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1

EFFICIENT TOKEN MANAGEMENT IN A
STORAGE SYSTEM

FIELD

The field relates generally to information processing, and
more particularly to storage 1n information processing sys-
tems.

BACKGROUND

Storage arrays and other types of storage systems are
often shared by multiple host devices over a network.
Applications running on the host devices each include one or
more processes that perform the application functionality.
Such processes 1ssue mput-output (10) operations, such as
read and write operations, for delivery to the storage sys-
tems. Storage controllers of the storage systems service such
IO operations. Some storage systems use a logical address
space, where logical page addresses in the logical address
space map to physical page addresses on storage devices of
the storage systems. The use of a logical address space
facilitates various functionality, including implementation
of deduplication 1n order to ensure that the same data 1s not
repeatedly stored in a duplicative manner that consumes
excessive storage capacity. Many storage systems are also
illustratively configured to execute multiple-command
token-based data transfers, such as those implemented using,
Microsoit Offloaded Data Transfer (ODX) commands. Tech-
niques are needed for efliciently managing the correspond-
ing tokens in storage systems that support token-based data
transiers.

SUMMARY

[lustrative embodiments of the present disclosure provide
techniques for eflicient token management 1n a storage
system. For example, such embodiments can provide par-
ticularly eflicient management of tokens associated with
ODX commands and other types ol commands used 1in
implementing token-based data transiers. In some embodi-
ments, ethicient token management 1s provided 1n a manner
that advantageously avoids the need to persist token-related
snapshots and their associated metadata 1n back-end storage
devices while also avoiding adverse performance impacts on
source storage volumes. For example, such embodiments are
illustratively configured to respond quickly to create-token
commands, and to protect the data represented by the tokens,
with a lightweight metadata footprint and minimal impact on
the source volumes.

In one embodiment, an apparatus comprises at least one
processing device comprising a processor coupled to a
memory. The at least one processing device 1s configured to
recelve a create-token command from a host device, the
create-token command specilying one or more logical
address ranges of one or more source storage volumes of a
storage system. Responsive to receipt of the create-token
command, the at least one processing device creates the
token, generates an mm-memory snapshot of data 1n the one
or more logical address ranges of the one or more source
storage volumes, associates the mm-memory snapshot with
the token, and provides the token to the host device. The at
least one processing device receives a write-via token com-
mand from the host device, the write-via-token command
specilying the token and one or more logical address ranges
of one or more target storage volumes. Responsive to receipt
of the write-via-token command, the at least one processing
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device determines whether or not differential metadata of the
storage system includes one or more entries for the one or
more logical address ranges of the one or more source
storage volumes, and controls execution of the write-via-
token command based at least 1n part on the determination.

The at least one processing device 1n some embodiments
comprises a storage controller of the storage system, such as
a distributed storage controller distributed across multiple
storage nodes 1n the case of a distributed storage system. A
wide variety of other arrangements of one or more process-
ing devices may be used.

In some embodiments, the one or more target storage
volumes are part of the same storage system that includes the
one or more source storage volumes. Alternatively, the one
or more target storage volumes may be on a different storage
system.

The create-token command and the write-via-token com-
mand 1n some embodiments comprise respective ODX com-
mands, although other types of commands, imncluding non-
standard or custom commands, can be used.

In some embodiments, the in-memory snapshot is not
subsequently persisted 1n one or more back-end storage
devices of the storage system. Alternatively, the in-memory
snapshot can be persisted, but designated for use only with
ODX write-via-token commands or other types of write-via-
token commands.

The differential metadata of the storage system illustra-
tively comprises at least one metadata delta log comprising
one or more delta log buflers each comprising one or more
delta log records. Other types and arrangements of difler-
ential metadata can be used 1n other embodiments.

In some embodiments, the storage system implements an
in-memory transactional cache 1 which 10 operations and
storage system management operations are persisted as part
ol a chronological journal. In such an embodiment, gener-
ating the mm-memory snapshot of data in the one or more
logical address ranges of the one or more source storage
volumes 1llustratively comprises generating the mm-memory
snapshot within the in-memory transactional cache.

In some embodiments, responsive to receipt of a write
operation directed to at least one logical address within the
one or more logical address ranges of the one or more source
storage volumes for which the token was created, a corre-
sponding entry 1s generated in a metadata delta log of the
differential metadata.

Controlling execution of the write-via-token command
based at least 1n part on the determination in some embodi-
ments more particularly comprises, responsive to the deter-
mination being aflirmative, utilizing metadata from the one
or more entries 1n the execution of the write-via-token
command.

For example, in some embodiments, determining if dif-
ferential metadata of the storage system includes one or
more entries for the one or more logical address ranges of
the one or more source storage volumes comprises mnitiating,
an operation for copying ol metadata for the one or more
logical address ranges of the one or more source storage
volumes from the in-memory snapshot to the one or more
target storage volumes, and determining in conjunction with
the copying whether or not at least a portion of the metadata
1s 1n one or more metadata delta logs of the diflerential
metadata. In a given such embodiment, controlling execu-
tion of the write-via-token command based at least in part on
the determination illustratively comprises, responsive to at
least a portion of the metadata being 1n one or more metadata
delta logs of the diflerential metadata, utilizing that portion
of the metadata 1n the one or more metadata delta logs 1n the
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copying, and additionally copying remaining portions of the
metadata from the in-memory snapshot to the one or more
target storage volumes.

In some embodiments, responsive to the transactional
cache reaching a designated fullness level, the in-memory
snapshot 1s destaged from the transactional cache to one or
more back-end storage devices of the storage system and
designated for use only 1n conjunction with execution of one
or more write-via-token commands.

Alternatively, responsive to the transactional cache reach-
ing a designated fullness level, the in-memory snapshot i1s
deleted and the token 1s invalidated.

These and other 1llustrative embodiments include, without
limitation, methods, apparatus, networks, systems and pro-
cessor-readable storage media.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of an information processing
system 1ncluding a storage array configured for eflicient
token management in an illustrative embodiment.

FIG. 2 1s a tflow diagram of an exemplary process for
ellicient token management in an 1illustrative embodiment.

FIG. 3 1s a block diagram of an embedded hypervisor
implementing a data path architecture in an 1llustrative
embodiment.

FIGS. 4A and 4B 1illustrate a tree structure for a logical
address space 1n an illustrative embodiment.

FIGS. 5A and 5B illustrate deduplication using a virtual
large block of the tree structure of FIGS. 4A and 4B 1n an
illustrative embodiment.

FIGS. 6A-6D illustrate snapshot functionality using the
tree structure of FIGS. 4A and 4B 1n an 1llustrative embodi-
ment.

FI1G. 7 1llustrates a delta log infrastructure for virtual large
blocks of a tree structure in an 1illustrative embodiment.

FIG. 8 shows a portion of a logical tree mapping for a
reverse logical lookup of a given logical page address 1n an
illustrative embodiment.

FI1G. 9 1s a flow diagram of another exemplary process for
cllicient token management in an 1llustrative embodiment.

FIGS. 10 and 11 show examples of processing platforms
that may be utilized to implement at least a portion of an
information processing system 1n illustrative embodiments.

DETAILED DESCRIPTION

[lustrative embodiments will be described herein with
reference to exemplary information processing systems and
associated computers, servers, storage devices and other
processing devices. It 1s to be appreciated, however, that
embodiments are not restricted to use with the particular
illustrative system and device configurations shown.
Accordingly, the term “information processing system™ as
used herein 1s mtended to be broadly construed, so as to
encompass, for example, processing systems comprising
cloud computing and storage systems, as well as other types
ol processing systems comprising various combinations of
physical and virtual processing resources. An information
processing system may therefore comprise, for example, at
least one data center or other type of cloud-based system that
includes one or more clouds hosting tenants that access
cloud resources.

FIG. 1 shows an information processing system 100
configured in accordance with an illustrative embodiment.
The information processing system 100 comprises one or

more host devices 102-1, 102-2, . . . 102-N (collectively,
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host devices 102) that communicate over a network 104 with
one or more storage arrays 106-1, 106-2, . . . 106-M
(collectively, storage arrays 106).

The network 104 may comprise a storage area network
(SAN).

The storage array 106-1, as shown 1n FIG. 1, comprises a
plurality of storage devices 108-1, 108-2, . . . 108-P (col-
lectively, storage devices 108) each storing data utilized by
one or more applications runming on at least one of the host
devices 102. The storage devices 108 are illustratively
arranged 1n one or more storage pools. The storage array
106-1 also comprises one or more storage controllers 110
that facilitate IO processing for the storage devices 108. The
storage array 106-1 and its associated storage devices 108
are an example of what 1s more generally referred to herein
as a “‘storage system.” This storage system 1n the present
embodiment 1s 1llustratively shared by the host devices 102,
and may therefore be viewed as an example of a shared
storage system. In embodiments where there 1s only a single
host device 102, the host device 102 may be configured to
have exclusive use of the storage system comprising storage
array 106-1. The other storage arrays 106 of system 100 are
assumed to be configured in a manner similar to that
described above for storage array 106-1, and such storage
arrays 106 may be viewed as comprising respective indi-
vidual storage systems, or as collectively comprising one or
more storage systems each with multiple storage arrays.

The host devices 102 illustratively comprise respective
computers, servers or other types ol processing devices
capable of communicating with the storage arrays 106 via
the network 104. For example, at least a subset of the host
devices 102 may be implemented as respective virtual
machines of a compute services platform or other type of
processing platform. The host devices 102 in such an
arrangement 1llustratively provide compute services such as
execution of one or more applications on behalf of each of
one or more users associated with respective ones of the host
devices 102.

The term “user” herein 1s itended to be broadly con-
strued so as to encompass numerous arrangements of
human, hardware, software or firmware entities, as well as
combinations of such entities.

Compute and/or storage services may be provided for
users under a Platform-as-a-Service (PaaS) model, an Infra-
structure-as-a-Service (IaaS) model and/or a Function-as-a-
Service (FaaS) model, although it 1s to be appreciated that
numerous other cloud infrastructure arrangements could be
used. Also, illustrative embodiments can be implemented
outside of the cloud infrastructure context, as in the case of
a stand-alone computing and storage system implemented
within a given enterprise.

The storage devices 108 of the storage array 106-1 may
implement logical units (LUNSs) configured to store objects
for users associated with the host devices 102. These objects
can comprise files, blocks or other types of objects. The host
devices 102 interact with the storage array 106-1 utilizing
read and write commands as well as other types of com-
mands that are transmitted over the network 104. Such
commands 1n some embodiments more particularly com-
prise Small Computer System Interface (SCSI) commands,
although other types of commands can be used in other
embodiments. A given 10 operation as that term 1s broadly
used herein 1llustratively comprises one or more such com-
mands. References herein to terms such as “input-output™
and “I0O” should be understood to refer to mput and/or
output. Thus, an TO operation relates to at least one of input
and output.
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Also, the term “‘storage device™ as used herein 1s intended
to be broadly construed, so as to encompass, for example, a
logical storage device such as a LUN or other logical storage
volume. A logical storage device can be defined i the
storage array 106-1 to include different portions of one or
more physical storage devices. Storage devices 108 may
therefore be viewed as comprising respective LUNs or other
logical storage volumes.

The host devices 102 and storage arrays 106 1n the FIG.
1 embodiment are assumed to be implemented using at least
one processing platform, with each processing platform
comprising one or more processing devices each having a
processor coupled to a memory. Such processing devices can
illustratively include particular arrangements ol compute,
storage and network resources. For example, processing
devices 1n some embodiments are implemented at least 1n
part utilizing virtual resources such as virtual machines
(VMs) or Linux containers (LXCs), or combinations of both
as 1n an arrangement in which Docker containers or other
types of LXCs are configured to run on VMs.

The host devices 102 and the storage arrays 106 may be
implemented on respective distinct processing platiorms,
although numerous other arrangements are possible. For
example, 1n some embodiments at least portions of the host
devices 102 and the storage arrays 106 are implemented on
the same processing platform. One or more of the storage
arrays 106 can therefore be implemented at least in part
within at least one processing platform that implements at
least a subset of the host devices 102.

The network 104 may be implemented using multiple
networks of different types to interconnect storage system
components. For example, the network 104 may comprise a
SAN that 1s a portion of a global computer network such as
the Internet, although other types of networks can be part of
the SAN, including a wide area network (WAN), a local area
network (LAN), a satellite network, a telephone or cable
network, a cellular network, a wireless network such as a
WiF1 or WiIMAX network, or various portions or combina-
tions of these and other types of networks. The network 104
in some embodiments therefore comprises combinations of
multiple different types of networks each comprising pro-
cessing devices configured to communicate using Internet
Protocol (IP) or other related communication protocols.

As a more particular example, some embodiments may
utilize one or more high-speed local networks 1n which
associated processing devices communicate with one
another utilizing Peripheral Component Interconnect
express (PCle) cards of those devices, and networking
protocols such as InfiniBand, Gigabit Ethernet or Fibre
Channel. Numerous alternative networking arrangements
are possible 1n a given embodiment, as will be appreciated
by those skilled in the art.

Although in some embodiments certain commands used
by the host devices 102 to communicate with the storage
arrays 106 1illustratively comprise SCSI commands, other
types of commands and command formats can be used in
other embodiments. For example, some embodiments can
implement IO operations utilizing command features and
functionality associated with NVM Express (NVMe), as
described 1n the NVMe Specification, Revision 1.3, May
2017, which 1s incorporated by reference herein. Other
storage protocols of this type that may be utilized 1n 1llus-
trative embodiments disclosed herein include NVMe over
Fabric, also referred to as NVMeoF, and NVMe over Trans-
mission Control Protocol (TCP), also referred to as NVMe/
TCP.
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The storage array 106-1 1n the present embodiment 1s
assumed to comprise a persistent memory that 1s 1mple-
mented using a flash memory or other type of non-volatile
memory ol the storage array 106-1. More particular
examples include NAND-based flash memory or other types
of non-volatile memory such as resistive RAM, phase
change memory, spin torque transier magneto-resistive
RAM (STI-MRAM) and Intel Optane™ devices based on
3D XPoint™ memory. The persistent memory 1s further
assumed to be separate from the storage devices 108 of the
storage array 106-1, although in other embodiments the
persistent memory may be implemented as a designated
portion or portions of one or more of the storage devices
108. For example, 1n some embodiments the storage devices
108 may comprise flash-based storage devices, as 1n
embodiments ivolving all-tflash storage arrays, or may be
implemented 1 whole or i part using other types of
non-volatile memory.

The storage array 106-1 1n the present embodiment may
comprise additional components not explicitly shown in the
figure, such as a response time control module and 10
operation priority queues, illustratively configured to make
use of the above-described persistent memory. For example,
the response time control module may be used to implement
storage array-based adjustments 1n response time for par-
ticular 10 operations based at least 1n part on service level
objective (SLO) information stored by the storage array
106-1 1n its persistent memory. The response time control
module 1s assumed to operate in conjunction with the
above-noted 10 operation priority queues.

The storage array 106-1 1llustratively utilizes its 10 opera-
tion priority queues to provide different levels of perfor-
mance for IO operations. For example, the 10 operation
priority queues may have respective diflerent prionty levels.
The storage array 106-1 may be configured to provide
different pnorlty levels for different ones of the 10 opera-
tions by assigning different ones of the IO operations to
different ones of the IO operation priority queues. The 10
operation priority queues are illustratively associated with
respective SLOs for processing of 10 operations i the
storage array 106-1.

As mentioned above, communications between the host
devices 102 and the storage arrays 106 may utilize PCle
connections or other types of connections implemented over
one or more networks. For example, illustrative embodi-
ments can use interfaces such as Internet SCSI (1SCSI),
Serial Attached SCSI (SAS) and Serial ATA (SATA).
Numerous other interfaces and associated communication
protocols can be used 1n other embodiments.

The storage arrays 106 1n some embodiments may be
implemented as part of a cloud-based system.

The storage devices 108 of the storage array 106-1 can be
implemented using solid state drives (SSDs). Such SSDs are
implemented using non-volatile memory (NVM) devices
such as tflash memory. Other types of NVM devices that can
be used to implement at least a portion of the storage devices
108 1include non-volatile random access memory
(NVRAM), phase-change RAM (PC-RAM) and magnetic
RAM (MRAM). These and various combinations of mul-
tiple different types of NVM devices or other storage devices
may also be used. For example, hard disk drives (HDDs) can
be used in combination with or in place of SSDs or other
types of NVM devices. Accordingly, numerous other types
of electronic or magnetic media can be used 1n implement-
ing at least a subset of the storage devices 108.

The storage arrays 106 may additionally or alternatively
be configured to implement multiple distinct storage tiers of
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a multi-tier storage system. By way of example, a given
multi-tier storage system may comprise a fast tier or per-
formance tier implemented using flash storage devices or
other types of SSDs, and a capacity tier implemented using
HDDs, possibly with one or more such tiers being server
based. A wide variety of other types of storage devices and
multi-tier storage systems can be used in other embodi-
ments, as will be apparent to those skilled in the art. The
particular storage devices used in a given storage tier may be
varied depending on the particular needs of a given embodi-
ment, and multiple distinct storage device types may be used
within a single storage tier. As indicated previously, the term
“storage device” as used herein 1s intended to be broadly
construed, and so may encompass, for example, SSDs,
HDDs, tlash drives, hybrid drives or other types of storage
products and devices, or portions thereof, and illustratively
include logical storage devices such as LUN:S.

As another example, the storage arrays 106 may be used
to implement one or more storage nodes 1n a cluster storage
system comprising a plurality of storage nodes intercon-
nected by one or more networks.

It should therefore be apparent that the term “storage
array” as used herein 1s intended to be broadly construed,
and may encompass multiple distinct istances of a com-
mercially-available storage array.

Other types ol storage products that can be used in
implementing a given storage system 1n 1llustrative embodi-
ments 1nclude software-defined storage, cloud storage,
object-based storage and scale-out storage. Combinations of
multiple ones of these and other storage types can also be
used 1n implementing a given storage system in an illustra-
tive embodiment.

In some embodiments, a storage system comprises first
and second storage arrays arranged 1n an active-active
configuration. For example, such an arrangement can be
used to ensure that data stored 1n one of the storage arrays
1s replicated to the other one of the storage arrays utilizing
a synchronous replication process. Such data replication
across the multiple storage arrays can be used to facilitate
tailure recovery 1n the system 100. One of the storage arrays
may therefore operate as a production storage array relative
to the other storage array which operates as a backup or
recovery storage array.

It 1s to be appreciated, however, that embodiments dis-
closed herein are not limited to active-active configurations
or any other particular storage system arrangements.
Accordingly, illustrative embodiments herein can be con-
figured using a wide variety of other arrangements, includ-
ing, by way of example, active-passive arrangements,
active-active Asymmetric Logical Unit Access (ALUA)
arrangements, and other types of ALUA arrangements.

These and other storage systems can be part of what 1s
more generally referred to herein as a processing platform
comprising one or more processing devices each comprising
a processor coupled to a memory. A given such processing
device may correspond to one or more virtual machines or
other types of virtualization infrastructure such as Docker
containers or other types of LXCs. As indicated above,
communications between such elements of system 100 may
take place over one or more networks.

The term “processing platform™ as used herein 1s intended
to be broadly construed so as to encompass, by way of
illustration and without limitation, multiple sets of process-
ing devices and one or more associated storage systems that
are configured to communicate over one or more networks.
For example, distributed implementations of the host
devices 102 are possible, 1n which certain ones of the host
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devices 102 reside 1n one data center in a first geographic
location while other ones of the host devices 102 reside 1n
one or more other data centers mm one or more other
geographic locations that are potentially remote from the
first geographic location. Thus, 1t 1s possible 1n some 1mple-
mentations of the system 100 for different ones of the host
devices 102 to reside in different data centers than the
storage arrays 106.

Numerous other distributed implementations of the host
devices 102 and/or the storage arrays 106 are possible.
Accordingly, the storage arrays 106 can also be implemented
in a distributed manner across multiple data centers.

Additional examples of processing platforms utilized to
implement portions of the system 100 1n illustrative embodi-
ments will be described 1n more detail below 1n conjunction
with FIGS. 10 and 11.

In some embodiments, the one or more storage controllers
110 are each configured to receive queries for finding
storage objects of the storage array 106-1 (e.g., more gen-
crally, storage objects of a storage system, which may
include a storage cluster including the storage array 106-1
and one or more other ones of the storage arrays 106-2
through 106-M) that are associated with a particular snap-
shot family or snapshot group, and which point to a par-
ticular logical page 1n a logical address space of the storage
array 106-1. To do so, the one or more storage controllers
110 each build or otherwise generate a tree structure that
characterizes relationships between a plurality of storage
objects 1n the storage array 106-1. The tree structure 1is
assumed to comprise a plurality of logical page nodes
representing the plurality of storage objects. Each of the
plurality of logical page nodes specifies a logical page
address 1n the logical address space of the storage array
106-1, and includes various metadata such as an array of
pointers to one or more other logical page addresses 1n the
logical address space, a snapshot group identifier for a
snapshot group in the storage array 106-1, and a logical
extent offset 1n the logical address space. The generated tree
structure may be viewed as a two-level data structure, where
the first level corresponds to snapshot group i1dentifiers and
the second level 1s a hash of binary trees associated with
respective ones of the snapshot group 1dentifiers.

Additionally or alternatively, the one or more storage
controllers 110 may each be further configured to receive
queries (e.g., from the host devices 102, from a {file system
check tool Scanning the storage array 106-1, ctc.), where a
grven query comprises a given loglcal page address a given
snapshot group 1dentifier, and a given logical extent oil:

set.
The given query may be viewed as a request to find whether
a given snapshot group associated with the given snapshot
group 1dentifier has a given logical page node (e.g., repre-
senting a given storage object) at the given logical extent
oflset and, i1 so, a request to find other logical page nodes
(c.g., representing other storage objects) with the given
snapshot group identifier and the given logical extent oflset
that comprise a pointer to the given logical page address in
their associated arrays of pointers. The one or more storage
controllers 110 each traverse the generated tree structure to
do so, and return a response to the query that specifies the
given logical page and the identified other ones of the
plurality of logical pages. In thus way, the one or more
storage controllers 110 are each able to find all storage
objects within a snapshot group or family that point to the
given logical page address.

In some embodiments, the logical address space 1s orga-
nized as a B-tree (an example of which will be described in

turther detail below with respect to FIGS. 4A and 4B), where
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the B-tree includes multiple levels including a leat logical
page level and one or more additional logical page levels
above the leal logical page level (e.g., a middle page level
comprising middle pages associated with respective subsets
of leal pages in the leal page level, a top page level
comprising top pages associated with respective subsets of
the middle page 1n the middle page level, etc.). The gener-
ated tree structure may comprise a hash of binary trees that
arrange the plurality of logical page nodes into the leaf
logical page level and the one or more additional logical
page levels above the leat logical page level. A given one of
the top pages may represent an n*m sized portion of the
logical address space that references n middle pages 1n the
middle page level each representing an m sized portion of
the logical address space, a given one of the middle pages
referencing n leatl pages in the leatl page level each repre-
senting an m/n sized portion of the logical address space. In
some embodiments, n 1s 512 and m 1s one gigabyte (GB),
although other values can be used 1n other embodiments. In
some embodiments, the plurality of logical page nodes
turther specily namespace addresses associated with respec-
tive storage objects in the storage system.

The storage array 106-1 implements a transactional cache
infrastructure 112. Although not explicitly shown 1n FIG. 1
tor clarity of illustration, 1t 1s assumed 1n some embodiments
that other ones of the storage arrays 106-2 through 106-M
implement respective additional mstances of a transactional
cache infrastructure, as well as respective sets of storage
devices and storage controllers in a manner similar to that
described herein with respect to storage array 106-1. Further,
although shown 1n FIG. 1 as being external to the storage
controllers 110 of storage array 106-1, 1n other embodiments
the transactional cache infrastructure 112 may be imple-
mented at least partially within one or more of the storage
controllers 110. For example, at least one of the storage
controllers 110 may be implemented as a virtual storage
controller running on an embedded hypervisor of the storage
array 106-1. The transactional cache infrastructure 112 may
be part of such a virtual storage controller, or may be run
separate from the virtual storage controller on such an
embedded hypervisor. Various other arrangements are pos-
sible, including where at least a portion of the functionality
ol the transactional cache infrastructure 112 1s implemented
external to the storage array 106-1 (e.g., on one or more of
the host devices 102, on a separate server, on a cloud
computing infrastructure, etc.).

The transactional cache infrastructure 112 illustratively
comprises at least one transactional cache and associated
control logic for implementing at least portions of eflicient
token management algorithms such as those described
herein 1n conjunction with the flow diagrams of FIGS. 2 and
9. In one possible example of a given transactional cache of
the transactional cache infrastructure 112, 10 operations as
well as management operations are first persisted in the
cache as a transaction 1n a chronological journal, and 1n the
background drained from the cache and persisted to back-

end storage devices such as storage devices 108. Terms such
as “transactional cache” and *““transactional cache infrastruc-
ture” as used herein are intended to be broadly construed,
and should not be viewed as being limited to the arrange-
ments of these and other illustrative embodiments.

The storage array 106-1 1s further configured to 1imple-
ment techniques for eflicient token management 1n support
of token-based transfers, as will now be described 1n further
detail. For example, some embodiments can provide par-
ticularly eflicient management of tokens associated with
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ODX commands and other types ol commands used 1in
implementing token-based data transiers.

Eflicient token management 1s 1llustratively provided 1n a
manner that advantageously avoids the need to persist
token-related snapshots and their associated metadata in
storage devices 108 while also avoiding adverse perfor-
mance impacts on source storage volumes. For example,
such embodiments are illustratively configured to respond
quickly to create-token commands, and to protect the data
represented by the tokens, with a lightweight metadata
footprint and minimal impact on the source volumes.

Accordingly, the host devices 102 and storage arrays 106
are further configured to perform additional operations asso-
ciated with token-based data transier using ODX commands
or types of token-based data transfer commands.

A given token-based data transier initiated by a given one
of the host devices 102 with a given one of the storage arrays
106 1s assumed to comprise at least two distinct commands,
including a first command specifying at least one source
extent of at least one source storage volume, and a second
command identifying the token and directing that the at least
one source extent of the at least one source storage volume
be copied to at least one target extent of at least one target
storage volume. Such source and target extents are more
generally referred to herein as “logical address ranges™ of
the source and target storage volumes.

It 1s possible that multiple ones of the host devices 102
and/or multiple ones of the storage arrays 106 may be
involved 1n a given token-based data transifer in some
embodiments. For example, one of the host devices 102 can

provide a token to another one of the host devices 102 1n
order to allow the latter host device to mitiate a write-via-
token operation with the storage array that issued the token.

Examples of token-based data transfer commands include
the previously-mentioned ODX commands, which illustra-
tively include respective instances of create-token and write-
via-token commands as the above-noted first and second
commands associated with the given token-based data trans-
fer, although numerous other types and arrangements of
token-based data transfer commands can be used 1n other
embodiments.

Terms such as “command” as used herein are therefore
intended to be broadly construed, and a given such com-
mand can include multiple sub-commands. References
herein to “create-token” commands and “write-via-token”™
commands are also mntended to be broadly construed, and
should not be viewed as being limited to ODX implemen-
tations of such commands, or any other particular command
format.

In some embodiments, a token 1s generated by the storage
array 106-1 responsive to receipt of a create-token command
from the host device 102-1 and returned to the host device
102-1. The token may be generated by the storage array
106-1 based at least in part on host application block
information received from the host device in conjunction
with the create-token command. For example, the token 1s
illustratively implemented as a sufliciently unique identifier
of the corresponding data transier within system 100, such
as a 128-bit umversally unique identifier (UUID), possibly
generated as a cryptographic hash of information that
includes the identity of the storage array 106-1 1ssuing the
token, 1dentifiers of the one or more source storage volumes
that are subject to the token-based data transfer, source
extent information, and a time when the create-token com-
mand was received, or various subsets thereof. Other
embodiments can generate the token as a counter value or a
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random or pseudorandom number. Combinations of these
and other arrangements can also be used 1n generating the
token.

The host device 102-1 illustratively incorporates the token
received from the storage array 106-1 into the second
command of the token-based data transtfer, also referred to
herein as the write-via-token command, that it sends to the
storage array 106-1.

In a given such token-based data transier arrangement, the
storage array 106-1 preserves the corresponding data at the
time of or otherwise 1 conjunction with the creation of the
token. The token illustratively corresponds to the data, and
not the one or more logical address ranges, and the preserved
data can be later accessed via the token, using the above-
noted write-via-token command. It 1s generally desirable in
such an arrangement for the host device 106-1 to be able to
copy the data as quickly as possible to the one or more target
storage volumes 1n response to the receipt of the write-via-
token command from the host device 102-1. However, it can
be dithicult under conventional practice to carry out such
operations with a high level of efliciency. For example,
persisting snapshots and associated

metadata in back-end
storage 1n conjunction with creation of a token and subse-
quently retrieving those persisted snapshots and associated
data from back-end storage upon receipt of a write-via-token
command create undue delay while also consuming com-
putation and storage resources of the system, thereby poten-
tially undermining overall system performance. As indicated
above, 1llustrative embodiments herein avoid such difhcul-
ties, and provide a solution that responds quickly to the
create-token command, protects the data represented by the
token, has a light metadata footprint, and has minimal
impact on the source volume(s).

Examples of eflicient token management in illustrative
embodiments will now be described 1n more detail using
host device 102-1 and storage array 106-1, although 1t 1s to
be understood that other host devices 102 and storage arrays
106 are similarly configured to perform token-based data
transier.

In operation, the host device 102-1 generates a create-
token command and sends i1t to the storage array 106-1. The
create-token command specifies one or more logical address
ranges of one or more source storage volumes of storage
array 106-1. The storage array 106-1 receives the create-
token command from the host device 102-1, and responsive
to receipt of the create-token command, creates the token,
generates an in-memory snapshot of data in the one or more
logical address ranges of the one or more source storage
volumes, associates the in-memory snapshot with the token,
and provides the token to the host device 102-1. The host
device 102-1 subsequently generates a write-via-token com-
mand and sends 1t to the storage array 106-1. The write-
via-token command specifies the token and one or more
logical address ranges of one or more target storage vol-
umes. The one or more target storage volumes of the
write-via-token command may be on the same storage array
106-1 as the one or more source storage volumes, or may be
on a different one of the storage arrays 106. The storage
array 106-1 recerves the write-via token command from the
host device 102-1, and responsive to receipt of the write-
via-token command, determines whether or not differential
metadata of the storage array 106-1 includes one or more
entries for the one or more logical address ranges of the one
or more source storage volumes, and controls execution of
the write-via-token command based at least in part on the
determination. The storage-side portions of the above-de-
scribed operations are 1llustratively performed by or under
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the control of at least one of the one or more storage
controllers 110 of the storage array 106-1, utilizing the
transactional cache infrastructure 112.

As indicated previously, the create-token command and
the write-via-token command can comprise, for example,
respective ODX commands, although other types of com-
mands can be used 1n other embodiments.

In some embodiments, the in-memory snapshot 1s not
subsequently persisted in one or more of the storage devices
108 of the storage array 106-1. Such storage devices 108 are
examples of what are also referred to herein as “back-end
storage devices.” Instead, the in-memory snapshot remains
in a transactional cache for as long as possible, as described
in more detail below, in order to avoid the substantial
inefhiciencies that would otherwise be associated with per-
sisting the in-memory snapshot to one or more of the storage
devices 108.

The differential metadata of the storage array 106-1
illustratively comprises at least one metadata delta log
comprising one or more delta log bullers each comprising
one or more delta log records. Responsive to receipt of a
write operation directed to at least one logical address within
the one or more logical address ranges of the one or more
source storage volumes for which the token was created, a
corresponding entry 1s generated in a metadata delta log of
the differential metadata. A more detailed example of such
a metadata delta log will be described below 1n conjunction
with FIG. 7, although other types of metadata delta logs, or
more generally “differential metadata™ may be used, as the
latter term as used herein 1s intended to be broadly construed
and 1s not limited to the FIG. 7 arrangement or any other
particular metadata delta log arrangements.

In some embodiments, the storage array 106-1 imple-
ments within 1ts transactional cache infrastructure an in-
memory transactional cache 1n which 10 operations as well
as management operations of the storage array 106-1 are
collectively persisted as part of a chronological journal of
such operations.

In generating the mm-memory snapshot of data in the one
or more logical address ranges of the one or more source
storage volumes, the storage array 106-1 1llustratively gen-
crates the mm-memory snapshot within the above-noted 1n-
memory transactional cache.

Controlling execution of the write-via-token command
based at least i part on the above-noted determination
relating to differential metadata more particularly comprises,
responsive to the determination being atflirmative, utilizing,
metadata from the one or more entries 1n the execution of the
write-via-token command.

In some embodiments, determining 1f differential meta-
data of the storage array 106-1 includes one or more entries
for the one or more logical address ranges of the one or more
source storage volumes comprises initiating an operation for
copying of metadata for the one or more logical address
ranges of the one or more source storage volumes from the
in-memory snapshot to the one or more target storage
volumes, and determining 1n conjunction with the copying
whether or not at least a portion of the metadata 1s in one or
more metadata delta logs of the diflerential metadata.

Controlling execution of the write-via-token command
based at least in part on the determination i such an
embodiment illustratively comprises, responsive to at least a
portion of the metadata being 1n one or more metadata delta
logs of the differential metadata, utilizing that portion of the
metadata 1n the one or more metadata delta logs 1n the
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copying, and copying remaining portions of the metadata
from the mm-memory snapshot to the one or more target
storage volumes.

In some embodiments, responsive to the transactional
cache reaching a designated fullness level, the m-memory
snapshot 1s destaged from the transactional cache to one or
more back-end storage devices of the storage array 106-1
and designated for use only 1n conjunction with execution of
one or more write-via-token commands.

Alternatively, responsive to the transactional cache reach-
ing a designated fullness level, the in-memory snapshot is
deleted and the token 1s invalidated.

An example algorithm that is i1llustratively implemented
by host device 102-1 and a given one of the one or more
storage controllers 110 of the storage array 106-1, utilizing
a transactional cache and associated control logic of the
transactional cache infrastructure 112, includes the steps
listed below. These steps are described with reference to
copying from a single source logical address range 1 a
single source storage volume to a single target logical
address range in a single target storage volume, but the
algorithm can be expanded 1n a straightforward manner to
multiple ranges 1n multiple volumes.

1. Host device 102-1 sends a create-token command to
storage array 106-1, specitying a source logical address
range 1n a source storage volume.

2. Storage array 106-1 creates a memory-only range-
specific snapshot for this source storage volume. The snap-
shot 1s implemented in the transactional cache of the trans-
actional cache infrastructure 112, and 1s ideally never
destaged to back-end storage devices 108. Such a snapshot
1s an example of what 1s more generally referred to herein as
an “in-memory’”’ snapshot. The snapshot 1s not accessible for
normal read and/or write commands, and protects only the
specified source logical address range. Any write operation
directed to that range 1n the source storage volume results 1n
creation of a snapshot leaf to a virtual metadata delta log that
copies the “old” leal mapping metadata to the snapshot.
Write operations outside the range are allowed to pass
uninterrupted.

3. Host device 102-1 sends a write-via-token command,
specilying a target logical address range 1n a target storage
volume.

4. Storage array 106-1 applies a mapping metadata copy
operation from the snapshot corresponding to the token to
the target storage volume. If certain metadata 1n the range 1s
not available 1 the corresponding metadata delta log, this
means that the metadata has not been changed since snap-
shot creation, and the storage array 106-1 simply uses the
source metadata 1n the copy operation.

5. The snapshot corresponding to the token remains 1n
memory only as long as there 1s suflicient space 1n the
transactional cache. If the transactional cache is full and the
snapshot needs to be destaged, one of the following two
options may be used:

(a) Destage snapshot to back-end storage, but keep it only
for use by write-via-token commands. At this point, the
destaged snapshot becomes a regular snapshot, except that
data outside the protected range may be corrupt. This does
not interfere with token-based data transier operations, as
the transfer only 1nvolves data within the protected range,
and since the snapshot 1s not user accessible the potentially
corrupt data does not create any problem.

(b) Discard the snapshot and expire the token. The host
device 102-1 can then no longer use the token. This option
1s particularly beneficial 1n those situations in which the
token has already been used once, since 1n such situations 1t
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will likely not be used again. For example, in practice,
applications running on a host device typically create a
token and then will use 1t, 1f at all, within a relatively short
period of time.

As 1ndicated previously, illustrative embodiments dis-
closed herein provide eflicient token management using a
memory-only snapshot that 1s lightweight 1n 1ts metadata
persistence requirements, has minimal impact on the source
volume(s), and can be easily and rapidly created and deleted.
Conventional approaches using only regular snapshots tend
to result 1n 1increased system overhead and degraded perfor-
mance.

At least portions of the functionality of the one or more
storage controllers 110 and associated transactional cache
infrastructure 112 may be implemented at least in part in the
form of software that 1s stored in memory and executed by
a Processor.

It 1s to be understood that the particular set of elements
shown 1n FIG. 1 for eflicient token management 1s presented
by way of illustrative example only, and 1n other embodi-
ments additional or alternative elements may be used. Thus,
another embodiment may include additional or alternative
systems, devices and other network entities, as well as
different arrangements of modules and other components.

It 1s therefore to be appreciated that these and other
teatures of 1llustrative embodiments are presented by way of
example only, and should not be construed as limiting 1n any
way.

An exemplary process for eflicient token management 1n
a storage system will now be described with reference to the
flow diagram of FIG. 2. It 1s to be understood that this
particular process 1s only an example, and that additional or
alternative processes for eflicient token management 1n a
storage system may be used in other embodiments.

The example process for eflicient token management 1n
this embodiment includes steps 200 through 206. These
steps are assumed to be performed by the storage array
106-1 and 1ts one or more storage controller 110 utilizing at
least portions of the transactional cache infrastructure 112,
such as a transactional cache and associated control logic,
but can 1involve other system components 1n other embodi-
ments. For example, source and target storage volumes can
be located on different ones of the storage arrays 106.

In step 200, a create-token command 1s received from a
host device. For example, the create-token command 1s
illustratively received in storage array 106-1 from one of the
host devices 102 of system 100. The create-token command
specifies one or more logical address ranges of one or more
source storage volumes of the storage array. The create-
token command may be an ODX command, although other
types of commands may be used.

In step 202, responsive to receipt of the create-token
command, the storage array creates the token, generates an
in-memory snapshot of data in the one or more logical
address ranges of the one or more source storage volumes,
associates the in-memory snapshot with the token, and
provides the token to the host device.

In step 204, a write-via token command 1s received from
the host device. It 1s assumed that the write-via-token
command 1s recerved from the same host device that gen-
crated the create-token command. For example, the write-
via-token command 1s illustratively received in the same
storage array 106-1 from the same one of the host devices
102 of system 100 that sent the create-token command,
although this may not be the case 1n other embodiments,
such as 1n an arrangement in which one host device gener-
ates the create-token command and then provides the result-
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ing token to another host device for use by that other host
device 1n a write-via-token command. The write-via-token
command specifies the token and one or more logical
address ranges ol one or more target storage volumes.

In step 206, responsive to receipt of the write-via-token
command, the storage array determines whether or not
differential metadata of the storage array includes one or
more entries for the one or more logical address ranges of
the one or more source storage volumes, and controls
execution of the write-via-token command based at least 1n
part on the determination.

The particular processing operations and other system
functionality described 1in conjunction with the flow diagram
of FIG. 2 are presented by way of illustrative example only,
and should not be construed as limiting the scope of the
disclosure 1n any way. Alternative embodiments can use
other types of processing operations for eflicient token
management 1n a storage system. For example, the ordering
of the process steps may be varied in other embodiments, or
certain steps may be performed at least in part concurrently
with one another rather than serially. Also, one or more of
the process steps may be repeated periodically, or multiple
instances of the process can be performed 1n parallel with
one another 1n order to implement a plurality of different
cllicient token management processes for respective difler-
ent sets ol one or more storage volumes or for different
storage systems or portions thereol within a given informa-
tion processing system.

Functionality such as that described 1n conjunction with
the flow diagram of FIG. 2 can be implemented at least in
part in the form of one or more soltware programs stored in
memory and executed by a processor of a processing device
such as a computer or server. As will be described below, a
memory or other storage device having executable program
code of one or more software programs embodied therein 1s
an example of what 1s more generally referred to herein as
a “processor-readable storage medium.”

For example, storage controllers such as storage control-
lers 110 of storage arrays 106 that are configured to control
performance of one or more steps of the FIG. 2 process in
their corresponding system 100 can be implemented as part
of what 1s more generally referred to herein as a processing
platform comprising one or more processing devices each
comprising a processor coupled to a memory. A given such
processing device may correspond to one or more virtual
machines or other types of virtualization infrastructure such
as Docker containers or LXCs. The storage controllers 108,
as well as other system components, may be implemented at
least 1n part using processing devices of such processing
platforms. For example, 1mn a distributed implementation of
a given one of the storage controllers 110, respective dis-
tributed modules of such a storage controller can be 1mple-
mented 1n respective containers running on respective ones
of the processing devices of a processing platform.

Additional aspects of illustrative embodiments will now
be described 1n more detaill with reference to FIGS. 3
through 9. It 1s to be appreciated that the particular compo-
nents, features and functionality of these embodiments are
examples only, and should not be construed as limiting 1n
any way. For example, other types of transactional cache
infrastructure can be used 1n other embodiments.

FIG. 3 shows a view of a data path architecture 307 for an
10 stack of a storage array (e.g., storage array 106-1). The
data path architecture 307 1s assumed to be implemented on
an embedded hypervisor 301 (e.g., a VMware ESXi™
hypervisor) that runs a base container 303 providing an
SCSI target software stack (SCST) protocol endpoint. The
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embedded hypervisor 301 1s an example of a *“virtual”
storage controller of a storage system (e.g., a virtual one of
the storage controllers 110 in storage array 106-1). The
SCST protocol endpoint container 303 includes a set of
volumes 305-1, 305-2, . . . 305-V (collectively, volumes
305) and the data path architecture 307. The data path

architecture 307 includes a broker module 309, usher mod-
ule 311, namespace module 313, mapper module 315, and a
transaction caching and logging module 317. The data path
architecture 307 also includes a set of storage tiers 319-1,
319-2, . . . 319-T (collectively, storage tiers 319) and a
mapped redundant array of independent disks (RAID) 321.
These and other references to “disks™ herein are intended as
general storage media references and should not be con-
strued as requiring the use of rotational storage media such
as HDDs. The transaction caching and logging module 317
1s configured to utilize remote direct memory access
(RDMA) mterface 323 as described in further detail below.

The broker module 309 1s configured to facilitate com-
munication amongst the various other modules of the data
path architecture 307. In some embodiments, the data path
architecture 307 implements a layered services model (e.g.,
for copy engines, replication, migration, etc.). The usher
module 311 1s configured to implement 10 request queues,
including priority share-based scheduling and Quality of
Service (QoS) for 10 requests i such queues. The
namespace module 313 1s configured to implement active/
active “thin” volumes and maintain volume attributes. The
namespace module 313 1s also configured to implement a
key-value (K-V) store and directories. The mapper module
315 1s configured to implement a thin mapping layer using
log-structured writes, with inline compression, deduplica-
tion and pattern matching functionality. The mapper module
315 i1s also configured to implement functionality for gen-
erating snapshots and determining snapshot differentials, for
performing space accounting, and for file system checking
(e.g., using a tool such as a Linux file system consistency
check (FSCK) tool). The transaction caching and logging
module 317 1s configured to implement transactions for the
active/active volumes, to perform distributed locking, and to
implement read/write-back and write-ahead logs. The trans-
action caching and logging module 317 may comprise two
instances, one for data and one for metadata. The mapped
RAID 321 1s configured to implement distributed virtual
striping (e.g., using 4+1 and 8+1 RAIDS5 implementations)
and to provide thin rebuild and distributed sparing. The
mapped RAID 321 may support various native block sizes
(e.g., 512 bytes (B), 4096B or 4 kilobytes (KB), etc.).

In some embodiments, the usher module 311 implements
a data plane polling model. From the producer side (e.g., of
the SCST protocol endpoint), requests are submitted using
per-core threads. Polling threads pull new 10 requests to
user space. The polling threads may execute when associ-
ated data plane threads are 1dle. Load balancing, atlinity and
QoS (e.g., share-based scheduling and traffic shaping) fea-
tures may be provided.

The namespace module 313, as described above, 1s con-
figured to create and expose thin block volumes, and to
provide functionality for volume management and attributes
as well as space management and accounting. The
namespace module 313 enables or provides a namespace
layer that utilizes a block interface with file-like semantics.
In the namespace layer, volumes (e.g., volumes 305) are
bound to block protocol endpoints (e.g., PE LUNSs). The
mapper module 3135 enables or provides a mapping layer,
which exposes a single contiguous thin address space to the




US 11,625,169 B2

17

namespace layer. The namespace layer consumes the logical
address space provided by the mapper layer.

The namespace layer may use a format that includes a
“super block™ created by an internal format and anchored at
a logical block address (LBA) of 0. The super block 1den-
tifies locations of allocations, an 1node table, and a “root”
directory. The allocations provide references to extent allo-
cators, used to manage free space, as well as to 1nodes. The
extent allocators may use a binary buddy system, and enable
cellicient reclaiming and defragmenting functionality. In
some embodiments, the minimum allocation size 1s 8 MB,
and the mimimum allocation size for virtual volumes (VVols)
such as volumes 305 1s 2 GB. The volume allocation aligns
to the “mid” level of the mapper as described 1n further
detail below.

The 1node allocators provide references to an 1node table,
which in some embodiments 1s scalable to millions of 1nodes
and 1s organized as a free list. An 1node may include various
content, such as an object type (e.g., file, directory), family
universally unique identifier (UUID), inode number and
generation, link count, unique 1dentifier (UID) owner, global
unique 1dentifier (GUID) owner, object extent location,
create timestamp and/or other timestamps, parent i1node
number, parent directory cookie, etc. The root 1node refer-
ences a root directory object that contains a list of file names
and 1nodes, while additional inodes contain volume data
(e.g., by allocating a data extent and 1node, and adding the
volume name and 1mode to the root directory). Multiple
volume data extents may be created. Object handles may be
used by the usher module 311 to submit IO thru handles
(e.g., Inodes) to avoid unnecessary name lookup.

The transaction caching and logging module 317 may
implement a transactional cache and an associated transac-
tion log. The transaction caching and logging module 317
may be viewed as an example of at least a portion of the
transactional cache infrastructure 112 of storage array 106-1.
The transactional cache, 1n some embodiments, 1s config-
ured to provide read and write cache buflering with two
instances (e.g., data and metadata). The transactional cache
1s configured to page data and metadata in and out of
memory, and to provide local and distributed peer-to-peer
(P2P) sticky locks. In some embodiments, an active/active
configuration, an ALUA configuration, or combination
thereof may be used. For example, the data path architecture
307 may be active/active, while SCST supports both active/
active and ALUA. The transaction log provides write-ahead
transaction logs, such as by using low latency mirrored
NVRAMSs for persistence. The transactional cache, for
example, may be implemented in-memory (e.g., DRAM),
while the transaction log 1s persisted to NVRAM.

The mapper module 315, as noted above, may provide a
mapping layer of the data path architecture 307. The map-
ping layer may provide various functionality, such as
ecnabling patterns, deduplication, compression, and map-
ping. Pattern functionality includes storing patterns (e.g.,
rather than pointer+data), and re-generates data on read, and
may include 4 KB of Os or 1s (where, 1n this context, Os are
different than unmapped space). Deduplication functionality
includes the use of a fingerprint cache and read and compare
validation. Compression functionality may include the use
of various types of compression algorithms, including Intel
QuickAssist Technology (QAT) hardware offload, LZ
Deflate, Dynamic Hulflman, etc. In some embodiments, data
1s compressed and packed into 2 MB data stripes. The
mapping functionality includes a thin map, implemented in
some embodiments as a 512-way B-tree structure described
in further detail below. The thin map 1 such embodiments
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1s keyed by LBA (e.g., rather than using content-addressable
storage (CAS)), and provides snapshot and differential capa-
bility along with copy-by-reference. The mapper module
315 may utilize the storage tiers 319 (e.g., using flash tiers,
storage-class memory (SCM) tiers, NVRAM tiers, etc.).

FIGS. 4A and 4B show a tree structure utilized by the
mapper module 315 to store data 1n some embodiments. As
noted above, the tree structure may comprise a 512-way
B-tree structure, with levels for root pages 401, top pages
403, middle (“mid”) pages 403, leal pages 407, virtual large
blocks (VLBs) 409, and physical large blocks (PLBs) 411.
As 1llustrated 1n FIG. 4A, the root pages 401 provide a
logical address space, which 1n some embodiments ranges
from O to 8 exabytes (EB). The logical address space, which
may be a thin logical address space, includes various mode
oflsets, two of which are labeled (e.g., inode[0] and 1node
[N]). Each of the inode oflsets for the root pages 401 include
a 4 KB node with 512 indirection pointers to respective ones
of the top pages 403, each of the top pages 403 also has a
4 KB node with 312 pointers to respective ones of the
middle pages 405, and each of the middle pages 403 has a
4 KB node with 512 pointers to respective ones of the leaf
pages 407. Each of the leal pages 407 may represent 2
megabytes (MB), and thus a given one of the middle pages
405 may represent 1 gigabyte (GB) (e.g., 512 of the leaf
pages 407x2 MB) and a given one of the top pages 403 may
thus represent 512 GB (e.g., 512 of the middle pages 405x1
GB).

As 1llustrated 1n FIG. 4B, each of the leaf nodes 407 may
include 512 pointers to VLBs 409 each representing 4 KB
(e.g., such that a given one of the leaf nodes 407 represents
2 MB as noted above, as 512x4 KB=2 MB). The VLBs 409
include reference counts, compression maps, and accounting
information (e.g., oflset and length, in bytes (B)) for the
PLBs 411. Each of the PLBs 411 provides 2 MB physical
space for storing user data (e.g., as a set of 4 KB compressed
data blocks).

The mapper module 315 may access the tree structure of
FIGS. 4A and 4B using keys, where a key for the root pages
401 level includes a host LBA and inode offset and index,
where the index 1s the key divided by 256 terabytes (ITB). At
the top pages 403 level, the index 1s the key modulo 512 GB.
At the middle pages 405 level, the index 1s the key modulo
1 GB. At the leal pages 407 level, the index i1s the key
modulo 2 MB.

FIGS. 5A and 5B show deduplication using VLBs of the
tree structure of FIGS. 4A and 4B. FIGS. 5A and 5B show
a given VLB 509 and associated PLB 511 which includes 2
MB of compressed and packed data. The VLB 309 is
assumed to contain a block address of the PLLB 511, which
provides a 2 MB data extent, and an array with 512 virtual
entries. The virtual entries of a VLB, such as the 512 entries
of VLB 509 1n the example of FIGS. 5A and 3B, may be
associated with respective virtual block addresses. Each
VLB may thus be associated with a VLB extent that com-
prises a range of virtual block addresses (a VLB extent, in
some cases, may include multiple VLBs such that 1ts asso-
ciated range of virtual block addresses span the multiple
VLBs). Such an arrangement will be described in further
detail below with respect to FIG. 7.

Each of the 512 virtual entries of the VLB 509 includes
a byte oflset to where a compressed 4 KB data portion starts
in the PLB 511, as well as a byte length of the compressed
4 KB data portion and a reference count (e.g., the number of
leat page references to that compressed 4 KB data portion).
In FIG. 5A, one leaf page 507-1 (e.g., leat 100+1) references

a particular compressed 4 KB data portion (e.g., shaded 1n
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gray) 1n the PLB 511. Thus, as shown m FIG. SA, the
reference count in the VLB corresponding to that portion
(c.g., also shaded 1n gray) 1s 1. FIG. 3B shows that, when
another leat page 507-2 (e.g., leat 900+1) also references that
particular portion in PLB 511, the reference count for that
portion 1n VLB 509 1s updated to 2. In this way, two or more
leal pages can reference the same virtual block address. In
the example of FIGS. 5A and 5B, deduplication has a
granularity of 4 KB (e.g., the size of each compressed data
portion 1n the PLB 511). Some embodiments enable a global
deduplication domain, where any of the leal pages can
reference any of the compressed data portions 1n any of the
PLBs. The reference count, however, may limit deduplica-
tion to a certain amount (e.g., 256:1).

To 1mplement deduplication, a deduplication “finger-
print” cache may be utilized. The fingerprint cache may be
implemented as a large K-V store, with N-way associative
hashes providing fast, in-memory lookup that enables veri-
fication of deduplication with read and compare. Consider a
piece of data, denoted data,, that 1s found 1n the fingerprint
cache. This may include hashing data,, where the hash
matches a key 1n the K-V store corresponding to a given
VLB. The given VLB 1s then fetched to find the page
referenced, and the corresponding portion of the associated
PLB 1s read, decompressed and then compared to verity that
data, 1s a duplicate. Consider another piece of data, denoted
data,, that 1s not found in the fingerprint cache. In this case,
a new entry 1s added to the K-V store (e.g., a new K-V pair).
If there 1s no remaining space, entries may be evicted using
any suitable cache replacement algorithm, such as a least
recently used (LRU) cache replacement algorithm. The
data, 1s then stored as a new 4 KB data block in one of the
PLBs.

The mapper module 315 may implement log-structured
writes for eflicient full stripe RAID writes (e.g., where each
stripe 15 2 MB continuing the example above) to flash
memory using mapped RAID 321. Pending writes are
flushed from the transactional cache or transaction log
implemented by transaction caching and logging module
317. Patterns and duplications are subtracted, then the data
1s compressed and packed into a stripe. The full stripe 1s then
written and mapped to the thin address space.

FIGS. 6 A-6D 1llustrate snapshot functionality enabled by
the mapper module 3135 using the B-tree structure described
above with respect to FIGS. 4A and 4B. As shown 1n FIG.
6A, a particular mode for a volume (e.g., mode[voll])
references a particular root page 601, which references a top
page 603, which references a set of middle pages (not
shown), which references a set of leal pages 607-1,
607-2, . . . 607-S (collectively, leal pages 607) which
reference underlying data (e.g., through VLBs and PLBs not
shown). When a snapshot of the volume is created, another
inode 1s allocated (e.g., 1node[voll_snap]) that references
the root page 601 and copy-by-reference 1s performed as
shown 1n FIG. 6B. On a first write to the volume (e.g., to
voll), the nodes of the tree structure are split 1n a recursive
manner. First, the top page 603 1s copied to top page 603’ as
shown 1n FIG. 6C. Middle pages (not shown) are then
copied, follow by copying one of the leaf pages 607 aflected
by the write. As shown in FIG. 6D, this includes copying leaf
page 607-5 to leafl page 607-S'. The new data to be written
1s stored 1n one or more VLBs and PLBs referenced by leaf
page 607-S, while the old or existing data 1s stored 1n one or
more VLBs and PLBs referenced by leat page 607-S'.

The mapped RAID 321, as noted above, implements
virtual striping (e.g., using 4+1 and 8+1 RAIDS), enabling
thin rebuild, distributed sparing, and various native block
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s1zes (e.g., 512 B, 4096 B, etc.). The RAID geometry may
be selected based on the number of SSD disks (e.g., with 6-9
SSDs, 4+1 RAID may be used, with 10+ SSDs, 8+1 RAID
may be used). It should be noted that embodiments are not
limited to using SSD disks 1n a RAID. In other embodi-
ments, other types of disks or storage devices may be used.
The description below, however, assumes the use of SSDs
for clarity of illustration. In some cases, the mapped RAID
321 may use resiliency sets, as reliability may drop as more
SSDs are grouped together. To constrain the fault domain,
resiliency sets may be split once a threshold number of SSDs
1s reached (e.g., with a 25 SSD maximum, the resiliency set
is split on adding a 26” SSD).

In some embodiments, the mapped RAID 321 includes a
disk layout that has a minimum number of 6 SSD disks (e.g.,
flash SSDs or 3DXP SSDs). Serial attached SCSI (SAS)
expansion may be used to expand the number and size of
disks used. In some embodiments, particular slots or disks
(e.g., 2 or 4 NVRAM SSDs) may be reserved for use as the
transaction ﬁog implemented by transaction caching and
logging module 317. A global configuration database (DB)
may be stored using 1 MB on each drive 1n the mapped
RAID 321, which includes a GUID and drive state infor-
mation. The mapped RAID 321 may include a RAID map
DB that 1s 3-way mirrored across three of the disks, and
includes information such as RAID type, width, etc. The
mapped RAID 321 also utilizes metadata, data, and possibly
other tiers. The mapper module 315 1s configured to expand
the tiers for more space, where expanding a tier includes
forming a RAID geometry by allocating slices, adding to the
RAID map, and returning to the mapper layer. A slice of the
mapped RAID 321 may include 4 GB RAID allocation
extents (NVRAM may use 128 MB), one or more “ubers”
that each include N+1 slices grouped 1into a RAID set (e.g.,
1+1, 441, 8+1, etc.), and one or more tiers each including a
group of ubers.

In some embodiments, the data path architecture 307, on
receiving an IO request from a host to store data, will write
the data quickly and persistently to a cache (e.g., the
transactional cache implemented by the transaction caching
and logging module 317) and then send an acknowledge-
ment to the host. The data path architecture 307 will then
utilize the mapper module 315 to identify and subtract
patterns and duplicates 1n the data to form a tlush set (e.g.,
a 2 MB flush set). The flush set 1s then compressed, packed
and written to 2 MB stripes (e.g., in the mapped RAID 321).

In a log structured file system, such as that used in the data
path architecture 307, mappings (e.g., as provided using the
mapping module 315) provide critical information that links
the user data to the physical location on the storage devices
(e.g., SSDs). With deduplication, multiple logical blocks can
point to the same virtual block address of a given VLB. In
this case, the VLB 1ncludes virtual entries for each virtual
block address, with a given virtual entry maintaining a
reference count indicating how many logical blocks point to
a given virtual block address. When file system checks (e.g.,
using a tool such as FSCK) are run, the consistency of the
map 1s validated by cross-checking the reference count
stored 1n the virtual entry of the VLB with the number of
logical blocks pointing to the virtual block address.

In some embodiments, a storage array 1s configured to
utilize “delta” logs for accumulating records mto builers and
then persisting such records as a logical tree (e.g., the tree
structure of FIGS. 4A and 4B) 1s traversed. For example, the
VLB level (e.g., VLBs 409) of the tree structure shown in
FIGS. 4A and 4B may be split into a number of VLB extents
representing a range of virtual block addresses. This 1s
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illustrated 1n FIG. 7, which shows a VLB tier 701, where
different virtual block address ranges are associated with

different VLB extents 703-1, 703-2, . . . 703-] (collectively,
VLB extents 703). In some embodiments, each of the VLB
extents 703 1s associated with one of the VLBs 409 1n the
tree structure of FIGS. 4A and 4B. In other embodiments,
however, a given one of the VLB extents 703 may be
associated with multiple ones of the VLBs 409 (e.g., the
virtual block address space of the given VLB extent may

include virtual block addresses that are 1in two or more of the
VLBs 409). Each of the VLB extents 703-1, 703-2, . .. 703-]

1s associated with a delta log buffer 705-1, 705-2, . . . 705-]
(collectively, delta log buflers 705) that stores delta log
records 750-1, 750-2, . 750-J (collectively, delta log
records 750) for 1ts associated one of the VLB extents 703.
In some embodiments, each of the delta log bullers 705 1s 2
MB 1n size, and accumulates delta log records (e.g., as the
logical tree 1s traversed by a file system check).

In traversing the above-noted logical tree 1n conjunction
with scanning of leaf pages 407, pointers to virtual entries of
the VLBs 409 are encountered. Each such pointer 1s handed
to the delta logging infrastructure and stored as one of the
delta log records 750. Based on the virtual block address of
pointed to by the leal page 407 being scanned, an appro-
priate one of the VLB extents 703 1s determined and a delta
log entry or record (e.g., including an identifier for a virtual
entry for the virtual block address and other information,
such as the logical page address of the leat page that points
to the virtual block address as described in further detail
below) 1s put into the appropriate one of the delta log buflers
705.

Apresence of a delta log record for a virtual block address
or virtual entry indicates a reference count of one. If there
are ten delta log records for a particular virtual block
address, the reference count 1s ten. When a given one of the
delta log buflers 705 1s full, the delta log records 750 stored
therein are written out to an associated disk (e.g., the
associated one of the VLB extents 703). Once all the leaf
pages 407 are traversed, all of the pointers to the virtual
block addresses are accumulated in the appropriate VLB
extents 703.

After traversing the logical tree structure, the delta log-
ging moves to a consolidation phase where each of the VLB
extents 703 1s read 1n intervals (e.g., 2 MB at a time) and, for
cach delta log associated with a given virtual block address,
the reference count for the given virtual block address 1s
incremented. Since one VLB extent 1s processed at a time,
the reference counts may be consolidated in-memory.

As described above, some file systems support dedupli-
cation features. In cases where multiple storage objects point
to the same copy of a piece of data, the logical pages of such
storage objects point to the same virtual block address. A
given virtual entry for a given virtual block address keeps a
reference count to track the number of logical pages that
point to the given virtual block address. During recovery of
such file systems, 1t 1s diflicult to keep track of each of the
references for each of the wvirtual block addresses
in-memory, or to store such information on a disk and
read/write 1t back as many times as logical pages refer to the
virtual block addresses. Thus, as described above, delta
logging approaches may be used. In some embodiments,
logical page addresses (e.g., addresses of the leaf pages 407)
are stored 1n the delta log records for facilitating creation of
a map of corrupted virtual entries back to the logical space
(c.g., leal pages 407, mid pages 403, etc., of a logical tree
structure such as that illustrated in FIGS. 4A and 4B).
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During logical space browsing conducted as part of a file
system check (e.g., using FSCK or another suitable tool),
delta log records are submitted to a delta log infrastructure
(e.g., to delta log buflers 705 which, when full, may be
flushed or persisted to disk) as the leal pages 407 are
traversed. To facilitate mapping of corrupted virtual entries
(e.g., cases where an expected reference count determined
by consolidating delta logs does not match the actual refer-
ence count 1n virtual entries of the VLBs 409), the leaf page
addresses that point to the virtual entries (e.g., 1n the VLBs
409) may be stored 1n the delta log records. Thus, once all
the logical space 1s browsed, the delta log infrastructure has
all the delta log records for each of the logical references to
each of the virtual block addresses, as well as the address of
the logical pages that are the source of each of the logical
references.

As described above, a storage array 1n some embodiments
includes a data path architecture 307 including a logical
address space that uses a logical tree mapping (e.g., as
maintained by the mapper layer of the data path architecture
307 implemented using mapper module 3135) for mapping
the logical address space to a physical address space. The
logical address space may be represented by the root pages
401, top pages 403, mid pages 405 and leaf pages 407 1n the
tree structure shown 1n FIGS. 4A and 4B, with the leaf pages
407 including pointers to different virtual entries in the
VLBs 409 that map to partlcular physical block addresses 1n
the PLBs 411 as illustrated in FIGS. 4A and 4B.

In the logical address space of the mapper layer provided
by mapper module 315 1n the data path architecture 307,
cach logical page may be associated with various metadata,
including an indirect data page (IDP) address (e.g., IDP 100,
IDP 200, etc.). The IDP i1s an example of what 1s more
generally referred to as an indirect block address. Each
logical page may also include an array of IDP addresses that
the logical page points to. The logical page that 1s associated
with a particular IDP address 1s also referred to as an IDP
page.

When performing recovery and other tasks, there may be
a need to {ind the storage objects (e.g., volumes, snapshots,
clones, etc.) that point to a particular logical page (e.g., a
particular IDP page) in the mapper’s logical address page.
As described above, for example, 1t may be desired to find
the mappings to a given corrupted IDP page. To do so, two
relationships are used: vertical relationships and horizontal
relationships. The vertical relationship 1s navigated by the
oflset of a given storage object. The horizontal relationship
represents a parent-child relationship for a given snapshot
family. Information associated with the vertical and hori-
zontal relationships may be stored as a “back pointer” within
cach IDP page (e.g., top pages 403, mid pages 4035 and leaf
pages 407 1n the logical tree structure of FIGS. 4A and 4B).
The relevant information from the back pointer that 1s used
to navigate the vertical and horizontal relationships, 1n some
embodiments, include a namespace address (e.g., from a
namespace layer of the data path architecture 307 imple-
mented by namespace module 313), extent oilset, and snap-
shot group 1dentifier (ID).

A two-level data structure may be built-up during the
initial browsing of the top IDP pages (e.g., top pages 403)
associated with each storage object. This two-level data
structure maintains the relationships of the set of storage
objects within a given snapshot (snap) group. In some
embodiments, the two level-data structure may be viewed as
a hash of binary trees, with there being a binary tree for each
snap group. The first level of the two-level data structure 1s
navigated based on the snap group IDs to find binary trees
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in the second level that characterize the relationships
between storage objects for the snapshot groups associated
with a selected snap group ID. Given a binary tree for a
grven snap group 1D, 1t 1s possible to iterate over the storage
objects 1n the snap group and traverse the vertical relation-
ships using the stored namespace address for the storage
object.

A client (e.g., one of host devices 102, the file system
check tool such as FSCK, etc.) that wants to search storage
objects may provide the desired IDP page address, snap
group 1D, and extent oflset. Given the snap group ID and
extent oilset from the back pointer of any IDP 1n the mapper
address space, all the storage objects 1n the given snap group
ID may be 1terated over to check whether the desired IDP
page address 1s found at the given extent ofiset. There are
various use cases 1n which such reverse logical lookups are
required. For example, such reverse logical lookups may be
used to find the vertical and horizontal IDP pages for a given
corrupted or orphaned IDP page. Being able to find the
vertically and horizontally connected IDP pages provides
the ability to potentially fix the corruption related to that IDP
page. As another example, such reverse logical lookups may
be used to report a corruption that cannot be repaired and
results 1n data loss for all corresponding storage objects that
map to the corrupted metadata object (e.g., an IDP page, a
VLB object, etc.).

Examples of reverse logical lookups will now be
described with respect to FIG. 8, which shows a logical tree
structure (e.g., selected as described above from a two-level
data structure) for a particular snap group ID (e.g., snap
group 1D=1). More particularly, FIG. 8 1llustrates a reverse
lookup for reporting corruption at leat IDP 500. The leal IDP
500 has an extent oflset of 262144 and a snap group ID of
1. The snap group ID of 1 1s used to index 1nto the two-level
data structure described above to find the binary tree for that

given snap group. Once the binary tree 1s retrieved, then the
storage objects can be 1terated over to search them vertically
for the leat IDP address of 500. As shown in FIG. 8, the
search first traverses through storage objects of volume 1 for
the given extent oflset, starting with the stored namespace
address for the volume 1’s starting top IDP page 10. This
vertical search goes to the mid IDP 200, in which the
matching address of 500 1s found for the corrupted leaf IDP.
Thus, volume 1 with the corresponding extent offset can be
reported as corrupted. Next, the search traverses through the
storage objects of a snapshot of volume 1 through top IDP

page 20. For the given extent oflset, the lookup looks at mid
IDP page 300 which has the address 500 for the corrupted

leat IDP.

In FIG. 8, each of the IDP pages (e.g., top IDP pages 10
and 20, mid IDP pages 100, 200 and 300, and leat IDP pages
400 and 300) includes an array of IDP addresses. For
example, top IDP 10 includes IDP addresses of S100, S200,
etc. The “S” 1n such addresses denotes source, while the “C”
in addresses for other ones of the IDP pages in FIG. 8
denotes copy (e.g., “C500” 1n mid IDP page 300). Each of
the IDP pages shown 1n FIG. 8 also includes a back pointer
as described above, with a namespace address, extent oflset
and snap group ID.

Another example of an eflicient token management pro-
cess, 1n this case implemented using a storage array con-
figuration and associated metadata structures of the type
described in conjunction with FIGS. 3 through 8 above, will
now be presented with reference to FI1G. 9. As 1n the FIG. 2
embodiment, 1t 1s to be understood that this particular
process 1s only an example, and that additional or alternative
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processes for eflicient token management in a storage sys-
tem may be used in other embodiments.

The example process for eflicient token management 1n
this embodiment includes steps 900 through 910. These
steps are assumed to be performed by the storage array
106-1 and 1ts one or more storage controllers 110 utilizing at
least portions of the transactional cache infrastructure 112,
such as a transactional cache and associated control logic,
but can 1nvolve other system components in other embodi-
ments.

In step 900, the storage array receives a create-token
command from a host device, such as host device 102-1,
creates a token, and creates a corresponding in-memory
snapshot 1n a transactional cache. As indicated elsewhere
herein, the create-token command specifies one or more
logical address ranges of one or more source storage vol-
umes of the storage array, and may be an ODX command or
another type of command.

In step 902, the storage array avoids destaging of the
in-memory snapshot from the transactional cache. In other
words, the storage array attempts to maintain the in-memory
snapshot 1n the transactional cache without destaging it to
disk or otherwise persisting 1t to disk or other back-end
storage devices.

In step 904, a determination 1s made as to whether or not
a write-via-token command has been received for the cre-
ated token. If a write-via-token command has been received
for the created token, the process moves to step 906, and
otherwise bypasses step 906 and instead moves to step 908
as 1ndicated.

In step 906, the storage array executes the write-via-token
command using delta log buflers of the type previously
described to obtain metadata for any portion of the protected
data that was written since creation of the in-memory
snapshot.

In step 908, a determination 1s made as to whether or not
the token has expired. It the token has expired, the process
moves to step 910, and otherwise returns to step 904 to await
the arrival of a first or additional write-via-token command
for the created token. This embodiment therefore assumes
that the token can be used multiple times.

In step 910, which 1s reached after expiration of the token,
the storage array deletes the in-memory snapshot from the
transactional cache. As described elsewhere herein, other
conditions can lead to deletion of the imn-memory snapshot
from the transactional cache. For example, in some embodi-
ments, the token 1s automatically invalidated after a single
use, and the in-memory snapshot is deleted at that point from
the transactional cache.

As m FIG. 2, the particular processing operations and
other system functionality described in conjunction with the
flow diagram of FIG. 9 are presented by way of illustrative
example only, and should not be construed as limiting the
scope of the disclosure 1n any way. Alternative embodiments
can use other types of processing operations for eflicient
token management 1n a storage system. For example, the
ordering of the process steps may be varied 1n other embodi-
ments, or certain steps may be performed at least 1n part
concurrently with one another rather than serially. Also, one
or more of the process steps may be repeated periodically, or
multiple 1instances of the process can be performed in
parallel with one another in order to implement a plurality of
different eflicient token management processes for respec-
tive different sets of one or more storage volumes or for
different storage systems or portions thereof within a given
information processing system. Also, functionality such as
that described 1n conjunction with the tflow diagram of FIG.
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9 can be implemented at least 1n part 1n the form of one or
more software programs stored in memory and executed by
a processor of a processing device such as a computer or
SErver.

Hlustrative embodiments disclosed herein provide signifi-
cant advantages relative to conventional arrangements. For
example, illustrative embodiments provide techniques for
cllicient token management n a storage system. Such
embodiments can provide particularly eflicient management
of tokens associated with ODX commands and other types
of commands used 1n implementing token-based data trans-
fers.

In some embodiments, eflicient token management 1s
provided 1n a manner that advantageously avoids the need to
persist token-related snapshots and their associated metadata
in back-end storage devices while also avoiding adverse
performance 1impacts on source storage volumes.

These and other embodiments are illustratively config-
ured to respond quickly to create-token commands, and to
protect the data represented by the tokens, with a lightweight
metadata footprint and minimal 1impact on the source vol-
umes.

Moreover, system computational and storage overhead
associated with persistence of snapshots 1n support of token-
based data transfers 1s reduced, and overall system perfor-
mance 1s 1improved.

It 1s to be appreciated that the particular advantages
described above and elsewhere herein are associated with
particular illustrative embodiments and need not be present
in other embodiments. Also, the particular types of infor-
mation processing system features and functionality as i1llus-
trated 1n the drawings and described above are exemplary
only, and numerous other arrangements may be used 1n other
embodiments.

[lustrative embodiments of processing platiorms utilized
to 1implement functionality for efhicient token management
in a storage system will now be described 1n greater detail
with reference to FIGS. 10 and 11. Although described 1n the
context of system 100, these platforms may also be used to
implement at least portions of other information processing
systems 1n other embodiments.

FIG. 10 shows an example processing platiorm compris-
ing cloud infrastructure 1000. The cloud infrastructure 1000
comprises a combination of physical and virtual processing
resources that may be utilized to implement at least a portion
of the information processing system 100 1n FIG. 1. The
cloud infrastructure 1000 comprises multiple wvirtual
machines (VMSs) and/or container sets 1002-1, 1002-2, . . .
1002-L. mmplemented using virtualization infrastructure
1004. The virtualization infrastructure 1004 runs on physical
inirastructure 1005, and illustratively comprises one or more
hypervisors and/or operating system level virtualization
infrastructure. The operating system level virtualization
infrastructure illustratively comprises kernel control groups
of a Linux operating system or other type ol operating
system.

The cloud infrastructure 1000 further comprises sets of
applications 1010-1, 1010-2, . . . 1010-L running on respec-
tive ones of the VMs/container sets 102-1, 1002-2, . . .
1002-L under the control of the virtualization infrastructure
1004. The VMs/container sets 1002 may comprise respec-
tive VMs, respective sets ol one or more containers, or
respective sets of one or more containers running in VMs.

In some 1implementations of the FIG. 10 embodiment, the
VMs/container sets 1002 comprise respective VMs 1mple-
mented using virtualization infrastructure 1004 that com-
prises at least one hypervisor. A hypervisor platform may be
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used to implement a hypervisor within the virtualization
infrastructure 1004, where the hypervisor platform has an
associated virtual infrastructure management system. The
underlying physical machines may comprise one or more
distributed processing platforms that include one or more
storage systems.

In other implementations of the FIG. 10 embodiment, the
VMs/container sets 1002 comprise respective containers
implemented using virtualization infrastructure 1004 that
provides operating system level virtualization functionality,
such as support for Docker containers running on bare metal
hosts, or Docker containers running on VMSs. The containers
are 1llustratively implemented using respective kernel con-
trol groups of the operating system.

As 1s apparent from the above, one or more of the
processing modules or other components of system 100 may
cach run on a computer, server, storage device or other
processing platform element. A given such element may be
viewed as an example of what 1s more generally referred to
herein as a “processing device.” The cloud infrastructure
1000 shown 1n FIG. 10 may represent at least a portion of
one processing platform. Another example of such a pro-
cessing platform 1s processing platform 1100 shown 1n FIG.
11.

The processing platform 1100 1n this embodiment com-
prises a portion of system 100 and includes a plurality of
processing devices, denoted 1102-1, 1102-2, 1102-3, . . .
1102-K, which communicate with one another over a net-
work 1104.

The network 1104 may comprise any type ol network,
including by way of example a global computer network
such as the Internet, a WAN, a LAN, a satellite network, a
telephone or cable network, a cellular network, a wireless
network such as a WiF1 or WiMAX network, or various
portions or combinations of these and other types of net-
works.

The processing device 1102-1 1n the processing platiorm
1100 comprises a processor 1110 coupled to a memory 1112.

The processor 1110 may comprise a microprocessor, a
microcontroller, an application-specific integrated circuit
(ASIC), a field-programmable gate array (FPGA), a central
processing unit (CPU), a graphical processing unit (GPU), a
tensor processing unit (TPU), a video processing unit (VPU)
or other type of processing circuitry, as well as portions or
combinations of such circuitry elements.

The memory 1112 may comprise random access memory
(RAM), read-only memory (ROM), flash memory or other
types of memory, 1n any combination. The memory 1112 and
other memories disclosed herein should be viewed as 1llus-
trative examples of what are more generally referred to as
“processor-readable storage media” storing executable pro-
gram code ol one or more soltware programs.

Articles of manufacture comprising such processor-read-
able storage media are considered illustrative embodiments.
A given such article of manufacture may comprise, for
example, a storage array, a storage disk or an integrated
circuit containing RAM, ROM, flash memory or other
clectronic memory, or any of a wide variety of other types
of computer program products. The term “article of manu-
facture” as used herein should be understood to exclude
transitory, propagating signals. Numerous other types of
computer program products comprising processor-readable
storage media can be used.

Also included 1n the processing device 1102-1 1s network
interface circuitry 1114, which 1s used to interface the
processing device with the network 1104 and other system
components, and may comprise conventional transceivers.
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The other processing devices 1102 of the processing
plattorm 1100 are assumed to be configured 1n a manner
similar to that shown for processing device 1102-1 1n the
figure.

Again, the particular processing platform 1100 shown 1n
the figure 1s presented by way of example only, and system
100 may include additional or alternative processing plat-
forms, as well as numerous distinct processing platiforms 1n
any combination, with each such platform comprising one or
more computers, servers, storage devices or other processing,
devices.

For example, other processing platforms used to imple-
ment 1llustrative embodiments can comprise converged
infrastructure.

It should therefore be understood that 1n other embodi-
ments different arrangements of additional or alternative
clements may be used. At least a subset of these elements
may be collectively implemented on a common processing,
platform, or each such element may be implemented on a
separate processing platiorm.

As idicated previously, components of an information
processing system as disclosed herein can be implemented at
least 1n part in the form of one or more software programs
stored 1n memory and executed by a processor of a process-
ing device. For example, at least portions of the functionality
for eflicient token management in a storage system as
disclosed herein are illustratively implemented 1n the form
ol software running on one or more processing devices.

It should again be emphasized that the above-described
embodiments are presented for purposes of illustration only.
Many variations and other alternative embodiments may be
used. For example, the disclosed techniques are applicable
to a wide variety of other types and arrangements ol infor-
mation processing systems, storage systems, storage
devices, storage controllers, transactional cache infrastruc-
ture, tokens, commands, metadata, snapshots, tree struc-
tures, etc. Also, the particular configurations of system and
device elements and associated processing operations 1llus-
tratively shown in the drawings can be varied in other
embodiments. Moreover, the various assumptions made
above 1n the course of describing the illustrative embodi-
ments should also be viewed as exemplary rather than as
requirements or limitations of the disclosure. Numerous
other alternative embodiments within the scope of the
appended claims will be readily apparent to those skilled 1n
the art.

What 1s claimed 1s:

1. An apparatus comprising:

at least one processing device comprising a processor

coupled to a memory;
the at least one processing device being configured:
to recelve a create-token command from a host device, the
create-token command specifying one or more logical
address ranges of one or more source storage volumes
ol a storage system:;

responsive to receipt of the create-token command, to
create a token, to generate an in-memory snapshot of
data 1n the one or more logical address ranges of the
one or more source storage volumes, to associate the
in-memory snapshot with the token, and to provide the
token to the host device;

to recetve a write-via-token command from the host

device, the write-via-token command speciiying the
token and one or more logical address ranges of one or
more target storage volumes; and

responsive to receipt of the write-via-token command, to

determine whether or not differential metadata of the
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storage system includes one or more entries for the one
or more logical address ranges of the one or more
source storage volumes, and to control execution of the
write-via-token command based at least 1n part on the
determination;

wherein determining if differential metadata of the storage

system includes one or more entries for the one or more
logical address ranges of the one or more source
storage volumes comprises:

initiating an operation for copying of metadata for the one

or more logical address ranges of the one or more
source storage volumes {from the mn-memory snapshot
to the one or more target storage volumes; and
determiming in conjunction with the copying whether or
not at least a portion of the metadata 1s 1n one or more
metadata delta logs of the diflerential metadata; and
wherein controlling execution of the write-via-token com-
mand based at least 1n part on the determination com-
Prises:
responsive to at least a portion of the metadata being 1n
one or more metadata delta logs of the differential
metadata, utilizing that portion of the metadata 1n the
one or more metadata delta logs 1n the copying; and
copying remaining portions of the metadata from the
in-memory snapshot to the one or more target storage
volumes;

the controlling execution of the write-via-token command

thereby being separated into at least first and second
distinct parts, the first part utilizing the portion of the
metadata 1n the one or more metadata delta logs, and
the second part utilizing the remaining portions from
the in-memory snapshot.

2. The apparatus of claam 1 wherein the at least one
processing device comprises a storage controller of the
storage system.

3. The apparatus of claim 1 wherein the one or more target
storage volumes are part of the same storage system that
includes the one or more source storage volumes.

4. The apparatus of claim 1 wherein the create-token
command and the write-via-token command comprise
respective Oflloaded Data Transier (ODX) commands.

5. The apparatus of claam 1 wherein the m-memory
snapshot 1s not subsequently persisted in one or more
back-end storage devices of the storage system.

6. The apparatus of claim 1 wherein responsive to receipt
ol a write operation directed to at least one logical address
within the one or more logical address ranges of the one or
more source storage volumes for which the token was
created, a corresponding entry 1s generated in a given
metadata delta log of the differential metadata.

7. The apparatus of claim 1 wherein controlling execution
of the write-via-token command based at least 1n part on the
determination comprises, responsive to the determination
being athirmative, utilizing metadata from the one or more
entries 1n the execution of the write-via-token command.

8. The apparatus of claim 1 wherein the differential
metadata of the storage system comprises at least one
metadata delta log comprising one or more delta log buflers
cach comprising one or more delta log records.

9. The apparatus of claim 8 wherein the one or more delta
log buflers are configured as a tree structure comprising a
first level based in part on snapshot group identifiers and a
second level based 1n part on a hash of binary trees associ-
ated with respective ones of the snapshot group 1dentifiers.

10. The apparatus of claim 1 wherein the storage system
implements an m-memory transactional cache and generat-
ing the in-memory snapshot of data in the one or more
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logical address ranges of the one or more source storage
volumes comprises generating the in-memory snapshot
within the in-memory transactional cache.
11. The apparatus of claim 10 wherein input-output opera-
tions and storage system management operations are per-
sisted 1n the mm-memory transactional cache as part of a
chronological journal.
12. The apparatus of claim 10 wherein responsive to the
in-memory transactional cache reaching a designated full-
ness level, the mm-memory snapshot 1s destaged from the
in-memory transactional cache to one or more back-end
storage devices of the storage system and designated for use
only in conjunction with execution of one or more write-
via-token commands.
13. The apparatus of claim 10 wherein responsive to the
in-memory transactional cache reaching a designated tull-
ness level, the in-memory snapshot 1s deleted and the token
1s 1invalidated.
14. A computer program product comprising a non-
transitory processor-readable storage medium having stored
therein program code of one or more soltware programs,
wherein the program code when executed by at least one
processing device causes the at least one processing device:
to recelve a create-token command from a host device, the
create-token command specifying one or more logical
address ranges of one or more source storage volumes
ol a storage system:;

responsive to receipt of the create-token command, to
create a token, to generate an in-memory snapshot of
data 1n the one or more logical address ranges of the
one or more source storage volumes, to associate the
in-memory snapshot with the token, and to provide the
token to the host device;

to recetve a write-via-token command from the host

device, the write-via-token command speciiying the
token and one or more logical address ranges of one or
more target storage volumes; and

responsive to receipt of the write-via-token command, to

determine whether or not differential metadata of the
storage system includes one or more entries for the one
or more logical address ranges of the one or more
source storage volumes, and to control execution of the
write-via-token command based at least 1n part on the
determination;

wherein determining 1f differential metadata of the storage

system includes one or more entries for the one or more
logical address ranges of the one or more source
storage volumes comprises:
initiating an operation for copying ol metadata for the one
or more logical address ranges of the one or more
source storage volumes from the in-memory snapshot
to the one or more target storage volumes; and

determining 1n conjunction with the copying whether or
not at least a portion of the metadata 1s 1n one or more
metadata delta logs of the diflerential metadata; and

wherein controlling execution of the write-via-token com-
mand based at least 1n part on the determination com-
prises:
responsive to at least a portion of the metadata being 1n
one or more metadata delta logs of the differential
metadata, utilizing that portion of the metadata 1n the
one or more metadata delta logs 1n the copying; and

copying remaining portions of the metadata from the
in-memory snapshot to the one or more target storage
volumes;

the controlling execution of the write-via-token command

thereby being separated into at least first and second
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distinct parts, the first part utilizing the portion of the
metadata 1n the one or more metadata delta logs, and
the second part utilizing the remaining portions from
the 1n-memory snapshot.
15. The computer program product of claim 14 wherein
controlling execution of the write-via-token command based
at least 1n part on the determination comprises, responsive to
the determination being aflirmative, utilizing metadata from
the one or more entries in the execution of the write-via-
token command.
16. The computer program product of claim 14 wherein
the differential metadata of the storage system comprises at
least one metadata delta log comprising one or more delta
log buflers each comprising one or more delta log records.
17. A method comprising:
recerving a create-token command from a host device, the
create-token command specifying one or more logical
address ranges of one or more source storage volumes
ol a storage system:;

responsive to receipt of the create-token command, cre-
ating a token, generating an mm-memory snapshot of
data 1n the one or more logical address ranges of the
one or more source storage volumes, associating the
in-memory snapshot with the token, and providing the
token to the host device;

receiving a write-via-token command from the host

device, the write-via-token command specifying the
token and one or more logical address ranges of one or
more target storage volumes; and

responsive to receipt of the write-via-token command,

determining whether or not diflerential metadata of the
storage system includes one or more entries for the one
or more logical address ranges of the one or more
source storage volumes, and controlling execution of
the write-via-token command based at least 1n part on
the determination;

wherein determining if differential metadata of the storage

system includes one or more entries for the one or more
logical address ranges of the one or more source
storage volumes comprises:

imitiating an operation for copying ol metadata for the one

or more logical address ranges of the one or more
source storage volumes from the in-memory snapshot
to the one or more target storage volumes; and
determining 1n conjunction with the copying whether or
not at least a portion of the metadata 1s 1n one or more
metadata delta logs of the differential metadata;
wherein controlling execution of the write-via-token com-
mand based at least 1n part on the determination com-
Prises:
responsive to at least a portion of the metadata being 1n
one or more metadata delta logs of the differential
metadata, utilizing that portion of the metadata 1n the
one or more metadata delta logs i the copying; and
copying remaining portions of the metadata from the
in-memory snapshot to the one or more target storage

volumes;

the controlling execution of the write-via-token command
thereby being separated into at least first and second
distinct parts, the first part utilizing the portion of the
metadata 1n the one or more metadata delta logs, and
the second part utilizing the remaining portions from
the in-memory snapshot; and

wherein the method 1s performed by at least one process-
ing device comprising a processor coupled to a
memory.
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18. The method of claim 17 wherein controlling execution
of the write-via-token command based at least in part on the
determination comprises, responsive to the determination
being atlirmative, utilizing metadata from the one or more
entries in the execution of the write-via-token command.

19. The method of claam 17 wherein the differential
metadata of the storage system comprises at least one
metadata delta log comprising one or more delta log buflers
cach comprising one or more delta log records.

20. The method of claim 17 wherein the storage system
implements an in-memory transactional cache and generat-
ing the in-memory snapshot of data in the one or more
logical address ranges of the one or more source storage
volumes comprises generating the in-memory snapshot
within the in-memory transactional cache.
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