U.S. Appl. No. 16/892,276, dated Aug. 2,
2016/0283124 Al 9/2016 Hashimoto et al. 2021.

2016/0283125 Al 9/2016 Hashimoto et al. Office Action for U.S. Appl. No. 15/458,968, dated Apr. 10, 2018.
2016/0291872 Al 10/2016 Hashimoto et al. Office Action for U.S. Appl. No. 15/620,814, dated Jul. 17, 2019.
2016/0299715 Al 1072016 Hashimoto et al. Office Action for U.S. Appl. No. 15/620,814, dated Jun. 19, 2018.
2016/0306552 Al 10/2016 Liu et al. Office Action for U.S. Appl. No. 15/620,814, dated Oct. 18, 2018.
2016/0313943 A1 10/2016 Hashimoto et al. Office Action for U.S. Appl. No. 15/821.708. dated Tan. 22. 2020
2017/0031631 Al 2/2017 Lee et al. 1CC ACHON 0T L9 SAPP 1 30, 2 9/840, 1770, Calet all. 22, L1000,
2017/0075614 Al /2017 Kanno Office Action for U.S. Appl. No. 15/821,708, dated Jan. 24, 2019.
2017/0153848 Al 6/2017 Martineau et al. Of}CE‘: ACJ[IIOII for U.S. Appl* No. ;6/219,936, dated Oct. 4, 2019.
2017/0329668 Al 11/2017 Yang Office Action for U.S. Appl. No. 16/866,545, dated Sep. 23, 2020.
2018/0039448 Al 2/2018 Harasawa et al.

2018/0276118 Al1* 9/2018 Yanagida GO6F 12/0246 * cited by examiner

US 11,630,767 B2

Sheet 1 of 9

Apr. 18,2023

U.S. Patent

Il

|

AIOUWISIN

0cl Gl

JOALI(C] 18}j0JIU0N
SDIAS(] AJOUWIBIN
OEl GCl
10$83820.4d
GO 0Ll

US 11,630,767 B2

Sheet 2 of 9

Apr. 18,2023

U.S. Patent

90BI81U|

las

Gcce

0¢c

GLC

AJOWSIN

AD0[D

10SS820id

80IA3(]

abelolg

GLi

0cl

Ol

|

10}08UUON

MIOMIBN

GOl

0Lc

U.S. Patent Apr. 18,2023 Sheet 3 of 9 US 11,630,767 B2

315-8

L.
I
O
e
0
AL
LL.

7 D 2 ¥
| - ‘- -
N N ON N
e ap {3 3
o
o 3
L - L 2
O =)
>~, R
- © -
LT -
O o
spocct —
= ©
| ¢
(J -
O v
N -
P L
L
KL
i

Lo

Host
Interface
L.ogic

120

US 11,630,767 B2

Sheet 4 of 9

Apr. 18,2023

U.S. Patent

V-0Cv

ai weans | o100

- uonoslaQ
€02t WEBNS
OneWoINY

L-0Cv

ICEIRIEYS
7-GOY

7-0LY

1S2NDaY

£-GOv

GLY

-0l 1

1sanbay

L-0Lv

U.S. Patent

5(5-1

505-2

5056-3

505-4

505-5

505-6

505-7

505-8

505-9

505-10

Apr. 18,2023

\
\

/ |
/ \
/ _
/ _
/
/
/

—y "
~— ~—
i,
T,
Q2

Sheet 5 of 9

]

A

(17"

630

/

/

invalio

invalid
Valia
invalid

615

Recency

650

Remaining
Lifelime_

Read
temperature

US 11,630,767 B2

510-1

510-2

510-3

510-4

515-1

515-2

515-3

515-4

U.S. Patent Apr. 18,2023 Sheet 6 of 9 US 11,630,767 B2

310
oSS0 Controller

Flash
Transiation
Layer

Receiver

415 705 715

Automatic
Stream
Detection
L.ogic

(Garbage
Collection
L.ogiC

71

815

Block

Programming

Selection Logic

L.ogic

U.S. Patent Apr. 18,2023 Sheet 7 of 9 US 11,630,767 B2

505~
510-1 ,
» nvalid 710
510-2 5
> nvalic
510-3 ‘ /O
Valio
510-4 Qlueuye

invalio

415

Automatic
Stream
Detection

510-1 , SN
invaiic 815 Valig
510-2 — 1010-2

Valio Selection Free
510-4 , 010-4
invalio . rree

820

Frogramming

L.OgIC

U.S. Patent Apr. 18,2023 Sheet 8 of 9 US 11,630,767 B2
Start

1105
— 1125

Receive a wrile
request from an
application

Time 1o
perform garbage
coilection?

NO

1110

Determine a stream Yes
D for the data in the 1130
write request

ldentify the block as

an erase block
1115

Select a block to

write the data to

based on the stream
D

1135

ldentify valid data in
the erase block

1120

VWrite the data to the 1140

selected block

Program the valid
data into a second
_ DIOCK using a stream

U.S. Patent

Apr. 18,2023

1140
4

Sheet 9 of 9

1205

Place a wrile
request in the /O
queue of the SSD

1210

crase the erase
block (either before

or after the write
request completes)

1215,

US 11,630,767 B2

Determine a stream
D for the valig dals

1220

Select a block {o
which to write the
valid data

1225

FProgram the valio

data into a free page
in the selected block

1230

Frase the erase

hiock

US 11,630,767 B2

1
GARBAGE COLLECTION—AUTOMATIC
DATA PLACEMENT

RELATED APPLICATION DATA

This application 1s a continuation of U.S. patent applica-
tion Ser. No. 16/892,276, filed Jun. 3, 2020, now allowed,
which 1s a continuation of U.S. patent application Ser. No.
15/620,814, filed Jun. 12, 2017, now U.S. Pat. No. 10,698,
808, 1ssued Jun. 30, 2020, which claims the benefit of U.S.
Provisional Patent Application Ser. No. 62/490,027/, filed
Apr. 25, 2017, both of which are incorporated by reference
herein for all purposes.

This application 1s related to U.S. patent application Ser.
No. 15/499,877, filed Apr. 277, 2017, which: claims the
benefit of U.S. Provisional Patent Application Ser. No.
62/458,566, filed Feb. 13, 2017, and U.S. Provisional Patent
Application Ser. No. 62/471,330, filed Mar. 14, 2017; which
1s a continuation-in-part of U.S. patent application Ser. No.
15/344,422, filed Nov. 4, 2016, which claims the benefit of
U.S. Provisional Patent Application Ser. No. 62/383,302 and
which 1s a continuation-in-part of U.S. patent application
Ser. No. 15/144,588, filed May 2, 2016, which claims the
benefit of U.S. Provisional Patent Application Ser. No.
62/245,100, filed Oct. 22, 2015 and U.S. Provisional Patent
Application Ser. No. 62/192,045, filed Jul. 13, 20135; and
which 1s a continuation-in-part of U.S. patent application
Ser. No. 15/090,799, filed Apr. 5, 2016, which claims the
benefit of U.S. Provisional Patent Application Ser. No.
62/245,100, filed Oct. 22, 2015 and U.S. Provisional Patent
Application Ser. No. 62/192,045, filed Jul. 13, 2015, all of
which are incorporated by reference herein for all purposes.

This application 1s related to U.S. patent application Ser.
No. 15/458,968, filed Apr. 6, 2017, which claims the benefit

of U.S. Provisional Patent Application Ser. No. 62/448,938,
filed Jan. 20, 2017, and U.S. Provisional Patent Application
Ser. No. 62/413,177, filed Oct. 26, 2016, all of which are
incorporated by reference herein for all purposes.

This application 1s related to U.S. patent application Ser.
No. 15/167,974, filed May 27, 2016, which claims the
benefit of U.S. Provisional Patent Application Ser. No.
62/309,446, filed Mar. 16, 2016, both of which are incor-
porated by reference herein for all purposes.

This application 1s related to U.S. patent application Ser.
No. 15/146,708, filed May 4, 2016, which claims the benefit

of U.S. Provisional Patent Application Ser. No. 62/302,162,

filed Mar. 1, 2016, and 1s a continuation-in-part of Ser. No.
15/046,439, filed Feb. 17, 2016, which claims the benefit of

U.S. Provisional Patent Application Ser. No. 62/261,303,
filed Nov. 30, 2015, all of which are incorporated by

reference herein for all purposes.

FIELD

The mventive concepts relate generally to Solid State
Drives (SSDs), and more particularly to improving garbage
collection within SSDs.

BACKGROUND

Multi-streaming 1s a scheme 1s developed to provide
better endurance and performance for Solid State Drives
(SSDs). Data with the same stream 1D may be assigned to
a stream, and ultimately stored together 1n the same erase
block(s). Data with the same stream ID may be expected to
be mnvalidated together, meaning that the data has the same
lifetime. When garbage collection occurs, overhead 1is

10

15

20

25

30

35

40

45

50

55

60

65

2

reduced 11 all of the pages of the erase block are 1nvalid, as
there 1s no valid data remaining 1n the erase block that would
need to be programmed to another block.

SSDs or Flash Translation Layers (FTLs) may include
automatic stream detection algorithms, which may generate
stream IDs based on attributes of the data operations (such
as, Irequency, recency, sequentiality, etc.) and place the data
in stream-appropriate erase blocks. But when garbage col-
lection occurs, valid data associated with diflferent streams
may be mixed, undermining the utility of multi-streaming.

A need remains for a way to manage the selection of
blocks into which valid data may be programmed during
garbage collection, to maintain the benefit of multi-stream-
ng.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a machine with a Solid State Drive (SSD),
according to an embodiment of the inventive concept.

FIG. 2 shows additional details of the machine of FIG. 1.

FIG. 3 shows details of the SSD of FIG. 1.

FIG. 4 shows an automatic stream detection logic deter-
mining stream IDs for write requests.

FIG. 5 shows garbage collection 1n the SSD of FIG. 1
moving valid data from an erase block to another block.

FIG. 6 shows various attributes of data that may be used
in determining a stream ID.
FIG. 7 shows details of the SSD controller of FIG. 3.

FIG. 8 shows details of the garbage collection logic of
FIG. 7.

FIG. 9 shows the write request logic of FIG. 8 submitting,
valid data to the Input/Output (I/O) queue of FIG. 7 to
program valid data, according to an embodiment of the
inventive concept.

FIG. 10 shows the block selection logic of FIG. 8 select-
ing a block responsive to the stream ID received from the
automatic stream detection logic of FIG. 7, according to an
embodiment of the inventive concept.

FIG. 11 shows a flowchart of an example procedure for
performing garbage collection using a stream 1D, according
to an embodiment of the inventive concept.

FIG. 12 shows a flowchart of an example procedure for
programming valid data from an erase block, according to an
embodiment of the inventive concept.

DETAILED DESCRIPTION

Reference will now be made in detail to embodiments of
the inventive concept, examples of which are illustrated in
the accompanying drawings. In the following detailed
description, numerous specific details are set forth to enable
a thorough understanding of the inventive concept. It should
be understood, however, that persons having ordinary skaill
in the art may practice the inventive concept without these
specific details. In other instances, well-known methods,
procedures, components, circuits, and networks have not
been described 1n detail so as not to unnecessarily obscure
aspects of the embodiments.

It will be understood that, although the terms first, second,
ctc. may be used herein to describe various elements, these
clements should not be limited by these terms. These terms
are only used to distinguish one element from another. For
example, a first module could be termed a second module,
and, similarly, a second module could be termed a first
module, without departing from the scope of the mventive
concept.

US 11,630,767 B2

3

The terminology used 1n the description of the imnventive
concept herein 1s for the purpose of describing particular
embodiments only and 1s not intended to be limiting of the
inventive concept. As used 1n the description of the inventive

4 22

concept and the appended claims, the singular forms “a,
“an,” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It waill
also be understood that the term “and/or” as used herein
refers to and encompasses any and all possible combinations
of one or more of the associated listed items. It will be
turther understood that the terms “comprises” and/or “com-
prising,” when used 1n this specification, specily the pres-
ence of stated features, integers, steps, operations, elements,
and/or components, but do not preclude the presence or
addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.
The components and features of the drawings are not
necessarily drawn to scale.

In the case of stream-based garbage collection, there 1s a
chance that different lifetime data could still be mixed even
though the data was originally placed 1n blocks based on the
stream ID. This result may occur because the lifetime of data

in a single stream may evolve over time. For example, there
might be periods where hot data might be assigned a stream
identifier (ID) of 8. But as the workload changes on the host,
the data temperature changes, so older data blocks assigned
to a given stream 1D might not have the same life expectancy
as newer blocks with the same stream ID.

But even garbage collection may make use of streaming.
Valid data being programmed as part of garbage collection
may use an automatic stream detection algorithm by passing
a logical block address (LBA)—or any other attribute—{or
valid data 1n an erase block, and writing the valid data into
a correspondingly detected current stream ID for those valid
L.BAs. This approach would help to place the valid data with
other data the similar characteristics. In addition, as the
stream ID 1s re-determined at the time the data 1s pro-
grammed, there 1s no need to store the stream ID with the
data.

There are two approaches that may be used to program
valid data using stream IDs. One way 1s to treat the program
operation as a new write. More specifically, the valid data
may be submitted to the SSD 1n a write request that may look
like an original write request from an application. This
approach has two advantages: first, the garbage collection
does not have to specifically write the valid data, but may
leave that process to already-existing logic within the SSD;
second, the erase block may be erased before the valid data
1s actually written to the new block. But this approach does
have the concern that 1 a power failure (or some similar
unfortunate event) were to occur after the block had been
erased and before the scheduled write of the valid data had
completed, the data could be lost. Another way 1s to have the
garbage collection logic request a stream ID from the
automatic stream detection algorithm, and use that stream
ID to determine where to write the valid data.

FIG. 1 shows a machine with a Solid State Drive (SSD),
according to an embodiment of the mventive concept. In
FIG. 1, machine 105 1s shown. Machine 105 may be any
desired machine, including without limitation a desktop or
laptop computer, a server (either a standalone server or a
rack server), or any other device that may benefit from
embodiments of the mventive concept. Machine 105 may
also include specialized portable computing devices, tablet
computers, smartphones, and other computing devices.
Machine 105 may run any desired applications: database

10

15

20

25

30

35

40

45

50

55

60

65

4

applications are a good example, but embodiments of the
inventive concept may extend to any desired application.

Machine 105, regardless of its specific form, may include
processor 110, memory 115, and Solid State Drive (SSD)
120. Processor 110 may be any variety of processor: for
example, an Intel Xeon, Celeron, Itamium, or Atom proces-
sor, an AMD Opteron processor, an ARM processor, etc.
While FIG. 1 shows a single processor, machine 105 may
include any number of processors. Memory 115 may be any
variety of memory, such as flash memory, Static Random
Access Memory (SRAM), Persistent Random Access
Memory, Ferroelectric Random Access Memory (FRAM),
or Non-Volatile Random Access Memory (NVRAM), such
as Magnetoresistive Random Access Memory (MRAM)
etc., but 1s typically DRAM. Memory 115 may also be any
desired combination of different memory types. Memory
115 may be controlled by memory controller 125, also part
of machine 105.

SSD 120 may be any variety of SSD, and may even be
extended to include other types of storage that perform
garbage collection (even when not using flash memory).
SSD 120 may be controlled by device driver 130, which may
reside within memory 115.

FIG. 2 shows additional details of machine 105 of FIG. 1.
Referring to FIG. 2, typically, machine 105 includes one or
more processors 110, which may include memory controller
125 and clock 205, which may be used to coordinate the
operations of the components of machine 105. Processors
110 may also be coupled to memory 115, which may include
random access memory (RAM), read-only memory (ROM),
or other state preserving media, as examples. Processors 110
may also be coupled to storage devices 120, and to network
connector 210, which may be, for example, an Ethernet
connector or a wireless connector. Processors 110 may also
be connected to a bus 215, to which may be attached user
interface 220 and Input/Output 1nterface ports that may be
managed using Input/Output engine 2235, among other com-
ponents.

FI1G. 3 shows details of SSD 120 of FIG. 1. In FIG. 3, SSD
120 may include host mterface logic 305, SSD controller
310, and various flash memory chips 315-1 through 315-8,
which may be organized into various channels 320-1
through 320-4. Host interface logic 305 may manage com-
munications between SSD 120 and machine 105 of FIG. 1.
SSD controller 310 may manage the read and write opera-
tions, along with garbage collection operations, on flash
memory chips 315-1 through 315-8. SSD controller 310

may include flash translation layer 3235 to perform some of
this management. While FIG. 3 shows SSD 120 as including

cight tlash memory chips 315-1 through 315-8 organized
into four channels 320-1 through 320-4, embodiments of the
inventive concept may support any number of tlash memory
chips organized into any number of channels.

FIG. 4 shows an automatic stream detection logic deter-
mining stream IDs for write requests. In FIG. 4, various
write requests 405-1 through 405-4 are shown. Fach write
request 405-1 through 405-4 may include Logical Block
Addresses (LBAs) 410-1 through 410-4, respectively. LBAs
410-1 through 410-4 may be used by automatic stream
detection logic 415 to determine stream identifiers (IDs)
420-1 through 420-4 to which write requests 405-1 through
405-4 are assigned. For example, automatic stream detection
logic 415 may operate as described 1n U.S. patent applica-
tion Ser. No. 15/499,877, filed Apr. 27, 2017/, incorporated
by reference herein for all purposes, to assign stream IDs
420-1 through 420-4 based on LBAs 410-1 through 410-4.

But while FIG. 4 shows automatic stream detection logic

US 11,630,767 B2

S

415 using LBAs 410-1 through 410-4 to determine stream
IDs 420-1 through 420-4, embodiments of the mmventive
concept may use any desired attributes of write requests
405-1 through 405-4 in determining stream IDs 420-1
through 420-4.

In SSDs that use flash memory (and also other devices
that perform garbage collection), the flash memory 1s usu-
ally organized 1nto erase blocks containing multiple pages.
Each page may be in one of three states: free (currently not
storing any data), valid (currently storing data), and invalid
(previously storing valid data, but no longer storing valid
data and not yet free).

When new data 1s written to the flash memory, a free page
1s located and the data written to that free page. The page 1s
then marked as storing valid data. Pages are typically written
in order within an erase block. But an individual page of
flash memory usually may be written to once; 1t may not be
overwritten. Therefore when data stored 1n flash memory 1s
to be changed by an application, the entire page contaiming,
the data 1s written to a new page in flash memory. The
original page 1s then marked as invalid. Garbage collection
1s the process by which the SSD reclaims invalid pages at an
erase block granularity. This process includes resetting all
the pages 1n an erase block and marking the pages as free
once again.

The reason pages may have three possible states rather
than just two 1s due to how garbage collection 1s performed.
If garbage collection were performed on individual pages,
there would be no need for the invalid state: garbage
collection could occur as soon as the data was invalidated
and the page immediately freed. But garbage collection
typically operates on chunks larger than an individual page.
These chunks are termed erase blocks or superblocks and
may include any number of pages. When a block 1s subject
to garbage collection, every page 1n the block 1s put 1n the
free state. Therefore, any currently valid data 1n the block
must be written to another free page in the flash memory in
some other block (this process 1s termed programming)
before the pages 1n the current block may be erased. If
garbage collection were mitiated as soon as any data 1n the
block were mvalidated, the SSD would spend a significant
amount of time moving data from valid pages 1n the block
to other blocks. Aside from the fact that programming valid
data from an erase block may add significant overhead by
itself, flash memory typically may be accessed only a finite
number of times before the memory becomes unreliable (or
worse, unusable). Therefore, 1t 1s desirable to minimize the
amount of time spent programming valid data from an erase
block. But at the same time, garbage collection may not be
deferred until every page 1n an erase block 1s marked mvalid:
the flash memory might end up with every block containing,
only pages marked valid or invalid (that 1s, no free pages),
which would mean no further data could be written to the
flash memory.

FIG. 5 shows garbage collection 1n SSD 120 of FIG. 1
programming valid data from an erase block to another
block. In FIG. 5, blocks 505-1 through 505-10 are shown,
with block 505-2 shown with greater detail. Block 505-2 1s
shown as including four pages 510-1 through 510-4. Pages
510-1, 510-2, and 510-4 currently are marked as invalid, but
page 510-3 1s marked as valid, meaning that 1t currently
stored valid data. Thus, when block 503-2 i1s targeted for
garbage collection, the valid data 1n page 510-3 must be
programmed to another block, such as block 5035-8, shown
as 1mcluding pages 515-1 through 515-4. The valid data 1n
page 510-3 may be programmed 1nto page 515-1, as shown
by dashed arrow 520. After the valid data in page 510-3 1s

10

15

20

25

30

35

40

45

50

55

60

65

6

programmed 1nto page 315-1, all the pages i1n block 505-2
are marked invalid, and the entire erase block may be subject
to garbage collection.

While FIG. 5 shows ten blocks 505-1 through 505-10 and
cach block including four pages, embodiments of the inven-
tive concept may support SSD 120 of FIG. 1 including any
number of blocks, with each block having any number of
pages. Embodiments of the inventive concept are not limited
to a particular number of blocks or pages per block.

FIG. 6 shows various attributes of data that may be used
in determiming stream IDs 420-1 through 420-4 of FIG. 4. In
FIG. 6, attributes 605 are shown. Attributes 603 may include
LBA 410, application ID 610, and remaining lifetime 615.
Thus, for example, LBA 410 may be the LBA of data being
written to SSD 120 of FIG. 1, application ID 610 may be the
application requesting that the data be written to SSD 120 of
FIG. 1, and remaiming lifetime 615 may be how long the data
1s expected to remain on SSD 120 of FIG. 1 before the data
1s 1invalidated (either by being replaced with newer data or
simply deleted outright). Other possible attributes used 1n
determining stream IDs may include:

Sequentiality 620: whether the LBA of the data being
written 1s 1n a page that 1s sequential to an earlier LBA
(either the immediately preceding write request or some
carlier write request within a window).

Update frequency 625: how Irequently the data being
written 1s expected to be updated (which would nvalidate
the page where the current data 1s to be written).

Recency 630: how recently the LBA of the data being
written was previously written.

Write size 633: the size of the data being written (relative
to the size of other writes around the same time).

Write time 640: the time at which the data 1s being written
(relative to other writes around the same time).

Read frequency 645: how frequently the data being read
1s read (relative to other data).

Read temperature 650: the “temperature” of the data
being read: that 1s, whether the data being read 1s considered
“hot” or *“cool”.

Embodiments of the inventive concept may support other
attributes beyond those shown m FIG. 6: for example, a
Quality of Service (QoS) desired by the application writing
the data: any other attribute may also be used, as desired.

In the prior art, stream IDs 420-1 through 420-4 of FIG.
4 are determined only when write requests 4035-1 through
405-4 are received. While stream IDs 420-1 through 420-4
of FIG. 4 may be stored as metadata for the data written by
write requests 405-1 through 405-4 of FIG. 4, stream IDs
420-1 through 420-4 of FIG. 4 are not updated. But when
valid data 1in an erase block, such as valid data 510-3 of FIG.
5, 1s to be written to a new block as part of garbage
collection, the stream ID determined at the time valid data
510-3 of FIG. 5 was originally written may not properly
represent the stream currently matching valid data 510-3 of
FIG. 5. Put another way, 1t valid data 510-3 of FIG. § were
received as a new write request at this time, valid data 510-3
of FIG. 5 might be assigned to a different stream than 1t was
assigned when originally written. The advantage of updating
the stream ID when programming valid data 510-3 of FIG.
5 1s that valid data 510-3 of FIG. 5 may be programmed into
a block storing data with more similar attributes than might
occur 1f the original stream ID were used to select a block
into which to write valid data 510-3 of FIG. 5.

Now that the process of garbage collection and the
benelits of applying stream 1Ds 420-1 through 420-4 of FIG.
4 to the garbage collection process have been explained,
embodiments of the inventive concept may be discussed

US 11,630,767 B2

7

further. FIG. 7 shows details of SSD controller 310 of FIG.
3. In FIG. 7, aside from flash translation layer 315, SSD

controller 310 may include receiver 703, Input/Output (1/0)
queue 710, automatic stream detection logic 415, and gar-
bage collection logic 715. Receiver 705 may receive write
requests 405-1 through 405-4 of FIG. 4 from any source,
such as an application running on machine 105 of FIG. 1.
Once recerved, write requests 405-1 through 405-4 of FIG.
4 may be placed in I/O queue 710 for processing. When a
particular write request 1s removed from I/O queue 710,
automatic stream detection logic 415 may be used to deter-
mine an appropriate stream ID for the write request, after

which the data may be written to an appropriate flash
memory 315-1 through 315-8 of FIG. 3.

Garbage collection logic 715 may recover erase blocks
from flash memory 315-1 through 315-8 of FIG. 3 as
appropriate. Erase blocks may be selected using any desired
algorithm. But rather than programming valid data 510-3 of
FIG. 5 mto any random available page, garbage collection
logic 715 may benefit from the use of automatic stream
detection logic 415 in selecting an appropriate block to
program valid data 510-3 of FIG. 5. Garbage collection logic
1s discussed further with reference to FIG. 8 below.

FIG. 8 shows details of garbage collection logic 715 of
FIG. 7. In one embodiment of the inventive concept, garbage
collection logic 715 may include write request logic 805 and
crase logic 810. When garbage collection logic 715 1s
invoked to erase an erase block, such as erase block 505-2
of FIG. §, assuming there 1s valid data 510-3 of FIG. 5 1n the
erase block, then write request logic 805 may submit a write
request to receiver 705 and I/0 queue 710 of FIG. 7, just as
though the write request were submitted by an application
running on machine 105 of FIG. 1. (If the erase block
contains no pages with valid data, then obviously there 1s no
valid data that needs to be programmed: every page in the
erase block contains invalid data and the erase block may be
erased directly.) In this manner, when the write request 1s
processed, valid data 510-3 1s written to a new page 1n SSD
120 of FIG. 1. From the perspective of SSD 120 of FIG. 1,
this write request 1s no different than a write request sub-
mitted by an application running on machine 105 of FIG. 1,
and 1s processed accordingly. And once the write request has
been submitted to I/O queue 710 of FIG. 7, erase logic 810
may erase block 505-2 of FIG. 5. Note that garbage collec-
tion logic 715 does not need to wait for valid data to be
written to a new page before erase logic 810 may begin: the
valid data 1n entirely within I/O queue 710 of FIG. 7, and
will be written 1 turn. Of course, 1I guaranteeing that no
data 1s lost due to unforeseen circumstances, such as a power
tailure, then erase logic 810 may wait until the data has been
successiully written before proceeding to erase block 5035-2
of FIG. 5. But if SSD 120 of FIG. 1 provides such a
guarantee, then 1t 1s likely that there are already other
mechanisms within SSD 120 of FIG. 1 to ensure data in I/O
queue 710 of FIG. 7 1s not lost due to unforeseen circum-
stances.

FIG. 9 shows write request logic 805 of FIG. 8 submitting,
valid data to I/O queue 710 of FI1G. 7 to program valid data,
according to an embodiment of the mventive concept. In
FIG. 9, once block 505-2 has been selected as an erase block
and valid data 510-3 has been 1dentified, write request logic
805 may create a write request to re-write valid data 510-3
back to a new page on SSD 120 of FIG. 1. This write request
may be submitted to I/O queue 710 and processed 1denti-
cally to an original write request coming from an application
running on machine 105 of FIG. 1.

10

15

20

25

30

35

40

45

50

55

60

65

8

While one might think that placing valid data 510-3 1n I/O
queue 710 to avoid programming valid data 510-3 directly
by garbage collection logic 715 of FIG. 7 may increase the
write latency of original write requests, the actual impact on
write latency might be mimimal. Ideally, garbage collection
logic 715 of FIG. 7 operates when other demands on SSD
120 of FIG. 1 are low. If SSD 120 of FIG. 1 1s receiving
many original write requests from applications running on
machine 105 of FIG. 1, then garbage collection logic 715 of
FIG. 7 would hopefully not start recovering erase blocks.
Garbage collection logic 715 of FIG. 7 might begin 11 SSD
120 of FIG. 1 has an unusually low free page count. But 1
that situation were to arise, the programming of valid data
would likely occur anyway, with a similar expected impact
on the write latency of original write requests. Thus, using
I/0O queue 710 to program valid data 510-3 as though it were
an original write request 1s not likely to have a greater
impact than traditional garbage collection would. And
because valid data 510-3 1s likely to be placed with other
data with similar attributes (such as remaining lifetime),
garbage collection performance 1s enhanced by reducing
future programming of valid data.

Returning to FIG. 8, another embodiment of the inventive
concept, garbage collection logic 715 may include erase
logic 810, block selection logic 815, and programming logic
820. Block selection logic 8135 may access automatic stream
detection logic 415 of FIG. 7 to determine a new stream 1D
for valid data 510-3 of FIG. 5. That 1s, block selection logic
815 may pass one or more attributes 605 of FIG. 6 for valid
data 510-3 of FIG. 5 to automatic stream detection logic 415
of FIG. 7, and receirve a stream ID 1n return. Block selection
logic 815 may then use this stream ID to select an appro-
priate block i which to program valid data 510-3, which
may be performed by programming logic 820 using con-
ventional techniques. Note that block selection logic 8135
may select any appropriate block based on the stream 1D
received from automatic stream detection logic 415 of FIG.
7. For example, the selected block might be a block holding
data written 1n respond to original write requests received
from an application running on machine 105 of FIG. 1
having the selected stream ID. Or, the selected block might
be a special block, storing only data programmed as a result
of garbage collection and assigned that stream ID. Embodi-
ments of the inventive concept may also implement block
selection logic 815 to select a block responsive to the
received stream ID 1n other ways.

FIG. 10 shows block selection logic 815 of FIG. 8
selecting a block responsive to the stream ID received from
automatic stream detection logic 415 of FIG. 7, according to
an embodiment of the imnventive concept. In FIG. 10, block
selection logic 815 may receive stream ID 1005 from
automatic stream detection logic 415. Stream 1D 1005 may
be determined using attributes of valid data 510-3. Once a
block, such as block 505-8, has been selected, a free page 1n
block 505-8, such as free page 1010-3, may be located, and
programming logic 820 may write valid data 510-3 to free
page 1010-3. Once this operation has completed, then erase
logic 810 of FIG. 8 may erase erase block 503-2, thus
freeing those pages.

Regardless of how garbage collection logic 715 of FIG. 7
1s 1mplemented, embodiments of the inventive concept
determine the stream ID used in programming valid data
510-3 approximately at the time valid data 510-3 1s to be
programmed. That 1s, garbage collection logic 715 of FIG.
7 1s not relying on stream IDs 420-1 through 420-4 of FIG.
4, determined when valid data 510-3 was originally pro-
grammed: istead, garbage collection logic 715 of FIG. 7 1s

US 11,630,767 B2

9

determining the stream ID to use in programming valid data
510-3 at approximately the time valid data 510-3 1s being
programmed to a new (Iree) page. Nor 1s garbage collection
logic 715 of FIG. 7 relying on such a stream ID that might
have been stored with valid data 510-3: an earlier-deter-
mined stream ID may no longer reflect the best stream
choice for programming valid data 510-3.

FIG. 11 shows a flowchart of an example procedure for
performing garbage collection using stream 1D 10035 of FIG.
10, according to an embodiment of the inventive concept. In
FIG. 11, at block 1105, receiver 705 of FIG. 7 may receive
one or more of write commands 405-1 through 405-4 of
FIG. 4. At block 1110, automatic stream detection logic 415
of FIG. 7 may determine stream IDs 420-1 through 420-4 of
FIG. 4 for write commands 405-1 through 405-4 of FIG. 4.
At block 1115, SSD controller 310 of FIG. 3 may select a
block 1nto Wthh data associated with stream IDs 420-1
through 420-4 of FIG. 4 may be written, and at block 1120,
SSD controller 310 of FIG. 3 may execute write commands
405-1 through 405-4, writing data to flash memory 315-1
through 315-8 of FIG. 3.

At block 1125, SSD controller 310 of FIG. 3 may check
to see 11 1t 1s time to perform garbage collection. If not, then
processing may return to block 1105 to process additional
write (or other) commands. But 1f 1t 1s time for SSD
controller 310 of FIG. 3 to perform garbage collection, then
processing continues with block 1130. SSD controller 310 of
FIG. 3 may perform garbage collection either as a fore-
ground operation or a background operation: in the latter
case, block 1125 1s less about whether SSD controller 310 of
FIG. 3 determines that the time has come for garbage
collection than whether activity has dropped to a level at
which garbage collection may proceed with reduced or
mimmal 1impact on read and write requests from applica-
tions. At block 1130, garbage collection logic 715 of FIG. 7
may 1dentily an erase block, such as erase block 505-2 of
FIG. 5. At block 1135, garbage collection logic 715 of FIG.
3 may identity valid data within erase block 505-2 of FIG.
5. And at block 1140, garbage collection logic 715 of FIG.
7 may program the Vahd data 510-3 of FIG. 5 into a second
block based on stream ID 1005 of FIG. 10, as determined by
automatic stream detection logic 415 of FIG. 7. Processing
may then return to either block 1105 to process another write
(or other) command, or to block 1130 to erase another erase
block.

A careful reader may note that the example procedure
shown 1n FIG. 11 does not mention erasing the erase block.
This 1s because the timing of the erase operation may vary,
depending on the embodiment of the inventive concept. The
erase operation 1s shown 1n FIG. 12, described below.

FIG. 12 shows a flowchart of an example procedure for
programming valid data 510-3 of FIG. 5 from erase block
510-3 of FIG. 5 durning garbage collection, according to an
embodiment of the inventive concept. FIG. 12 actually
describes two diflerent approaches to performing the pro-
gramming operation. In one embodiment of the mventive
concept, at block 1205, write request logic 805 of FIG. 8
may place a write request 1n I/O queue 710 of FIG. 7.
Effectively, block 1205 1s the same as block 1105 of FIG. 11,
except for the source of the write request. At that point, the
act of writing valid data 510-3 of FIG. 5 into a free page 1s

handled just like a write originating from an application on
machine 105 of FIG. 1. At block 1210, erase logic 810 of

FIG. 8 may then erase erase block 505-2 of FIG. 3, either
waiting for the write request to complete or not.

In another embodiment of the imnventive concept, at block
1215, block selection logic 8135 of FIG. 8 may request stream

10

15

20

25

30

35

40

45

50

55

60

65

10

ID 1005 of FIG. 10 from automatic stream detection logic
415 of FIG. 7. At block 1220, block selection logic 815 of

FIG. 8 may select a block based on stream 1D 1005 of FIG.
10. At block 1225, programming logic 820 of FIG. 8 may
write valid data 510-3 of FIG. 5 into a free page i the
selected block, after which at block 1230 erase logic 810 of

FIG. 8 may erase erase block 505-2 of FIG. 5.

In FIGS. 11-12, some embodiments of the inventive
concept are shown. But a person skilled in the art will
recognize that other embodiments of the inventive concept
are also possible, by changing the order of the blocks, by
omitting blocks, or by including links not shown in the
drawings. All such variations of the tflowcharts are consid-
ered to be embodiments of the inventive concept, whether
expressly described or not.

The following discussion 1s mtended to provide a brief,
general description of a suitable machine or machines 1n
which certain aspects ol the inventive concept may be
implemented. The machine or machines may be controlled,
at least 1n part, by mput from conventional input devices,
such as keyboards, mice, etc., as well as by directives
recetved from another machine, interaction with a virtual
reality (VR) environment, biometric feedback, or other input
signal. As used herein, the term “machine” 1s mntended to
broadly encompass a single machine, a virtual machine, or
a system of communicatively coupled machines, virtual
machines, or devices operating together. Exemplary
machines include computing devices such as personal com-
puters, workstations, servers, portable computers, handheld
devices, telephones, tablets, etc., as well as transportation
devices, such as private or public transportation, e.g., auto-
mobiles, trains, cabs, etc.

The machine or machines may include embedded con-
trollers, such as programmable or non-programmable logic
devices or arrays, Application Specific Integrated Circuits
(ASICs), embedded computers, smart cards, and the like.
The machine or machines may utilize one or more connec-
tions to one or more remote machines, such as through a
network interface, modem, or other communicative cou-
pling. Machines may be interconnected by way of a physical
and/or logical network, such as an intranet, the Internet,
local area networks, wide area networks, etc. One skilled 1n
the art will appreciate that network communication may
utilize various wired and/or wireless short range or long
range carriers and protocols, including radio frequency (RF),
satellite, microwave, Institute of Electrical and Electronics
Engineers (IEEE) 802.11, Bluetooth®, optical, infrared,
cable, laser, etc.

Embodiments of the present mventive concept may be
described by reference to or in conjunction with associated
data including functions, procedures, data structures, appli-
cation programs, etc. which when accessed by a machine
results 1n the machine performing tasks or defining abstract
data types or low-level hardware contexts. Associated data
may be stored in, for example, the volatile and/or non-
volatile memory, e.g., RAM, ROM, etc., or in other storage
devices and their associated storage media, including hard-
drives, floppy-disks, optical storage, tapes, flash memory,
memory sticks, digital video disks, biological storage, eftc.
Associated data may be delivered over transmission envi-
ronments, including the physical and/or logical network, in
the form of packets, serial data, parallel data, propagated
signals, etc., and may be used in a compressed or encrypted
format. Associated data may be used 1n a distributed envi-
ronment, and stored locally and/or remotely for machine
access.

US 11,630,767 B2

11

Embodiments of the mventive concept may include a
tangible, non-transitory machine-readable medium compris-
ing instructions executable by one or more processors, the
instructions comprising instructions to perform the elements
of the mventive concepts as described herein.

Having described and illustrated the principles of the
inventive concept with reference to 1llustrated embodiments,
it will be recognized that the illustrated embodiments may
be modified in arrangement and detail without departing
from such principles, and may be combined 1n any desired
manner. And, although the foregoing discussion has focused
on particular embodiments, other configurations are con-
templated. In particular, even though expressions such as
“according to an embodiment of the inventive concept” or
the like are used herein, these phrases are meant to generally
reference embodiment possibilities, and are not intended to
limit the inventive concept to particular embodiment con-
figurations. As used herein, these terms may reference the
same or different embodiments that are combinable into
other embodiments.

The foregoing illustrative embodiments are not to be
construed as limiting the inventive concept thereof.
Although a few embodiments have been described, those
skilled 1n the art will readily appreciate that many modifi-
cations are possible to those embodiments without mater-
ally departing from the novel teachings and advantages of
the present disclosure. Accordingly, all such modifications
are intended to be included within the scope of this inventive
concept as defined 1n the claims.

Embodiments of the inventive concept may extend to the
following statements, without limitation:

1. An embodiment of the inventive concept includes a
Solid State Drive (SSD), comprising:

flash memory to store data;

an SSD controller to manage writing data to and reading
data from the flash memory;

an automatic stream detection logic to select a stream
identifier (ID) responsive to attributes of the data;

a garbage collection logic to select an erase block in the
flash memory for garbage collection and to program valid
data 1n the erase block into a second block responsive to a
first stream 1D determined by the automatic stream detection
logic,

wherein the automatic stream detection logic 1s operative
to determine the first stream ID after the garbage collection
logic has selected the erase block for garbage collection.

Statement 2. An embodiment of the mmventive concept
includes a SSD according to statement 1, wherein:

the SSD controller includes an Input/Output (I/0) queue
to manage requests from an application on a host computer;
and

the garbage collection logic includes a write request logic
to place a write request for the valid data into the I/O queue.

Statement 3. An embodiment of the inventive concept
includes a SSD according to statement 2, the SSD controller
turther including a receiver to receive a second write request
from an application, the second write request including the
valid data.

Statement 4. An embodiment of the mmventive concept
includes a SSD according to statement 3, wherein the SSD
writes the valid data to the erase block responsive to a
second stream ID from the automatic stream detection logic.

Statement 5. An embodiment of the mmventive concept
includes a SSD according to statement 4, wherein the first
stream ID 1s the second stream ID.

10

15

20

25

30

35

40

45

50

55

60

65

12

Statement 6. An embodiment of the inventive concept
includes a SSD according to statement 2, wherein the
garbage collection logic further includes an erase logic to
erase the erase block.

Statement 7. An embodiment of the inventive concept
includes a SSD according to statement 6, wherein the erase
logic 1s operative to erase the erase block after the write
request 1s processed by the SSD.

Statement 8. An embodiment of the mventive concept
includes a SSD according to statement 6, wherein the erase
logic 1s operative to erase the erase block after the write
request logic places the write request 1n the I/O queue and
betore the write request 1s processed by the SSD.

Statement 9. An embodiment of the mventive concept
includes a SSD according to statement 1, wherein:

the garbage collection logic 1s operative to request the first
stream 1D from the automatic stream detection logic before
programming the valid data; and

the garbage collection logic includes:

a block selection logic to select a second block responsive

to the first stream ID; and

a programming logic to write the valid data to the second

block.

Statement 10. An embodiment of the mventive concept
includes a SSD according to statement 9, wherein the second
block 1s a special block that only stores data programmed
during the garbage collection.

Statement 11. An embodiment of the inventive concept
includes a SSD according to statement 1, wherein the stream
ID 1s responsive to at least one of a Logical Block Address
(LBA) of the valid data, an application ID of an application
responsible for originally writing the valid data to the SSD,
a remaining lifetime for the valid data, a sequentiality for the
valid data, an update frequency for the valid data, a recency
for the valid data, a write size for the valid data, a write time
for the valid data, a read frequency for the valid data, and a
read temperature for the valid data.

Statement 12. An embodiment of the mventive concept
includes a method, comprising:

identifying an erase block on a Solid State Drive (SSD)
for garbage collection;

identifying valid data in the erase block that requires
programming; and

programming the valid data in the erase block into a
second block, the second block selected responsive to a
stream 1dentifier (ID), where the stream ID 1s determined
alter identifying the valid data in the erase block that
requires programming has been 1dentified and responsive to
attributes of the valid data.

Statement 13. An embodiment of the mventive concept
includes a method according to statement 12, further com-
prising, before 1dentifying valid data in the erase block that
requires programming;

recerving, at the SSD, the valid data in a write request
from an application;

determining a second stream ID responsive to the attri-
butes of the valid data;

selecting the erase block responsive to the second stream
ID; and

writing the valid data to the erase block.

Statement 14. An embodiment of the mventive concept
includes a method according to statement 13, wherein the
stream ID 1s the second stream ID.

Statement 15. An embodiment of the mventive concept
includes a method according to statement 12, wherein pro-
gramming the valid data in the erase block into a second

US 11,630,767 B2

13

block includes placing a write request 1nto an Input/Output
(I/O) queue to write the valid data to the second block.

Statement 16. An embodiment of the inventive concept
includes a method according to statement 15, further com-
prising erasing the erase block.

Statement 17. An embodiment of the inventive concept
includes a method according to statement 16, wherein eras-
ing the erase block includes erasing the erase block before
the valid data 1s written to the second block.

Statement 18. An embodiment of the inventive concept
includes a method according to statement 12, wherein pro-
gramming the valid data in the erase block into a second
block includes:

determining the stream ID for the valid data responsive to
the attributes of the valid data;

selecting the second block responsive to the stream 1D;
and

programming the valid data to the second block.

Statement 19. An embodiment of the inventive concept
includes a method according to statement 18, wherein
selecting the second block responsive to the stream ID
includes selecting a special block responsive to the stream
ID, the special block only storing data programmed during
the garbage collection.

Statement 20. An embodiment of the inventive concept
includes a method according to statement 12, wherein the
stream ID 1s responsive to at least one of a Logical Block
Address (LBA) of the valid data, an application ID of an
application responsible for originally writing the valid data
to the SSD, a remaining lifetime for the valid data, a
sequentiality for the valid data, an update frequency for the
valid data, a recency for the valid data, a write size for the
valid data, a write time for the valid data, a read frequency
for the valid data, and a read temperature for the valid data.

Statement 21. An embodiment of the inventive concept
includes an article comprising a non-transitory storage
medium, the non-transitory storage medium having stored
thereon 1instructions that, when executed by a machine,
result 1n:

identifying an erase block on a Solid State Drive (SSD)
for garbage collection;

identifying valid data in the erase block that requires
programming; and

programming the valid data in the erase block into a
second block, the second block selected responsive to a
stream 1dentifier (ID), where the stream ID 1s determined
alter identifying the valid data in the erase block that
requires programming has been 1dentified and responsive to
attributes of the valid data.

Statement 22. An embodiment of the inventive concept
includes an article according to statement 21, the non-
transitory storage medium having stored thereon further
instructions that, when executed by the machine, result 1n,
before 1dentifying valid data in the erase block that requires
programming;

receiving, at the SSD, the valid data 1n a write request
from an application;

determining a second stream ID responsive to the attri-
butes of the valid data;

selecting the erase block responsive to the second stream
ID:; and

writing the valid data to the erase block.

Statement 23. An embodiment of the inventive concept
includes an article according to statement 22, wherein the
stream ID 1s the second stream ID.

Statement 24. An embodiment of the inventive concept
includes an article according to statement 21, wherein pro-

10

15

20

25

30

35

40

45

50

55

60

65

14

gramming the valid data in the erase block into a second
block includes placing a write request 1nto an Input/Output
(I/0) queue to write the valid data to the second block.

Statement 25. An embodiment of the inventive concept
includes an article according to statement 24, the non-
transitory storage medium having stored thereon further
instructions that, when executed by the machine, result 1n
crasing the erase block.

Statement 26. An embodiment of the mventive concept
includes an article according to statement 235, wherein eras-
ing the erase block includes erasing the erase block before
the valid data 1s written to the second block.

Statement 27. An embodiment of the inventive concept
includes an article according to statement 21, wherein pro-
gramming the valid data in the erase block into a second
block includes:

determining the stream ID for the valid data responsive to
the attributes of the valid data;

selecting the second block responsive to the stream ID;
and

programming the valid data to the second block.

Statement 28. An embodiment of the mventive concept
includes an article according to statement 2°7, wherein select-
ing the second block responsive to the stream ID includes
selecting a special block responsive to the stream ID, the
special block only storing data programmed during the
garbage collection.

Statement 29. An embodiment of the inventive concept
includes an article according to statement 21, wherein the
stream ID 1s responsive to at least one of a Logical Block
Address (LBA) of the valid data, an application ID of an
application responsible for orniginally writing the valid data
to the SSD, a remaining lifetime for the valid data, a
sequentiality for the valid data, an update frequency for the
valid data, a recency for the valid data, a write size for the
valid data, a write time for the valid data, a read frequency
for the valid data, and a read temperature for the valid data.

Consequently, 1n view of the wide variety of permutations
to the embodiments described herein, this detailed descrip-
tion and accompanying material 1s intended to be illustrative
only, and should not be taken as limiting the scope of the
inventive concept. What 1s claimed as the inventive concept,
therefore, 1s all such modifications as may come within the
scope and spirit of the following claims and equivalents
thereto.

What 1s claimed 1s:

1. A device, comprising:

memory to store data, the memory storing a first data 1n

a first portion and a second data in a second portion, the
first data stored in the first portion based at least 1n part
on a {irst request from a second device, the second data
stored 1n the second portion based at least 1n part on a
second request from the second device, the first portion
associated with a first stream identifier (ID) based at
least 1n part on the first request and the second portion
associated with a second stream ID based at least 1n part
on the second request;

a controller to manage writing data to or reading the data

from the memory;

a circuit to select a third stream ID based at least in part

on at least one attribute of the first data, wherein the

circuit 1s capable of selecting any of the first stream 1D,
the second stream ID, and a different stream 1D for the
first data.

2. The device according to claim 1, wherein:

the controller icludes an Input/Output (I/0) queue to
receive requests from the second device; and

US 11,630,767 B2

15

the device further includes a second circuit to place a
programming request for the first data from a third
circuit ito the I/O queue.

3. The device according to claim 2, wherein the controller
turther 1ncludes a receiver to receive an earlier request from
the second device, the earlier request including the first data,
wherein the first data 1s written to the first portion responsive
to the earlier request.

4. The device according to claim 3, wherein the device 1s
configured to write the first data to the first portion based at
least 1n part on the earlier request and the first stream ID
from the circuit.

5. The device according to claim 2, wherein the third
circuit further includes a fourth circuit to erase the first
portion.

6. The device according to claim 5, wherein the fourth
circuit 1s configured to erase the first portion based at least
in part on the device processing the programming request.

7. The device according to claim 5, wherein the fourth
circuit 1s configured to erase the first portion based at least
in part on the programming request being placed in the 1/0
queue by the second circuit.

8. The device according to claim 1, further comprising;

a second circuit to request the third stream ID from the
circuit, the second circuit including:

a third circuit to select a third portion based at least in part
on the third stream ID; and
a fourth circuit to write the first data to the third portion.

9. The device according to claim 8, wherein the third
portion stores data programmed based at least in part on the
second circuit.

10. The device according to claim 1, wherein the third
stream ID 1s based at least in part on at least one of an
application ID of an application, a remaiming lifetime for the
first data, a sequentiality for the first data, a recency for the
first data, a write size for the first data, a write time for the
first data, and a read frequency for the first data.

11. A method, comprising;

identifying a first portion on a device for garbage collec-
tion, the device also including a second portion storing
a second data, the first portion based at least in part on
a first stream 1dentifier (ID) and the second portion
based at least 1n part on a second stream ID, the first
data stored 1n the first portion based at least 1n part on
a first request from a second device and the second data
stored 1n the second portion based at least in part on a
second request from the second device;

identifying a first data in the first portion to be pro-
grammed;

selecting, by a circuit, a third stream ID for the first data
based at least 1n part on at least one attribute of the first
data, wherein the circuit 1s capable of selecting any of
the first stream ID, the second stream ID, and a different
stream ID as the third stream ID; and

programming the first data in the first portion nto a third
portion, the third portion selected based on the third
stream 1D.

12. A method according to claim 11, wherein program-

ming the first data 1n the first portion into a third portion

10

15

20

25

30

35

40

45

50

55

16

includes placing a programming request into an Input/
Output (I/0) queue to write the first data to the third portion,
the I/0 queue configured to receive requests from the second
device.

13. A method according to claim 12, further comprising
erasing the first portion.

14. A method according to claim 13, wherein erasing the
first portion includes erasing the first portion based at least
in part on the programming request being placed in the 1/0
queue.

15. A method according to claim 11, wherein

programming the first data 1n the first portion into the third

portion includes:

selecting the third portion based at least 1n part on the

third stream ID; and
programming the first data to the third portion.

16. A method according to claim 135, wherein selecting the
third portion based at least in part on the third stream ID
includes selecting a special portion based at least 1n part on
the third stream ID, the special portion storing data pro-
grammed during the garbage collection.

17. A method according to claim 11, wherein the third
stream ID 1s based at least in part on at least one of an
application ID of an application, a remaiming lifetime for the
first data, a sequentiality for the first data, a recency for the
first data, a write size for the first data, a write time for the
first data, and a read frequency for the first data.

18. A method according to claim 11, wherein a value for
the at least one attribute of the first data may vary depending
on the first request.

19. A method, comprising:

recerving at a device, from a second device, a first request

including a first data;

selecting, by the device, a first stream 1D based on the first

request;

writing the first data to a first portion on the device based

on the first request, the first portion based on the first
stream 1D);

recerving at the device, from the second device, a second

request 1including a second data;
selecting, by the device, a second stream 1D based on the
second request, the second stream ID different from the
first stream ID;

writing the second data to a second portion on the device
based on the second request, the second portion based
on the second stream ID; and

identifying the first portion for garbage collection;

identifying the first data in the first portion for program-

ming;

selecting, by a circuit, a third stream ID based at least in

part on at least one attribute of the first data, wherein

the circuit 1s capable of selecting any of the first stream

ID, the second stream ID, and a different stream ID for

the first data; and

programming the first data into a third portion on the
device based at least 1n part on the third stream ID.

20. A method according to claim 19, wherein the third
portion 1s the second portion.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

