US011625258B2

a2 United States Patent (10) Patent No.: US 11,625,258 B2

Wang 45) Date of Patent: Apr. 11, 2023
(54) METHOD, APPARATUS AND SYSTEM FOR (56) References Cited
REAL-TIME VIRTUAL NETWORK _ﬁ
FUNCTION ORCHESTRATION u.5. PALENT DOCUMENIS
2005/0080965 Al* 4/2005 Bennett GOGF 9/45533
(71) Applicant: NOKIA SOLUTIONS AND N 1000
NETWORKS OY, Espoo (FI) 2010/0138828 Al* 6/2010 Hanquez GOGF 9/45558
718/1
(72) Inventor: Cheng Wang, Shanghai (CN) (Continued)
(73) Assignee: NOKIA SOLUTIONS AND FOREIGN PATENT DOCUMENTS
NETWORKS OY, Espoo (FI)
CN 104601492 A 5/2015
CN 104615480 A 5/2015
(*) Notice: Subject to any disclaimer, the term of this (Continued)

patent 1s extended or adjusted under 35

U.S.C. 154(b) by 146 days.
OTHER PUBLICATIONS

(21) Appl. No.: 16/760,117 Enea Software AB, “Eneca Linux Real-Time Guide™, [Retrieved Jul.

14, 2021] Retrieved from the Internet: <URL: https://linux.enea.
com/4.0/documentation/html/book-enea-linux-realtime-guide/>, (Jun.

17, 2014), 46 pages.

(22) PCT Filed: Oct. 31, 2017

(86) PCT No.: PCT/CN2017/108653 |
(Continued)
§ 371 (c)(1).
(2) Date: Apr. 29, 2020 Primary Examiner — Mehran Kamran

(87) PCT Pub. No.: WO2019/084793 (74) Attorney, Agent, or Firm — Alston & Bird LLP
ub. No.:

PCT Pub. Date: May 9, 2019 (57) ABSTRACT
Method, apparatus and system for real-time virtual network
(65) Prior Publication Data function orchestration in Real-time Cloud Infrastructure.
US 2020/0334065 A1 Oct. 22, 2020 The method comprises the step of updating and reporting

CPU core RT pertormance; sending CPU and NUMA infor-

(51) Int. CL. mation; moving the IRQs from RT CPUset to Non-RT
GOGF 9/455 (2018.01) CPUset based on the CPU pool information response, and
GOGF 0/4401 (2018.01) reporting the completion of IRQ clearance; moving the

system tasks and OS background processes to Non-RT

CPUset based on the CPU pool information response, and

reporting the completion of system tasks clearance; clearing

the known indeterminmism sources based on the CPU pool
information response, and reporting the completion of inde-

(Continued)

(52) U.S. CL
CPC ... GOGF 9/45558 (2013.01); GOGF 9/4406
(2013.01); GO6F 9/5077 (2013.01);

(Continued) terminism sources clearance. The implementation of the

(58) Field of Classification Search method and apparatus improves that with support of NFV,

CPC e, GO6F 9/45558 edge cloud can speed new service deployment and achieve
(Continued) (Continued)

| Step 100. updating and reporting CPU core RT
performance based on the VNF RT performance

Step 110. sending CPU and NUMA information upon
| the completion of OS booting

|

Step 120 moving the IRQs from RT CPUset to Non-RT
CPUset upon the completion of OS booting based on the
CPU pool information response, and reporting the
completion of IRQ clearance

|

Step 130, moving the system tasks and OS background
iprocesses to Non-RT CPUset upon the completion of O8
. booting based on the CPU pool information response,

L

. Step 140. clearing the known indeterminism sources
upon the completion of OS booting based on the CPU
pool information response, and reporting the completion
of indeterminism sources clearance

US 11,625,258 B2
Page 2

resource sharing among di

N

erent services which allows

operators to provision fewer resources.

7 Claims, 8 Drawing Sheets

(51) Int. CL
GO6Il’ 9/50 (2006.01)
GO6Il 9/52 (2006.01)
HO4L 67/10 (2022.01)
(52) U.S. CL
CpPC GO6F 9/52 (2013.01); GO6F 2009/45595
(2013.01); HO4L 67/10 (2013.01)
(58) Field of Classification Search
USPC e 718/1
See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS
2011/0106995 Al* 5/2011 Gopalakrishnan GO6F 9/4812
710/269
2015/0169376 Al1* 6/2015 Chang GO6F 9/5022
718/104
2016/0246652 Al 8/2016 Herdrich et al.
2016/0306647 Al* 10/2016 Xiacoceevvvnnneee, GO6F 9/4812
2017/0024231 Al1* 1/2017 Ruel ..., GOG6F 9/5077
2017/0203436 Al1* 7/2017 Wel .cooviiiniiiinnnn.n, B25J9/161
2017/0244647 Al* 8/2017 Jin ..o, GO6F 9/45504
2017/0337074 Al1* 11/2017 Tswurkin GOO6F 9/45558
2019/0250836 Al1* 8/2019 Pu ..o, GOG6F 3/0665
2020/0127800 Al1* 4/2020 Tangc........ HO4W 72/042
2020/0264914 Al1* 8/2020 Dasgupta HO04L. 41/04
2020/0358666 Al* 11/2020 Dravid HO4L 41/0896
2021/0064429 Al1* 3/2021 Stetter, Jr. GO6F 9/5027
2021/0152449 Al1* 5/2021 Wangccoev.e. HO04L 43/08
2021/0359953 Al* 11/2021 Jin ..ooivveeiiiiiiiinnn... HO4L 67/10
FOREIGN PATENT DOCUMENTS
CN 1054297780 A 3/2016
CN 105471649 A 4/2016

CN 105634782 A 6/2016
CN 105912396 A 8/2016
CN 106533723 A 3/2017
WO WO 2017 058274 Al 4/2017
WO WO 2018/162991 Al 9/2018
WO WO 2019/012333 Al 1/2019

OTHER PUBLICATTIONS

Enea Software AB, “Enea Linux User’s Guide”, [Retrieved Jul. 15,
2021] Retrieved from the Internet: <URL: https:/linux.enea.com/
4.0/documentation/html/book-enea-linux-users-guide/index . html#enea-

linux-networking>, (Jun. 17, 2014), 73 pages.

Extended European Search Report for European Application No.
17930793.9 dated Jul. 26, 2021, 12 pages.

Nakajima et al., “Building High-Performance NFV Solutions Using
Containers”, [Retrieved Aug. 17, 2015] Retrieved from the Internet:
<URL: https://events.static.linuxfound.org/sites/events/files/slides/
Jun Nakajima NFV_Container final.pdf>, (Aug. 17, 2015), 30 pages.
ETSI, “Network Function Virtualisation (NFV), Management and
Orchestration” ETSI GS NFV-MAN 001 v1.1.1, Dec. 31, 2014) 184
pages.

Network Functions Virtualisation, Introductory White Paper, Issue
1, SDN and OpenFlow World Congress (Oct. 2012) 16 pages.
C-RAN The Road Towards Green RAN, White Paper Version 2.5,
China Mobile Research Institute (Oct. 2011) 48 pages.

Grinberg, M., OpenStack Orchestratiorn in Depth, Part 1. Introduc-
tion to Heat, [online] [retrieved May 28, 2020]. Retrieved via the
Internet: https://web.archive.org/web/20160817110738/https://
developer.rackspace.com/blog/openstack-orchestration-in-depth-pait-
1 -introduction-to-heat/ (dated Aug. 17, 2016) 8 pages.
Tacker—OpenStack [online] [retrieved May 28, 2020]. Retrieved
via the Internet: https://web.archive.org/web/20170701202503/https://
wiki.openstack.org/wiki/Tacker (dated Jul. 1, 2017) 4 pages.
International Search Report and Written Opinion for Application
No. PCT/CN2017/108653 dated Aug. 6, 2018, 6 pages.

Office Action for European Application No. 17930793.9 dated Aug.
2, 2022, 8 pages.

Office Action for Chinese Application No. 201780096470.4 dated
Feb. 22, 2023, 18 pages.

* cited by examiner

U.S. Patent Apr. 11, 2023 Sheet 1 of 8 US 11,625,258 B2

Step 100. updating and reporting CPU core RT
performance based on the VNF RT performance

; |

Step 110. sending CPU and NUMA information upon
the completion of OS booting

Step 120. moving the IRQs from RT CPUset to Non-RT
CPUset upon the completion of OS booting based on the
CPU pool mnformation response, and reporting the
completion of IRQ) clearance

Step 130. moving the system tasks and OS background
processes to Non-RT CPUset upon the completion of OS
booting based on the CPU pool information response,
and reporting the completion of system tasks clearance

Step 140. clearing the known indeterminism sources
upon the completion of OS booting based on the CPU
pool information response, and reporting the completion
of indeterminism sources clearance

FIG.1

U.S. Patent Apr. 11, 2023 Sheet 2 of 8 US 11,625,258 B2

ol R el Ll o ol ol o ol ol A A e L A - arara arara arara arara

' S5200. updating CPU pool based on the CPU and NUMA
: information, and synchronizing the CPU pool
% information
|
S210. moditying CPUset and sending CPU update
| command

AL
e

P - e s P, kAt Rt J s L i e by At Ay by A A A Ak Akt bbb kb A b ;'
5220, recerving RT VNF deployment request and
; .
L selecting the target compute node and target CPU
KF1G.2
Real-time VNF |
Orchestrator g
— = I E | R - ! i
Virtual BS | Virtual BS Virtual BS | | Fixed
3G | 4G 5G | Access
/ Container | — Container | Container | — Container
Virtualized heterogeneous real-time c¢loud nfrastructure /
e S <)
"// Real-time ;) Networking | E Storage | e
ye compute ~] ~J S

Real-time hypervisor

. H

'

"

. H

d [

"

FNOTRRL WAL ke M. AR aFvE Caus 1 mam 7AW TRRD AWRRR IR uNY. PURL ARAR [Y L T TNT I RN 1AW MRPY RTAY 114N RIFL RIAT BRIA CRTA WA BWdD SIS IVEE MRRS UBRE TTAT T TIITE TR 1TAIT CLuk
1 H
1 H
1

1 H
I :
i

' .
H H
1 : L
]

1 raa

i 3

! i

]

i H
1

TR

Accelerator pool / Server Claster with RTOS Storage Switch /

ETLTPL

rArTARTAETARTATARTARTA
[RESRITREERE R REE

heterogeneous real-time cloud infrastructure

...

E” Indeterminism Source Management Ageﬂt'

System Tasks Management Agent

1RQ Management Agent |

CPU Pool Management Agent l

Compute Node 1

U.S. Patent Apr. 11, 2023 Sheet 3 of 8 US 11,625,258 B2
| CPU Pool RT VNF
Manager Manager
A A
|
Y
:
: | - |
R % ; RIVNE4 R4 VREG RT VNF2 R1 VNE4 RT VNFI RT VNF3 RT VNF5
R VNE?2 RT VNF7 RTVNE | RT VNFE5 |
||l RT vivEs | | RT VNF3 | | | RTVNF2|| || RT VNF4 RITVNFS
"RT VNE3 i RT VNFR g BT VNFG | o
Core 1 Core 2 Core M | Core 1 Core Cora M : Core 1 Core 2 Core M
i |
| | i | | | i j i l |
\ Y oy I _ Y
VNF Performance Management Agent ; VNF Performance Management Agent ‘ ! VNF Performance Management Agenﬂ

Indeferminism Source Management Agent

;

indeterminism Source Management Agent

|

:

L System Tasks Management Agent E

|
; REQ Management Agent

 CPU Pool Management Agént

ETE TR EE T T

System Tasks Management Agent

IRQ Management Agent

erArErA ey

CPU Pool Management Agent

FIG.4

Compute Node 2

Compute Node M

U.S. Patent Apr. 11, 2023 Sheet 4 of 8 US 11,625,258 B2

Step 500. updating and reporting CPU core RT |
performance based on the VNF RT performance

BRULLLEL k] WA Sl

BLLLL] FiA 1T ST A T e A e e e e T L L, A P R Ll

D
LY [
L
.......

Step 510. sending CPU and NUMA information upon |
the completion of OS booting

:

.

N Step 520. “updating CPUMpSOI“bgged on the CPU and
- NUMA mformation, and synchronizing the CPU pool
information |

[ITp

:

CPUset upon the completion of OS booting based on the ;
- CPU pool information response, and reporting the
completion of IRQ clearance |

1

- Step 540. moving the system tasks and OS background
processes to Non-RT CPUset upon the completion of OS
 booting based on the CPU pool information response, |
- and reporting the completion of system tasks clearance.

|

A ety

~ Step 550. clearing the known indeterminism sources

upon the completion of OS booting based on the CPU |
pool information response, and reporting the completion
of indeterminism sources clearance

¥

Step 560. receiving RT VNF deployment request and
selecting the target compute node and target CPU

:

FIG.5

US 11,625,258 B2

Sheet 5 of 8

Apr. 11,2023

U.S. Patent

r————e—e———_——_—_—_—_—_—_—_—_—_—_—_—_t—_—_t—_t—_—_—_t—_—_—_—_—_—_—_—_—_—_—_—_—_—_—_—_—_——_—_—_—_—_——_——_——_——_——_——_——_——_——_——_——_——_——_——_——_——_-_ - .- - .- .- —_——_————

|
|
|
|
| = o =
| = < v
| = _W S
_ —
| o o o
|
|
|
|
|
|
|
|
| o
| o A HO
| = prd < O
_ - > > O
T
_ L & @«
|
|
I
e
| —
| <
| @
| c
_ LA)
_ . AL
| O g @
| Wc O
| O O
| Q.
|
|
|
|
5
m Mm — O
Smm “ L w
858 £z %
8 =7 C
& o

RT VNFS

Core N

Core 2

DPDK
processes

Corel

OS
Background

processes

CPU pool for RT VNFs

processes

VNFs

— ————— — —

—_—————— —

FI1G.6

U.S. Patent Apr. 11, 2023 Sheet 6 of 8 US 11,625,258 B2

Running on the compute node Running on the

Wﬁm Running on the compute hode compuie node
. Wmﬁm o O S R B B T R N P B P R B W”WW”%%% U #s‘gﬁ”w}‘ww[‘w .;ﬁ'*wmarfﬁ%mwm%ﬂ.
Indeterminism Source System Tasks IRG Management CPU Pool CPUPool | | Perfoermance RT VNF | RT YNE
- Management Agent Management Agent E Agent Management Agent Marnager Management Agent Manager |
|
Upon completion of Repmrt YNF RT|performance
5 pooting, send

——n
N ™1

L) and NUMA i:r;fj

Update C{PU core
3 T performance

Report CPU mre}%“? performance

Synchronize CPU pool information

CRPU poot information request

CPLU poot informatign response

| Upon completion of OS

| booiing, move the IRGs from
RT cpuset to Non- RT CPUset |
i
| Report the completion of IRQ clearance -
CPU pool informationj{request |
! T 1
C.PU pool informaticn response Report VNF RT performance!
'{ T _‘:]
;;pmn cc}mpietimf of CS booting, moy Undate DPU core
| e system tasks and OS5 background RT performance
j processes to Non-RT CPUset P rlf _ |
: Report CPU cora RT performance
Report the completion of system tasks clegrance W‘“““‘““‘“‘“"“‘*““‘;‘
CRU pool information request ’_é
]

: < CRU pool informabionresponse

Upon sompietion of G bﬂﬂtirzg,uiea}
the known indeterminism sources

| Repori the completion of indeterminism sources clearance

3

| Recewe RT VNF

| *m : d t t and

| mcdlfl ation ployment request an

j elect the target compute
| n

3

Cpuset update command

~k ade andfarget CPU
RIS Send VNF iné,tantiatican request o
re-arrangement target Performarnce Management Agent
| instant ate the
¢ tupgat d
% < puset uptate comman | (UNE) |
i
| System tasks |
; re-arrangement Report VNF RT performance
| Cpuset update command Update CPU core :

!{ RT performance

Indeterminism source
rewarra}wgement Report CFU core RT performance
2 R

—_ — — —l
F1G.7

U.S. Patent Apr. 11, 2023 Sheet 7 of 8 US 11,625,258 B2

roes

an apparatus of running

on the compute node for

real-time virtual network
function orchestration

updating and
reporting
module 800

sending
module 810

IRQ moving
module 820

system tasks
moving
module 830

clearing
module 840

FIG.8

U.S. Patent Apr. 11, 2023 Sheet 8 of 8 US 11,625,258 B2

an apparatus of running
on the RT cloud
infrastructure for real-

time virtual network
function orchestration

updating
module 900

modifying
module 910

receiving
and

selecting
module 920

FIG. 9

US 11,625,258 B2

1

METHOD, APPARATUS AND SYSTEM FOR
REAL-TIME VIRTUAL NETWORK

FUNCTION ORCHESTRATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a national phase entry of International
Application No. PCT/CN2017/108633, filed Oct. 31, 2017,
the entire contents of which are incorporated herein by
reference.

FIELD OF THE INVENTION

The present invention relates to a method, apparatus and

system for real-time virtual network function orchestration
in Real-time Cloud Infrastructure.

BACKGROUND OF THE INVENTION

In recent years, the mobile industry evolves toward IT-
ization and cloudization. The underlying 1dea of Cloud RAN
and Network Functions Virtualization (NFV) 1s to use Gen-
eral Purpose Processor (GPP) to do Radio Access Network
(RAN) and CN processing as much as possible. This can
exploit the economies of scale of the IT industry and
leverage standard IT virtualization technology to consoli-
date many network equipment types onto industry standard
servers (for example, x86 architecture), which could be
located 1n datacenters. With the support of NFV, the mobile
network functions are decoupled from hardware which
speeds the new service deployment and achieves resource
sharing among different services and exploit the advantages
provided by cloud infrastructure.

Today’s mobile RAN employs advanced technologies and
algorithms to provide high network capacity which requires
high processing capability to handle the PHY and MAC
layers processing, 1t 1s possible to use hardware accelerator
to offload some of the PHY compute-intensive functions like
Turbo decoder. For example, the current real-time VNF
usually contains the following problems:

1. Orchestration of real-time VNF are not covered in
traditional Cloud Orchestrator.

One x86 CPU core can afford multiple virtual VNFs. In
practical systems, the number of VNFs hosted by a machine
can be far larger than the number of CPU cores on a
machine. So VNFs have to share a CPU core. Furthermore,
the number of VNFs hosted by a machine varies 1n time due
to VNF lifecycle. When a VNF 1s instantiated, the orches-
trator 1s recommended to determine on which machine the
VNF will be placed. Some orchestrators have been devel-
oped to deploy cloud applications. Open Stack Heat 1s a kind
ol orchestrator which 1s used for deployment of I'T applica-
tions like web servers, databases, etc. NFV Tacker 1s used to
deploy VNFs like virtual CPE, CE and PE services. All the
above VNFs are non-real-time services. That 1s, the tradi-
tional orchestrators and operating systems only focus on the
allocation of computing resources to VNFs, including CPU
time and memory. They don’t care the real-time (RT)
performance of the service very much.

2. Real-time performance of VNF can be impacted by
many aspects

In the case where real-time services/VNFs are deployed in
cloud environments, a new type of orchestrators that sup-
ports deployment of real-time VNFs (RT VNF) 1s required.
Based on practical test, I/O operations can impact real-time
performance greatly (The real-time performance of a system

10

15

20

25

30

35

40

45

50

55

60

65

2

can be measured by the interval between the time when an
event takes place and the time when the event 1s served). If
the network adapter I/O interrupt thread shares the same
CPU core with a real-time application, the real-time pertor-
mance of the application can be degraded seriously. and the
network throughput will also be reduced. The real-time
performance for an application sharing CPU core with
network adapter interrupt thread i1s given in Table-1. The
results are obtained with network adapter sending packets at
rate of 936 Mbps. From the Table-1 it 1s known that the
real-time performance cannot meet L2 VNF requirement, as
latency larger than 15 us 1s unacceptable.

TABLE 1
Timer latency percentage
>10 us 12.83%
>15 us 10.79%
>100 us 4.28E-4
Max (us) 109.145

For an orchestrator which orchestrates RT VNFs, i1ts
orchestrating policy must be different from that for orches-
tration of traditional VNF which are non-RT applications.

The use of CPU core must be carefully planned and the CPU
cores for RT VINFs must be 1solated from the cores that host
I/O interrupt threads. That 1s, the placement of RT VNFs 1s
recommended to be under the control of new orchestrator
which can support RT VNF deployment. After the instan-
tiation of a new RT VNF, the RT performance constraint of
both the pre-existing RT VNFs and the newly deployed RT
VNFs are recommended to be met.

3. Traditional embedded RT systems and RAN, RT per-
formance monitoring mechanism 1s not necessary

As these systems run on dedicated hardware appliances
which don’t involve new VNF instantiation, orchestration
and resource sharing/consolidation, once the systems have
been adjusted to work well, the RT constraints are always
met and RT performance momitoring 1s unnecessary.

In cloud environment, the number of VNFs hosted by a
server varies 1n time, the processing load of a VNF also
varies 1n time, and the processing capability of CPU cores 1n

the resource pool may be different, a RIT performance
monitoring mechanism 1s required.

SUMMARY OF THE INVENTION

In one embodiment, an aspect of this invention relates to
a method, apparatus and system for real-time virtual net-
work function orchestration with the method comprising the
following steps:
reporting VNF RT performance
updating and reporting CPU core RT performance based
on the VNF RT performance;
sending CPU and NUMA 1nformation upon the comple-
tion of OS booting;
moving the IRQs from RT CPUset to Non-RT CPUset
upon the completion of OS booting based on the CPU
pool mformation response, and reporting the comple-
tion of IRQ clearance;
moving the system tasks and OS background processes to
Non-RT CPUset upon the completion of OS booting
based on the CPU pool mformation response, and
reporting the completion of system tasks clearance;
clearing the known indeterminism sources upon the
completion of OS booting based on the CPU pool

US 11,625,258 B2

3

information response, and reporting the completion of
indeterminism sources clearance.

In another embodiment, an aspect of this invention relates
to a method for real-time virtual network function orches-
tration, with the method comprising the following steps:

a step of updating CPU pool based on the CPU and
NUMA information, and synchromzing the CPU pool
information;

a step of moditying CPUset and sending CPU update
command;

a step of receiving RT VNF deployment request and
selecting the target compute node and target CPU.

In another embodiment, an aspect of this invention relates
to an apparatus of running on the compute node for real-time
virtual network function orchestration, with the apparatus
comprising the following modules:

a module for reporting VNF RT performance;

a module for updating and reporting CPU core RT per-

formance based on the VNF RT performance;

a module for sending CPU and NUMA miformation upon
the completion of OS booting;

a module for moving the IRQs from RT CPUset to
Non-RT CPUset upon the completion of OS booting
based on the CPU pool mformation response, and
reporting the completion of IRQ clearance;

a module for moving the system tasks and OS background
processes to Non-RT CPUset upon the completion of
OS booting based on the CPU pool information
response, and reporting the completion of system tasks
clearance;

a module for clearing the known indeterminism sources
upon the completion of OS booting based on the CPU
pool information response, and reporting the comple-
tion of indeterminism sources clearance.

In another embodiment, an aspect of this invention relates
to an apparatus of running on the RT cloud infrastructure for
real-time virtual network function orchestration, with the
apparatus comprising the following modules:

a module for updating CPU pool based on the CPU and
NUMA information, and synchromzing the CPU pool
information;

a module for modifying CPUset and sending CPU update
command;:

a module for recerving RT VNF deployment request and
selecting the target compute node and target CPU.

As such, the implementation of this invention improves
that with support of NFV, edge cloud can speed new service
deployment and achieve resource sharing among different
services which allows operators to provision Ifewer
resources. The expected RT cloud infrastructure 1s able to

support RT VNFs deployment and meet the critical RT
constraint for RAN processing.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a flow chart illustrating a method of the present
invention for real-time virtual network function orchestra-
tion.

FIG. 2 1s another flow chart illustrating a method of the
present invention for real-time virtual network function
orchestration.

FIG. 3 1s a block diagram illustrating Real-time Edge
Cloud infrastucture architecture.

FIG. 4 1s a block diagram illustrating Real-time VNF
orchestrator software architecture.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 5 1s a flow chart illustrating a method of the
embodiment for real-time virtual network tunction orches-

tration.

FIG. 6 1s a block diagram illustrating computing resource
pool and CPU use planning.

FIG. 7 1s a flow chart illustrating interactions between
VNF orchestrator functions.

FIG. 8 1s a block diagram 1llustrating an apparatus of the
present invention of running on the compute node for
real-time virtual network function orchestration.

FIG. 9 1s a block diagram 1llustrating an apparatus of the
present invention of runmng on the RT cloud infrastructure
for real-time virtual network function orchestration.

DETAILED DESCRIPTION AND PREFERRED
EMBODIMENT

The present invention will now be discussed in detail with
regard to the attached drawing figures which are briefly
described above. In the following description, numerous
specific details are set forth illustrating the applicant’s best
mode for practicing the invention and enabling one of
ordinary skill 1in the art of making and using the invention.
It will be obvious, however, to one skilled in the art that the
present mvention may be practiced without many of these
specific details. In other instances, well-known machines
and method steps have not been described 1n particular detail
in order to avoid unnecessarily obscuring the present inven-
tion. Unless otherwise indicated, like parts and method steps
are referred to with like reference numerals.

Referring to FIG. 1, an embodiment of a method for
real-time virtual network function orchestration comprises:

at step 100, updating and reporting CPU core RT perfor-
mance based on the VNF RT performance;

at step 110, sending CPU and NUMA information upon
the completion of OS booting;

at step 120, moving the IRQs from RT CPUset to Non-RT
CPUset upon the completion of OS booting based on the
CPU pool mformation response, and reporting the comple-
tion of IRQ) clearance;

at step 130, moving the system tasks and OS background
processes to Non-RT CPUset upon the completion of OS
booting based on the CPU pool information response, and
reporting the completion of system tasks clearance;

at step 140, clearing the known indeterminism sources
upon the completion of OS booting based on the CPU pool
information response, and reporting the completion of 1nde-
terminism sources clearance.

Alternatively, the method for real-time virtual network
function orchestration also comprises:

a step of re-arranging IRQs, system tasks and indetermin-
1sm source based on the CPUset updating command.

Alternatively, the method for real-time virtual network
function orchestration also comprises:

a step of instantiating the VNF based on the VINF 1nstan-
tiation request.

Referring to FIG. 2, an embodiment of a method for
real-time virtual network function orchestration comprises:

at step 200, updating CPU pool based on the CPU and
NUMA 1nformation, and synchronizing the CPU pool infor-
mation;

at step 210, moditying CPUset and sending CPU update
command;

at step 220, receiving RT VNF deployment request and
selecting the target compute node and target CPU.

Base of the embodiment of a method for realizing
dynamic point selection, this ivention improves that with

US 11,625,258 B2

S

support of NFV, edge cloud can speed new service deploy-
ment and achieve resource sharing among different services
which allows operators to provision fewer resources. The
expected RT cloud infrastructure 1s able to support RT VNFs
deployment and meet the critical RT constraint for RAN
processing.

In another embodiment, a method of the embodiment for
real-time virtual network function orchestration will be
described in detail.

This embodiment focuses on two aspects:

1. The construction of real-time cloud infrastructure: This
embodiment explicitly distinguishes real-time cloud 1nfra-
structure from traditional IT cloud infrastructure. The tradi-
tional cloud infrastructure 1s built for IT applications such as
web server and database server, which has poor RT perior-
mance. In order to guarantee the RT performance of RT
VNFs, the underlying infrastructure 1s recommended to be
able to support RT tasks natively. This requires the compute
node 1n the cloud to be installed with real-time operating,
system (RTOS) and the cloud resource 1s recommended to
be managed by virtualization platform with good RT per-
formance.

2. With RTOS and RT hypervisor, 1t 1s still not enough to
support RT VNFs, as too many aspects can impact Linux RT
performance. This embodiment proposes a new type of
orchestrator for deployment of RT VNFs which 1s quite
different from traditional orchestrator. The proposed orches-
trator includes several functions: CPU use planning and
CPU 1solation, management of source of indeterminism 1n
RT performance, management of system tasks and IRQs,
ctc. RT VNF orchestration mechanism 1s also presented
which 1s based on VNF RT performance measurement.

From the preceding discussion, it 1s known that there 1s no
available orchestrator for real-time VNF orchestration. In
order to achieve RAN processing in cloud infrastructure and
meet the real-time constraints, real-time cloud infrastructure
needs to be constructed and a new type of orchestrator 1s
needed for deployment of RT VNFs in the RT cloud.

With support of NFV, edge cloud can speed new service
deployment and achieve resource sharing among different
services which allows operators to provision Ifewer
resources. However, implementation of RAN functions in I'T
server based edge cloud 1s still very challenging. Although
in cloud environment resource sharing between VNFEs can
improve resource utilization, 1t can degrade real-time per-
formance as a sequence. How to guarantee RAN function
RT performance and let operators take advantages of cloud
computing 1s a tradeoil

For traditional RAN the system running on dedicated
hardware appliances 1s a relatively static system with fixed
number of RT processes/threads and the maximum process-
ing load 1s predictable. This system doesn’t involve dynamic
VNF 1nstantiation, orchestration and resource sharing/con-
solidation. Once the system has been adjusted to work well,
the RT constraints are always met and RT performance
monitoring 1s unnecessary. For Cloud RAN, the VNF may
be deployed or destroyed dynamically, as there 1s limited
number of CPU cores 1n a machine which 1s far less than the
number of VNFs hosted by a machine. Thus, these VNFs
have to share CPU core with each other. In this case, 1t 1s
more challenging to guarantee all the VNFs to meet their RT
performances.

As discussed 1n the Background of The Invention, the
mobile industry evolves toward I'T-1zation and cloudization
to use GPP, for example, x86 architecture, to do RAN and
CN processing as much as possible. This can exploit the
economies of scale of the IT industry and take advantages

10

15

20

25

30

35

40

45

50

55

60

65

6

brought by cloud infrastructure. The general purpose of
operating systems and virtualization platform used by tra-
ditional I'T cloud cannot support RAN processing due to the
poor RT performance.

An RT cloud infrastructure 1s recommended to be built
with a systematic view. the proposed GPP based RT cloud
infrastructure includes the following key technologies:

1. Real-time Operating System (RTOS) for compute node
in the cloud: we use Linux with PREEMPT_RT patch

installed as the RTOS ifor cloud compute node. PRE-
EMPT_RT 1s the oflicial patch for Linux kernel which

makes Linux gain real-time capabilities. Two methods are
available for PREEMPT_RT patch installation, imncluding
kernel re-compiling or direct installation of pre-built rpm/
deb packages for RT kernel.

2. Real-time virtualization technology/hypervisor: Linux
Container-type virtualization technology 1s adopted 1n our
solution which 1s a kind of lightweight hypervisor. Linux
Container achieves near-native RT performance. In practical
system, Docker Container can be used as the virtualization

platform as it 1s more mature than Libvirt Container and
OpenVZ.

3. A new type of Orchestrator for RT VNFs orchestration:
This new orchestrator includes several functions such as
CPU 1solation, system tasks management, IR(Qs manage-
ment, RT VNF orchestration, etc. CPU 1solation technology
1s very important for RT performance improvement. The
CPUs 1n the cloud 1s divided into three pools to avoid
non-real-time (non-RT) VNFs to compete resources with RT
VNFs. One significant difference between the proposed
orchestrator and the traditional orchestrator 1s that the pro-
posed orchestrator monitors the resource usage and VNF
performance and deploys VNFs on per-CPU basis, and
decides onto which CPU core of which machine the new
VNF 1s recommended to be placed. Traditional orchestrators
monitor the resource usage and system performance on
per-host basis, 1t only selects a target machine, but not a
target CPU, and 1t 1s the local operating system that plays the
main role for task scheduling. It 1s obvious that the proposed
orchestrator schedules the resources and tasks with a finer
granularity. This 1s because careful planning CPU use comb-
ing with system tasks and IR() management can signifi-
cantly improve VNFs” RT performance. Another important
different between the proposed orchestrator and the tradi-
tional orchestrator 1s that the proposed orchestrator’s orches-
tration policy 1s based on both VNFs” RT performance
measurement and CPU utilization, the proposed orchestra-
tor’s main task 1s to guarantee both the newly deployed RT
VNF and each of the existing VNFs” RT constraints to be
met when these VNFs share a CPU core. It 1s the proposed
orchestrator but not the local OS that determines on which
CPU core the VNF will be placed. In the context of
traditional orchestrator, there 1s no RT performance concept,
the traditional orchestration policy mainly considers CPU
and memory usage which cannot be applied to RT VNF
orchestration.

From the hardware point of view, the proposed RT cloud
infrastructure uses the same general purpose of hardware
plattorm as the traditional IT cloud, except that some
hardware configurations may be diflerent.

All the three key technologies discussed above are indis-
pensable to RT cloud infrastructure which are not required
by traditional IT cloud. FIG. 3 depicts the proposed RT
cloud infrastructure architecture. FIG. 4 gives the software
architecture for the proposed RT VNF orchestrator which 1s
an 1mportant part of the RT cloud infrastructure.

US 11,625,258 B2

7

Although the RTOS and Linux Container 1s introduced as
the operating system and virtualization platform, 1t 1s still
not enough for the compute node to achieve good RT
performance. For GPP servers, even the application load 1s
very low, there always exists a large number of daemon
processes and system tasks keeping running on the machine
and many of them are critical tasks which can degrade
system RT performance. Furthermore, management of a
large number of peripheral devices also degrades system RT
performance. This 1s why RT performance of an I'T server 1s
more challenging than an embedded system. When con-
structing GPP based RT cloud infrastructure, it 1s not simply
to stack these technologies together. All aspects that impact
VNF RT performance are recommended to be considered by
the orchestrator and some policies on how to use cloud
infrastructure must be obeyed.

The RT performance of Linux 1s a very complicated topic,
the consequence 1s that the aspects which impact Linux RT
performance are summarized as follows.

Lower load helps improve RT performance, overloaded

can be avoid. According to our observation, 1f a VNF
shares the CPU core with I/O interrupt thread, the RT
performance of VNF 1s bad even though the CPU core
has low load. It 1s the I/O terrupts that introduce
unpredictable latency.

The processor’s capability can also impact RT perior-
mance, a poweriul processor helps improve RT pertor-
mance, but the RT performance of a system doesn’t
necessarlly to be met even though i1t has powertul
processor. This 1s why RTOS 1s needed.

Task scheduling policy and task priority: Linux provides
some scheduling policy for RT applications, such as
SCHED_FIFO, SCHED_RR and SCHED_DEAD-
LINE. The RT application can also be set with higher
priority than non-RT applications.

Kernel Preemptibility: With the installation of PRE-
MPT_RT patch, the Linux kernel provides several RT
modes, such as Preemptable Kernel (Low-Latency
Desktop)j Preemptable Kernel (Basic RT), Fully Pre-
emptive Kernel (RT). Fully Preemptable Kemel 1s
preferred for RT VNFs orchestration.

Task switch overhead: Frequent task switches can intro-
duce overhead and reduce RT performance.

OS background processes and system tasks: There are a
large number of OS background processes and system
tasks running on Linux systems. To avoid resource
competition with RT VNFs, these background pro-
cesses and system tasks can be 1solated from the RT
VNFs.

The hardware mterrupt request (IRQ), software IRQ and
system timers are sources of indeterminism which
introduce unpredictable latency. These sources can be
managed by the orchestrator.

CPU load balancer introduced by Linux kernel always
tries to evenly distribute tasks over all the available
CPUs. This 1s problematic for RT VNF orchestration,
as non-RT tasks could be moved to the CPU cores for
RT VNFs, and RT tasks could be moved to CPU core
for non-RT tasks. This increases indetermimism 1 RT
performance.

Aiming at the above problems, this invention provides the
tfunctions included in the proposed orchestrator which are
for tuming the RT performance of the compute nodes and
VNF orchestration

FIG. 3 1illustrates a method for real-time virtual network
function orchestration, including the following steps:

10

15

20

25

30

35

40

45

50

55

60

65

8

At step 500, updating and reporting CPU core RT per-
formance based on the VNF RT performance.

VNF Performance Management Agent collects the local
resource usage ol each compute node, especially focuses on
the RT performance reports sent by VNFs. The updated RT
performance and CPU utilization are then forwarded to VNF
Manager.

At step 510, sending CPU and NUMA 1nformation upon
the completion of OS booting.

When adding a new compute node in the cloud, the local

CPU Pool Management Agent reports the CPU core number
and NUMA node number to the CPU Pool Manager.

At step 520, updating CPU pool based on the CPU and
NUMA information, and synchronizing the CPU pool infor-
mation.

As the OS background processes, system tasks and non-
RT VNFs can compete CPU time with the RT VNFs and
introduce uncertain 1impact on RT performance, these pro-
cesses can be 1solated from each other. In this embodiment,
it 1s categorized into three kinds of processes for RAN
processing: RT processes, non-RT processes and DPDK
processes. The GPP computing resources are also divided
into three kinds of groups/pools corresponding to the three
kinds of processes.

CPU pool for RT VNFs: MAC scheduler 1s such an RT
VNF which includes downlink and uplink scheduler
entities. The RT performances of RT VNFs running 1n
this kind of CPU Pool are monitored with the certain
mechanism.

CPU pool for Non-RT VNFs: Not all RAN VNFs require
high RT performance. For example, timer events of
RRC are usually on the order of tens of milliseconds.
Compared to PHY and MAC processing, this kind of
processes can be considered as non-RT VNFs. In
practical system, the background processes and system
tasks also can be placed 1n this pool. The reason why
there has a dedicated CPU pool for non-RT processes
1s that RT processes usually have higher priority than

non-RT processes. In the case where RT VNFs share a
CPU with non-RT VNFs, the non-RT VNFs may be

throttled if the load of RT VNFs 1s high.

CPU pool for DPDK processes: DPDK 1s widely used 1n
products which 1s a set of drivers and libraries for fast
packet processing. DPDK requires dedicated CPU
cores for packet recerving and processing in order to
achieve high throughput. So, there has a dedicated CPU
pool for DPDK processes/threads.

The CPU Pool Manager 1s responsible for the mainte-
nance of all the CPU pools, increase or decrease CPU cores
in a pool as the machine may be powered on/ofl on demand
and the available CPU cores varies 1n time. The CPU Pool
Manager has global view of the use of CPU core. Each kind
of pools spans across multiple compute nodes as shown 1n
FIG. 6. There 1s an entry for each CPU core of a machine 1n
the pool. When the VNF manager needs to deploy a VNE, 1t
asks the CPU Pool Manager for the available machine list
for RT VNFs or non-RT VNFs, according the type of VNF
to be deployed.

When receiving the CPU core number and NUMA node
number, CPU Pool Manager divides CPU cores of the new
compute node into different pools. CPU Pool Manager
provides core information for other network elements to
facilitate RT perfonnance tuning on a compute node.

At step 530, moving the IRQs from RT CPUset to Non-RT
CPUset upon the completion of OS booting based on the
CPU pool mformation response, and reporting the comple-
tion of IRQ clearance.

US 11,625,258 B2

9

Although IRQ load balancing 1s disabled by Indetermin-
1sm Source Management Agent, this cannot prevent some
IRQs from being mitially placed on the CPUs 1n RT CPUset
during system booting, which have serious negative impact
on RT performance. These IR(Js can be handled by the
CPUset for non-RT or background processes. IR(Q Manage-
ment Agent 1s responsible for moving these IRQs from RT
CPUset to non-RT CPUset. The atlinity of these IR(Js can be
controlled using the /proc file system. Assuming CPUO and
CPUI1 are for non-RT tasks, the default athinity 1s first set to
CPUO or CPU1 to make sure that new iterrupts won’t be
handled by the RT CPUs. The set {CPU1, CPUO} is repre-
sented as a bitmask set to 3, (0000,0011B)

echo 3>/proc/irg/default_smp_afhinity

Then move IRQs to the non-RT CPUset

echo 3>/proc/irq/<1rg>/smp_athnity

All active IRQ)s can be found 1n file/proc/interrupts. When
moving the IRQs, the IRQ Management Agent 1s recom-
mended first to query the CPU Pool Manager to obtain the
CPU 1index for non-RT tasks on this compute node.

At step 540, moving the system tasks and OS background
processes to Non-RT CPUset upon the completion of OS
booting based on the CPU pool imformation response, and
reporting the completion of system tasks clearance.

For a compute node to host RT tasks, even though with the
management of indeterminism source, sometimes system
tasks still can be observed on the CPUs in the RT CPUset
alter system 1s booted. System Tasks Management Agent 1s
responsible for moving system tasks from the CPUs in the
RT CPUset to the CPUs 1n non-RT CPUset or to the CPUs
in the background processes CPUset 11 it exists. Run the
following command to move system tasks.

echo pid_ol_task>/sys/Is/cgroup/cpuset/nonrt/tasks

The process IDs of these system tasks can be found in
pseudo-file

/sys/is/cgroup/cpuset/rt/tasks.

At step 550, clearing the known indeterminism sources
upon the completion of OS booting based on the CPU pool
information response, and reporting the completion of 1nde-
terminism sources clearance.

For a Linux system, there are many sources which 1ntro-
duce indeterminism i1n RT performance. Indeterminism
Source Management Agent 1s responsible for configuring or
modifying Linux system parameters so that its RT properties
become more deterministic. The main management work of
Indetermimism Source Management Agent 1s briefly
described below:

Disable CPU load balancer and define CPUset: In the
default setting, Linux’s task scheduler 1s free to migrate
tasks to evenly distribute the processing load among the
available CPUs. That might be good for throughput, but
it could damage RT performance. To turn off automatic
load balancing and statically assign tasks to CPUs can
increase determinism. At least three kinds of method
can be used to assign a task to a specific CPU, including
sched_setathnity() system call, taskset command and
CPUset mechanism. For example, when the VNF Man-
ager has selected a proper CPU core on a compute node
to place the RT VNEF, the ID of the target CPU core 1s
transierred to the VNF as an argument, then the VNF
can use sched_setathimity() to pin the RT threads to the
given CPU core. The Linux kernel CPUset mechanism
can also be used to control the processor placement and

memory placement of processes. In practice, at least 3
CPUsets can be defined. One 1s for RT VNFs, one 1s for
DPDK processes, the other 1s for non-RT VNFs. By

default, load balancing 1s done across all CPUs, except

10

15

20

25

30

35

40

45

50

55

60

65

10

those marked 1solated using the kernel boot time “1solc-
pus” option. The CPU cores can be 1solated for RT
VNFs and DPDK from the CPU cores for non-RT
VNFs, background processes and system tasks by
setting the “1solcpus™ option in file grub.cig. The use of

CPUs 1n CPU pools for RT VNFs and DPDK 1is better
to be under the control of the proposed RT VNF
Manager, but not the OS scheduler. This can be
achieved by setting the pseudo-file cpuset.sched_
load balance to 0 which disables the automatic load
balancing over the allowed CPUs in the defined
CPUsets (the load balancing 1n root CPUset also can be
disabled). Furthermore, to avoid non-RT tasks to use
RT CPUset, 1t 1s needed to make the CPUs 1n the RT
CPUset exclusive by setting RT cpuset’s pseudo-file
cpuset.cpu_exclusive set to 1. The local CPU core lists
marked by “1solcpus™ option 1s recommended to be
synchronized with the CPU Pool Manager so that the
CPU Pool Manager has the global view of CPU cores

USC.

Management of NUMA memory node: In NUMA system,

the CPU accesses to 1ts own memory node 1s faster than
other memory node. The RT CPUset and non-RT
CPUset need to be associated with their own memory
nodes. In the case where there are more than two
NUMA memory nodes, if the CPU cores assigned to
RT VNFs belong to different NUMA node, it 1s better
to create multiple CPUsets for the RT tasks and each
RT CPUset 1s associated to 1ts own memory node. This
helps improve RT performance of RT VNFs. The
locally defined CPUset information 1s recommended to
be synchronized with the CPU Pool Manager. The
following command associates NUMA node 2 with RT
CPUset and make NUMA node two exclusive to the RT
CPUset.

echo 2>/sys/Is/cgroup/cpuset/rt/cpuset.mems
echo 1>/sys/Is/cgroup/cpuset/rt/cpuset.mem_exclusive
Management of IRQ afhinity: By default, Linux enables

the interrupt request (IRQ) load balancing service
which evenly distributes IRQs across all the CPUs 1n
the system. If an IRQ) 1s serviced on the CPU which 1s
currently executing real-time VNFs, the CPU has to
switch contexts which when combined with cache
misses can cause tens of microseconds of latency. By
stopping this service (IRQ) balance) it allows us to
control on which CPU nterrupts will run. In practical
system, we can configure the mask 1n the smp_ aflinity

file and assign certain IRQs, for example, interrupts
from SCSI controller or Ethernet card, to be handled by

specific CPUs. The CPUs can be selected from the
non-RT CPU pool.

Disable CPU frequency scaling: By default, Linux enable

dynamic CPU frequency scaling in order to reduce
power consumption. But this techmique can afiect the
system’s RT properties. For CentOS, two methods can
be used to disable CPU frequency scaling. 1. edit/etc/

default/grub to include the line GRUB_
CMDLINE_LINUX_DEFAULT="mtel_pstate=
disable” and run grub2-mkconfig -0 /boot/grub/
grub.cig. 2. recompile Linux kernel without CPU fre-
quency scaling option.

Management of RT throttling mechanism: To prevent the

RT applications scheduled as SCHED_FIFO or SCHE-
D_RR from consuming all CPU power, an RT throt-
tling mechanism 1s used by Linux kernel to limit the
amount of CPU power that the RT tasks can consume.

The default setting for this mechanism 1s that RT tasks

US 11,625,258 B2

11

can consume up to 95% of CPU power of a machine.
This can be changed by writing the new number to files:

/proc/sys/kernel/sched_rt_runtime us

and

/proc/sys/kernel/sched_rt_period_us

Disable memory overcommit: By default, the Linux ker-
nel allows applications to allocate more memory than 1s
actually available 1n the system. The idea of memory
overcommit 1s to provide a more eflicient memory
usage, under the assumption that processes typically
ask for more memory than they will actually need.
Overcommitting means there 1s a risk 1f processes try to
utilize more memory than 1s available. It this happens,
the kernel invokes the Out-Of-Memory Killer to scan
through the task list and selects a task to kill to reclaim
memory. In this case, the whole system may become
unresponsive for a significant amount of time which 1s
unacceptable for RT VNFs. Memory overcommit can
be disabled by the following command:

echo 2>/proc/sys/vm/overcommit_memory
Oflload RCU callbacks: The Read-Copy-Update (RCU)

system 1s a lockless mechanism for mutual exclusion
inside the kernel which improves data sharing among
threads. As a consequence of performing RCU opera-
tions, callbacks, done as a soft IRQ by default, are
queued on CPUs to be performed at a future moment
when removing memory 1s safe. This adds unpredict-
able latencies to application. RCU callbacks can be
offloaded using the “rcu_nocbs™ and “rcu_nocb_poll”
kernel boot parameters. To remove one or more CPUs
from the candidates for running RCU callbacks, specity
the list of CPUs 1n the “rcu_nocbs™ kernel parameter,
for example: “rcu_nocbs=4-6" means that RCU call-
backs will not be done on CPU4, CPUS and CPUS6.

Set TSC boot parameter: The time stamp counter 1s a
per-CPU counter for producing time stamps. Since the
counters might drift a bit, Linux will periodically check
that they are synchronized. By telling Linux with boot
parameter “I'SC=reliable” that the counters are reli-
able, Linux will no longer perform the periodic syn-
chronization. This improves Linux RT performance.

Remove vmstat timer: vmstat timer 1s used for collecting
virtual memory statistics. The statistics are updated at
an interval specified as seconds 1n file/proc/sys/vm/
stat_interval. The amount of jitter can be reduced by
writing a large value to this file. However, that will not
solve the 1ssue with worst-case latency. Linux kernel
version 3.12 or newer removes the periodic statistics
collection and replaces it with a solution that only
triggers 1i there 1s actual activity that needs to be
monitored.

BDI writeback athimity: Since block I/O can have a serious
negative impact on RT performance, 1t 1s recommended
to be moved to the non-RT CPUset. Two steps are
needed:

Disable NUMA athnity for the writeback threads

echo 0>/sys/bus/workqueue/devices/writeback/numa

Assuming CPUQO and CPUI are in the non-RT CPUset,
set the afhnity to the CPUset

echo 3>/sys/bus/workqueue/devices/writeback/cpu-
mask

Disable machine check: The x86 architecture has a peri-
odic check for corrected machine check errors. The
periodic machine check requires a timer that causes
jtter. The periodic check can be disabled on the RT
CPUSs. For each CPU 1n the RT CPUset, do the fol-

lowing:

5

10

15

20

25

30

35

40

45

50

55

60

65

12

1 echo 0>/sys/devices/system/machinecheck/
machinecheck<cpu>/check_interval
echo 0>/sys/devices/system/machinecheck/machine-
check2/check interval
echo 0>/sys/devices/system/machinecheck/machine-
check3/check interval
Disable the watchdog: The watchdog timer 1s used to
detect and recover from software faults. It requires a
regular timer interrupt which 1s a jitter source. This
interrupt can be removed at the cost of less error
detection. The watchdog can be disabled at compile
time or in runtime as follows:
echo 0>/proc/sys/kernel/watchdog
Increase flush time to disk: To make writebacks of dirty
memory pages occur less often than the default, we can

do the following:

echo 1500>/pr0c/sys/vm/d1rty writeback_centisecs

Network queues a 1n1ty I applications need to send or
receive network traflic, some timers are created for
network protocols on the specific CPUs. If there 1s a
need of network traflic only on the non-RT applica-
tions, network queues aflinity can be set as follows to
improve RT properties:

echo <NRT cpus mask> > /sys/class/net/<ethernet inter-

face>/queues/<queue>/<x/r>ps_cpus

All the above management and configuration modifica-
tions can be done by Indeterminism Source Management
Agent 1n an automatic way. To ensure the kernel boot
parameter modifications take eflects, the compute node
needs to reboot.

At step 560, recerving RT VNF deployment request and
selecting the target compute node and target CPU.

In a practical system, for a given type of VNE, the
maximum processing load 1s usually known which can be
used to estimate 11 the new VNF can be accommodated on
a CPU core. The following steps can be used by VNF
Manager to select the target CPU core.

Select a set of CPU cores with better RT performance

from the CPU pool for RT VNFs;

Obtain the types and the numbers of VINF's hosted by each
CPU core 1n the set;

Calculate the potential maximum processing load on each
CPU core 1 the set according the types and the
numbers of VNFs;:

Recalculate the potential maximum processing load on
cach CPU core 1n the set assuming the new VNF is
deployed on 1t;

Select a subset of CPU cores from the set which can
accommodate the new VNF’s maximum processing
load and has higher margin;

Select the CPU core with the best RT performance from
the subset as the target CPU.

Once the target CPU core 1s selected, the ID of the target
CPU core will be transierred to the target compute node. the
new VNF will be instantiated on the target CPU core under
the control of local VNF Performance Management Agent.

The difference between two timestamp counters T, and

T, 1s used to measure the RT performance. For th:%/NF

Witi multiple threads, only one thread needs to measure the
interrupt latency The timestamp T,,_,;1s different from T,
and T, . 1t 1s gotten from the local compute node’s system
clock, not from the PCle device. For a VNF with multiple
threads, T, __;1s recommended be gotten by the thread which
1s responsible for getting T, . The difference between two
contiguous T,__ ; (Tzﬂcazz—Tzﬂmﬂ) can also be used to moni-

tor the RT performance. I the difference approaches one

US 11,625,258 B2

13

millisecond, 1t means the processing load on this CPU core
1s very high which 1s recommended not to accept new VNF
anymore.

FI1G. 7 1llustrates the interactions between these functions
of the proposed orchestrator. RT VINFs periodically report
their RT performances to local VNF Performance Manage-
ment Agent. Performance Management Agent summaries
these reports and extracts the RT performances (for example,
the worst RT performance of a VINF hosted by a CPU core)
for each CPU core and reports to RT VNF Manager. After
completion of compute node booting, the local CPU Pool
Management Agent reports the local CPU and NUMA
information to CPU Pool Manager, CPU Pool Manager
makes decision on which CPUs to be added to RT CPUset,
non-RT CPUset and DPDK CPUset respectively, then the
IRQ Management Agent sends request to CPU Pool Man-
ager to obtain the local CPUset information and then moves
the IRQs from the RT CPUset to non-RT CPUset. System
tasks Management Agent sends requests to CPU Pool Man-
ager and moves system tasks and background processes to
the non-RT CPUset according to the received CPUset 1nfor-
mation. Based on the CPUset information, Indeterminism
Source Management Agent changes the IRQ athnity, RCU
callback aflinity, BDI writeback aflinity, etc. Once the local
CPUset 1s changed by CPU Pool Manager under certain
condition, all these agents need to re-arrange the afhinities
according to the new CPUset. When a new RT VNF needs
to be deployed, RT VNF Manager selects the target compute
node and the target CPU and sends the orchestration param-
cters to the local Performance Management Agent. Under
the control of Performance Management Agent, the VNF 1s
instantiated on the target CPU core.

This embodiment describes how to select target machine
and target CPU. This 1s just an example for orchestration
policy. It 1s proposed that the orchestrators monitor VNF RT
performance, and the orchestration policy may be diflerent
depending on how to use the measured RT performance.

FIG. 8 illustrates an embodiment of an apparatus of
running on the compute node for real-time virtual network
function orchestration, including the following modules:

a module for updating and reporting CPU core RT per-
formance based on the VNF RT performance (updating and
reporting module 800);

a module for sending CPU and NUMA information upon
the completion of OS booting (sending module 810);
le for moving the IRQs from RT CPUset to

a modu.
Non-RT CPUset upon the completion of OS booting based
on the CPU pool information response, and reporting the
completion of IRQ clearance (IRQ) moving module 820);

a module for moving the system tasks and OS background
processes to Non-RT CPUset upon the completion of OS
booting based on the CPU pool information response, and
reporting the completion of system tasks clearance (system
tasks moving module 830);

a module for clearing the known indeterminism sources
upon the completion of OS booting based on the CPU pool
information response, and reporting the completion of 1nde-
terminism sources clearance (clearing module 840).

Alternatively, the said apparatus comprises:

a module for re-arranging IRQs based on the CPUset
updating command;

a module for re-arranging system tasks based on the
CPUset updating command; and

a module for re-arranging indeterminism source based on
the CPUset updating command.

10

15

20

25

30

35

40

45

50

55

60

65

14

Alternatively, the said apparatus comprises:

a module for mnstantiating the VNF based on the VNF
instantiation request.

FIG. 9 illustrates an embodiment of an apparatus of
running on the RT cloud infrastructure for real-time virtual
network function orchestration, including the following
modules:

a module for updating CPU pool based on the CPU and
NUMA 1nformation, and synchronizing the CPU pool infor-
mation (updating module 900);

a module for moditying CPUset and sending CPU update
command (modifying module 910);

a module for receiving RT VNF deployment request and
selecting the target compute node and target CPU (receiving,
and selecting module 920).

Alternatively, the said apparatus comprises:

a module for sending CPU pool mnformation response
based on the CPU pool information request.

Alternatively, the said apparatus comprises:

a module for sending CPU updating command.

Alternatively, the said apparatus comprises:

a module for sending VNF instantiation request.

The specific implementation functions of each module
contained 1n the above-mentioned apparatus of running on
the compute node for real-time virtual network function
orchestration and apparatus of running on the RT cloud
infrastructure for real-time virtual network function orches-
tration have been described 1n the previous method embodi-
ment and are not repeated here.

Note that in the embodiment of this invention, each
module 1s divided according to function of logic, but 1s not
limited to the above, as long as can realize the corresponding
function; In addition, the specific name of each functional
module 1s only for the purpose of making it easy to distin-
guish, and 1t 1s not used to limit the arrange of protection of
this 1nvention.

Note that the invention 1s not limited to the embodiments
described hereinabove, but extends to all the embodiments
that are 1n accordance with 1ts i1dea. The alternatives or
options described 1n this part stem directly from the descrip-
tion of the preceding technological steps. They are valid for
the 1llustrative applications such as micro-batteries but can
be transposed to other microelectronic components. Unless
mentioned otherwise, the steps that describe the examples
presented in each part are based on the same principles
mentioned beforehand.

The mvention claimed 1s:
1. A method for real-time virtual network function orches-
tration, comprising;:

updating and reporting central processing unit (CPU) core
real-time (RT) performance based on virtual network
function (VNF) RT performance;

sending (CPU) and non-uniform memory access
(NUMA) information upon completion of operating
system (OS) booting;

moving interrupt requests (IRQs) from RT CPUset to
Non-RT CPUset upon the completion of OS booting
based on a CPU pool information response, and report-
ing the completion of IRQ clearance, wherein the RT
CPUset 1identifies IRQs to be processed as a RT process
and the Non-RT CPUset 1dentifies IRQs that are to be
processed as a Non-RT process;

moving system tasks and OS background processes to the
Non-RT CPUset upon the completion of OS booting
based on the CPU pool mformation response, and
reporting the completion of system tasks clearance;

US 11,625,258 B2

15

clearing known indeterminism sources including one or
more IRQs or timers upon the completion of OS
booting based on the CPU pool information response,
and reporting the completion of indeterminism sources
clearance; and

in response to a request for VNF deployment, and fol-

lowing the IRQ clearance, the system tasks clearance,
and the indeterminism sources clearance, instantiating
the VNF.

2. The method of claim 1, wherein the said method further
comprises: re-arranging IRQs, system tasks and indetermin-
1sm source based on a CPUset updating command.

3. The method of claim 1, wherein the said method further
comprises: instantiating a VNF based on a VNF 1nstantiation
request.

4. An apparatus for running on a compute node for
real-time virtual network function orchestration, the appa-
ratus comprising: one or more processors; and storage for
storing one or more computer programs, wherein when the
one or more computer programs are executed by the one or
more processors, the one or more processors implement:

updating and reporting central processing umt (CPU) core

real-time (RT) performance based on virtual network
function (VNF) RT performance;
sending CPU and non-uniform memory access (NUMA)
information upon the completion of operating system
(OS) booting;

moving interrupt requests (IRQs) from RT CPUset to
Non-RT CPUset upon the completion of OS booting
based on a CPU pool information response, and report-
ing the completion of IRQ clearance, wherein the RT
CPUset 1identifies IRQs to be processed as a RT process
and the Non-RT CPUset i1dentifies IRQJs to be pro-
cessed as a Non-RT process;

moving system tasks and OS background processes to the
Non-RT CPUset upon the completion of OS booting
based on the CPU pool mformation response, and
reporting the completion of system tasks clearance;

clearing known indeterminism sources including one or
more IRQs or timers upon the completion of OS
booting based on the CPU pool information response,
and reporting the completion of indeterminism sources
clearance; and

10

15

20

25

30

35

40

16

in response to a request for VNF deployment, and fol-
lowing the IRQ clearance, the system tasks clearance,
and the indeterminism sources clearance, instantiating
the VNF.

5. The apparatus of claim 4, wherein when the one or
more computer programs are executed by the one or more
processors, the one or more processors implement:

re-arranging IRQs based on a CPUset updating command;

re-arranging system tasks based on the CPUset updating
command; and

re-arranging an indeterminism source based on the

CPUset updating command.

6. The apparatus of claim 4, wherein when the one or
more computer programs are executed by the one or more
processors, the one or more processors implement: 1nstan-
tiating a VNF based on a VNF 1nstantiation request.

7. A non-transitory computer readable storage medium,
storing computer code, wherein an apparatus 1s caused, upon
execution of the computer code, to:

update and report central processing unit (CPU) core

real-time (RT) performance based on virtual network
function (VNF) RT performance;

send CPU and non-uniform memory access (NUMA)

information upon completion of operating system (OS)
booting;

move mterrupt requests (IRQs) from RT CPUset to Non-

RT CPUset upon the completion of OS booting based
on a CPU pool mformation response, and report the
completion of IRQ clearance, wherein the RT CPUset
identifies IRQs to be processed as a RT process and the
Non-RT CPUset identities IRQs to be processed as a
Non-R1 process;
move system tasks and OS background processes to the

Non-RT CPUset upon the completion of OS booting

based on the CPU pool mformation response, and

report the completion of system tasks clearance;
clear known indeterminism sources including one or more

IRQs or timers upon the completion of OS booting

based on the CPU pool mformation response, and

report the completion of indeterminism sources clear-
ance; and

in response to a request for VNF deployment, and fol-
lowing the IRQ clearance, the system tasks clearance,

and the indeterminism sources clearance, instantiate the
VNEF.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 11,625,258 B2 Page 1 of 1
APPLICATIONNO. :16/760117

DATED : April 11, 2023
INVENTOR(S) : Cheng Wang

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims

In Column 16, Line 30, Claim 7, delete “identities” and insert -- identifies --, therefor.

Signed and Sealed this
~ Twenty-fitth Day of July, 2023

i

Katherine Kelly Vidal
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

